Twin-width and polynomial kernels

Amadeus Reinald ENS de Lyon

joint work with Édouard Bonnet¹, Eun Jung Kim, Stéphan Thomassé, Rémi Watrigant

Séminaire COATI May 3rd, 2022, INRIA Sophia-Antipolis

¹some slides have been recklessly stolen from Édouard

Introduction ●00	FPT 000000000	Twin-width 00000000	<i>k</i> -DS has no polykernels	Conclusion
Overview				

Introduction	FPT	Twin-width	<i>k</i> -DS has no polykernels	Conclusion
●00	000000000	00000000		00000
Overview				

• graph invariant giving a "structural complexity" measure.

Introduction	FPT	Twin-width	<i>k</i> -DS has no polykernels	Conclusion
●00	000000000	00000000	000000000	
Overview				

- graph invariant giving a "structural complexity" measure.
- classes of small twin-width \Rightarrow efficient algorithms.

Introduction ●00	FPT 000000000	Twin-width 00000000	<i>k</i> -DS has no polykernels	Conclusion
Overview				

- graph invariant giving a "structural complexity" measure.
- classes of small twin-width \Rightarrow efficient algorithms.

Polynomial kernels:

Introduction	FPT	Twin-width	<i>k</i> -DS has no polykernels	Conclusion
●00	000000000	00000000		00000
Overview				

- graph invariant giving a "structural complexity" measure.
- classes of small twin-width \Rightarrow efficient algorithms.

Polynomial kernels:

• Even more efficient algorithms based on pre-processing.

- graph invariant giving a "structural complexity" measure.
- classes of small twin-width \Rightarrow efficient algorithms.

Polynomial kernels:

• Even more efficient algorithms based on pre-processing.

Question: What problems admit polynomial kernels for classes of small twin-width ?

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) On classes of bounded twin-width, CONNECTED k-VERTEX COVER admits kernels with $O(k^{1.5})$ vertices.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) On classes of bounded twin-width, CONNECTED k-VERTEX COVER admits kernels with $O(k^{1.5})$ vertices.

In this talk:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) Unless $coNP \subseteq NP/poly$, k-DOMINATING SET does not admit a polynomial kernel on graphs of twin-width at most 4.

FPT 000000000 Twin-width

k-DS has no polykernel

Conclusion 00000

2 FPT

Decision problems:

• "Does instance I admit a solution of size k ?",

Decision problems:

• "Does instance I admit a solution of size k ?",

For NP-hard problems, complexity exponential in |/| (ETH)...

Parameters for decision problems

Decision problems:

- "Does instance I admit a solution of size k ?",
- For NP-hard problems, complexity exponential in |I| (ETH)...
- \hookrightarrow Is large $|\mathit{I}|$ really what makes a hard instance ?

Parameters for decision problems

Decision problems:

• "Does instance *I* admit a solution of size *k* ?",

For NP-hard problems, complexity exponential in |I| (ETH)... \hookrightarrow Is large |I| really what makes a hard instance ?

Goal: **Parameters** k capturing "complexity" better than |I|.

Parameters for decision problems

Decision problems:

• "Does instance *I* admit a solution of size *k* ?",

For NP-hard problems, complexity exponential in |I| (ETH)... \hookrightarrow Is large |I| really what makes a hard instance ?

Goal: Parameters k capturing "complexity" better than |I|.Solution size,

Decision problems:

• "Does instance *I* admit a solution of size *k* ?",

For NP-hard problems, complexity exponential in |I| (ETH)... \hookrightarrow Is large |I| really what makes a hard instance ?

Goal: **Parameters** k capturing "complexity" better than |I|.

- Solution size,
- Measures of "structural complexity" for graphs: diameter, genus, treewidth...

Goal: small parameter instances \Rightarrow polytime algorithms.

Goal: small parameter instances \Rightarrow polytime algorithms. A **parameterized problem** has instances (I, k) with parameter k.

Introduction FPT Twin-width A-DS has no polykernels Conclusion

Fixed-Parameter Tractability (FPT)

Goal: small parameter instances \Rightarrow polytime algorithms. A **parameterized problem** has instances (I, k) with parameter k.

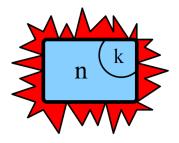
Definition A parameterized problem \mathcal{Q} is **fixed-parameter tractable** (FPT) with respects to k if there is an algorithm deciding (I, k) in time $f(k)|I|^{O(1)}$, for some computable f.

 Introduction
 FPT coord
 Twin-width coord
 k-DS has no polykernels
 Conclusion

 Fixed-Parameter
 Tractability (FPT)
 Coord
 Coor

Goal: small parameter instances \Rightarrow polytime algorithms. A **parameterized problem** has instances (I, k) with parameter k.

Definition A parameterized problem \mathcal{Q} is **fixed-parameter tractable** (FPT) with respects to k if there is an algorithm deciding (I, k) in time $f(k)|I|^{O(1)}$, for some computable f.

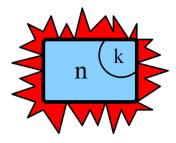


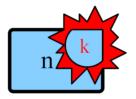
 Introduction
 FPT coord
 Twin-width coord
 k-DS has no polykernels
 Conclusion

 Fixed-Parameter
 Tractability (FPT)
 Coord
 Coor

Goal: small parameter instances \Rightarrow polytime algorithms. A **parameterized problem** has instances (I, k) with parameter k.

Definition A parameterized problem \mathcal{Q} is **fixed-parameter tractable** (FPT) with respects to k if there is an algorithm deciding (I, k) in time $f(k)|I|^{O(1)}$, for some computable f.





Examples of FPT problems:

k-VERTEX COVER parameterized by solution size k:
 → instance (G, k) solvable in time O(f(k)|G|³).

