Twin-width: Forbidden subdivisions & Polynomial kernels

Amadeus Reinald ENS de Lyon

joint work with Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, Rémi Watrigant

Séminaire ALGCO December 2nd, 2021, Montpellier

Graph parameters

Two definitions of queue-number:

Graph parameters

Two definitions of queue-number:

Structural: vertex **ordering** + edge colouring / no nesting:

Fig. 2-queue layout of a triangulated grid [Duj+21].

Graph parameters

Two definitions of queue-number:

Structural: vertex **ordering** + edge colouring / no nesting:

Fig. 2-queue layout of a triangulated grid [Duj+21].

Matricial: Adjacency matrix coloured by k increasing zones

Structural def: contract near-twins, record neighbourhood errors.

Structural def: contract near-twins, record neighbourhood errors.

Structural def: contract near-twins, record neighbourhood errors.

Fig. A (2)-contraction-sequence

d-contraction sequence : maximal red degree d.

Structural def: contract near-twins, record neighbourhood errors.

Fig. A (2)-contraction-sequence

d-contraction sequence : maximal red degree d.

Definition The twin-width of G is the least integer d such that G admits a d-contraction sequence.

Twin-width: mixed minors

Matrix def:

Twin-width: mixed minors

Matrix def:

Theorem (Bonnet, Kim, Thomassé, Watrigant '20) A class of graphs has bounded tww if and only if it is t-mixed free for some constant t.

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Fig. A 3 mixed-minor and a 4-grid minor

Twin-width: mixed minors

Matrix def:

Theorem (Bonnet, Kim, Thomassé, Watrigant '20) A class of graphs has bounded tww if and only if it is t-mixed free for some constant t.

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Fig. A 3 mixed-minor and a 4-grid minor

Conclusion

Twin-width: Implications

How vast are bounded twin-width classes ?

Twin-width: Implications

How vast are bounded twin-width classes ?

 Bounded treewidth, rank-width, queue/stack number ⇒ Bounded tww.

Twin-width: Implications

How vast are bounded twin-width classes ?

- Bounded treewidth, rank-width, queue/stack number ⇒ Bounded tww.
- Proper minor-closed classes (⊇ Grids), map graphs...

Conclusion

Twin-width: Implications

How vast are bounded twin-width classes ?

- Bounded treewidth, rank-width, queue/stack number ⇒ Bounded tww.
- Proper minor-closed classes (⊇ Grids), map graphs...

Algorithmic implications:

Theorem (Bonnet, Kim, Thomassé, Watrigant '20) For a graph *G*, given with a *d*-contraction sequence, and any FO formula ϕ , deciding $G \models \phi$ can be done in (FPT) time $f(|\phi|, d) \cdot n$.

Conclusion

Twin-width: Implications

How vast are bounded twin-width classes ?

- Bounded treewidth, rank-width, queue/stack number ⇒ Bounded tww.
- Proper minor-closed classes (⊇ Grids), map graphs...

Algorithmic implications:

Theorem (Bonnet, Kim, Thomassé, Watrigant '20) For a graph *G*, given with a *d*-contraction sequence, and any FO formula ϕ , deciding $G \models \phi$ can be done in (FPT) time $f(|\phi|, d) \cdot n$.

 ϕ can capture: Dominating Set, Vertex Cover, Independent Set...

Motivations

Bounded tww: FO problems are decidable in FPT time.

Motivations

Bounded tww: FO problems are decidable in FPT time.

Structural characterizations of bounded tww classes?

Motivations

Bounded tww: FO problems are decidable in FPT time.

- Structural characterizations of bounded tww classes?
- Ø Better complexity: existence of polynomial kernels?

In this talk

Structure:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) Theta-free graphs of girth at least five have bounded tww.

In this talk

Structure:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) *Theta-free graphs of girth at least five have bounded tww.*

Complexity:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) On graphs of twin-width at most four, k-DOMINATING SET does not admit polynomial kernels unless coNP \subseteq NP/poly.

In this talk

Structure:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) *Theta-free graphs of girth at least five have bounded tww.*

Complexity:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) On graphs of twin-width at most four, k-DOMINATING SET does not admit polynomial kernels unless coNP \subseteq NP/poly.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) On bounded tww, Connected k-VC admits a $O(k^{\frac{3}{2}})$ kernel.

Conclusion

Parameters and graph minors

Question: High parameter \Rightarrow forced structure/subgraph?

Conclusion

Parameters and graph minors

<u>Question</u>: High parameter \Rightarrow forced structure/subgraph? Forbidden subgraph \Rightarrow low parameter?

Conclusion

Parameters and graph minors

<u>Question</u>: High parameter \Rightarrow forced structure/subgraph? Forbidden subgraph \Rightarrow low parameter?

Known approach: forbid subgraphs as minors.

k-DS admits no polynomial kernels

Conclusion

Parameters and graph minors

<u>Question</u>: High parameter \Rightarrow forced structure/subgraph? Forbidden subgraph \Rightarrow low parameter?

Known approach: forbid subgraphs as minors.

