Twin-width and polynomial kernels

Édouard Bonnet ¹ Eun Jung Kim ² <u>Amadeus Reinald</u> ¹ Stéphan Thomassé ¹ Rémi Watrigant ¹

¹LIP, ENS de Lyon

²LAMSADE, Paris-Dauphine University

IPEC 2021

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
●00000		0000000000	00
Contents			

Figure: A (2)-contraction-sequence

Figure: A (2)-contraction-sequence

d-contraction sequence : maximal red degree *d*.

Definition The twin-width of G is the least integer d such that G admits a d-contraction sequence.

Definition The twin-width of G is the least integer d such that G admits a d-contraction sequence.

Bounded twin-width classes:

Bounded treewidth, rank-width, queue/stack number, Proper minor-closed, **Grids**, $\Omega(\log)$ -subdivisions... Stable under FO-transductions.

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
00●000		0000000000	00
Complexity	definitions		

Definition Kernel for parameterized \mathcal{Q} : polynomial time reduction from $(I, k) \in \mathcal{Q}$ to an equivalent $(I', k') \in \mathcal{Q}$. A kernel for parameter k is polynomial if $|I'| = O(k^p)$.

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
00●000		0000000000	00
Complexity	definitions		

Definition Kernel for parameterized \mathcal{Q} : polynomial time reduction from $(I,k) \in \mathcal{Q}$ to an equivalent $(I',k') \in \mathcal{Q}$. A kernel for parameter k is polynomial if $|I'| = O(k^p)$.

Definition Vertex Cover: instances (G, k), is there a set $S \subseteq V$ of size at most k covering E.

- Connected V-C: require S to be connected in G.
- Capacitated V-C: adds a capacity c: V → N s.t. E → S without exceeding capacity of any x ∈ S.

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
00●000		0000000000	00
Complexity	definitions		

Definition Kernel for parameterized \mathcal{Q} : polynomial time reduction from $(I,k) \in \mathcal{Q}$ to an equivalent $(I',k') \in \mathcal{Q}$. A kernel for parameter k is polynomial if $|I'| = O(k^p)$.

Definition Vertex Cover: instances (G, k), is there a set $S \subseteq V$ of size at most k covering E.

- Connected V-C: require S to be connected in G.
- Capacitated V-C: adds a capacity c: V → N s.t. E → S without exceeding capacity of any x ∈ S.

Definition k-Dominating Set: Instances (G, k), is there a set $S \subseteq V$ of size at most k dominating V.

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000	0000	0000000000	00
Twin-width	: FPT Consequences		

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		0000000000	00
Twin-width	: FPT Consequences		

• k-IS : $\exists x_1 \dots \exists x_k \land 1 \leq i \leq j \leq k} \neg (x_i = x_j \lor E(x_i, x_j)),$

•
$$k$$
-DS : $\exists x_1 \dots \exists x_k \forall x \bigvee_{1 \leq i \leq k} (x = x_i) \lor \bigvee_{1 \leq i \leq k} E(x, x_i)$.

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		00000000000	00
Twin-width	: FPT Consequences		

•
$$k$$
-IS : $\exists x_1 \dots \exists x_k \land 1 \leq i \leq j \leq k} \neg (x_i = x_j \lor E(x_i, x_j)),$

•
$$k$$
-DS : $\exists x_1 \dots \exists x_k \forall x \bigvee_{1 \leq i \leq k} (x = x_i) \lor \bigvee_{1 \leq i \leq k} E(x, x_i)$.

Theorem (Bonnet, Geniet, Kim, Thomassé, Watrigant '20) k-IS admits no polynomial kernel on classes of bounded twin-width unless unless $coNP \subseteq NP/poly$.

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000	0000	00000000000	00
Twin-width	: FPT Consequences		

•
$$k$$
-IS : $\exists x_1 \dots \exists x_k \land 1 \leq i \leq j \leq k} \neg (x_i = x_j \lor E(x_i, x_j)),$

•
$$k$$
-DS : $\exists x_1 ... \exists x_k \forall x \bigvee_{1 \leq i \leq k} (x = x_i) \lor \bigvee_{1 \leq i \leq k} E(x, x_i)$.

Theorem (Bonnet, Geniet, Kim, Thomassé, Watrigant '20) k-IS admits no polynomial kernel on classes of bounded twin-width unless unless $coNP \subseteq NP/poly$.

k-DS admits $O(k^{(t+1)^2})$ kernels notably on sparse ($K_{t,t}$ -free) classes (Philip, Raman, Sikdar '12), what about **bounded twin-width**?

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
0000●0	0000	0000000000	00
Results ove	erview : Kernelization		

In this talk:

¹even given a 4-sequence

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		00000000000	00
Results ove	rview : Kernelization		

In this talk:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) Unless $coNP \subseteq NP/poly$, k-Dominating Set on graphs of twin-width at most 4 does not admit a polynomial kernel¹.

