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Introduction Theta-free ⇒ bounded tww k-DS admits no polynomial kernels Conclusion

Graph parameters
Two definitions of queue-number:

Structural: vertex ordering + edge colouring / no nesting:

Fig. 2-queue layout of a triangulated grid [Duj+21].

Matricial: Adjacency matrix coloured by k increasing zones
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Twin-width: contraction sequences

Structural def: contract near-twins, record neighbourhood errors.
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Twin-width: mixed minors

Matrix def:

Theorem (Bonnet, Kim, Thomassé, Watrigant ’20)
A class of graphs has bounded tww if and only if it is t-mixed
free for some constant t.
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Twin-width: Implications

How vast are bounded twin-width classes ?

Bounded treewidth, rank-width, queue/stack number ⇒
Bounded tww.
Proper minor-closed classes (⊇ Grids), map graphs...

Algorithmic implications:

Theorem (Bonnet, Kim, Thomassé, Watrigant ’20)
For a graph G, given with a d-contraction sequence, and any
FO formula φ, deciding G |=φ can be done in (FPT) time
f (|φ|,d) ·n.

φ can capture: Dominating Set, Vertex Cover, Independent Set...
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Motivations

Bounded tww: FO problems are decidable in FPT time.

1 Structural characterizations of bounded tww classes?

2 Better complexity: existence of polynomial kernels?
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In this talk
Structure:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
Theta-free graphs of girth at least five have bounded tww.

Complexity:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
On graphs of twin-width at most four, k-Dominating Set
does not admit polynomial kernels unless coNP ⊆ NP/poly.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
On bounded tww, Connected k-VC admits a O(k 3

2 ) kernel.

6 / 41



Introduction Theta-free ⇒ bounded tww k-DS admits no polynomial kernels Conclusion

In this talk
Structure:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
Theta-free graphs of girth at least five have bounded tww.

Complexity:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
On graphs of twin-width at most four, k-Dominating Set
does not admit polynomial kernels unless coNP ⊆ NP/poly.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
On bounded tww, Connected k-VC admits a O(k 3

2 ) kernel.

6 / 41



Introduction Theta-free ⇒ bounded tww k-DS admits no polynomial kernels Conclusion

In this talk
Structure:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
Theta-free graphs of girth at least five have bounded tww.

Complexity:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
On graphs of twin-width at most four, k-Dominating Set
does not admit polynomial kernels unless coNP ⊆ NP/poly.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
On bounded tww, Connected k-VC admits a O(k 3

2 ) kernel.
6 / 41



Introduction Theta-free ⇒ bounded tww k-DS admits no polynomial kernels Conclusion

Parameters and graph minors
Question: High parameter ⇒ forced structure/subgraph?

Forbidden subgraph ⇒ low parameter?

Known approach: forbid subgraphs as minors.

Theorem (Treewidth: R,S ’86)
Graphs forbidding a wall minor have
bounded treewidth. Fig. A wall

Theorem (Twin-width: B,K,T,W ’20)
Proper minor-closed classes have bounded
twin-width.
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Treewidth and induced subgraphs

Generalize: forbid induced graph & its subdivisions.

Sparse + forbidden subwall ⇒ bounded treewidth?

Theorem (Sintiari, Trotignon ’19)
There exist graphs forbidding induced thetas, having arbitrarily
large girth and treewidth.

Fig. A layered wheel [ST19]
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Treewidth and induced subgraphs

Fig. A layered wheel [ST19]

Theorem (Abrishami, Chudnovsky, Hajebi, Spirkl ’21)
There exists c s.t. for any (Theta, triangle)-free G,
tw(G)É c log(|V (G)|).

Do such graphs have bounded twin-width?
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Twin-width and induced subgraphs

How does twin-width motivate the study of theta-free classes?