Theorem (Treewidth: R,S '86) Graphs forbidding a wall **minor** have bounded treewidth.

Fig. A wall

k-DS admits no polynomial kernels

Conclusion

Parameters and graph minors

<u>Question</u>: High parameter \Rightarrow forced structure/subgraph? Forbidden subgraph \Rightarrow low parameter?

Known approach: forbid subgraphs as minors.

Theorem (Treewidth: R,S '86) Graphs forbidding a wall **minor** have bounded treewidth.

Fig. A wall

Theorem (Twin-width: B,K,T,W '20) Proper minor-closed classes have bounded twin-width.

k-DS admits no polynomial kernels

Conclusion 000

Treewidth and induced subgraphs

Generalize: forbid induced graph & its subdivisions.

Conclusion

Treewidth and induced subgraphs

<u>Generalize</u>: forbid **induced** graph & its **subdivisions**. Sparse + forbidden subwall \Rightarrow bounded treewidth?

k-DS admits no polynomial kernels

Conclusion

Treewidth and induced subgraphs

<u>Generalize</u>: forbid **induced** graph & its **subdivisions**. Sparse + forbidden subwall \Rightarrow bounded treewidth?

Conclusion

Treewidth and induced subgraphs

<u>Generalize</u>: forbid **induced** graph & its **subdivisions**. Sparse + forbidden subwall \Rightarrow bounded treewidth?

Theorem (Sintiari, Trotignon '19)

There exist graphs forbidding induced thetas, having arbitrarily large girth and treewidth.

k-DS admits no polynomial kernels

Conclusion

Treewidth and induced subgraphs

Fig. A layered wheel [ST19]

k-DS admits no polynomial kernels

Conclusion

Treewidth and induced subgraphs

Fig. A layered wheel [ST19]

Theorem (Abrishami, Chudnovsky, Hajebi, Spirkl '21) There exists c s.t. for any (Theta, triangle)-free G, $tw(G) \le c \log(|V(G)|)$. k-DS admits no polynomial kernels

Conclusion

Treewidth and induced subgraphs

Fig. A layered wheel [ST19]

Theorem (Abrishami, Chudnovsky, Hajebi, Spirkl '21) There exists c s.t. for any (Theta, triangle)-free G, $tw(G) \le c \log(|V(G)|)$.

Do such graphs have bounded twin-width?

How does twin-width motivate the study of theta-free classes?

How does twin-width motivate the study of theta-free classes?

• We can only forbid subcubic graphs: subcubic graphs already have unbounded tww.

How does twin-width motivate the study of theta-free classes?

- We can only forbid subcubic graphs: subcubic graphs already have unbounded tww.
- Ω(log(n))-subdivisions of cliques have bounded tww, while o(log(n)) subdivisions have unbounded tww.

How does twin-width motivate the study of theta-free classes?

- We can only forbid subcubic graphs: subcubic graphs already have unbounded tww.
- Ω(log(n))-subdivisions of cliques have bounded tww, while o(log(n)) subdivisions have unbounded tww.
- (excessively) Optimistic conjecture : forbiding any subcubic graph + sparse ⇒ bounded twin-width?

How does twin-width motivate the study of theta-free classes?

- We can only forbid subcubic graphs: subcubic graphs already have unbounded tww.
- Ω(log(n))-subdivisions of cliques have bounded tww, while o(log(n)) subdivisions have unbounded tww.
- (excessively) Optimistic conjecture : forbiding any subcubic graph + sparse ⇒ bounded twin-width?

Our class: Theta-free, girth 5.

● Bounding tww ⇔ building a "simple", mixed-free **order**,

- Bounding tww ⇔ building a "simple", mixed-free **order**,
- It suffices to rule out grid minors.

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

- Bounding tww ⇔ building a "simple", mixed-free **order**,
- It suffices to rule out grid minors.
- Build an order witnessing enough structure such that large grid minors ⇒ induced thetas.

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

- Bounding tww ⇔ building a "simple", mixed-free **order**,
- It suffices to rule out grid minors.
- Build an order witnessing enough structure such that large grid minors ⇒ induced thetas.

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Candidates: BFS, DFS...

- Bounding tww ⇔ building a "simple", mixed-free **order**,
- It suffices to rule out grid minors.
- Build an order witnessing enough structure such that large grid minors ⇒ induced thetas.

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Candidates: BFS, DFS...

Little information on **connected** subgraphs, hard finding thetas.

k-DS admits no polynomial kernels

Conclusion 000

Connected BFS Decomposition

Idea: BFS exploring connected parts instead of vertices.

Idea: BFS exploring connected parts instead of vertices.

Definition Y is a minimal connected neighbourhood of X if $N(X) \subseteq Y$, and $y, y' \in Y$ in the same CC of $G \setminus X$ are in the same CC of G[Y].

Idea: BFS exploring connected parts instead of vertices.

Definition Y is a minimal connected neighbourhood of X if $N(X) \subseteq Y$, and $y, y' \in Y$ in the same CC of $G \setminus X$ are in the same CC of G[Y].

CBFS: $Y_0 = \{r\}$ for some $r \in V(G)$,

Idea: BFS exploring connected parts instead of vertices.