¹even given a 4-sequence

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
0000€0		0000000000	00
Results ove	rview : Kernelization		

In this talk:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) Unless $coNP \subseteq NP/poly$, k-Dominating Set on graphs of twin-width at most 4 does not admit a polynomial kernel¹.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) Connected k-Vertex Cover and Capacitated k-Vertex Cover admit a kernel with $O(k^{\frac{3}{2}})$ and $O(k^2)$ vertices respectively on classes of bounded twin-width, and even of VC-density 1.

¹even given a 4-sequence

Introduction	VC-Density a	nd C-VC polykernels	k-DS admits no polykernel	Conclusion
00000●	0000		00000000000	00
Results o	overview :	VC-density and	Recognizability	

Further results (not in this talk):

Further results (not in this talk): Bounded tww \Rightarrow VC-density 1 of the neighbourhood set-system:

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21) There exists f such that for every G of tww(d) and $X \subseteq V(G)$, the number of distinct neighborhoods in X is at most f(d)|X|.

Further results (not in this talk): Bounded tww \Rightarrow VC-density 1 of the neighbourhood set-system:

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21) There exists f such that for every G of tww(d) and $X \subseteq V(G)$, the number of distinct neighborhoods in X is at most f(d)|X|.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) One can decide in polynomial time if a graph has twin-width at most 1.

Introduction	VC-Density and C-VC polykernels	k- DS admits no polykernel	Conclusion
000000	●000	0000000000	00
Contents			

2 VC-Density and C-VC polykernels

VC-Density and C-VC polykernels

k-DS admits no polykernel

Conclusion 00

A (sub)quadratic kernel for C-VC on VC-density 1

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21) There exists f s.t. for any G of tww(d) and $X \subseteq V(G)$: number of distinct neighborhoods in X is at most f(d)|X|.

A (sub)quadratic kernel for C-VC on VC-density 1

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21) There exists f s.t. for any G of tww(d) and $X \subseteq V(G)$: number of distinct neighborhoods in X is at most f(d)|X|.

Kernel pre-processing:

• Bounded tww G: take X 2-approx for VC,

A (sub)quadratic kernel for C-VC on VC-density 1

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21) There exists f s.t. for any G of tww(d) and $X \subseteq V(G)$: number of distinct neighborhoods in X is at most f(d)|X|.

Kernel pre-processing:

- Bounded tww G: take X 2-approx for VC,
- if $|X| \ge 2k+1$: no solution,

A (sub)quadratic kernel for C-VC on VC-density 1

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21) There exists f s.t. for any G of tww(d) and $X \subseteq V(G)$: number of distinct neighborhoods in X is at most f(d)|X|.

Kernel pre-processing:

- Bounded tww G: take X 2-approx for VC,
- if $|X| \ge 2k + 1$: no solution,
- \rightarrow in X, number of distinct neighbourhoods $\leq f(d)k$

VC-Density and C-VC polykernels $\circ \circ \bullet \circ$

k-DS admits no polykernel

Conclusion

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is $S \subseteq V(G) \setminus X$ with identical neighbourhood in X and |S| > k, delete a vertex of S.

Introduction VC-Density and C-VC polykernels k-DS admits no polykernel Conclusion

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is $S \subseteq V(G) \setminus X$ with identical neighbourhood in X and |S| > k, delete a vertex of S.

Figure: Resulting instance: (G', k)

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is $S \subseteq V(G) \setminus X$ with identical neighbourhood in X and |S| > k, delete a vertex of S.

Figure: Resulting instance: (G', k)

If (G, k) has a solution, replace deletion with twin \rightarrow reconnects T

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is $S \subseteq V(G) \setminus X$ with identical neighbourhood in X and |S| > k, delete a vertex of S.

Figure: Resulting instance: (G', k)

 $\frac{\text{If } (G,k) \text{ has a solution, replace deletion with twin} \rightarrow \text{reconnects } T}{\text{If } (G',k) \text{ has a solution} } T, T \text{ is also a solution for } (G,k),$

 Introduction
 VC-Density and C-VC polykernels
 k-DS admits no polykernel
 Conclusion

 000000
 0000
 00000000000
 00000000000
 00000000000

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is $S \subseteq V(G) \setminus X$ with identical neighbourhood in X and |S| > k, delete a vertex of S.

Figure: Resulting instance: (G', k)

 $\frac{|f(G,k)|}{|f(G',k)|} \text{ has a solution, replace deletion with twin } \rightarrow \text{ reconnects } T$

• Take deleted s, $S \setminus s \nsubseteq T$ as ind. set with $|S| \ge k$,

• Therefore $N(S) \subseteq T$, and s is covered by T in G.