Examples of FPT problems:

- *k*-VERTEX COVER parameterized by solution size *k*: \hookrightarrow instance (G, k) solvable in time $O(f(k)|G|^3)$.
- HAMILTONIAN CYCLE parameterized by treewidth tw:
 → instance (G, tw) solvable in time O(tw^{tw}|G|)

Introduction	FPT	Twin-width	<i>k</i> -DS has no polykernels	Conclusion
000	000●00000	00000000	0000000000	
Kernels				

• Pre-process input to get rid of "useless" information,

- Pre-process input to get rid of "useless" information,
- obtain "small" sized instance dependent only on k,

- Pre-process input to get rid of "useless" information,
- obtain "small" sized instance dependent only on k,
- Run bruteforce \rightarrow complexity explosion only in k.

- Pre-process input to get rid of "useless" information,
- obtain "small" sized instance dependent only on k,
- Run bruteforce \rightarrow complexity explosion only in *k*.

Definition Kernel for parameterized problem 2:

- Polytime reduction from instance (I, k) for \mathcal{Q} to equivalent instance (I', k') for \mathcal{Q} .
- output instance has size |l'| = h(k), and k' is bounded by a function of k.

A parameterized problem is FPT iff it admits a kernel.

A parameterized problem is FPT iff it admits a kernel.

For FPT problems, can we get even more efficient?

A parameterized problem is FPT iff it admits a kernel.

For FPT problems, can we get even more efficient?

• FPT \Rightarrow Kernel, but the kernel size can be very large...

A parameterized problem is FPT iff it admits a kernel.

For FPT problems, can we get even more efficient?

- FPT \Rightarrow Kernel, but the kernel size can be very large...
- A kernel for parameter k is **polynomial** if $|I'| = O(k^p)$.

A parameterized problem is FPT iff it admits a kernel.

For FPT problems, can we get even more efficient?

- FPT \Rightarrow Kernel, but the kernel size can be very large...
- A kernel for parameter k is **polynomial** if $|I'| = O(k^p)$. Problems with polynomial kernels:

A parameterized problem is FPT iff it admits a kernel.

For FPT problems, can we get even more efficient?

- FPT \Rightarrow Kernel, but the kernel size can be very large...
- A kernel for parameter k is **polynomial** if $|l'| = O(k^p)$.

Problems with polynomial kernels:

• *k*-VERTEX-COVER, *k*-DOMINATING-SET on sparse graphs (*K*_{t,t}-free).

A parameterized problem is FPT iff it admits a kernel.

For FPT problems, can we get even more efficient?

- FPT \Rightarrow Kernel, but the kernel size can be very large...
- A kernel for parameter k is **polynomial** if $|I'| = O(k^p)$.

Problems with polynomial kernels:

- *k*-VERTEX-COVER, *k*-DOMINATING-SET on sparse graphs (*K*_{t,t}-free).
- \hookrightarrow can we prove that a problem has no polykernel?

FPT 00000●000

k-DS has no polykernel

Conclusion 00000

Example: k-LONGEST PATH

LONGEST PATH Parameter: k Input: Graph G, integer k Question: Does G have a simple path of length k?

FPT 0000000000

0

Twin-width

k-DS has no polykernel

Example: *k*-LONGEST PATH

LONGEST PATH Parameter: k Input: Graph G, integer k Question: Does G have a simple path of length k?

• NP-hard, but FPT: admits a $2^k n^c$ algorithm, thus a kernel,

FPT

Introduction

FFT 00000000000 0000000

k-DS has no polykernel

Example: *k*-LONGEST PATH

LONGEST PATH Parameter: k Input: Graph G, integer k Question: Does G have a simple path of length k?

- NP-hard, but FPT: admits a $2^k n^c$ algorithm, thus a kernel,
- what about a polynomial kernel?

Introduction FPT Twin-width k-DS has no polykernels Conclusion

k-LONGEST PATH has no polykernels (morally)

Assume polykernel of size k^c .

C-DONGEST TATH has no polykernels

Assume polykernel of size k^c .

• Consider $t = n^c + 1$ instances $(G_1, k), ..., (G_t, k)$, with $n = |G_i|$,

• Consider $t = n^c + 1$ instances $(G_1, k), ..., (G_t, k)$, with $n = |G_i|$,

• Take
$$G = \bigcup_{i=1}^{t} G_i$$
, and consider instance (G, k) ,

k-LONGEST PATH has no polykernels (morally)

Assume polykernel of size k^c .

- Consider $t = n^{c} + 1$ instances $(G_1, k), ..., (G_t, k)$, with $n = |G_i|$,
- Take $G = \bigcup_{i=1}^{t} G_i$, and consider instance (G, k),
- Polykernel returns (G', k') from (G, k) in poly(n).

k-LONGEST PATH has no polykernels (morally)

Assume polykernel of size k^c .

- Consider $t = n^c + 1$ instances $(G_1, k), ..., (G_t, k)$, with $n = |G_i|$,
- Take $G = \bigcup_{i=1}^{t} G_i$, and consider instance (G, k),
- Polykernel returns (G', k') from (G, k) in poly(n).

(G,k) is positive \Leftrightarrow (G',k') is positive $\Leftrightarrow \exists i : (G_i,k)$ is positive.

- Consider $t = n^c + 1$ instances $(G_1, k), ..., (G_t, k)$, with $n = |G_i|$,
- Take $G = \bigcup_{i=1}^{t} G_i$, and consider instance (G, k),
- Polykernel returns (G', k') from (G, k) in poly(n).

(G,k) is positive \Leftrightarrow (G',k') is positive $\Leftrightarrow \exists i : (G_i,k)$ is positive.

• G' is computed in polytime,

- Consider $t = n^c + 1$ instances $(G_1, k), ..., (G_t, k)$, with $n = |G_i|$,
- Take $G = \bigcup_{i=1}^{t} G_i$, and consider instance (G, k),
- Polykernel returns (G', k') from (G, k) in poly(n).