Definition Y is a minimal connected neighbourhood of X if $N(X) \subseteq Y$, and $y, y' \in Y$ in the same CC of $G \setminus X$ are in the same CC of G[Y].

Idea: BFS exploring connected parts instead of vertices.

Definition Y is a minimal connected neighbourhood of X if $N(X) \subseteq Y$, and $y, y' \in Y$ in the same CC of $G \setminus X$ are in the same CC of G[Y].

Idea: BFS exploring connected parts instead of vertices.

Definition Y is a minimal connected neighbourhood of X if $N(X) \subseteq Y$, and $y, y' \in Y$ in the same CC of $G \setminus X$ are in the same CC of G[Y].

Idea: BFS exploring connected parts instead of vertices.

Definition *Y* is a minimal connected neighbourhood of *X* if $N(X) \subseteq Y$, and $y, y' \in Y$ in the same CC of $G \setminus X$ are in the same CC of G[Y].

k-DS admits no polynomial kernels

Conclusion

Connected BFS Decomposition

$$Y_{i+1} := mcn(Y_0 \cup ... \cup Y_i)$$

Introduction 000000 Theta-free \Rightarrow bounded tww

k-DS admits no polynomial kernels

Conclusion

Connected BFS Decomposition

$$Y_{i+1} := mcn(Y_0 \cup ... \cup Y_i)$$

• Layer Y_i adjacent only to Y_{i-1} and Y_{i+1} ,

k-DS admits no polynomial kernels

Conclusion

Connected BFS Decomposition

$$Y_{i+1} := mcn(Y_0 \cup ... \cup Y_i)$$

- Layer Y_i adjacent only to Y_{i-1} and Y_{i+1} ,
- Component Y_i^j has exactly **one antecedent** in Y_{i-1} .

k-DS admits no polynomial kernels

Conclusion

Connected BFS Decomposition

$$Y_{i+1} := mcn(Y_0 \cup ... \cup Y_i)$$

- Layer Y_i adjacent only to Y_{i-1} and Y_{i+1} ,
- Component Y_i^j has exactly **one antecedent** in Y_{i-1} .

<u>Global structure:</u> tree relating components Y_i^j .

k-DS admits no polynomial kernels

Chasing Complex Structures

Global relation between components is a tree, "simple" / tww.

k-DS admits no polynomial kernels

Conclusion

Chasing Complex Structures

Global relation between components is a tree, "simple" / tww.

Does complexity lie **inside** components Y_i^j ?

k-DS admits no polynomial kernels

Conclusion

Chasing Complex Structures

Global relation between components is a tree, "simple" / tww.

Does complexity lie **inside** components Y_i^j ? **No**

Lemma For any CBFS of G, each Y_i^j is a tree.

Global relation between components is a tree, "simple" / tww.

Does complexity lie **inside** components Y_i^j ? **No**

Lemma For any CBFS of G, each Y_i^j is a tree. Moreover, each $v \in Y_i^j$ has an unique antecedent $v^{-1} \in Y_{i-1}$.

Global relation between components is a tree, "simple" / tww.

Does complexity lie **inside** components Y_i^j ? **No**

Lemma For any CBFS of G, each Y_i^j is a tree. Moreover, each $v \in Y_i^j$ has an unique antecedent $v^{-1} \in Y_{i-1}$.

← Complexity must lie in adjacencies **between** components...

Global relation between components is a tree, "simple" / tww.

Does complexity lie **inside** components Y_i^j ? **No**

Lemma For any CBFS of G, each Y_i^j is a tree. Moreover, each $v \in Y_i^j$ has an unique antecedent $v^{-1} \in Y_{i-1}$.

 \hookrightarrow Complexity must lie in adjacencies **between** components...

Describe the structure between layers,

Global relation between components is a tree, "simple" / tww.

Does complexity lie **inside** components Y_i^j ? **No**

Lemma For any CBFS of G, each Y_i^j is a tree. Moreover, each $v \in Y_i^j$ has an unique antecedent $v^{-1} \in Y_{i-1}$.

- \hookrightarrow Complexity must lie in adjacencies **between** components...
 - Describe the structure between layers,
 - **2** Use it to guide our **ordering** choice.

k-DS admits no polynomial kernels

Conclusion

Component-Antecedent Structure

k-DS admits no polynomial kernels

Conclusion

Component-Antecedent Structure

k-DS admits no polynomial kernels

Conclusion

Component-Antecedent Structure

k-DS admits no polynomial kernels

Conclusion

Component-Antecedent Structure

k-DS admits no polynomial kernels

Conclusion

Component-Antecedent Structure

k-DS admits no polynomial kernels

Conclusion

Component-Antecedent Structure

How do successors of **different** vertices of Y_{i-1} relate in Y_i ?

k-DS admits no polynomial kernels

Conclusion

Component-Antecedent Structure

How do successors of **different** vertices of Y_{i-1} relate in Y_i ?

