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Twin-width and Contraction Sequences

Goal : contract near-twins, record neighbourhood errors.
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Figure: A (2)-contraction-sequence

d-contraction sequence : maximal red degree d .
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Twin-width and Contraction Sequences

Goal : contract near-twins, record neighbourhood errors.

abcdefg

Figure: A (2)-contraction-sequence

d-contraction sequence : maximal red degree d .

De�nition The twin-width of G is the least integer d such
that G admits a d-contraction sequence.

Bounded twin-width classes:
Bounded treewidth, rank-width, queue/stack number, Proper
minor-closed, Grids, Ω(log)-subdivisions... Stable under
FO-transductions.
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Complexity de�nitions

De�nition Kernel for parameterized Q: polynomial time
reduction from (I ,k) ∈Q to an equivalent (I ′,k ′) ∈Q.
A kernel for parameter k is polynomial if |I ′| =O(kp).

De�nition Vertex Cover: instances (G ,k), is there a set
S ⊆V of size at most k covering E .

Connected V-C: require S to be connected in G .

Capacitated V-C: adds a capacity c :V →N s.t. E → S
without exceeding capacity of any x ∈ S .

De�nition k-Dominating Set: Instances (G ,k), is there a set
S ⊆V of size at most k dominating V .
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Twin-width : FPT Consequences

Theorem (Bonnet, Kim, Thomassé, Watrigant '20) FO
model checking is FPT with respects to formula size on classes
of bounded twin-width given a contraction sequence.

k-IS : ∃x1...∃xk ∧
1ÉiÉjÉk ¬(xi = xj ∨E (xi ,xj)),

k-DS : ∃x1...∃xk∀x∨
1ÉiÉk(x = xi )∨∨

1ÉiÉk E (x ,xi ).

Theorem (Bonnet, Geniet, Kim, Thomassé, Watrigant '20)
k-IS admits no polynomial kernel on classes of bounded
twin-width unless unless coNP ⊆ NP/poly.

k-DS admits O(k(t+1)
2
) kernels notably on sparse (Kt,t -free) classes

(Philip, Raman, Sikdar '12), what about bounded twin-width?
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Results overview : Kernelization

In this talk:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
Unless coNP ⊆ NP/poly, k-Dominating Set on graphs of
twin-width at most 4 does not admit a polynomial kernel 1.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
Connected k-Vertex Cover and Capacitated k-Vertex Cover
admit a kernel with O(k

3
2 ) and O(k2) vertices respectively on

classes of bounded twin-width, and even of VC-density 1.

1even given a 4-sequence



Introduction VC-Density and C-VC polykernels k-DS admits no polykernel Conclusion

Results overview : Kernelization

In this talk:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
Unless coNP ⊆ NP/poly, k-Dominating Set on graphs of
twin-width at most 4 does not admit a polynomial kernel 1.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
Connected k-Vertex Cover and Capacitated k-Vertex Cover
admit a kernel with O(k

3
2 ) and O(k2) vertices respectively on

classes of bounded twin-width, and even of VC-density 1.

1even given a 4-sequence



Introduction VC-Density and C-VC polykernels k-DS admits no polykernel Conclusion

Results overview : Kernelization

In this talk:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
Unless coNP ⊆ NP/poly, k-Dominating Set on graphs of
twin-width at most 4 does not admit a polynomial kernel 1.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
Connected k-Vertex Cover and Capacitated k-Vertex Cover
admit a kernel with O(k

3
2 ) and O(k2) vertices respectively on

classes of bounded twin-width, and even of VC-density 1.

1even given a 4-sequence



Introduction VC-Density and C-VC polykernels k-DS admits no polykernel Conclusion

Results overview : VC-density and Recognizability

Further results (not in this talk):

Bounded tww ⇒ VC-density 1 of the neighbourhood set-system:

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21)
There exists f such that for every G of tww(d) and X ⊆V (G ),
the number of distinct neighborhoods in X is at most f (d)|X |.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
One can decide in polynomial time if a graph has twin-width at
most 1.
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A (sub)quadratic kernel for C-VC on VC-density 1

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21)
There exists f s.t. for any G of tww( d) and X ⊆V (G ):
number of distinct neighborhoods in X is at most f (d)|X |.

Kernel pre-processing:

Bounded tww G : take X 2-approx for VC,

if |X | Ê 2k +1 : no solution,

→ in X , number of distinct neighbourhoods É f (d)k
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A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is S ⊆V (G )\X with identical
neighbourhood in X and |S | > k , delete a vertex of S .

X

v1

...

v`

S , |S | É k

N(S)

Figure: Resulting instance: (G ′,k)

If (G ,k) has a solution, replace deletion with twin → reconnects T
If (G ′,k) has a solution T , T is also a solution for (G ,k),

Take deleted s, S\s *T as ind. set with |S | Ê k ,

Therefore N(S)⊆T , and s is covered by T in G .
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Concluding

Applying the reduction yields an equivalent instance,

The kernel has size at most f (d)∗k2,

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
On classes of VC-density 1, Connected k-Vertex Cover and
Capacitated k-Vertex Cover admit kernels with O(k1.5) and
O(k2) vertices respectively. In particular, they also do in
classes of bounded twin-width.



