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Problem Definition

MAXIMUM INTERNAL SPANNING TREE (MIST)

Input: A graph G = (V,E) on n vertices, an integer k.
Question: Does G have a spanning tree with at least k
internal nodes?

Note: HAMILTONIAN PATH is a special case.
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Previous Results

HAMILTONIAN PATH

O(2n) time algorithm with exponential space (Bellmann 62;
Held & Karp 62)
O(2n) time algorithm with polynomial space (Kohn et al. 77;
Karp 82)
For graphs of bounded degree, faster algorithms are known
for TRAVELLING SALESMAN / HAMILTONIAN CYCLE
(Eppstein 03; Iwama & Nakashima 07; Björklund et al. 08)

MIST

O(k2)-vertex kernel (Prieto & Sloper 05)
49.6knO(1) time algorithm (Cohen et al. 09)
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Our Results

MIST

O∗(3n) time algorithm for general graphs
O((3− ε)n) time algorithm for graphs of bounded degree
O(1.8669n) time algorithm for graphs of maximum degree 3
2.1364knO(1) time algorithm for graphs of maximum degree 3
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New Results

MIST

O∗(2n) time algorithm for general graphs (Nederlof 09)
3k-vertex kernel (Fomin et al. unpublished)
8knO(1) time algorithm for general graphs
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Observations

Let ti(T) denote the number of vertices u such that dT(u) = i in a
spanning tree T of G.

Lemma 1

In any spanning tree T, 2 +
∑

i≥3(i− 2) · ti(T) = t1(T).

In cubic graphs, MIST = find a spanning tree T maximizing t2(T)

Lemma 2 (Prieto & Sloper 03)

An optimal solution To to MIST is a Hamiltonian path or the
leaves of To are independent.
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HAMILTONIAN PATH on cubic graphs

Lemma 3

HAMILTONIAN PATH can be solved in time O(1.251n) on cubic
graphs.

Proof.

Simple adaptation of the O(1.251n) time algorithm for
HAMILTONIAN CYCLE on cubic graphs (Iwama & Nakashima
07).
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Kernel

Lemma 4

MIST on cubic graphs has a 2k-kernel.

Proof.
Let T be an arbitrary spanning tree of G.
If T has ≥ k internal nodes, answer Yes.
Otherwise, t3(T) + t2(T) < k. By Lemma 1, t1(T) < k + 2. Thus,
|V| ≤ 2k.

Thus, HAMILTONIAN PATH can be solved in time 1.5651k · nO(1).
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Outline of Algorithm

Maintain partial spanning tree T

T always connected
Look at an edge e of G incident to an edge of T and
recursively solve subproblems

adding e to T
removing e from G
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Simplifications

Degree2
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Measure

Measure of an instance:

µ(G,T, k) := k − ω|X| − |Y|, where

X := {v ∈ V | dG(v) = 3, dT(v) = 2},
Y := {v ∈ V | dG(v) = dT(v) ≥ 2}, and
ω = 0.45346.

X:
ω

Y:

1 1
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Branching

0

 
ω

or

1

(ω, 1)-branch

ω 0

 

1 1

or

1 0

(2− ω, 1− ω)-branch
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Branching (2)

ω 0

 

1 0

or

1 1

or

1 1

(1− ω, 2− ω, 2− ω)-branch
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Result

Theorem 5
Deciding whether a graph of maximum degree 3 has a spanning
tree with at least k internal vertices can be done in time
2.7321knO(1).

Improved to 2.1364knO(1) in the paper.
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Conclusion

Very active research around MIST

This paper
Main Result: algorithm for graphs of maximum degree 3
analyzed in 2 ways (w.r.t. n and w.r.t. k)
Novel use of Measure & Conquer for parameterized analysis

Current / future work
O((2− εd)n) time algorithms for graphs of max degree d

Open question
For general graphs, design an algorithm faster than 8knO(1).
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Thank you!

Questions? Comments?
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