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000	000●	0000000000	00
Concluding			

• Applying the reduction yields an equivalent instance,

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000	000●	0000000000	00
Concluding			

- Applying the reduction yields an equivalent instance,
- The kernel has size at most $f(d) * k^2$,

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000	000●	0000000000	00
Concluding			

- Applying the reduction yields an equivalent instance,
- The kernel has size at most $f(d) * k^2$,

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000	000●	0000000000	00
Concluding			

- Applying the reduction yields an equivalent instance,
- The kernel has size at most $f(d) * k^2$,

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) On classes of VC-density 1, Connected k-Vertex Cover and Capacitated k-Vertex Cover admit kernels with $O(k^{1.5})$ and $O(k^2)$ vertices respectively. In particular, they also do in classes of bounded twin-width.

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000	0000	●0000000000	00
Contents			

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		0●000000000	00
Framework			

OR-cross-composition, from \mathcal{L} to parameterized \mathcal{Q} : Polytime reduction the **OR** of t ("equivalent") instances of \mathcal{L} to one instance of \mathcal{Q} .

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		0●000000000	00
Framework			

OR-cross-composition, from \mathscr{L} to parameterized \mathscr{Q} : Polytime reduction the **OR** of t ("equivalent") instances of \mathscr{L} to one instance of \mathscr{Q} .

Theorem (Bodlaender, Jansen, Kratsch '12) If an NP-hard language \mathcal{L} admits an OR-cross-composition into a parameterized problem \mathcal{Q} , then \mathcal{Q} does not admit a polynomial kernel unless $coNP \subseteq NP/poly$.

- \mathscr{L} : Tailored k-DS (next slide),
- \mathcal{Q} : *k*-DS with twin-width 4.

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		00●00000000	00
Planar 3SA	T and Tailored k-DS		

Theorem k-Dominating Set remains NP-hard even when restricted to instances $(G, k, \mathcal{B} = \{B_1, ..., B_k\})$ such that:

- \mathscr{B} partitions V(G), G has 4-sequence $\rightarrow G/\mathscr{B}$,
- G/\mathcal{B} is a spanning subgraph of a grid,
- every dominating set of G intersects each B_i , for $i \in [k]$

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		00●00000000	00
Planar 3SA	T and Tailored k-DS		

Theorem k-Dominating Set remains NP-hard even when restricted to instances $(G, k, \mathcal{B} = \{B_1, ..., B_k\})$ such that:

- \mathscr{B} partitions V(G), G has 4-sequence $\rightarrow G/\mathscr{B}$,
- G/\mathcal{B} is a spanning subgraph of a grid,
- every dominating set of G intersects each B_i , for $i \in [k]$

000000	0000	000000000	00
$()R_{-comn}$	nosition sketch		

Tailored k-DS, instances $(I_i)_{i \in [t]} \rightarrow k$ -DS, $tww \leq 4$ instance (H, k)

Introduction VC-Density and C-VC polykernels k-DS admits no polykernel Conclusion

OR-composition sketch

Tailored k-DS, instances $(I_i)_{i \in [t]} \rightarrow k$ -DS, $tww \leq 4$ instance (H, k)

VC-Density and C-VC polykernels

k-DS admits no polykernel

Conclusion 00

OR-composition sketch

Tailored k-DS, instances $(I_i)_{i \in [t]} \rightarrow k$ -DS, $tww \leq 4$ instance (H, k)

Figure: Instances \leftrightarrow layers, partition classes \leftrightarrow boxes. In *H*: Top instance \leftrightarrow dummy, half graphs cycle between classes

Positive Tailored instance \Rightarrow Positive composition

Assume one instance (I_4 here) is positive, pick its solution in H:

Positive Tailored instance \Rightarrow Positive composition

Assume one instance $(I_4 \text{ here})$ is positive, pick its solution in H:

Positive Tailored instance \Rightarrow Positive composition

Assume one instance (I_4 here) is positive, pick its solution in H:

Introduction VC-Density and C-VC polykernels k-DS admits no polykernel Conclusion

Positive Tailored instance \Rightarrow Positive composition

Assume one instance $(I_4 \text{ here})$ is positive, pick its solution in H:

Introduction VC-Density and C-VC polykernels k-DS admits no polykernel Conclusion

Positive Tailored instance \Rightarrow Positive composition

Assume one instance (I_4 here) is positive, pick its solution in H:

Positive Tailored instance \Rightarrow Positive composition

Assume one instance (I_4 here) is positive, pick its solution in H:

Introduction	VC-Density and C-	VC polykernels	k-DS admits no polykernel	Conclusion
000000	0000		00000●00000	00
Positive	composition =	⇒ Positive	tailored instance	

