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Fig. 2-queue layout of a triangulated grid [Duj+21].

Matricial: Adjacency matrix coloured by k increasing zones
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Twin-width: contraction sequences

Structural def: contract near-twins, record neighbourhood errors.

abcdefg

Fig. A (2)-contraction-sequence
d-contraction sequence : maximal red degree d.

Definition The twin-width of G is the least integer d such
that G admits a d-contraction sequence.
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Twin-width: mixed minors

Matrix def:

Theorem (Bonnet, Kim, Thomassé, Watrigant ’'20)
A class of graphs has bounded tww if and only if it is t-mixed
free for some constant t.
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Fig. A 3 mixed-minor and a 4-grid minor
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@ Bounded treewidth, rank-width, queue/stack number =
Bounded tww.

@ Proper minor-closed classes (2 Grids), map graphs...

Algorithmic implications:

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

For a graph G, given with a d-contraction sequence, and any
FO formula ¢, deciding G |= ¢ can be done in (FPT) time
f(lgl,d)-n.

¢ can capture: Dominating Set, Vertex Cover, Independent Set...
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Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
Theta-free graphs of girth at least five have bounded tww.

Complexity:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
On graphs of twin-width at most four, k-DOMINATING SET
does not admit polynomial kernels unless coNP < NP /poly.

Theorem (Bonnet, Kim, R., Thomassé, Watrlgant '21)
On bounded tww, Connected k-VC admits a O(kz) kernel.
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Question: High parameter = forced structure/subgraph?
Forbidden subgraph = low parameter?

Known approach: forbid subgraphs as minors.

Theorem (Treewidth: R,S '86)
Graphs forbidding a wall minor have

bounded treewidth. Fig. A wall

Theorem (Twin-width: B,K,T,W '20)
Proper minor-closed classes have bounded
twin-width.

7/41
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Treewidth and induced subgraphs

Generalize: forbid induced graph & its subdivisions. .
Sparse + forbidden subwall = bounded treewidth? e

Theorem (Sintiari, Trotignon '19)
There exist graphs forbidding induced thetas, having arbitrarily
large girth and treewidth.

V7NN
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Fig. A layered wheel [ST19]

Theorem (Abrishami, Chudnovsky, Hajebi, Spirkl '21)
There exists ¢ s.t. for any (Theta, triangle)-free G,
tw(G) < clog(IV(G)I).

Do such graphs have bounded twin-width?
9/41
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Twin-width and induced subgraphs

How does twin-width motivate the study of theta-free classes?

@ We can only forbid subcubic graphs: subcubic graphs already
have unbounded tww.

@ Q(log(n))-subdivisions of cliques have bounded tww, while
o(log(n)) subdivisions have unbounded tww.

o (excessively) Optimistic conjecture : forbiding any subcubic
graph + sparse = bounded twin-width?

Our class: Theta-free, girth 5.

.
.
--»
.
.
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@ Bounding tww < building a "simple", mixed-free order,
o It suffices to rule out grid minors.

@ Build an order witnessing enough structure such that large
grid minors = induced thetas.

111 1)1 1]1 0
0 1|t ofo to 1
0 0fo ofo 0o 1
0 1fo of1 o1 0
1 0jo1f10]10
0 1f1 1|1 1o 0
|1 0f1 1|1 00 1]

Candidates: BFS, DFS...
Little information on connected subgraphs, hard finding thetas.
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Connected BFS Decomposition

Yis1 :== men(YoU...UY))

@ Layer Y; adjacent only to Yi_1 and Yi;1,

o Component Yij has exactly one antecedent in Yj_1.

Global structure: tree relating components YI.J.
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Chasing Complex Structures

Global relation between components is a tree, "simple" / tww.

Does complexity lie inside components Yij? No

Lemma For any CBFS of G, each YIJ is a tree. Moreover,
each ve YI.J has an unique antecedent vleY;.

— Complexity must lie in adjacencies between components...
© Describe the structure between layers,

© Use it to guide our ordering choice.

14 /41
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Component-Antecedent Structure

How do successors of different vertices of Y;_1 relate in Y;?

Yic1

Lemma For any YJ there is a prmc:pal path P{ s.t. any

successor v € YJ belongs to a v~ Y-private branch of PJ

Natural order: DFS exhausting private branches following P:j

15/41
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Component-Successors Structure

Locally: for any vertex r in component YI.J:

° Yij = tree — r-branches are simple,
@ Complexity = r-branches intertwining using Yji1,

Definition Consecutivity:
shortest path between
successors of different
r-branches.

