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Overview

Twin-width:

graph invariant giving a "structural complexity" measure.
classes of small twin-width ⇒ efficient algorithms.

Polynomial kernels:
Even more efficient algorithms based on pre-processing.

Question: What problems admit polynomial kernels for classes of
small twin-width ?

1 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Overview

Twin-width:
graph invariant giving a "structural complexity" measure.

classes of small twin-width ⇒ efficient algorithms.
Polynomial kernels:

Even more efficient algorithms based on pre-processing.

Question: What problems admit polynomial kernels for classes of
small twin-width ?

1 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Overview

Twin-width:
graph invariant giving a "structural complexity" measure.
classes of small twin-width ⇒ efficient algorithms.

Polynomial kernels:
Even more efficient algorithms based on pre-processing.

Question: What problems admit polynomial kernels for classes of
small twin-width ?

1 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Overview

Twin-width:
graph invariant giving a "structural complexity" measure.
classes of small twin-width ⇒ efficient algorithms.

Polynomial kernels:

Even more efficient algorithms based on pre-processing.

Question: What problems admit polynomial kernels for classes of
small twin-width ?

1 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Overview

Twin-width:
graph invariant giving a "structural complexity" measure.
classes of small twin-width ⇒ efficient algorithms.

Polynomial kernels:
Even more efficient algorithms based on pre-processing.

Question: What problems admit polynomial kernels for classes of
small twin-width ?

1 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Overview

Twin-width:
graph invariant giving a "structural complexity" measure.
classes of small twin-width ⇒ efficient algorithms.

Polynomial kernels:
Even more efficient algorithms based on pre-processing.

Question: What problems admit polynomial kernels for classes of
small twin-width ?

1 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Our results

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
On classes of bounded twin-width, Connected k-Vertex
Cover admits kernels with O(k1.5) vertices.

In this talk:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
Unless coNP ⊆ NP/poly, k-Dominating Set does not admit
a polynomial kernel on graphs of twin-width at most 4.
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Parameters for decision problems

Decision problems:
"Does instance I admit a solution of size k ?",

For NP-hard problems, complexity exponential in |I | (ETH)...
,→ Is large |I | really what makes a hard instance ?

Goal: Parameters k capturing "complexity" better than |I |.
Solution size,
Measures of "structural complexity" for graphs: diameter,
genus, treewidth...
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Fixed-Parameter Tractability (FPT)
Goal: small parameter instances ⇒ polytime algorithms.

A parameterized problem has instances (I ,k) with parameter k.

Definition A parameterized problem Q is fixed-parameter
tractable (FPT) with respects to k if there is an algorithm
deciding (I ,k) in time f (k)|I |O(1), for some computable f .
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FPT Examples

Examples of FPT problems:
k-Vertex Cover parameterized by solution size k:
,→ instance (G ,k) solvable in time O(f (k)|G |3).

Hamiltonian Cycle parameterized by treewidth tw :
,→ instance (G ,tw) solvable in time O(tw tw |G |)
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Kernels

How to devise an FPT algorithm? One strategy:

Pre-process input to get rid of "useless" information,
obtain "small" sized instance dependent only on k,
Run bruteforce → complexity explosion only in k.

Definition Kernel for parameterized problem Q:
Polytime reduction from instance (I ,k) for Q to
equivalent instance (I ′,k ′) for Q.
output instance has size |I ′| = h(k), and k ′ is bounded by
a function of k.

7 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Kernels

How to devise an FPT algorithm? One strategy:
Pre-process input to get rid of "useless" information,

obtain "small" sized instance dependent only on k,
Run bruteforce → complexity explosion only in k.

Definition Kernel for parameterized problem Q:
Polytime reduction from instance (I ,k) for Q to
equivalent instance (I ′,k ′) for Q.
output instance has size |I ′| = h(k), and k ′ is bounded by
a function of k.

7 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Kernels

How to devise an FPT algorithm? One strategy:
Pre-process input to get rid of "useless" information,
obtain "small" sized instance dependent only on k,

Run bruteforce → complexity explosion only in k.