Assume (H, k) is positive:

• Dummy instance *I*₆ forces one vertex per column (figure),

Introduction	VC-Density and C-VC polykernels		k-DS admits no polykernel	Conclusion
000000			00000●00000	00
р 1.1	2.12			

Positive composition \Rightarrow Positive tailored instance

Assume (H, k) is positive:

- Dummy instance I_6 forces one vertex per column (figure),
- Ideally : all choices on a single layer $i \rightarrow \text{positive } I_i$,

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		00000●00000	00

Positive composition \Rightarrow Positive tailored instance

Assume (H, k) is positive:

- Dummy instance I₆ forces one vertex per column (figure),
- Ideally : all choices on a single layer $i \rightarrow \text{positive } I_i$,
- Assume not...

Introduction	VC-Density and C-VC	polykernels k-DS admits no po	ykernel Conclusion
000000	0000	000000€0000	00
Positive	composition \Rightarrow	Positive tailored insta	ance

• Non-identical layer choices \rightarrow domination gap,

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		000000●0000	00

Positive composition \Rightarrow Positive tailored instance

- Non-identical layer choices \rightarrow domination gap,
- At least two classes are not dominated by neighbouring columns,

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		000000●0000	00

Positive composition \Rightarrow Positive tailored instance

- Non-identical layer choices \rightarrow domination gap,
- At least two classes are not dominated by neighbouring columns,
- Only one choice left in this column \rightarrow absurd.

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		0000000●000	00
Bounding t	he twin-width		

• For any I_i , each $\mathscr{B}_{i,i}$ is a module in $H - I_i \rightarrow$ contraction impacts only I_i ,

Figure: An instance after contracting classes.

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		0000000●000	00
Rounding	the twin_width		

- For any I_i , each $\mathscr{B}_{i,j}$ is a module in $H I_i \rightarrow$ contraction impacts only I_i ,
- Contract each partition class of each instance

പ്

Figure: An instance after contracting classes.

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		0000000●000	00
Dounding	the twin width		

Bounding the twin-width

- For any I_i , each $\mathscr{B}_{i,j}$ is a module in $H I_i \rightarrow \text{contraction}$ impacts only I_i ,
- Contract each partition class of each instance
- Result: red subgraph of grid (altered for tww 4).

Figure: An instance after contracting classes.

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		000000000000	00
Bounding	the twin-width		

• Between instances : cycle of half graphs,

occoccoccoccoccoccoccoccoccoccoccoccocc	VC-Density and C-VC polykernels	k-DS admits no polykernel 000000000000	Conclusion 00
Bounding	the twin-width		

- Between instances : cycle of half graphs,
- Half graphs cycles have tww 3 : successively contract bottommost two layers

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000	0000	00000000000	00
Bounding t	he twin-width		

• In the Composition: half-graph cycle between "homogeneous" vertices, (at the same position in their respective instance).

Figure: Instances and the half-graph cycle

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		000000000●0	00
Rounding	the twin-width		

- In the Composition: half-graph cycle between "homogeneous" vertices, (at the same position in their respective instance).
- Goal: Successively contract the bottommost two instances.

Figure: Instances and the half-graph cycle

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		00000000000	00
Rounding	the twin width		

- In the Composition: half-graph cycle between "homogeneous" vertices, (at the same position in their respective instance).
- Goal: Successively contract the bottommost two instances.
- Each contraction: creates red edges only locally \rightarrow induction

Figure: Instances and the half-graph cycle

Introduction	VC-Density and C-VC polykernels	k- DS admits no polykernel	Conclusion
000000		0000000000●	00
Concluding			

- NP-hard Tailored k-DS OR-cross-composes into k-DS,
- The composed instance has tww at most four.

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		0000000000	00
Concluding			

- NP-hard Tailored k-DS OR-cross-composes into k-DS,
- The composed instance has tww at most four.

പ

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) Unless $coNP \subseteq NP/poly$, k-Dominating Set on graphs of twin-width at most 4 does not admit a polynomial kernel, even if a 4-sequence of the graph is given.

Introduction 000000	VC-Density and C-VC polykernels	k- DS admits no polykernel 00000000000	Conclusion ●0
Contents			

VC-Density and C-VC polykernels

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		0000000000	○●
Open ques	stions		

- A *linear* kernel for Connected Vertex Cover on VC-density 1.
- Are there polynomial kernels for *k*-Dominating Set on twin-width 2 or 3?

Introduction	VC-Density and C-VC polykernels	k-DS admits no polykernel	Conclusion
000000		0000000000	○●
Open ques	stions		

- A *linear* kernel for Connected Vertex Cover on VC-density 1.
- Are there polynomial kernels for *k*-Dominating Set on twin-width 2 or 3?

Thanks for your attention!