Lemma A/l but two
r-branches admit at most
two consecutivities.

16/41
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O00000e

Constructing the total order

@ Globally: components Yij o Locally: branches in YI.j:
related as a tree little intertwining on Yji1
o — follow the CBFS order o — DFS: order branches /
lexicographically. consec. cycles and paths.

Fig. Inter-component BFS Fig. Intra-component DFS 17 /a1
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[ Jele]e]ele)

Bounding the twin-width

Graphs in the class — corresponding ordered matrices M.:

Roadmap:
@ Assume existence of arbitrarily large minors,
@ Use global order to localize them,

© Use local order to yield absurdity.

18/41
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Grid Minors Among Successive Layers

Globally: We have ordered layers Yp < Y1 <... < Y\, what does the
adjacency matrix look like?

. - (%)
; N () (%)
Ya ‘

: ONONOIO
Y2

Y1

, OROIORO

YL Y, Ys Ya Y5 o Yk

Lemma [/f matrices M. have arbitrarily large grid minors,
some submatrices indexed by (Y;u Yi;1)? also do.

19/41
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Lemma [f matrices M. have arbitrarily large grid minors,
some submatrices indexed by Y;x Yj;1 also do.
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Grid Minors from One Component

Grid minor on Y;x Yi.1 + lexicographical CBFS:
()
y’,3 @ @
g ® @@ @

1 2 3 4 5
Ni+1 Ni+1 Ni+1 Ni+1 Ni+1

Lemma /f M. admit arbitrarily large grid minors, some
submatrices indexed by Y,.J and its successors do too.
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Excluding Grid Minors

Assume large grid minor on Y7 and successors:

T ]
. N 1
@ Row sets — subforests of Y7, S P P
i @ [
@ Column sets < subpaths of Yi;1, @]
Ry| 1 1 1 1 1
@ Non-zero entries — consecutivities. rRl: [2 1 |2 [:]

Proof scheme:
@ Concentrate rows around r € Y,.J,

@ Intertwining around r violates our order

Theorem (B,K,R,T,W ’21)
Theta-free graphs of girth at least 5 have
bounded twin-width.
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@ Do O-free, g =5 graphs have bounded queue/stack
number? Possibly through the same order.
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Complexity definitions

Definition Kernel for parameterized problem £ : polytime
reduction from (I, k) € 2 to equivalent (I' k') € 2.
A kernel for parameter k is polynomial if |I'| = O(kP).

Definition VERTEX COVER: instances (G, k), is there a set
Sc V of size at most k covering E.

@ Connected V-C: requires S to be connected in G.

Definition k-DOMINATING SET: Instances (G, k), is there a
set SV of size at most k dominating V.
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Twin-width : FPT Consequences

Theorem (Bonnet, Kim, Thomassé, Watrigant ’'20)
FO model checking is FPT with respects to formula size on
classes of bounded twin-width given a contraction sequence.

® k-IS : 3xq..3xxk A1<i<jck 7(Xi = X V E(xi, %7)),
@ k-DS : 3x1..3xVx Vicick(X = Xi) V V1i<ick E(X, ;).

Theorem (Bonnet, Geniet, Kim, Thomassé, Watrigant '20)
k-1S admits no polynomial kernel on classes of bounded
twin-width unless unless coNP < NP /poly.

k-DS admits O(k(”l)z) kernels notably on sparse (Ki -free)
classes (Philip, Raman, Sikdar '12), what about bounded
twin-width?
25/41
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ooe

Lower bounds framework

OR-cross-composition, from £ to parameterized 2:

Polytime reduction the OR of t ("equivalent") instances of £ to
one instance of 2.

Theorem (Bodlaender, Jansen, Kratsch '12)

If an NP-hard language £ admits an OR-cross-composition
into a parameterized problem 2, then 2 does not admit a
polynomial kernel unless coNP < NP /poly.

o £ : Tailored k-DS (next slide),
o 2 : k-DS with twin-width 4.
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Tailored k-DS on grid-like graphs

Theorem
k-DOMINATING SET remains NP-hard even when restricted to
instances (G, k,% ={Bu,..., Bk}) such that:

o B partitions V(G), G has 4-sequence — G/,
o G/%B is a spanning subgraph of a grid,
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Tailored k-DS on grid-like graphs