Definition Kernel for parameterized problem Q:
Polytime reduction from instance (I ,k) for Q to
equivalent instance (I ′,k ′) for Q.
output instance has size |I ′| = h(k), and k ′ is bounded by
a function of k.

7 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Kernels

How to devise an FPT algorithm? One strategy:
Pre-process input to get rid of "useless" information,
obtain "small" sized instance dependent only on k,
Run bruteforce → complexity explosion only in k.

Definition Kernel for parameterized problem Q:
Polytime reduction from instance (I ,k) for Q to
equivalent instance (I ′,k ′) for Q.
output instance has size |I ′| = h(k), and k ′ is bounded by
a function of k.

7 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Kernels

How to devise an FPT algorithm? One strategy:
Pre-process input to get rid of "useless" information,
obtain "small" sized instance dependent only on k,
Run bruteforce → complexity explosion only in k.

Definition Kernel for parameterized problem Q:
Polytime reduction from instance (I ,k) for Q to
equivalent instance (I ′,k ′) for Q.
output instance has size |I ′| = h(k), and k ′ is bounded by
a function of k.

7 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Better than FPT: polynomial kernels

Theorem
A parameterized problem is FPT iff it admits a kernel.

For FPT problems, can we get even more efficient?
FPT ⇒ Kernel, but the kernel size can be very large...
A kernel for parameter k is polynomial if |I ′| =O(kp).

Problems with polynomial kernels:
k-Vertex-Cover, k-Dominating-Set on sparse graphs
(Kt ,t -free).

,→ can we prove that a problem has no polykernel?
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Example: k-Longest Path

Longest Path Parameter: k
Input: Graph G , integer k
Question: Does G have a simple path of length k?

NP-hard, but FPT: admits a 2knc algorithm, thus a kernel,
what about a polynomial kernel?
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k-Longest Path has no polykernels (morally)

Assume polykernel of size kc .

Consider t = nc +1 instances (G1,k), ...,(Gt ,k), with n = |Gi |,
Take G =

t⋃
i=1

Gi , and consider instance (G ,k),

Polykernel returns (G ′,k ′) from (G ,k) in poly(n).

(G ,k) is positive ⇔ (G ′,k ′) is positive ⇔ ∃i : (Gi ,k) is positive.
G ′ is computed in polytime,
G ′ is (very) small: |G ′| É kc É nc < t: less than one bit per
initial instance,
kernelization must have dismissed / "solved" one Gi entirely...
in polynomial time → absurd.
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Ruling out polynomial kernels
Formalization: given problem L , and parameterized problem Q.

Definition 2.1 (OR-composition) Polytime reduction:

Input: Instances I1, ..., It for L ,
Output: Instance J for Q.

J is positive for Q ⇔ ∃i s.t. Ii is positive for L .

Theorem (Bodlaender, Jansen, Kratsch ’12)
If an NP-hard problem L admits an OR-composition into a
parameterized problem Q, then Q does not admit a
polynomial kernel unless coNP ⊆ NP/poly.
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Ruling out polynomial kernels
Formalization: given problem L , and parameterized problem Q.
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Ruling out polynomial kernels
Formalization: given problem L , and parameterized problem Q.

Definition 2.5 (OR-composition) Polytime reduction:
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Graph invariants and FPT

"Meta-theorems" for problems expressible by logic formulas:

Theorem 1 (Courcelle ’90) Given a MSO formula φ on a
graph G, deciding whether φ is satisfied by G is FPT in |φ| on
graphs of bounded tree-width2.

Lot of FO problems are FPT on some classes of unbounded tw,
goal:

Analogue of Courcelle for FO logic ?
With some broader parameter than tw twin-width

2given a tree decomposition
12 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Graph invariants and FPT

"Meta-theorems" for problems expressible by logic formulas:

Theorem 1 (Courcelle ’90) Given a MSO formula φ on a
graph G, deciding whether φ is satisfied by G is FPT in |φ| on
graphs of bounded tree-width2.