We can only forbid subcubic graphs: subcubic graphs already
have unbounded tww.
Ω(log(n))-subdivisions of cliques have bounded tww, while
o(log(n)) subdivisions have unbounded tww.
(excessively) Optimistic conjecture : forbiding any subcubic
graph + sparse ⇒ bounded twin-width?

Our class: Theta-free, girth 5.
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Roadmap

Bounding tww ⇔ building a "simple", mixed-free order,

It suffices to rule out grid minors.
Build an order witnessing enough structure such that large
grid minors ⇒ induced thetas.
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Candidates: BFS, DFS...
Little information on connected subgraphs, hard finding thetas.
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Connected BFS Decomposition

Idea: BFS exploring connected parts instead of vertices.

Definition Y is a minimal connected neighbourhood of X
if N(X )⊆Y , and y ,y ′ ∈Y in the same CC of G\X are in the
same CC of G [Y ].

CBFS: Y0 = {r } for some r ∈V (G), CBFS: Yi+1 :=
mcn(Y0∪ ...∪Yi)
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Chasing Complex Structures
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Lemma For any CBFS of G, each Y j
i is a tree. Moreover,

each v ∈Y j
i has an unique antecedent v−1 ∈Yi−1.

,→ Complexity must lie in adjacencies between components...
1 Describe the structure between layers,
2 Use it to guide our ordering choice.
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Component-Antecedent Structure
How do successors of different vertices of Yi−1 relate in Yi?

Yi−1

Y j
i

Lemma For any Y j
i , there is a principal path P j

i s.t. any
successor v ∈Y j

i belongs to a v−1-private branch of P j
i .

Natural order: DFS exhausting private branches following P j
i .
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Component-Successors Structure
Locally: for any vertex r in component Y j

i :

Y j
i = tree → r -branches are simple,

Complexity = r -branches intertwining using Yi+1,

Definition Consecutivity:
shortest path between
successors of different
r -branches.

Lemma All but two
r-branches admit at most
two consecutivities.
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Constructing the total order

Globally: components Y j
i

related as a tree

→ follow the CBFS order
lexicographically.

Locally: branches in Y j
i :

little intertwining on Yi+1
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consec. cycles and paths.
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Graphs in the class → corresponding ordered matrices M<:

Roadmap:
1 Assume existence of arbitrarily large minors,
2 Use global order to localize them,
3 Use local order to yield absurdity.
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Grid Minors Among Successive Layers
Globally: We have ordered layers Y0 <Y1 < ... <Yk , what does the
adjacency matrix look like?

...
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Lemma If matrices M< have arbitrarily large grid minors,
some submatrices indexed by (Yi ∪Yi+1)2 also do.
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Excluding Grid Minors

Assume large grid minor on Y j
i and successors:

Row sets ↔ subforests of Y j
i ,

Column sets ↔ subpaths of Yi+1,
Non-zero entries → consecutivities.

Proof scheme:
Concentrate rows around r ∈Y j

i ,
Intertwining around r violates our order

Theorem (B,K,R,T,W ’21)
Theta-free graphs of girth at least 5 have
bounded twin-width.
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Introduction Theta-free ⇒ bounded tww k-DS admits no polynomial kernels Conclusion

Further paths

Do θ-free, g Ê 5 graphs have bounded queue/stack
number? Possibly through the same order.

Extend the approach to classes forbidding any subgraph of the
wall.

Questions ?

,→ k-DS admits no polynomial kernels
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Complexity definitions

Definition Kernel for parameterized problem Q: polytime
reduction from (I ,k) ∈Q to equivalent (I ′,k ′) ∈Q.
A kernel for parameter k is polynomial if |I ′| =O(kp).

Definition Vertex Cover: instances (G ,k), is there a set
S ⊆V of size at most k covering E.

Connected V-C: requires S to be connected in G.