Lemma For any Y_i^j , there is a **principal path** P_i^j s.t. any successor $v \in Y_i^j$ belongs to a v^{-1} -private branch of P_i^j .

k-DS admits no polynomial kernels

Conclusion

Component-Antecedent Structure

How do successors of **different** vertices of Y_{i-1} relate in Y_i ?

Lemma For any Y_i^j , there is a **principal path** P_i^j s.t. any successor $v \in Y_i^j$ belongs to a v^{-1} -private branch of P_i^j .

Natural order: DFS exhausting private branches following P_i^J .

k-DS admits no polynomial kernels

Conclusion

Component-Successors Structure

Locally: for any vertex r in component Y_i^j :

k-DS admits no polynomial kernels

Conclusion

Component-Successors Structure

Locally: for any vertex r in component Y_i^j :

• Y_i^j = tree \rightarrow *r*-branches are simple,

Conclusion

Component-Successors Structure

Locally: for any vertex r in component Y_i^j :

- Y_i^j = tree \rightarrow *r*-branches are simple,
- Complexity = *r*-branches intertwining **using** Y_{i+1} ,

k-DS admits no polynomial kernels

Conclusion

Component-Successors Structure

Locally: for any vertex r in component Y_i^j :

- Y_i^j = tree \rightarrow *r*-branches are simple,
- Complexity = *r*-branches intertwining **using** Y_{i+1} ,

Definition Consecutivity: shortest path between successors of different r-branches.

k-DS admits no polynomial kernels

Conclusion

Component-Successors Structure

Locally: for any vertex r in component Y_i^j :

- Y_i^j = tree \rightarrow *r*-branches are simple,
- Complexity = *r*-branches intertwining **using** Y_{i+1} ,

Definition *Consecutivity: shortest path between successors of different r-branches.*

Lemma All but two r-branches admit at most two consecutivities.

Conclusion 000

Constructing the total order

• **Globally:** components Y_i^j related as a tree

Conclusion 000

Constructing the total order

- **Globally:** components Y_i^j related as a tree
- → follow the CBFS order lexicographically.

Conclusion 000

Constructing the total order

- **Globally:** components Y_i^j related as a tree
- → follow the CBFS order lexicographically.

Fig. Inter-component BFS

k-DS admits no polynomial kernels

Conclusion

Constructing the total order

- **Globally:** components Y_i^j related as a tree
- → follow the CBFS order lexicographically.

Fig. Inter-component BFS

• Locally: branches in Y_i^j : little intertwining on Y_{i+1}

k-DS admits no polynomial kernels

Conclusion

Constructing the total order

- **Globally:** components Y_i^j related as a tree
- → follow the CBFS order lexicographically.

- Locally: branches in Y_i^J : little intertwining on Y_{i+1}
- → DFS: order branches / consec. cycles and paths.

Fig. Inter-component BFS

k-DS admits no polynomial kernels

Conclusion

Constructing the total order

- **Globally:** components Y_i^j related as a tree
- → follow the CBFS order lexicographically.

Fig. Inter-component BFS

- Locally: branches in Y_i^J : little intertwining on Y_{i+1}
- → DFS: order branches / consec. cycles and paths.

Fig. Intra-component DFS

k-DS admits no polynomial kernels 00000000000000 Conclusion 000

Bounding the twin-width

Graphs in the class \rightarrow corresponding **ordered** matrices $M_{<:}$

Bounding the twin-width

Graphs in the class \rightarrow corresponding **ordered** matrices $M_{<:}$

Roadmap:

Bounding the twin-width

Graphs in the class \rightarrow corresponding **ordered** matrices $M_{<:}$

Roadmap:

Assume existence of arbitrarily large minors,

Bounding the twin-width

Graphs in the class \rightarrow corresponding **ordered** matrices $M_{<:}$

Roadmap:

- Assume existence of arbitrarily large minors,
- 2 Use global order to localize them,

Bounding the twin-width

Graphs in the class \rightarrow corresponding **ordered** matrices $M_{<:}$

Roadmap:

- Assume existence of arbitrarily large minors,
- 2 Use global order to localize them,
- **③** Use local order to yield absurdity.

Grid Minors Among Successive Layers

Introduction 000000 Theta-free \Rightarrow bounded tww

k-DS admits no polynomial kernels

Conclusion

Grid Minors Among Successive Layers

Introduction 000000 Theta-free \Rightarrow bounded tww

k-DS admits no polynomial kernels

Conclusion

Grid Minors Among Successive Layers

Introduction 000000 Theta-free \Rightarrow bounded tww

k-DS admits no polynomial kernels

Conclusion

Grid Minors Among Successive Layers

k-DS admits no polynomial kernels 00000000000000 Conclusion

Grid Minors Among Successive Layers

k-DS admits no polynomial kernels

Conclusion

Grid Minors Among Successive Layers

Globally: We have ordered layers $Y_0 < Y_1 < ... < Y_k$, what does the adjacency matrix look like?