(G,k) is positive \Leftrightarrow (G',k') is positive $\Leftrightarrow \exists i : (G_i,k)$ is positive.

- G' is computed in polytime,
- G' is (very) small: |G'| ≤ k^c ≤ n^c < t: less than one bit per initial instance,

- Consider $t = n^c + 1$ instances $(G_1, k), ..., (G_t, k)$, with $n = |G_i|$,
- Take $G = \bigcup_{i=1}^{t} G_i$, and consider instance (G, k),
- Polykernel returns (G', k') from (G, k) in poly(n).

(G, k) is positive \Leftrightarrow (G', k') is positive $\Leftrightarrow \exists i : (G_i, k)$ is positive.

- G' is computed in polytime,
- G' is (very) small: |G'| ≤ k^c ≤ n^c < t: less than one bit per initial instance,
- kernelization must have dismissed / "solved" one G_i entirely...
 in polynomial time → absurd.

 FPT
 Twin-widtl

 000000000
 00000000

k-DS has no polykernel

Conclusion

Ruling out polynomial kernels

Formalization: given problem \mathcal{L} , and parameterized problem \mathcal{Q} .

Definition 2.1 (OR-composition) Polytime reduction:

Ruling out polynomial kernels

Formalization: given problem \mathcal{L} , and parameterized problem \mathcal{Q} .

Definition 2.2 (OR-composition) Polytime reduction:

• Input: Instances $I_1, ..., I_t$ for \mathcal{L} ,

Introduction FPT Twin-width k-DS has no polykernels Conclusion

Ruling out polynomial kernels

Formalization: given problem \mathcal{L} , and parameterized problem \mathcal{Q} .

Definition 2.3 (OR-composition) Polytime reduction:

- Input: Instances $I_1, ..., I_t$ for \mathcal{L} ,
- Output: Instance J for \mathcal{Q} .

Introduction FPT Twin-width k-DS has no polykernels Conclusion

Ruling out polynomial kernels

Formalization: given problem \mathcal{L} , and parameterized problem \mathcal{Q} .

Definition 2.4 (OR-composition) Polytime reduction:

- Input: Instances $I_1, ..., I_t$ for \mathcal{L} ,
- Output: Instance J for \mathcal{Q} .
- *J* is positive for $\mathscr{Q} \Leftrightarrow \exists i \text{ s.t. } I_i \text{ is positive for } \mathscr{L}$.

Introduction FPT Twin-width k-DS has no polykernels

Ruling out polynomial kernels

Formalization: given problem \mathcal{L} , and parameterized problem \mathcal{Q} .

Definition 2.5 (OR-composition) Polytime reduction:

- Input: Instances $I_1, ..., I_t$ for \mathcal{L} ,
- Output: Instance J for \mathcal{Q} .
- *J* is positive for $\mathscr{Q} \Leftrightarrow \exists i \text{ s.t. } I_i \text{ is positive for } \mathscr{L}$.

Theorem (Bodlaender, Jansen, Kratsch '12) If an NP-hard problem \mathcal{L} admits an OR-composition into a parameterized problem \mathcal{Q} , then \mathcal{Q} does not admit a polynomial kernel unless coNP \subseteq NP/poly.

Conclusion

"Meta-theorems" for problems expressible by logic formulas:

²given a tree decomposition

"Meta-theorems" for problems expressible by logic formulas:

Theorem 1 (Courcelle '90) Given a **MSO formula** ϕ on a graph G, deciding whether ϕ is satisfied by G is **FPT** in $|\phi|$ on graphs of **bounded tree-width**².

²given a tree decomposition

Graph invariants and FPT

"Meta-theorems" for problems expressible by logic formulas:

Theorem 1 (Courcelle '90) Given a **MSO formula** ϕ on a graph G, deciding whether ϕ is satisfied by G is **FPT** in $|\phi|$ on graphs of **bounded tree-width**².

Lot of **FO** problems are FPT on some classes of unbounded tw, goal:

- Analogue of Courcelle for FO logic ?
- With some **broader** parameter than tw

²given a tree decomposition

"Meta-theorems" for problems expressible by logic formulas:

Theorem 1 (Courcelle '90) Given a **MSO formula** ϕ on a graph G, deciding whether ϕ is satisfied by G is **FPT** in $|\phi|$ on graphs of **bounded tree-width**².

Lot of $\ensuremath{\textbf{FO}}$ problems are FPT on some classes of unbounded tw, goal:

- Analogue of Courcelle for FO logic ?
- With some broader parameter than tw twin-width

²given a tree decomposition

Motivation				
Introduction	FPT	Twin-width	<i>k</i> -DS has no polykernels	Conclusion
000	000000000	●0000000	000000000	

• Twins "behave the same" w.r.t the rest of the graph,

- Twins "behave the same" w.r.t the rest of the graph,
- exploitable algorithmically: modular decomposition, cographs...

- Twins "behave the same" w.r.t the rest of the graph,
- exploitable algorithmically: modular decomposition, cographs...

- Twins "behave the same" w.r.t the rest of the graph,
- exploitable algorithmically: modular decomposition, cographs...

Idea:

• Obtain efficient algorithms by leveraging "near-twins",

- Twins "behave the same" w.r.t the rest of the graph,
- exploitable algorithmically: modular decomposition, cographs...

Idea:

- Obtain efficient algorithms by leveraging "near-twins",
- Efficiency depends on how "near" vertices are to being twins
 → twin-width.

FP 00

0000000

Twin-width

k-DS has no polykerne

Conclusion

Graphs and trigraphs

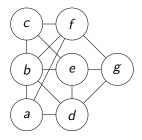


Fig. Graph: edges, non-edges

FP1

-

Twin-width

k-DS has no polykerne

Conclusion

Graphs and trigraphs

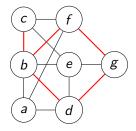


Fig. Trigraph: edges, non-edges, or red edges

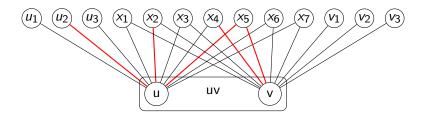
Introduction	FPT	Twin-width	<i>k</i> -DS has no polykernels	Conclusion			
000	000000000	00●00000		00000			
Contractions in trigraphs							

Intuitive goal: group near-twins together.