Definition k-Dominating Set: Instances (G ,k), is there a
set S ⊆V of size at most k dominating V .
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Introduction Theta-free ⇒ bounded tww k-DS admits no polynomial kernels Conclusion

Twin-width : FPT Consequences

Theorem (Bonnet, Kim, Thomassé, Watrigant ’20)
FO model checking is FPT with respects to formula size on
classes of bounded twin-width given a contraction sequence.

k-IS : ∃x1...∃xk
∧

1ÉiÉjÉk ¬(xi = xj ∨E (xi ,xj)),
k-DS : ∃x1...∃xk∀x ∨

1ÉiÉk(x = xi)∨∨
1ÉiÉk E (x ,xi).

Theorem (Bonnet, Geniet, Kim, Thomassé, Watrigant ’20)
k-IS admits no polynomial kernel on classes of bounded
twin-width unless unless coNP ⊆ NP/poly.

k-DS admits O(k(t+1)2
) kernels notably on sparse (Kt ,t -free)

classes (Philip, Raman, Sikdar ’12), what about bounded
twin-width?
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Lower bounds framework

OR-cross-composition, from L to parameterized Q:
Polytime reduction the OR of t ("equivalent") instances of L to
one instance of Q.

Theorem (Bodlaender, Jansen, Kratsch ’12)
If an NP-hard language L admits an OR-cross-composition
into a parameterized problem Q, then Q does not admit a
polynomial kernel unless coNP ⊆ NP/poly.

L : Tailored k-DS (next slide),
Q : k-DS with twin-width 4.
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Tailored k-DS on grid-like graphs

Theorem
k-Dominating Set remains NP-hard even when restricted to
instances (G ,k ,B = {B1, . . . ,Bk }) such that:

B partitions V (G), G has 4-sequence → G/B,

G/B is a spanning subgraph of a grid,

every dominating set of G intersects each Bi , for i ∈ [k]

x1 x2 x3 x4 x5 x6 x7 x8

C +

C −

Fig. Reduction sketch
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OR-composition sketch
Tailored k-DS, instances (Ii)i∈[t] → k-DS, tww É 4 instance (H ,k)

I1

I2

I3

I4

I5

I6

Fig. Instances ↔ layers, partition classes ↔ boxes.
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Tailored k-DS, instances (Ii)i∈[t] → k-DS, tww É 4 instance (H ,k)

I1

I2

I3

I4

I5

I6

Fig. Instances ↔ layers, partition classes ↔ boxes.
In H: Top instance ↔ dummy, half graphs cycle between classes

28 / 41



Introduction Theta-free ⇒ bounded tww k-DS admits no polynomial kernels Conclusion

Positive Tailored instance ⇒ Positive composition
Assume one instance (I4 here) is positive, pick its solution in H:

I1

I2

I3

I4

I5

I6

Fig. t Instances ↔ layers, k partition classes ↔ boxes
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Positive composition ⇒ Positive tailored instance

Assume (H ,k) is positive:
Dummy instance I6 forces one vertex per column (figure),

Ideally : all choices on a single layer i → positive Ii ,
Assume not...

I1

I2

I3

I4

I5

I6
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Positive composition ⇒ Positive tailored instance

Non-identical layer choices → domination gap,

At least two classes are not dominated by neighbouring
columns,
Only one choice left in this column → absurd.
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Bounding the twin-width
For any Ii , each Bi ,j is a module in H − Ii → contraction
impacts only Ii ,

Contract each partition class of each instance
Result: red subgraph of grid (altered for tww 4).
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Fig. An instance after contracting classes.

32 / 41



Introduction Theta-free ⇒ bounded tww k-DS admits no polynomial kernels Conclusion

Bounding the twin-width
For any Ii , each Bi ,j is a module in H − Ii → contraction
impacts only Ii ,
Contract each partition class of each instance

Result: red subgraph of grid (altered for tww 4).

1

2 3

4 5

6 7

8 9

. . .

1

2 3

4 5

6 7

8 9

. . .

1

2 3

4 5

6 7

8 9

. . .

Fig. An instance after contracting classes.