Lemma If matrices $M_{<}$ have arbitrarily large grid minors, some submatrices indexed by $(Y_i \cup Y_{i+1})^2$ also do.

k-DS admits no polynomial kernels

Conclusion 000

Grid Minors Between Successive Layers

 Y_i are forests \rightarrow bounded tww (DFS) \rightarrow

Conclusion

Grid Minors Between Successive Layers

Y_i are forests \rightarrow bounded tww (DFS) \rightarrow no large grid minors

k-DS admits no polynomial kernels

Conclusion

Grid Minors Between Successive Layers

 Y_i are forests \rightarrow bounded tww (DFS) \rightarrow no large grid minors

k-DS admits no polynomial kernels

Conclusion

Grid Minors Between Successive Layers

 Y_i are forests \rightarrow bounded tww (DFS) \rightarrow no large grid minors

Lemma If matrices $M_{<}$ have arbitrarily large grid minors, some submatrices indexed by $Y_i \times Y_{i+1}$ also do.

Conclusion

Grid Minors from One Component

Conclusion

Grid Minors from One Component

Conclusion

Grid Minors from One Component

Conclusion 000

Grid Minors from One Component

Lemma If $M_{<}$ admit arbitrarily large grid minors, some submatrices indexed by Y_{i}^{j} and its successors do too.

k-DS admits no polynomial kernels

Conclusion

Excluding Grid Minors

Assume large grid minor on Y_i^j and successors:

k-DS admits no polynomial kernels

Conclusion

Excluding Grid Minors

Assume large grid minor on Y_i^j and successors:

• Row sets \leftrightarrow subforests of Y_i^j ,

k-DS admits no polynomial kernels

Conclusion

Excluding Grid Minors

Assume large grid minor on Y_i^j and successors:

- Row sets \leftrightarrow subforests of Y_i^j ,
- Column sets \leftrightarrow subpaths of Y_{i+1} ,

k-DS admits no polynomial kernels

Conclusion

Excluding Grid Minors

Assume large grid minor on Y_i^j and successors:

- Row sets \leftrightarrow subforests of Y_i^j ,
- Column sets \leftrightarrow subpaths of Y_{i+1} ,
- Non-zero entries → **consecutivities**.

k-DS admits no polynomial kernels

Conclusion

Excluding Grid Minors

Assume large grid minor on Y_i^j and successors:

- Row sets \leftrightarrow subforests of Y_i^j ,
- Column sets \leftrightarrow subpaths of Y_{i+1} ,
- Non-zero entries → **consecutivities**.

Proof scheme:

k-DS admits no polynomial kernels

Conclusion

Excluding Grid Minors

Assume large grid minor on Y_i^j and successors:

- Row sets \leftrightarrow subforests of Y_i^j ,
- Column sets \leftrightarrow subpaths of Y_{i+1} ,
- Non-zero entries → **consecutivities**.

Proof scheme:

• Concentrate rows around $r \in Y_i^j$,

k-DS admits no polynomial kernels

Conclusion

Excluding Grid Minors

Assume large grid minor on Y_i^j and successors:

- Row sets \leftrightarrow subforests of Y_i^j ,
- Column sets \leftrightarrow subpaths of Y_{i+1} ,
- Non-zero entries → **consecutivities**.

Proof scheme:

• Concentrate rows around $r \in Y_i^j$,

k-DS admits no polynomial kernels

Conclusion

Excluding Grid Minors

Assume large grid minor on Y_i^j and successors:

- Row sets \leftrightarrow subforests of Y_i^j ,
- Column sets \leftrightarrow subpaths of Y_{i+1} ,
- Non-zero entries → **consecutivities**.

Proof scheme:

- Concentrate rows around $r \in Y_i^j$,
- Intertwining around r violates our order

k-DS admits no polynomial kernels

Conclusion

Excluding Grid Minors

Assume large grid minor on Y_i^j and successors:

- Row sets \leftrightarrow subforests of Y_i^j ,
- Column sets \leftrightarrow subpaths of Y_{i+1} ,
- Non-zero entries → **consecutivities**.

Proof scheme:

- Concentrate rows around $r \in Y_i^j$,
- Intertwining around r violates our order

Theorem (B,K,R,T,W '21) Theta-free graphs of girth at least 5 have bounded twin-width.

 Do θ-free, g ≥ 5 graphs have bounded queue/stack number? Possibly through the same order.

- Do θ-free, g ≥ 5 graphs have bounded queue/stack number? Possibly through the same order.
- Extend the approach to classes forbidding any subgraph of the wall.

- Do θ-free, g≥5 graphs have bounded queue/stack number? Possibly through the same order.
- Extend the approach to classes forbidding any subgraph of the wall.

Questions ?

- Do θ-free, g ≥ 5 graphs have bounded queue/stack number? Possibly through the same order.
- Extend the approach to classes forbidding any subgraph of the wall.

Questions ?

 \hookrightarrow *k*-DS admits no polynomial kernels

k-DS admits no polynomial kernels

Conclusion

Complexity definitions

Definition Kernel for parameterized problem \mathcal{Q} : polytime reduction from $(I, k) \in \mathcal{Q}$ to equivalent $(I', k') \in \mathcal{Q}$. A kernel for parameter k is polynomial if $|I'| = O(k^p)$.

