Twin-width and polynomial kernels

Edouard Bonnet ! Eun Jung Kim 2 Amadeus Reinald !
Stéphan Thomassé ! Rémi Watrigant !

LLIP, ENS de Lyon

2| AMSADE, Paris-Dauphine University

IPEC 2021



Introduction
©00000

Contents




Introduction
©0®0000

Twin-width and Contraction Sequences

Goal : contract near-twins, record neighbourhood errors.
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Twin-width and Contraction Sequences

Goal : contract near-twins, record neighbourhood errors.
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Figure: A (2)-contraction-sequence
d-contraction sequence : maximal red degree d.

Definition The twin-width of G is the least integer d such
that G admits a d-contraction sequence.

Bounded twin-width classes:

Bounded treewidth, rank-width, queue/stack number, Proper
minor-closed, Grids, Q(log)-subdivisions... Stable under
FO-transductions.
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Definition Kernel for parameterized 2: polynomial time
reduction from (I,k) € 2 to an equivalent (I', k') € 2.
A kernel for parameter k is polynomial if |I'| = O(kP).

Definition Vertex Cover: instances (G, k), is there a set
Sc V of size at most k covering E.

o Connected V-C: require S to be connected in G.

o Capacitated V-C: adds a capacity c:V—-N st. E—S
without exceeding capacity of any x€ S.

Definition k-Dominating Set: Instances (G, k), is there a set
Sc V of size at most k dominating V.
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Twin-width : FPT Consequences

Theorem (Bonnet, Kim, Thomassé, Watrigant '20) FO
model checking is FPT with respects to formula size on classes
of bounded twin-width given a contraction sequence.

© k-1S @ Axq..3xk Ai<i<jck 7(Xi = X5V E(Xi, x})),
@ k-DS : 3xq..3x, Vx Vi<i<k(Xx = Xx;) vV Vi<i<k E(x, %)

Theorem (Bonnet, Geniet, Kim, Thomassé, Watrigant '20)
k-1S admits no polynomial kernel on classes of bounded
twin-width unless unless coNP < NP /poly.

k-DS admits O(k(”l)z) kernels notably on sparse (K ¢-free) classes
(Philip, Raman, Sikdar '12), what about bounded twin-width?
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Results overview : Kernelization

In this talk:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
Unless coNP < NP /poly, k-Dominating Set on graphs of
twin-width at most 4 does not admit a polynomial kernel 1.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
Connected k-Vertex Cover and Capacitated k-Vertex Cover
admit a kernel with O(k%) and O(k?) vertices respectively on
classes of bounded twin-width, and even of VC-density 1.

leven given a 4-sequence
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Results overview : VC-density and Recognizability

Further results (not in this talk):
Bounded tww = VC-density 1 of the neighbourhood set-system:

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21)
There exists f such that for every G of tww(d) and X < V(G),
the number of distinct neighborhoods in X is at most f(d)|X]|.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
One can decide in polynomial time if a graph has twin-width at
most 1.
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A (sub)quadratic kernel for C-VC on VC-density 1

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21)
There exists f s.t. for any G of tww( d) and X € V(G):
number of distinct neighborhoods in X is at most f(d)|X]|.

Kernel pre-processing:
o Bounded tww G: take X 2-approx for VC,
o if [ X|=2k+1: no solution,
@ — in X, number of distinct neighbourhoods < f(d)k
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Reduction rule: If there is S < V(G)\ X with identical
neighbourhood in X and |S| > k, delete a vertex of S.



VC-Density and C-VC polykernels

[e]e] Jlo}

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is S < V(G)\ X with identical
neighbourhood in X and |S| > k, delete a vertex of S.

Figure: Resulting instance: (G’, k)



VC-Density and C-VC polykernels

[e]e] Jlo}

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is S < V(G)\ X with identical
neighbourhood in X and |S| > k, delete a vertex of S.

Figure: Resulting instance: (G’, k)

If (G, k) has a solution, replace deletion with twin — reconnects T




VC-Density and C-VC polykernels
ocoe0

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is S < V(G)\ X with identical
neighbourhood in X and |S| > k, delete a vertex of S.

Figure: Resulting instance: (G’, k)

If (G, k) has a solution, replace deletion with twin — reconnects T
If (G, k) has a solution T, T is also a solution for (G, k),




VC-Density and C-VC polykernels

[e]e] Jlo}

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is S < V(G)\ X with identical
neighbourhood in X and |S| > k, delete a vertex of S.

