## Exact and Parameterized Algorithms for MAX INTERNAL SPANNING TREE

Henning Fernau<sup>1</sup> Serge Gaspers<sup>2</sup> Daniel Raible<sup>1</sup>

<sup>1</sup>University of Trier, Germany <sup>2</sup>LIRMM – Université de Montpellier 2, CNRS, France

WG 2009

・ロット (雪) (日) (日) (日)

#### Max Internal Spanning Tree

S. Gaspers

ntroduction Problem Definitior Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

## Outline

### Introduction

- Problem Definition
- Previous Results
- Our Results
- New Results

## Algorithm for graphs of max degree 3

- Observations
- Outline of Algorithm
- Simplification Rules
- Measure
- Branching
- Result for cubic graphs



#### Max Internal Spanning Tree

S. Gaspers

Introduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graph

Conclusion

- 日本 - 4 日本 - 4 日本 - 日本

## Outline

### Introduction

- Problem Definition
- Previous Results
- Our Results
- New Results

## 2 Algorithm for graphs of max degree 3

- Observations
- Outline of Algorithm
- Simplification Rules
- Measure
- Branching
- Result for cubic graphs

## Conclusion

Max Internal Spanning Tree

S. Gaspers

#### Introduction

Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

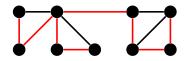
Conclusion

- 日本 - 4 日本 - 4 日本 - 日本

## **Problem Definition**

### MAXIMUM INTERNAL SPANNING TREE (MIST)

- Input: A graph G = (V, E) on *n* vertices, an integer *k*.
- Question: Does *G* have a spanning tree with at least *k* internal nodes?



Note: HAMILTONIAN PATH is a special case.

#### Max Internal Spanning Tree

S. Gaspers

#### ntroduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

### HAMILTONIAN PATH

- \$\mathcal{O}(2^n)\$ time algorithm with exponential space (Bellmann 62; Held & Karp 62)
- \$\mathcal{O}(2^n)\$ time algorithm with polynomial space (Kohn et al. 77; Karp 82)
- For graphs of bounded degree, faster algorithms are known for TRAVELLING SALESMAN / HAMILTONIAN CYCLE (Eppstein 03; Iwama & Nakashima 07; Björklund et al. 08)

Mist

•  $\mathcal{O}(k^2)$ -vertex kernel (Prieto & Sloper 05)

•  $49.6^k n^{\mathcal{O}(1)}$  time algorithm (Cohen et al. 09)

#### Max Internal Spanning Tree

S. Gaspers

Introduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

Conclusion

### HAMILTONIAN PATH

- \$\mathcal{O}(2^n)\$ time algorithm with exponential space (Bellmann 62; Held & Karp 62)
- \$\mathcal{O}(2^n)\$ time algorithm with polynomial space (Kohn et al. 77; Karp 82)
- For graphs of bounded degree, faster algorithms are known for TRAVELLING SALESMAN / HAMILTONIAN CYCLE (Eppstein 03; Iwama & Nakashima 07; Björklund et al. 08)

MIST

- $O(k^2)$ -vertex kernel (Prieto & Sloper 05)
- $49.6^k n^{\mathcal{O}(1)}$  time algorithm (Cohen et al. 09)

S. Gaspers

Introduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

## **Our Results**

### MIST

- $\mathcal{O}^*(3^n)$  time algorithm for general graphs
- $\mathcal{O}((3-\epsilon)^n)$  time algorithm for graphs of bounded degree
- $\mathcal{O}(1.8669^n)$  time algorithm for graphs of maximum degree 3
- 2.1364<sup>k</sup> $n^{\mathcal{O}(1)}$  time algorithm for graphs of maximum degree 3

・ロット (雪) (日) (日) (日)

#### Max Internal Spanning Tree

S. Gaspers

Introduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs Conclusion

## **New Results**

### Mist

- $\mathcal{O}^*(2^n)$  time algorithm for general graphs (Nederlof 09)
- 3k-vertex kernel (Fomin et al. unpublished)
- $8^k n^{\mathcal{O}(1)}$  time algorithm for general graphs