Complexity definitions

Definition Kernel for parameterized problem \mathcal{Q} : polytime reduction from $(I, k) \in \mathcal{Q}$ to equivalent $(I', k') \in \mathcal{Q}$. A kernel for parameter k is polynomial if $|I'| = O(k^p)$.

Definition VERTEX COVER: instances (G, k), is there a set $S \subseteq V$ of size at most k covering E.

• Connected V-C: requires S to be connected in G.

Complexity definitions

Definition Kernel for parameterized problem \mathcal{Q} : polytime reduction from $(I, k) \in \mathcal{Q}$ to equivalent $(I', k') \in \mathcal{Q}$. A kernel for parameter k is polynomial if $|I'| = O(k^p)$.

Definition VERTEX COVER: instances (G, k), is there a set $S \subseteq V$ of size at most k covering E.

• Connected V-C: requires S to be connected in G.

Definition k-DOMINATING SET: Instances (G, k), is there a set $S \subseteq V$ of size at most k dominating V.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20) FO model checking is FPT with respects to formula size on classes of bounded twin-width given a contraction sequence.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20) FO model checking is FPT with respects to formula size on classes of bounded twin-width given a contraction sequence.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20) FO model checking is FPT with respects to formula size on classes of bounded twin-width given a contraction sequence.

•
$$k-\mathsf{IS} : \exists x_1 ... \exists x_k \land_{1 \leq i \leq j \leq k} \neg (x_i = x_j \lor E(x_i, x_j)),$$

•
$$k$$
-DS : $\exists x_1 \dots \exists x_k \forall x \bigvee_{1 \leq i \leq k} (x = x_i) \lor \bigvee_{1 \leq i \leq k} E(x, x_i).$

Theorem (Bonnet, Geniet, Kim, Thomassé, Watrigant '20) *k-IS admits no polynomial kernel on classes of bounded twin-width unless unless* $coNP \subseteq NP/poly$.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20) FO model checking is FPT with respects to formula size on classes of bounded twin-width given a contraction sequence.

•
$$k$$
-IS : $\exists x_1 ... \exists x_k \land 1 \leq i \leq j \leq k} \neg (x_i = x_j \lor E(x_i, x_j)),$
• k -DS : $\exists x_1 ... \exists x_k \forall x \lor 1 \leq i \leq k} (x = x_i) \lor \lor 1 \leq i \leq k} E(x, x_i).$

Theorem (Bonnet, Geniet, Kim, Thomassé, Watrigant '20) *k-IS admits no polynomial kernel on classes of bounded twin-width unless unless* $coNP \subseteq NP/poly$.

k-DS admits $O(k^{(t+1)^2})$ kernels notably on sparse ($K_{t,t}$ -free) classes (Philip, Raman, Sikdar '12), what about **bounded twin-width**?

Lower bounds framework

OR-cross-composition, from \mathscr{L} to parameterized \mathscr{Q} : Polytime reduction the **OR** of *t* ("equivalent") instances of \mathscr{L} to one instance of \mathscr{Q} .

Lower bounds framework

OR-cross-composition, from \mathscr{L} to parameterized \mathscr{Q} : Polytime reduction the **OR** of *t* ("equivalent") instances of \mathscr{L} to one instance of \mathscr{Q} .

Theorem (Bodlaender, Jansen, Kratsch '12) If an NP-hard language \mathcal{L} admits an OR-cross-composition into a parameterized problem \mathcal{Q} , then \mathcal{Q} does not admit a polynomial kernel unless coNP \subseteq NP/poly.

- \mathscr{L} : Tailored k-DS (next slide),
- \mathcal{Q} : *k*-DS with twin-width 4.

Tailored k-DS on grid-like graphs

Theorem

k-DOMINATING SET remains NP-hard even when restricted to instances $(G, k, \mathscr{B} = \{B_1, ..., B_k\})$ such that:

- \mathscr{B} partitions V(G), G has 4-sequence $\rightarrow G/\mathscr{B}$,
- G/\mathcal{B} is a spanning subgraph of a grid,

Tailored k-DS on grid-like graphs

Theorem

k-DOMINATING SET remains NP-hard even when restricted to instances $(G, k, \mathscr{B} = \{B_1, ..., B_k\})$ such that:

- \mathscr{B} partitions V(G), G has 4-sequence $\rightarrow G/\mathscr{B}$,
- G/\mathcal{B} is a spanning subgraph of a grid,
- every dominating set of G intersects each B_i , for $i \in [k]$

Tailored k-DS on grid-like graphs

Theorem

k-DOMINATING SET remains NP-hard even when restricted to instances $(G, k, \mathscr{B} = \{B_1, ..., B_k\})$ such that:

- \mathscr{B} partitions V(G), G has 4-sequence $\rightarrow G/\mathscr{B}$,
- G/\mathscr{B} is a spanning subgraph of a grid,
- every dominating set of G intersects each B_i , for $i \in [k]$

k-DS admits no polynomial kernels

Conclusion

OR-composition sketch

Tailored k-DS, instances $(I_i)_{i \in [t]} \rightarrow k$ -DS, $tww \leq 4$ instance (H, k)

k-DS admits no polynomial kernels

Conclusion

OR-composition sketch

Tailored k-DS, instances $(I_i)_{i \in [t]} \rightarrow k$ -DS, $tww \leq 4$ instance (H, k)

k-DS admits no polynomial kernels

Conclusion

OR-composition sketch

Tailored k-DS, instances $(I_i)_{i \in [t]} \rightarrow k$ -DS, $tww \leq 4$ instance (H, k)

Fig. Instances \leftrightarrow layers, partition classes \leftrightarrow boxes. In *H*: Top instance \leftrightarrow dummy, half graphs cycle between classes

k-DS admits no polynomial kernels

Conclusion

Positive Tailored instance \Rightarrow Positive composition

Assume one instance (I_4 here) is positive, pick its solution in H:

k-DS admits no polynomial kernels

Conclusion

Positive Tailored instance \Rightarrow Positive composition

Assume one instance (I_4 here) is positive, pick its solution in H:

k-DS admits no polynomial kernels

Conclusion

Positive Tailored instance \Rightarrow Positive composition

Assume one instance (I_4 here) is positive, pick its solution in H:

k-DS admits no polynomial kernels

Conclusion

Positive Tailored instance \Rightarrow Positive composition

Assume one instance (I_4 here) is positive, pick its solution in H:

k-DS admits no polynomial kernels

Conclusion

Positive Tailored instance \Rightarrow Positive composition

Assume one instance (I_4 here) is positive, pick its solution in H:

k-DS admits no polynomial kernels

Conclusion

Positive Tailored instance \Rightarrow Positive composition

Assume one instance (I_4 here) is positive, pick its solution in H:

Assume (H, k) is positive:

• Dummy instance *l*₆ forces one vertex per column (figure),

Assume (H, k) is positive:

- Dummy instance *l*₆ forces one vertex per column (figure),
- Ideally : all choices on a single layer $i \rightarrow \text{positive } I_i$,

Assume (H, k) is positive:

- Dummy instance I_6 forces one vertex per column (figure),
- Ideally : all choices on a single layer $i \rightarrow \text{positive } I_i$,
- Assume not...

k-DS admits no polynomial kernels

Conclusion

Positive composition \Rightarrow Positive tailored instance

● Non-identical layer choices → domination gap,

- Non-identical layer choices \rightarrow domination gap,
- At least two classes are not dominated by neighbouring columns,

Positive composition \Rightarrow Positive tailored instance

- Non-identical layer choices \rightarrow domination gap,
- At least two classes are not dominated by neighbouring columns,
- Only one choice left in this column \rightarrow absurd.

• For any I_i , each $\mathscr{B}_{i,j}$ is a module in $H - I_i \rightarrow$ contraction impacts only I_i ,

Fig. An instance after contracting classes.

- For any *I_i*, each ℬ_{i,j} is a module in *H*−*I_i* → contraction impacts only *I_i*,
- Contract each partition class of each instance

Fig. An instance after contracting classes.

- For any I_i , each $\mathscr{B}_{i,j}$ is a module in $H I_i \rightarrow$ contraction impacts only I_i ,
- Contract each partition class of each instance
- Result: red subgraph of grid (altered for tww 4).

Fig. An instance after contracting classes.

k-DS admits no polynomial kernels

Conclusion 000

Bounding the twin-width

• Between instances : cycle of half graphs,

- Between instances : cycle of half graphs,
- Half graphs cycles have tww 3 : successively contract bottommost two layers

k-DS admits no polynomial kernels

Conclusion

Bounding the twin-width

 In the Composition: half-graph cycle between "homogeneous" vertices, (at the same position in their respective instance).

Fig. Instances and the half-graph cycle

k-DS admits no polynomial kernels

Conclusion

Bounding the twin-width

- In the Composition: half-graph cycle between "homogeneous" vertices, (at the same position in their respective instance).
- Goal: Successively contract the bottommost two instances.

Fig. Instances and the half-graph cycle

k-DS admits no polynomial kernels

Conclusion

Bounding the twin-width

- In the Composition: half-graph cycle between "homogeneous" vertices, (at the same position in their respective instance).
- Goal: Successively contract the bottommost two instances.
- Each contraction: creates red edges only locally \rightarrow induction

Fig. Instances and the half-graph cycle

• NP-hard Tailored k-DS OR-cross-composes into k-DS,

- NP-hard Tailored k-DS OR-cross-composes into k-DS,
- The composed instance has tww at most four.

- NP-hard Tailored k-DS OR-cross-composes into k-DS,
- The composed instance has tww at most four.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) Unless $coNP \subseteq NP/poly$, k-DOMINATING SET on graphs of twin-width at most 4 does not admit a polynomial kernel, even if a 4-sequence of the graph is given.

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21) There exists f s.t. for any G of tww(d) and $X \subseteq V(G)$:

number of distinct neighborhoods in X is at most f(d)|X|.

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21) There exists f s.t. for any G of tww(d) and $X \subseteq V(G)$: number of distinct neighborhoods in X is at most f(d)|X|.