Lot of FO problems are FPT on some classes of unbounded tw,
goal:

Analogue of Courcelle for FO logic ?
With some broader parameter than tw twin-width

2given a tree decomposition
12 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Graph invariants and FPT

"Meta-theorems" for problems expressible by logic formulas:

Theorem 1 (Courcelle ’90) Given a MSO formula φ on a
graph G, deciding whether φ is satisfied by G is FPT in |φ| on
graphs of bounded tree-width2.

Lot of FO problems are FPT on some classes of unbounded tw,
goal:

Analogue of Courcelle for FO logic ?
With some broader parameter than tw

twin-width

2given a tree decomposition
12 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Graph invariants and FPT

"Meta-theorems" for problems expressible by logic formulas:

Theorem 1 (Courcelle ’90) Given a MSO formula φ on a
graph G, deciding whether φ is satisfied by G is FPT in |φ| on
graphs of bounded tree-width2.

Lot of FO problems are FPT on some classes of unbounded tw,
goal:

Analogue of Courcelle for FO logic ?
With some broader parameter than tw twin-width

2given a tree decomposition
12 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Motivation

Definition In graph G, u,v ∈V (G) are twins if N(u)=N(v).

Twins "behave the same" w.r.t the rest of the graph,
exploitable algorithmically: modular decomposition,
cographs...

Idea:
Obtain efficient algorithms by leveraging "near-twins",
Efficiency depends on how "near" vertices are to being twins
→ twin-width.

13 / 32
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Contractions in trigraphs

Intuitive goal: group near-twins together.
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u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uvuv

15 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Contractions in trigraphs

Intuitive goal: group near-twins together.
Contraction of u and v : record "twin" errors with red edges.

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

15 / 32



Introduction FPT Twin-width k-DS has no polykernels Conclusion

Contractions in trigraphs

Intuitive goal: group near-twins together.
Contraction of u and v : record "twin" errors with red edges.
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edges to N(u)4N(v) turn red, for N(u)∩N(v) red is absorbing
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Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.
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Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.
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Twin-width : FPT first order problems
Recall Courcelle for MSO and tree-width:

Theorem (Courcelle ’90)
Given a MSO formula φ on a graph G, deciding φ on G is
FPT in |φ| on graphs of bounded tree-width3.

Analogue: FO and twin-width:

Theorem (Bonnet, Kim, Thomassé, Watrigant ’20)
Given a FO formula φ on a graph G, deciding φ on G is FPT
with respects to |φ| on classes of bounded twin-width4.

3given a tree decomposition
4given a contraction sequence
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Consequences

Some problems expressible in FO:

k-IS : ∃x1...∃xk
∧

1ÉiÉjÉk ¬(xi = xj ∨E (xi ,xj)),
k-DS : ∃x1...∃xk∀x ∨

1ÉiÉk(x = xi)∨∨
1ÉiÉk E (x ,xi).

are FPT in solution size k for bounded tww.

Some classes of bounded twin-width:
Bounded tree-width, rank-width, queue number...
Proper minor closed → planar graphs.

,→ very broad !
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Twin-width and polykernels

On classes of bounded twin-width:

Connected k-VC admits a O(k2) kernel,
k-Independent Set admits no polykernel.

What about dominating set ?
k-Dominating Set Parameter: k
Input: Graph G , integer k
Question: Does G have a dominating set of size at most k?

Admits polykernels on sparse graphs... but not on bounded
twin-width.
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OR-composition for k-DS

Recall the tool to prove no polykernels:

Theorem (Bodlaender, Jansen, Kratsch ’12)
If an NP-hard problem L admits an OR-composition into a
parameterized problem Q, then Q does not admit a
polynomial kernel unless coNP ⊆ NP/poly.

Goal: rule out polynomial kernels for k-DS on classes of bounded
twin-width.