32 / 41



Introduction Theta-free ⇒ bounded tww k-DS admits no polynomial kernels Conclusion

Bounding the twin-width
For any Ii , each Bi ,j is a module in H − Ii → contraction
impacts only Ii ,
Contract each partition class of each instance
Result: red subgraph of grid (altered for tww 4).

1

2 3

4 5

6 7

8 9

. . .

1

2 3

4 5

6 7

8 9

. . .

1

2 3

4 5

6 7

8 9

. . .

Fig. An instance after contracting classes.

32 / 41



Introduction Theta-free ⇒ bounded tww k-DS admits no polynomial kernels Conclusion

Bounding the twin-width

Between instances : cycle of half graphs,

Half graphs cycles have tww 3 : successively contract
bottommost two layers
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Bounding the twin-width

In the Composition: half-graph cycle between "homogeneous"
vertices, (at the same position in their respective instance).

Goal: Successively contract the bottommost two instances.
Each contraction: creates red edges only locally → induction

Fig. Instances and the half-graph cycle
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Concluding

NP-hard Tailored k-DS OR-cross-composes into k-DS,

The composed instance has tww at most four.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
Unless coNP ⊆ NP/poly, k-Dominating Set on graphs of
twin-width at most 4 does not admit a polynomial kernel, even
if a 4-sequence of the graph is given.
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A (sub)quadratic kernel for C-VC on VC-density 1

Lemma (Bonnet, Kim, R., Thomassé, Watrigant ’21)
There exists f s.t. for any G of tww( d) and X ⊆V (G):
number of distinct neighborhoods in X is at most f (d)|X |.

Kernel pre-processing:
Bounded tww G : take X 2-approx for VC,
if |X | Ê 2k +1 : no solution,
→ in X , number of distinct neighbourhoods É f (d)k
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A (sub)quadratic kernel for C-VC on VC-density 1
Reduction rule: If there is S ⊆V (G)\ X with identical
neighbourhood in X and |S | > k, delete a vertex of S.

X

v1

...

v`

S , |S | É k

N(S)

Fig. Resulting instance: (G ′,k)

If (G ,k) has a solution, replace deletion with twin → reconnects T
If (G ′,k) has a solution T , T is also a solution for (G ,k),

Take deleted s, S\s *T as ind. set with |S | Ê k,
Therefore N(S)⊆T , and s is covered by T in G .
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Concluding

Applying the reduction yields an equivalent instance,

The kernel has size at most f (d)∗k2,

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
On classes of VC-density 1, Connected k-Vertex Cover
admits kernels with O(k2) vertices (and even O(k1.5)).

38 / 41



Introduction Theta-free ⇒ bounded tww k-DS admits no polynomial kernels Conclusion

Concluding

Applying the reduction yields an equivalent instance,
The kernel has size at most f (d)∗k2,

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
On classes of VC-density 1, Connected k-Vertex Cover
admits kernels with O(k2) vertices (and even O(k1.5)).

38 / 41



Introduction Theta-free ⇒ bounded tww k-DS admits no polynomial kernels Conclusion

Concluding

Applying the reduction yields an equivalent instance,
The kernel has size at most f (d)∗k2,

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
On classes of VC-density 1, Connected k-Vertex Cover
admits kernels with O(k2) vertices (and even O(k1.5)).

38 / 41



Introduction Theta-free ⇒ bounded tww k-DS admits no polynomial kernels Conclusion

Concluding

Applying the reduction yields an equivalent instance,
The kernel has size at most f (d)∗k2,

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
On classes of VC-density 1, Connected k-Vertex Cover
admits kernels with O(k2) vertices (and even O(k1.5)).

38 / 41



Introduction Theta-free ⇒ bounded tww k-DS admits no polynomial kernels Conclusion

Further Directions

Does k-DS on tww É 3 admit polynomial kernels?

Is there a linear kernel for Connected-VC?

Thank you!
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