Kernel pre-processing:

• Bounded tww G: take X 2-approx for VC,

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21) There exists f s.t. for any G of tww(d) and $X \subseteq V(G)$: number of distinct neighborhoods in X is at most f(d)|X|.

Kernel pre-processing:

- Bounded tww G: take X 2-approx for VC,
- if $|X| \ge 2k + 1$: no solution,

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21) There exists f s.t. for any G of tww(d) and $X \subseteq V(G)$: number of distinct neighborhoods in X is at most f(d)|X|.

Kernel pre-processing:

- Bounded tww G: take X 2-approx for VC,
- if $|X| \ge 2k + 1$: no solution,
- \rightarrow in X, number of distinct neighbourhoods $\leq f(d)k$

k-DS admits no polynomial kernels

Conclusion

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is $S \subseteq V(G) \setminus X$ with identical neighbourhood in X and |S| > k, delete a vertex of S.

k-DS admits no polynomial kernels

Conclusion

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is $S \subseteq V(G) \setminus X$ with identical neighbourhood in X and |S| > k, delete a vertex of S.

Fig. Resulting instance: (G', k)

k-DS admits no polynomial kernels

Conclusion

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is $S \subseteq V(G) \setminus X$ with identical neighbourhood in X and |S| > k, delete a vertex of S.

If (G, k) has a solution, replace deletion with twin \rightarrow reconnects T

k-DS admits no polynomial kernels

Conclusion

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is $S \subseteq V(G) \setminus X$ with identical neighbourhood in X and |S| > k, delete a vertex of S.

Fig. Resulting instance: (G', k)

If (G, k) has a solution, replace deletion with twin \rightarrow reconnects TIf (G', k) has a solution T, T is also a solution for (G, k),

k-DS admits no polynomial kernels

Conclusion

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is $S \subseteq V(G) \setminus X$ with identical neighbourhood in X and |S| > k, delete a vertex of S.

Fig. Resulting instance: (G', k)

 $\frac{\text{If } (G,k) \text{ has a solution, replace deletion with twin } \rightarrow \text{ reconnects } T}{\text{If } (G',k) \text{ has a solution } T, T \text{ is also a solution for } (G,k),}$

• Take deleted s, $S \setminus s \nsubseteq T$ as ind. set with $|S| \ge k$,

• Therefore $N(S) \subseteq T$, and s is covered by T in G.

• Applying the reduction yields an equivalent instance,

- Applying the reduction yields an equivalent instance,
- The kernel has size at most $f(d) * k^2$,

- Applying the reduction yields an equivalent instance,
- The kernel has size at most $f(d) * k^2$,

- Applying the reduction yields an equivalent instance,
- The kernel has size at most $f(d) * k^2$,

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) On classes of VC-density 1, CONNECTED k-VERTEX COVER admits kernels with $O(k^2)$ vertices (and even $O(k^{1.5})$).

Further Directions

• Does k-DS on tww \leq 3 admit polynomial kernels?

Further Directions

- Does k-DS on tww \leq 3 admit polynomial kernels?
- Is there a linear kernel for Connected-VC?

Further Directions

- Does *k*-DS on tww ≤ 3 admit polynomial kernels?
- Is there a linear kernel for Connected-VC?

Thank you!

Bibliography

V. Dujmovi, D. Eppstein, R. Hickingbotham, P. Morin, and D. R. Wood. "Stack-number is not bounded by gueue-number". In: (2021). arXiv: 2011.04195 [math.CO] N. L. D. Sintiari and N. Trotignon. "(Theta, triangle)-free and (even hole, K₄)-free graphs. Part 1 : Layered wheels". In: CoRR abs/1906.10998 (2019). arXiv: 1906.10998. URL: http://arxiv.org/abs/1906.10998 T. Abrishami, M. Chudnovsky, S. Hajebi, and S. Spirkl. "Induced subgraphs and tree decompositions III. Three-path-configurations and logarithmic treewidth". In: (2021). arXiv: 2109.01310 [math.CO] Édouard Bonnet, E. J. Kim, S. Thomassé, and R. Watrigant. "Twin-width I: tractable FO model checking". In: (2020). arXiv: 2004.14789 [cs.DS]

Bibliography

Édouard Bonnet, C. Geniet, E. J. Kim, S. Thomassé, and R. Watrigant. "Twin-width II: small classes". In: (2020). arXiv: 2006.09877 [cs.DM] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. "Kernelization Lower Bounds By Cross-Composition". In: (2012). arXiv: 1206.5941 [cs.CC] G. Philip, V. Raman, and S. Sikdar. "Polynomial Kernels for Dominating Set in Graphs of Bounded Degeneracy and Beyond". In: ACM Trans. Algorithms 9.1 (Dec. 2012). ISSN: 1549-6325. DOI: 10.1145/2390176.2390187. URL: https://doi.org/10.1145/2390176.2390187 Édouard Bonnet, E. J. Kim, A. Reinald, S. Thomassé, and R. Watrigant. "Twin-width and polynomial kernels". In: (2021). arXiv: 2107.02882 [cs.DS]