Theorem
k-DOMINATING SET remains NP-hard even when restricted to
instances (G, k,% ={Bu,..., Bk}) such that:

o B partitions V(G), G has 4-sequence — G/,
o G/%B is a spanning subgraph of a grid,

@ every dominating set of G intersects each B;, for i € [k]

Fig. Reduction sketch 27/41
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0e0000000

OR-composition sketch

Tailored k-DS, instances (/;)ic[ — k-DS, tww <4 instance (H, k)

Fig. Instances < layers, partition classes — boxes.
In H: Top instance — dummy, half graphs cycle between classes
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0O00e00000

Positive composition = Positive tailored instance

Assume (H, k) is positive:
@ Dummy instance I forces one vertex per column (figure),
o ldeally : all choices on a single layer i — positive /;,

@ Assume not...

> B[
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Positive composition = Positive tailored instance

@ Non-identical layer choices — domination gap,
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Positive composition = Positive tailored instance

@ Non-identical layer choices — domination gap,

@ At least two classes are not dominated by neighbouring

columns,
lk+3
ter2 00 =
Ik+1
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Positive composition = Positive tailored instance

@ Non-identical layer choices — domination gap,

@ At least two classes are not dominated by neighbouring
columns,
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@ For any /;, each %; ; is a module in H—1; —

impacts only /;,
@ Contract each partition class of each instance
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Fig. An instance after contracting classes.
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Bounding the twin-width

@ For any /;, each %, is a module in H—/; — contraction
impacts only /;,

@ Contract each partition class of each instance

@ Result: red subgraph of grid (altered for tww 4).
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Fig. An instance after contracting classes.
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@ Between instances : cycle of half graphs,

33/41



Bounding the twin-width

@ Between instances : cycle of half graphs,

@ Half graphs cycles have tww 3 : successively contract
bottommost two layers
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Bounding the twin-width

@ In the Composition: half-graph cycle between "homogeneous"
vertices, (at the same position in their respective instance).
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Fig. Instances and the half-graph cycle
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Bounding the twin-width

@ In the Composition: half-graph cycle between "homogeneous"
vertices, (at the same position in their respective instance).
@ Goal: Successively contract the bottommost two instances.

| ﬁ.ﬂ?“- ﬂﬂ

00 ‘—O’—D—C—O’:
Fig. Instances and the half-graph cycle
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Bounding the twin-width

@ In the Composition: half-graph cycle between "homogeneous"
vertices, (at the same position in their respective instance).

@ Goal: Successively contract the bottommost two instances.

@ Each contraction: creates red edges onIy IocaIIy — induction

/ W g.l!' o

Fig. Instances and the half-graph cycle
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Concluding

@ NP-hard Tailored k-DS OR-cross-composes into k-DS,

@ The composed instance has tww at most four.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
Unless coNP = NP /poly, k-DOMINATING SET on graphs of
twin-width at most 4 does not admit a polynomial kernel, even
if a 4-sequence of the graph is given.
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A (sub)quadratic kernel for C-VC on VC-density 1

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21)
There exists f s.t. for any G of tww( d) and X < V(G):
number of distinct neighborhoods in X is at most f(d)|X]|.
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@00

A (sub)quadratic kernel for C-VC on VC-density 1

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21)
There exists f s.t. for any G of tww( d) and X < V(G):
number of distinct neighborhoods in X is at most f(d)|X]|.

Kernel pre-processing;:
@ Bounded tww G: take X 2-approx for VC,
o if |X|=2k+1 : no solution,

@ — in X, number of distinct neighbourhoods < f(d)k

36/41
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A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is S< V(G)\ X with identical
neighbourhood in X and |S| > k, delete a vertex of S.
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A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is S< V(G)\ X with identical
neighbourhood in X and |S| > k, delete a vertex of S.

S, ISI<k

Fig. Resulting instance: (G', k)

If (G, k) has a solution, replace deletion with twin — reconnects T
If (G',k) has a solution T, T is also a solution for (G, k),

o Take deleted s, S\sZ T as ind. set with |S|> k,

@ Therefore N(S)< T, and s is covered by T in G.
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Concluding

@ Applying the reduction yields an equivalent instance,

@ The kernel has size at most f(d) * k2,

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
On classes of VC-density 1, CONNECTED k-VERTEX COVER
admits kernels with O(k?) vertices (and even O(k*%)).
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Further Directions

@ Does k-DS on tww <3 admit polynomial kernels?
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Further Directions

@ Does k-DS on tww <3 admit polynomial kernels?

@ Is there a linear kernel for Connected-VC?

Thank you!
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