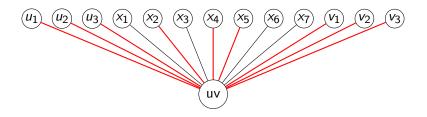


Intuitive goal: group near-twins together.

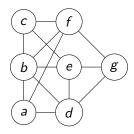
Contraction of u and v: record "twin" errors with red edges.



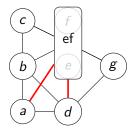
Intuitive goal: group near-twins together. **Contraction** of u and v: record "twin" errors with red edges.



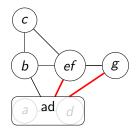
edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing



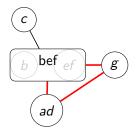
Maximum red degree = 0overall maximum red degree = 0



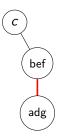
Maximum red degree = 2 overall maximum red degree = 2



Maximum red degree = 2 overall maximum red degree = 2



Maximum red degree = 2 overall maximum red degree = 2



Maximum red degree = 1 overall maximum red degree = 2

Maximum red degree = 1 overall maximum red degree = 2

Maximum red degree = 0 overall maximum red degree = $2 \rightarrow tww(G) \le 2$.

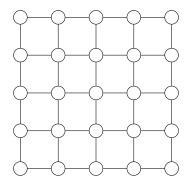
• Contraction sequences \rightarrow dynamic programming

۵

- Contraction sequences → dynamic programming
- bounded red degree \rightarrow few "complicated" updates.

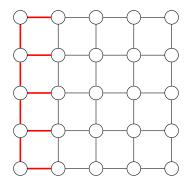
Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?



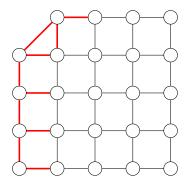
Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?



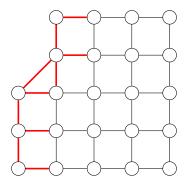
Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?



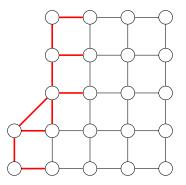
Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?



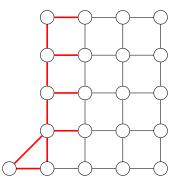
Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?



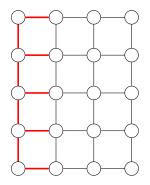
Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?



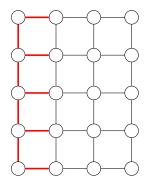
Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?



Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?

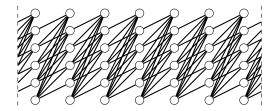


Maximum red degree = 3 overall maximum red degree = $4 \Rightarrow$ twin-width ≤ 4

Introduction FPT Twin-width coord Conclusion conclusion conclusion coord Conclusion conclusio

Example: Half-Graph Cycles

A dense graph with bounded twin-width:



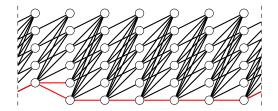
Introduction FPT Twin-width coord Conclusion conclusion conclusion coord Conclusion conclusio

Example: Half-Graph Cycles

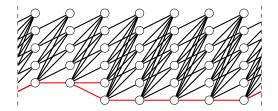
A dense graph with bounded twin-width:



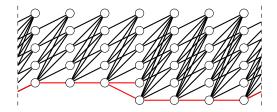
A dense graph with bounded twin-width:



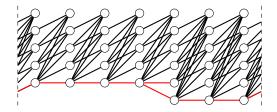
A dense graph with bounded twin-width:



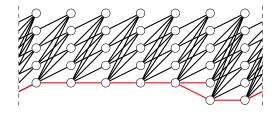
A dense graph with bounded twin-width:



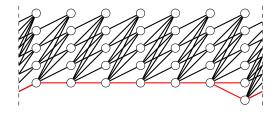
A dense graph with bounded twin-width:



A dense graph with bounded twin-width:

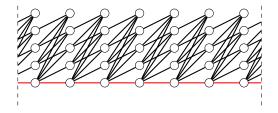


A dense graph with bounded twin-width:

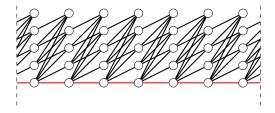


Example: Half-Graph Cycles

A dense graph with bounded twin-width:



A dense graph with bounded twin-width:



Maximum red degree = 2 overall maximum red degree = $3 \Rightarrow$ twin-width ≤ 3

Twin-width : FPT first order problems

Recall Courcelle for MSO and tree-width:

Twin-width : FPT first order problems

Recall Courcelle for MSO and tree-width:

Theorem (Courcelle '90) Given a **MSO formula** ϕ on a graph G, deciding ϕ on G is **FPT** in $|\phi|$ on graphs of **bounded tree-width**³.

 Introduction
 FPT concession
 Twin-width concession
 k-DS has no polykernels
 Conclusion concession

 Twin-width :
 FPT first order problems
 Concession
 Concession

Recall Courcelle for MSO and tree-width:

Theorem (Courcelle '90) Given a **MSO formula** ϕ on a graph G, deciding ϕ on G is **FPT** in $|\phi|$ on graphs of **bounded tree-width**³.

Analogue: FO and twin-width:

 Introduction
 FPT
 Twin-width
 k-DS has no polykernels
 Conclusion

 Twin-width : FPT first order problems

Recall Courcelle for MSO and tree-width:

Theorem (Courcelle '90) Given a **MSO formula** ϕ on a graph G, deciding ϕ on G is **FPT** in $|\phi|$ on graphs of **bounded tree-width**³.