Q: k-DS on a class of bounded twin-width (É 4).
L : NP-hard problem tailored to be "easily" composable into
Q. A version of k-DS on graphs of bounded twin-width.
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Tailored k-DS on grid-like graphs
NP-hard L : k-DS on instances (G ,k ,B = {B1, . . . ,Bk }) s.t:

B partitions V (G), G has 4-sequence → G/B,
G/B is a subgraph of a grid,

every dominating set of G intersects each Bi .
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OR-composition

Tailored k-DS, instances (Ii)i∈[t] → k-DS, tww É 4 instance (H ,k)

I1

I2

I3

I4

I5

I6

Fig. Instances ↔ layers, partition classes ↔ boxes.
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OR-composition
Tailored k-DS, instances (Ii)i∈[t] → k-DS, tww É 4 instance (H ,k)

I1

I2

I3

I4

I5

I6

Fig. Instances ↔ layers, partition classes ↔ boxes.
In H: Top instance ↔ dummy, half graphs cycle between classes
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Positive Tailored instance ⇒ Positive composition

Assume one instance (I4 here) is positive, pick its solution in H:

I1

I2

I3

I4

I5

I6

Fig. t Instances ↔ layers, k partition classes ↔ boxes
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Positive composition ⇒ Positive tailored instance

Assume (H ,k) is positive:
Dummy instance I6 forces one vertex per column,

Ideally : all choices on a single layer i → positive Ii ,
Assume not...
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Positive composition ⇒ Positive tailored instance

Non-identical layer choices → domination "gap" on Cj ,

At least two classes not dominated by Cj−1,Cj+1,
Only one choice left in Cj → absurd.
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Positive composition ⇒ Positive tailored instance

Ik ′′−3

Ik ′′−2

Ik ′′−1

Ik ′′

...
...

...
...

...
...

Ik

Ik+1

Ik+2

Ik+3

Solution lies on a single layer → corresponding instance is
dominated.
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Bounding tww: contracting partition classes

For any Ii : each partition class has same neighbours in H − Ii ,

Contract each class → red edges created only in Ii
Result: red subgraph of grid (altered for tww 4).
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Fig. An instance after contracting classes.
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Bounding tww: contracting instances together
Between instances: half-graph cycle along vertices at the
same position.

Goal: Successively contract the bottommost two instances.
Contracting two vertices at the same position creates red
edges only locally → induction

Fig. Instances and the half-graph cycle
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Concluding

NP-hard Tailored k-DS OR-composes into k-DS,

The composed instance has tww at most four.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
Unless coNP ⊆ NP/poly, k-Dominating Set on graphs of
twin-width at most 4 does not admit a polynomial kernel5.

5even if a 4-sequence of the graph is given
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Further Directions

Does k-DS on tww É 3 admit polynomial kernels?

Is there a linear kernel for Connected-VC?

Thank you!
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A (sub)quadratic kernel for C-VC on VC-density 1

Lemma (Bonnet, Kim, R., Thomassé, Watrigant ’21)
There exists f s.t. for any G of tww( d) and X ⊆V (G):
number of distinct neighborhoods in X is at most f (d)|X |.

Kernel pre-processing:
Bounded tww G : take X 2-approx for VC,
if |X | Ê 2k +1 : no solution,
→ in X , number of distinct neighbourhoods É f (d)k
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A (sub)quadratic kernel for C-VC on VC-density 1
Reduction rule: If there is S ⊆V (G)\ X with identical
neighbourhood in X and |S | > k, delete a vertex of S.

X

v1

...

v`

S , |S | É k

N(S)

Fig. Resulting instance: (G ′,k)

If (G ,k) has a solution, replace deletion with twin → reconnects T
If (G ′,k) has a solution T , T is also a solution for (G ,k),

Take deleted s, S\s *T as ind. set with |S | Ê k,
Therefore N(S)⊆T , and s is covered by T in G .
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Concluding

Applying the reduction yields an equivalent instance,

The kernel has size at most f (d)∗k2,

Theorem (Bonnet, Kim, R., Thomassé, Watrigant ’21)
On classes of VC-density 1, Connected k-Vertex Cover
admits kernels with O(k2) vertices (and even O(k1.5)).
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