Figure: Resulting instance: (G’, k)

If (G, k) has a solution, replace deletion with twin — reconnects T
If (G, k) has a solution T, T is also a solution for (G, k),

o Take deleted s, S\s Z T as ind. set with |S| >k,
@ Therefore N(S)< T, and s is covered by T in G.
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Concluding

@ Applying the reduction yields an equivalent instance,
@ The kernel has size at most f(d) * k2,

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
On classes of V(C-density 1, Connected k-Vertex Cover and
Capacitated k-Vertex Cover admit kernels with O(k'®) and
O(Kk?) vertices respectively. In particular, they also do in
classes of bounded twin-width.
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Framework

OR-cross-composition, from £ to parameterized 2:

Polytime reduction the OR of t ("equivalent") instances of £ to
one instance of 2.

Theorem (Bodlaender, Jansen, Kratsch '12) If an
NP-hard language £ admits an OR-cross-composition into a
parameterized problem 2, then 2 does not admit a
polynomial kernel unless coNP < NP /poly.

o £ : Tailored k-DS (next slide),
0 2 : k-DS with twin-width 4.
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Theorem k-Dominating Set remains NP-hard even when
restricted to instances (G, k,B ={Bi,...,By}) such that:

o B partitions V(G), G has 4-sequence — G /%,
o G /9B is a spanning subgraph of a grid,

@ every dominating set of G intersects each B;, for i € [k]
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Planar 3SAT and Tailored k-DS

Theorem k-Dominating Set remains NP-hard even when
restricted to instances (G, k,B ={Bi,...,By}) such that:

o B partitions V(G), G has 4-sequence — G /%,
o G /9B is a spanning subgraph of a grid,

@ every dominating set of G intersects each B;, for i € [k]

Figure: Reduction sketch
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Figure: Instances — layers, partition classes < boxes.
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OR-composition sketch

Tailored k-DS, instances (/;)ie[yy — k-DS, tww <4 instance (H, k)
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Figure: Instances < layers, partition classes < boxes.
In H: Top instance — dummy, half graphs cycle between classes
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Assume one instance (ls here) is positive, pick its solution in H:
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Positive composition = Positive tailored instance

Assume (H, k) is positive:
@ Dummy instance I forces one vertex per column (figure),
o Ideally : all choices on a single layer i — positive [;,

@ Assume not...
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Positive composition = Positive tailored instance

@ Non-identical layer choices — domination gap,
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Positive composition = Positive tailored instance

@ Non-identical layer choices — domination gap,

@ At least two classes are not dominated by neighbouring

columns,
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Positive composition = Positive tailored instance

@ Non-identical layer choices — domination gap,

@ At least two classes are not dominated by neighbouring
columns,
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o For any /;, each 98; j is a module in H~-/; — contraction
impacts only /;,
@ Contract each partition class of each instance

Figure: An instance after contracting classes.
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Bounding the twin-width

o For any /;, each 98; j is a module in H~-/; — contraction
impacts only /;,

@ Contract each partition class of each instance

@ Result: red subgraph of grid (altered for tww 4).

Figure: An instance after contracting classes.
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@ Between instances : cycle of half graphs,




Bounding the twin-width

@ Between instances : cycle of half graphs,

o Half graphs cycles have tww 3 : successively contract
bottommost two layers
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Bounding the twin-width

@ In the Composition: half-graph cycle between "homogeneous"
vertices, (at the same position in their respective instance).
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Figure: Instances and the half—graph cycle
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Bounding the twin-width

@ In the Composition: half-graph cycle between "homogeneous"
vertices, (at the same position in their respective instance).

@ Goal: Successively contract the bottommost two instances.
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Figure: Instances and the half—graph cycle
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Bounding the twin-width

@ In the Composition: half-graph cycle between "homogeneous"
vertices, (at the same position in their respective instance).

@ Goal: Successively contract the bottommost two instances.
@ Each contraction: creates red edges only locally — induction

' J—UWJ—Q—U

/1/’/. P %‘%

'oooo

Figure: Instances and the half—graph cycle
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Concluding

@ NP-hard Tailored k-DS OR-cross-composes into k-DS,

@ The composed instance has tww at most four.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
Unless coNP = NP /poly, k-Dominating Set on graphs of
twin-width at most 4 does not admit a polynomial kernel, even
if a 4-sequence of the graph is given.
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Open questions

@ A linear kernel for Connected Vertex Cover on VC-density 1.

@ Are there polynomial kernels for k-Dominating Set on
twin-width 2 or 37

Thanks for your attention!



	Introduction
	VC-Density and C-VC polykernels
	k-DS admits no polykernel
	Conclusion