Analogue: FO and twin-width:

Theorem (Bonnet, Kim, Thomassé, Watrigant '20) Given a **FO formula** ϕ on a graph G, deciding ϕ on G is **FPT** with respects to $|\phi|$ on classes of **bounded twin-width**⁴.

Introduction	FPT	Twin-width	<i>k</i> -DS has no polykernels	Conclusion		
000	000000000	0000000●	000000000	00000		
Consequences						

• k-IS : $\exists x_1 \dots \exists x_k \wedge_{1 \leq i \leq j \leq k} \neg (x_i = x_j \lor E(x_i, x_j)),$

- k-IS : $\exists x_1 \dots \exists x_k \land_{1 \leq i \leq j \leq k} \neg (x_i = x_j \lor E(x_i, x_j)),$
- k-DS : $\exists x_1 \dots \exists x_k \forall x \bigvee_{1 \leq i \leq k} (x = x_i) \lor \bigvee_{1 \leq i \leq k} E(x, x_i).$

are **FPT** in solution size k for bounded tww.

- k-IS : $\exists x_1 \dots \exists x_k \land 1 \leq i \leq j \leq k} \neg (x_i = x_j \lor E(x_i, x_j)),$
- k-DS : $\exists x_1 \dots \exists x_k \forall x \bigvee_{1 \leq i \leq k} (x = x_i) \lor \bigvee_{1 \leq i \leq k} E(x, x_i).$

are **FPT** in solution size k for bounded tww.

Some **classes** of bounded twin-width:

- k-IS : $\exists x_1 \dots \exists x_k \land 1 \leq i \leq j \leq k} \neg (x_i = x_j \lor E(x_i, x_j)),$
- k-DS : $\exists x_1 \dots \exists x_k \forall x \bigvee_{1 \leq i \leq k} (x = x_i) \lor \bigvee_{1 \leq i \leq k} E(x, x_i).$

are **FPT** in solution size k for bounded tww.

Some **classes** of bounded twin-width:

• Bounded tree-width, rank-width, queue number...

- k-IS : $\exists x_1 \dots \exists x_k \land 1 \leq i \leq j \leq k} \neg (x_i = x_j \lor E(x_i, x_j)),$
- k-DS : $\exists x_1 \dots \exists x_k \forall x \bigvee_{1 \leq i \leq k} (x = x_i) \lor \bigvee_{1 \leq i \leq k} E(x, x_i).$

are **FPT** in solution size k for bounded tww.

Some **classes** of bounded twin-width:

- Bounded tree-width, rank-width, queue number...
- Proper minor closed \rightarrow planar graphs.

- k-IS : $\exists x_1 \dots \exists x_k \land 1 \leq i \leq j \leq k} \neg (x_i = x_j \lor E(x_i, x_j)),$
- k-DS : $\exists x_1 \dots \exists x_k \forall x \bigvee_{1 \leq i \leq k} (x = x_i) \lor \bigvee_{1 \leq i \leq k} E(x, x_i).$

are **FPT** in solution size k for bounded tww.

Some **classes** of bounded twin-width:

- Bounded tree-width, rank-width, queue number...
- Proper minor closed → planar graphs.
- \hookrightarrow very broad !

Introduction	FPT	Twin-width	<i>k</i> -DS has no polykernels	Conclusion		
000	000000000	00000000	●000000000	00000		
Twin-width and polykernels						

On classes of bounded twin-width:

On classes of bounded twin-width:

• Connected k-VC admits a $O(k^2)$ kernel,

win-width and polykerneis

On classes of bounded twin-width:

- Connected k-VC admits a $O(k^2)$ kernel,
- k-Independent Set admits no polykernel.

Twin-width and polykernels

On classes of bounded twin-width:

- Connected k-VC admits a $O(k^2)$ kernel,
- k-Independent Set admits no polykernel.

What about dominating set ?

Twin-width and polykernels

On classes of bounded twin-width:

- Connected k-VC admits a $O(k^2)$ kernel,
- k-Independent Set admits no polykernel.

What about dominating set ?

k-DOMINATING SET **Parameter:** *k* **Input:** Graph *G*, integer *k* **Question:** Does *G* have a dominating set of size at most *k*?

Twin-width and polykernels

On classes of bounded twin-width:

- Connected k-VC admits a $O(k^2)$ kernel,
- k-Independent Set admits no polykernel.

What about dominating set ?

k-DOMINATING SET **Parameter:** *k* **Input:** Graph *G*, integer *k* **Question:** Does *G* have a dominating set of size at most *k*?

Admits polykernels on sparse graphs... **but not on bounded twin-width.**

Introduction	FPT	Twin-width	<i>k</i> -DS has no polykernels	Conclusion
000	000000000	00000000	○●○○○○○○○	00000

OR-composition for k-DS

Recall the tool to prove no polykernels:

Introduction FPT Twin-width

k-DS has no polykernels ●●○○○○○○○○

OR-composition for k-DS

Recall the tool to prove no polykernels:

Theorem (Bodlaender, Jansen, Kratsch '12) If an NP-hard problem \mathcal{L} admits an OR-composition into a parameterized problem \mathcal{Q} , then \mathcal{Q} does not admit a polynomial kernel unless coNP \subseteq NP/poly.

OR-composition for k-DS

Recall the tool to prove no polykernels:

Theorem (Bodlaender, Jansen, Kratsch '12) If an NP-hard problem \mathcal{L} admits an OR-composition into a parameterized problem \mathcal{Q} , then \mathcal{Q} does not admit a polynomial kernel unless coNP \subseteq NP/poly.

Goal: rule out polynomial kernels for k-DS on classes of bounded twin-width.

OR-composition for *k*-DS

Recall the tool to prove no polykernels:

Theorem (Bodlaender, Jansen, Kratsch '12) If an NP-hard problem \mathcal{L} admits an OR-composition into a parameterized problem \mathcal{Q} , then \mathcal{Q} does not admit a polynomial kernel unless coNP \subseteq NP/poly.