#### Max Internal Spanning Tree

S. Gaspers

Introduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphe

## Outline

## Introduction

- Problem Definition
- Previous Results
- Our Results
- New Results

### Algorithm for graphs of max degree 3

- Observations
- Outline of Algorithm
- Simplification Rules
- Measure
- Branching
- Result for cubic graphs

## Conclusion

Max Internal Spanning Tree

S. Gaspers

Introduction Problem Definition Previous Results Our Results New Results

#### Algorithm for graphs of max degree 3

Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

Conclusion

- 日本 - 4 日本 - 4 日本 - 日本

Let  $t_i(T)$  denote the number of vertices u such that  $d_T(u) = i$  in a spanning tree T of G.

### Lemma 1

In any spanning tree 
$$T$$
,  $2 + \sum_{i \ge 3} (i-2) \cdot t_i(T) = t_1(T)$ .

In cubic graphs, MIST = find a spanning tree *T* maximizing  $t_2(T)$ 

### Lemma 2 (Prieto & Sloper 03)

An optimal solution  $T_o$  to MIST is a Hamiltonian path or the leaves of  $T_o$  are independent.

#### Max Internal Spanning Tree

S. Gaspers

ntroduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

Let  $t_i(T)$  denote the number of vertices u such that  $d_T(u) = i$  in a spanning tree T of G.

### Lemma 1

In any spanning tree *T*, 
$$2 + \sum_{i \ge 3} (i - 2) \cdot t_i(T) = t_1(T)$$
.

In cubic graphs, MIST = find a spanning tree *T* maximizing  $t_2(T)$ 

### Lemma 2 (Prieto & Sloper 03)

An optimal solution  $T_o$  to MIST is a Hamiltonian path or the leaves of  $T_o$  are independent.

#### Max Internal Spanning Tree

S. Gaspers

- ntroduction Problem Definition Previous Results Our Results New Results
- Algorithm for graphs of max degree 3 Observations Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

## HAMILTONIAN PATH on cubic graphs

### Lemma 3

HAMILTONIAN PATH can be solved in time  $\mathcal{O}(1.251^n)$  on cubic graphs.

### Proof.

Simple adaptation of the  $\mathcal{O}(1.251^n)$  time algorithm for HAMILTONIAN CYCLE on cubic graphs (Iwama & Nakashima 07).

#### Max Internal Spanning Tree

S. Gaspers

- ntroduction Problem Definition Previous Results Our Results New Results
- Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

Conclusion



### Lemma 4

MIST on cubic graphs has a 2k-kernel.

### Proof.

Let *T* be an arbitrary spanning tree of *G*. If *T* has  $\geq k$  internal nodes, answer Yes. Otherwise,  $t_3(T) + t_2(T) < k$ . By Lemma 1,  $t_1(T) < k + 2$ . Thus,  $|V| \leq 2k$ .

Thus, HAMILTONIAN PATH can be solved in time  $1.5651^k \cdot n^{\mathcal{O}(1)}$ .

#### Max Internal Spanning Tree

S. Gaspers

ntroduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

Conclusion

## **Outline of Algorithm**

- Maintain partial spanning tree T
- T always connected
- Look at an edge *e* of *G* incident to an edge of *T* and recursively solve subproblems
  - adding e to T
  - removing e from G

Max Internal Spanning Tree

S. Gaspers

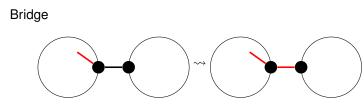
Introduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations **Outline of Algorithm** Simplification Rules Measure Branching Result for cubic graphs

Conclusion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## Simplification Rules



Cycle



◆□ → ◆檀 → ◆恵 → ◆恵 → □ 恵 □

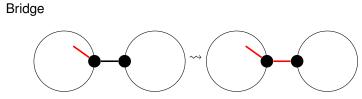
### Max Internal Spanning Tree

S. Gaspers

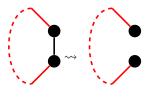
ntroduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