Introduction VC-Density and C-VC polykernels k-DS admits no polykernel Conclusion

Concluding

Applying the reduction yields an equivalent instance,

The kernel has size at most f (d)∗k2,

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
On classes of VC-density 1, Connected k-Vertex Cover and
Capacitated k-Vertex Cover admit kernels with O(k1.5) and
O(k2) vertices respectively. In particular, they also do in
classes of bounded twin-width.



Introduction VC-Density and C-VC polykernels k-DS admits no polykernel Conclusion

Concluding

Applying the reduction yields an equivalent instance,

The kernel has size at most f (d)∗k2,

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
On classes of VC-density 1, Connected k-Vertex Cover and
Capacitated k-Vertex Cover admit kernels with O(k1.5) and
O(k2) vertices respectively. In particular, they also do in
classes of bounded twin-width.



Introduction VC-Density and C-VC polykernels k-DS admits no polykernel Conclusion

Concluding

Applying the reduction yields an equivalent instance,

The kernel has size at most f (d)∗k2,

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
On classes of VC-density 1, Connected k-Vertex Cover and
Capacitated k-Vertex Cover admit kernels with O(k1.5) and
O(k2) vertices respectively. In particular, they also do in
classes of bounded twin-width.



Introduction VC-Density and C-VC polykernels k-DS admits no polykernel Conclusion

Contents

1 Introduction

2 VC-Density and C-VC polykernels

3 k-DS admits no polykernel

4 Conclusion



Introduction VC-Density and C-VC polykernels k-DS admits no polykernel Conclusion

Framework

OR-cross-composition, from L to parameterized Q:
Polytime reduction the OR of t ("equivalent") instances of L to
one instance of Q.

Theorem (Bodlaender, Jansen, Kratsch '12) If an
NP-hard language L admits an OR-cross-composition into a
parameterized problem Q, then Q does not admit a
polynomial kernel unless coNP ⊆ NP/poly.

L : Tailored k-DS (next slide),

Q : k-DS with twin-width 4.
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Planar 3SAT and Tailored k-DS

Theorem k-Dominating Set remains NP-hard even when
restricted to instances (G ,k ,B = {B1, . . . ,Bk }) such that:

B partitions V (G ), G has 4-sequence → G/B,

G/B is a spanning subgraph of a grid,

every dominating set of G intersects each Bi , for i ∈ [k]

x1 x2 x3 x4 x5 x6 x7 x8

C +

C −

Figure: Reduction sketch
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OR-composition sketch

Tailored k-DS, instances (Ii )i∈[t] → k-DS, tww É 4 instance (H ,k)
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OR-composition sketch

Tailored k-DS, instances (Ii )i∈[t] → k-DS, tww É 4 instance (H ,k)

I1

I2

I3

I4

I5

I6

Figure: Instances ↔ layers, partition classes ↔ boxes.
In H: Top instance ↔ dummy, half graphs cycle between classes
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Positive Tailored instance ⇒ Positive composition

Assume one instance (I4 here) is positive, pick its solution in H:

I1

I2

I3

I4

I5

I6

Figure: t Instances ↔ layers, k partition classes ↔ boxes
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Positive composition ⇒ Positive tailored instance

Assume (H ,k) is positive:

Dummy instance I6 forces one vertex per column (�gure),

Ideally : all choices on a single layer i → positive Ii ,

Assume not...

I1

I2

I3

I4

I5

I6
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Positive composition ⇒ Positive tailored instance

Non-identical layer choices → domination gap,

At least two classes are not dominated by neighbouring
columns,

Only one choice left in this column → absurd.

Ik ′′−3

Ik ′′−2

Ik ′′−1

Ik ′′

...
...

...
...

...
...

Ik

Ik+1

Ik+2

Ik+3
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Bounding the twin-width

For any Ii , each Bi ,j is a module in H − Ii → contraction
impacts only Ii ,

Contract each partition class of each instance
Result: red subgraph of grid (altered for tww 4).
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Figure: An instance after contracting classes.
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Bounding the twin-width

In the Composition: half-graph cycle between "homogeneous"
vertices, (at the same position in their respective instance).

Goal: Successively contract the bottommost two instances.

Each contraction: creates red edges only locally → induction

Figure: Instances and the half-graph cycle
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Concluding

NP-hard Tailored k-DS OR-cross-composes into k-DS,

The composed instance has tww at most four.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
Unless coNP ⊆ NP/poly, k-Dominating Set on graphs of
twin-width at most 4 does not admit a polynomial kernel, even
if a 4-sequence of the graph is given.
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Open questions

A linear kernel for Connected Vertex Cover on VC-density 1.

Are there polynomial kernels for k-Dominating Set on
twin-width 2 or 3?

Thanks for your attention!
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