Goal: rule out polynomial kernels for k-DS on classes of bounded twin-width.

• \mathcal{Q} : k-DS on a class of bounded twin-width (≤ 4).

OR-composition for k-DS

Recall the tool to prove no polykernels:

Theorem (Bodlaender, Jansen, Kratsch '12) If an NP-hard problem \mathcal{L} admits an OR-composition into a parameterized problem \mathcal{Q} , then \mathcal{Q} does not admit a polynomial kernel unless coNP \subseteq NP/poly.

Goal: rule out polynomial kernels for k-DS on classes of bounded twin-width.

- \mathcal{Q} : k-DS on a class of bounded twin-width (≤ 4).
- L: NP-hard problem tailored to be "easily" composable into
 Q. A version of k-DS on graphs of bounded twin-width.

FPT 000000000

Introduction

Twin-width

k-DS has no polykernels

Conclusion

Tailored k-DS on grid-like graphs

NP-hard \mathcal{L} : k-DS on instances $(G, k, \mathcal{B} = \{B_1, ..., B_k\})$ s.t:

- \mathscr{B} partitions V(G), G has 4-sequence $\rightarrow G/\mathscr{B}$,
- G/\mathscr{B} is a subgraph of a grid,

FPT 000000000

Introduction

Twin-width

k-DS has no polykernels

Tailored k-DS on grid-like graphs

NP-hard \mathcal{L} : k-DS on instances $(G, k, \mathcal{B} = \{B_1, ..., B_k\})$ s.t:

- \mathscr{B} partitions V(G), G has 4-sequence $\rightarrow G/\mathscr{B}$,
- G/\mathscr{B} is a subgraph of a grid,
- every dominating set of G intersects each B_i .

Tailored k-DS on grid-like graphs

FPT

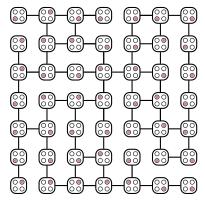
Introduction

NP-hard \mathcal{L} : k-DS on instances $(G, k, \mathcal{B} = \{B_1, \dots, B_k\})$ s.t:

Twin-width

k-DS has no polykernels

- \mathscr{B} partitions V(G), G has 4-sequence $\rightarrow G/\mathscr{B}$,
- G/\mathscr{B} is a subgraph of a grid,
- every dominating set of G intersects each B_i .



Introduction	FPT	Twin-width	<i>k</i> -DS has no polykernels	Conclusion		
000	000000000	00000000		00000		
OR-composition						

Tailored k-DS, instances $(I_i)_{i \in [t]} \rightarrow k$ -DS, $tww \leq 4$ instance (H, k)

OR-composition

Tailored k-DS, instances $(I_i)_{i \in [t]} \rightarrow k$ -DS, $tww \leq 4$ instance (H, k)

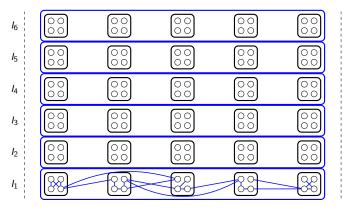


Fig. Instances \leftrightarrow layers, partition classes \leftrightarrow boxes.

Introduction FPT Twin-width k-DS has no polykernels Conclusion

OR-composition

Tailored k-DS, instances $(I_i)_{i \in [t]} \rightarrow k$ -DS, $tww \leq 4$ instance (H, k)

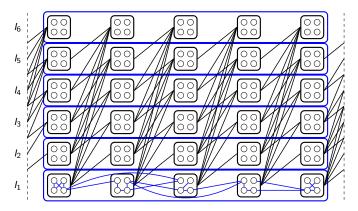


Fig. Instances \leftrightarrow layers, partition classes \leftrightarrow boxes. In *H*: Top instance \leftrightarrow dummy, half graphs cycle between classes

Positive Tailored instance \Rightarrow Positive composition

Assume one instance (I_4 here) is positive, pick its solution in H:

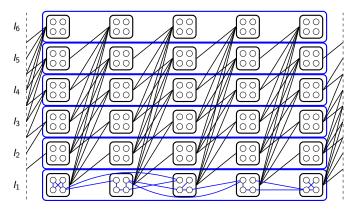


Fig. t Instances \leftrightarrow layers, k partition classes \leftrightarrow boxes

Positive Tailored instance \Rightarrow Positive composition

Assume one instance (I_4 here) is positive, pick its solution in H:

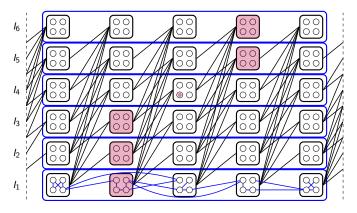
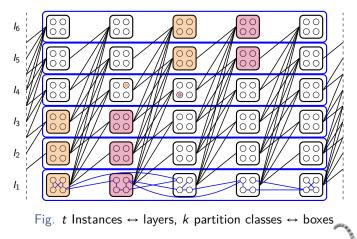


Fig. t Instances \leftrightarrow layers, k partition classes \leftrightarrow boxes

FPT *k*-DS has no polykernels Conclusion

Positive Tailored instance \Rightarrow Positive composition

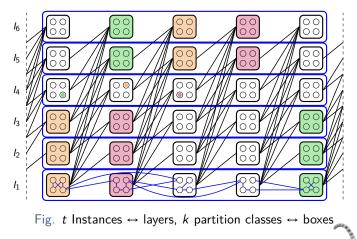
Assume one instance (I_4 here) is positive, pick its solution in H:



FPT *k*-DS has no polykernels Twin-width Conclusion

Positive Tailored instance \Rightarrow Positive composition

Assume one instance (I_4 here) is positive, pick its solution in H:



Positive Tailored instance \Rightarrow Positive composition

Assume one instance (I_4 here) is positive, pick its solution in H:

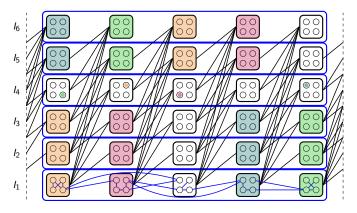


Fig. t Instances \leftrightarrow layers, k partition classes \leftrightarrow boxes

Conclusion

Positive Tailored instance \Rightarrow Positive composition

Assume one instance (I_4 here) is positive, pick its solution in H:

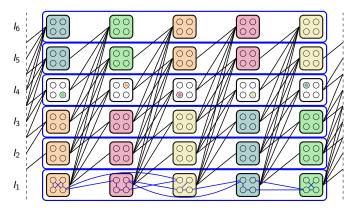
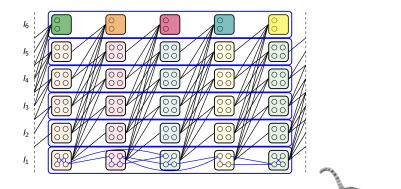


Fig. t Instances \leftrightarrow layers, k partition classes \leftrightarrow boxes

Positive composition \Rightarrow Positive tailored instance

Assume (H, k) is positive:

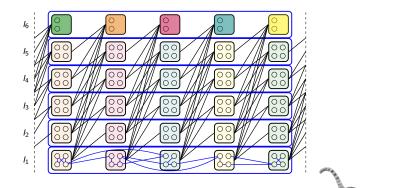
• Dummy instance I_6 forces one vertex per column,



Positive composition \Rightarrow Positive tailored instance

Assume (H, k) is positive:

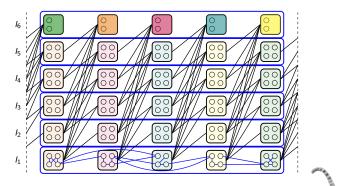
- Dummy instance I_6 forces one vertex per column,
- Ideally : all choices on a single layer $i \rightarrow \text{positive } I_i$,



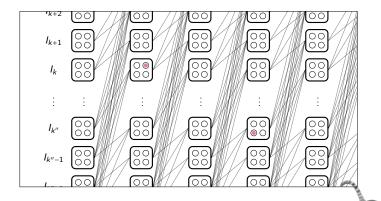
Positive composition \Rightarrow Positive tailored instance

Assume (H, k) is positive:

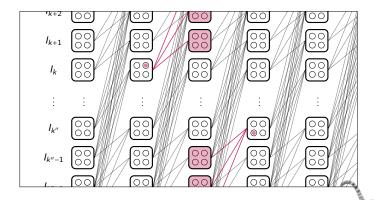
- Dummy instance I_6 forces one vertex per column,
- Ideally : all choices on a single layer $i \rightarrow \text{positive } I_i$,
- Assume not...



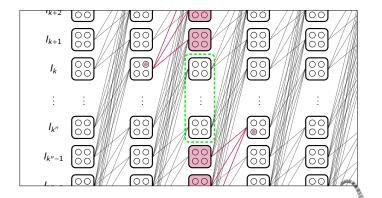
• Non-identical layer choices \rightarrow domination "gap" on C_j ,



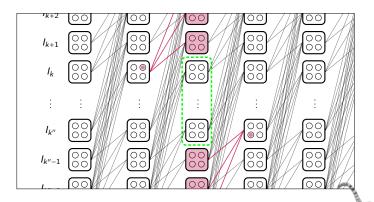
• Non-identical layer choices \rightarrow domination "gap" on C_j ,

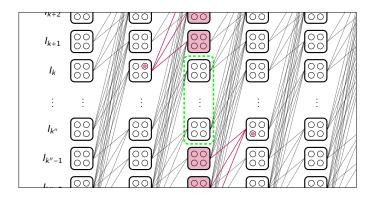


- Non-identical layer choices \rightarrow domination "gap" on C_j ,
- At least two classes not dominated by C_{j-1}, C_{j+1} ,



- Non-identical layer choices \rightarrow domination "gap" on C_j ,
- At least two classes not dominated by C_{j-1}, C_{j+1} ,
- Only one choice left in $C_j \rightarrow$ absurd.





Solution lies on a single layer \rightarrow corresponding instance is dominated.

Bounding tww: contracting partition classes

• For any I_i : each partition class has same neighbours in $H - I_i$,

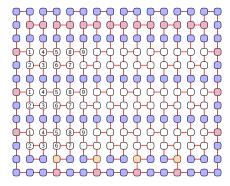


Fig. An instance after contracting classes.

- For any I_i : each partition class has same neighbours in $H I_i$,
- Contract each class \rightarrow red edges created only in I_i

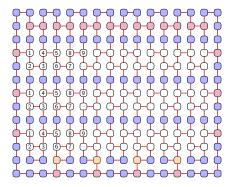


Fig. An instance after contracting classes.

Introduction FPT Twin-width k-DS has no polykernels Conclusion

Bounding tww: contracting partition classes

- For any I_i : each partition class has same neighbours in $H I_i$,
- Contract each class \rightarrow red edges created only in I_i
- Result: red subgraph of grid (altered for tww 4).

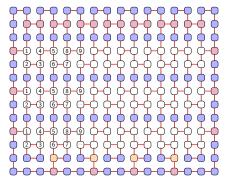


Fig. An instance after contracting classes.

Bounding tww: contracting instances together

• Between instances: half-graph cycle along vertices at the same position.

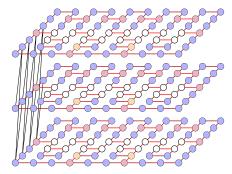


Fig. Instances and the half-graph cycle

Bounding tww: contracting instances together

- Between instances: half-graph cycle along vertices at the same position.
- Goal: Successively contract the bottommost two instances.