## **Simplification Rules**



Cycle



### Max Internal Spanning Tree

6. Gaspers

ntroduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

## Simplifications





### Max Internal Spanning Tree

S. Gaspers

ntroduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graph

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Measure of an instance:

.

$$\mu(G, T, k) := k - \omega |X| - |Y|, \text{ where}$$
  

$$X := \{ v \in V \mid d_G(v) = 3, d_T(v) = 2 \},$$
  

$$Y := \{ v \in V \mid d_G(v) = d_T(v) \ge 2 \}, \text{ and}$$
  

$$\omega = 0.45346.$$

$$X:$$
  $\omega$   $Y:$   $1$   $1$ 

.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

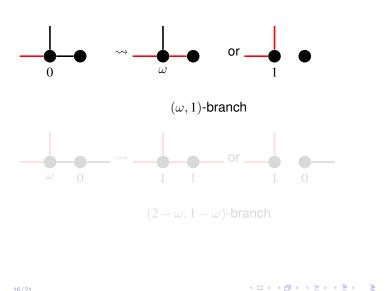
### Max Internal Spanning Tree

S. Gaspers

ntroduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

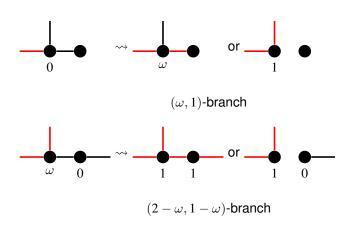
## Branching



#### Max Internal Spanning Tree

Branching

## Branching



#### Max Internal Spanning Tree

S. Gaspers

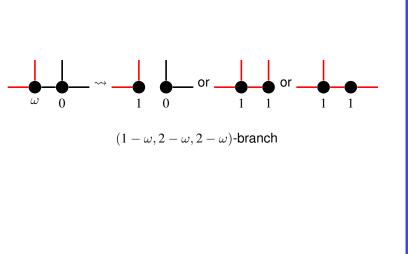
ntroduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

## Branching (2)



#### Max Internal Spanning Tree

S. Gaspers

ntroduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graph

Conclusion

(日)

## Result

### Theorem 5

Deciding whether a graph of maximum degree 3 has a spanning tree with at least *k* internal vertices can be done in time  $2.7321^k n^{\mathcal{O}(1)}$ .

Improved to  $2.1364^k n^{\mathcal{O}(1)}$  in the paper.

Max Internal Spanning Tree

S. Gaspers

Introduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

Conclusion

▲□▶▲□▶▲□▶▲□▶ ■ のへで

## Outline

## Introduction

- Problem Definition
- Previous Results
- Our Results
- New Results

## 2 Algorithm for graphs of max degree 3

- Observations
- Outline of Algorithm
- Simplification Rules
- Measure
- Branching
- Result for cubic graphs

## Conclusion

Max Internal Spanning Tree

S. Gaspers

Introduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

Conclusion

・ロト ・ 日本 ・ 日本 ・ 日本 ・ 日本

Very active research around MIST

This paper

- Main Result: algorithm for graphs of maximum degree 3
- analyzed in 2 ways (w.r.t. n and w.r.t. k)

• Novel use of Measure & Conquer for parameterized analysis Current / future work

- $\mathcal{O}((2-\epsilon_d)^n)$  time algorithms for graphs of max degree *d* Open question
  - For general graphs, design an algorithm faster than  $8^k n^{\mathcal{O}(1)}$ .

Max Internal Spanning Tree

S. Gaspers

Introduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs

# Thank you!

Questions?

## Comments?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Max Internal Spanning Tree

S. Gaspers

ntroduction Problem Definition Previous Results Our Results New Results

Algorithm for graphs of max degree 3 Observations Outline of Algorithm Simplification Rules Measure Branching Result for cubic graphs