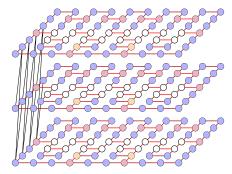


Fig. Instances and the half-graph cycle

Bounding tww: contracting instances together

- Between instances: half-graph cycle along vertices at the same position.
- Goal: Successively contract the bottommost two instances.
- Contracting two vertices at the same position creates red edges only locally → induction

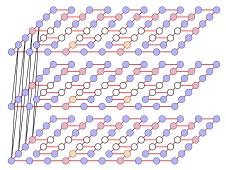


Fig. Instances and the half-graph cycle

• NP-hard Tailored k-DS OR-composes into k-DS,

⁵even if a 4-sequence of the graph is given

- NP-hard Tailored k-DS OR-composes into k-DS,
- The composed instance has tww at most four.

⁵even if a 4-sequence of the graph is given

- NP-hard Tailored k-DS OR-composes into k-DS,
- The composed instance has tww at most four.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) Unless $coNP \subseteq NP/poly$, k-DOMINATING SET on graphs of twin-width at most 4 does not admit a polynomial kernel⁵.

⁵even if a 4-sequence of the graph is given

FPT 000000000

Twin-width

k-DS has no polykerne

Further Directions

• Does *k*-DS on tww ≤ 3 admit polynomial kernels?

n FPT 0000

0000000

Twin-width

k-DS has no polykerne

Further Directions

- Does *k*-DS on tww ≤ 3 admit polynomial kernels?
- Is there a linear kernel for Connected-VC?

FPT 000000000

I win-width

k-DS has no polykernel

Further Directions

- Does *k*-DS on tww ≤ 3 admit polynomial kernels?
- Is there a linear kernel for Connected-VC?

Thank you!

 Introduction
 FPT occoor
 Twin-width occoor
 &-DS has no polykernels
 Conclusion

 Bibliography

 É. Bonnet, E. J. Kim, S. Thomassé, and R. Watrigant.

 "Twin-width I: tractable FO model checking". In: (2020). arXiv: 2004.14789 [cs.DS]

H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. "Kernelization Lower Bounds By Cross-Composition". In: (2012). arXiv: 1206.5941 [cs.CC]

G. Philip, V. Raman, and S. Sikdar. "Polynomial Kernels for Dominating Set in Graphs of Bounded Degeneracy and Beyond". In: *ACM Trans. Algorithms* 9.1 (Dec. 2012). ISSN: 1549-6325. DOI: 10.1145/2390176.2390187. URL:

https://doi.org/10.1145/2390176.2390187

É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé, and R. Watrigant.

"Twin-width and polynomial kernels". In: (2021). arXiv:

2107.02882 [cs.DS]

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21) There exists f s.t. for any G of tww(d) and $X \subseteq V(G)$: number of distinct neighborhoods in X is at most f(d)|X|.

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21) There exists f s.t. for any G of tww(d) and $X \subseteq V(G)$: number of distinct neighborhoods in X is at most f(d)|X|.

Kernel pre-processing:

• Bounded tww G: take X 2-approx for VC,

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21) There exists f s.t. for any G of tww(d) and $X \subseteq V(G)$: number of distinct neighborhoods in X is at most f(d)|X|.

Kernel pre-processing:

- Bounded tww G: take X 2-approx for VC,
- if $|X| \ge 2k + 1$: no solution,

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21) There exists f s.t. for any G of tww(d) and $X \subseteq V(G)$: number of distinct neighborhoods in X is at most f(d)|X|.

Kernel pre-processing:

- Bounded tww G: take X 2-approx for VC,
- if $|X| \ge 2k + 1$: no solution,
- \rightarrow in X, number of distinct neighbourhoods $\leq f(d)k$

Reduction rule: If there is $S \subseteq V(G) \setminus X$ with identical neighbourhood in X and |S| > k, delete a vertex of S.

Reduction rule: If there is $S \subseteq V(G) \setminus X$ with identical neighbourhood in X and |S| > k, delete a vertex of S.

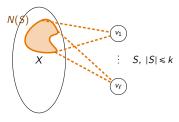
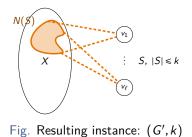


Fig. Resulting instance: (G', k)

Reduction rule: If there is $S \subseteq V(G) \setminus X$ with identical neighbourhood in X and |S| > k, delete a vertex of S.



If (G, k) has a solution, replace deletion with twin \rightarrow reconnects T

Reduction rule: If there is $S \subseteq V(G) \setminus X$ with identical neighbourhood in X and |S| > k, delete a vertex of S.

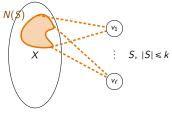


Fig. Resulting instance: (G', k)

If (G, k) has a solution, replace deletion with twin \rightarrow reconnects TIf (G', k) has a solution T, T is also a solution for (G, k),

Reduction rule: If there is $S \subseteq V(G) \setminus X$ with identical neighbourhood in X and |S| > k, delete a vertex of S.

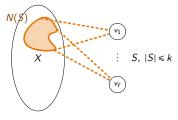


Fig. Resulting instance: (G', k)

 $\frac{\text{If } (G,k) \text{ has a solution, replace deletion with twin } \rightarrow \text{ reconnects } T}{\text{If } (G',k) \text{ has a solution } T, T \text{ is also a solution for } (G,k),}$

• Take deleted s, $S \setminus s \nsubseteq T$ as ind. set with $|S| \ge k$,

• Therefore $N(S) \subseteq T$, and s is covered by T in G.

• Applying the reduction yields an equivalent instance,

- Applying the reduction yields an equivalent instance,
- The kernel has size at most $f(d) * k^2$,

- Applying the reduction yields an equivalent instance,
- The kernel has size at most $f(d) * k^2$,

- Applying the reduction yields an equivalent instance,
- The kernel has size at most $f(d) * k^2$,

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21) On classes of VC-density 1, CONNECTED k-VERTEX COVER admits kernels with $O(k^2)$ vertices (and even $O(k^{1.5})$).