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Overview

Twin-width:
@ graph invariant giving a "structural complexity" measure.
@ classes of small twin-width = efficient algorithms.
Polynomial kernels:

@ Even more efficient algorithms based on pre-processing.

Question: What problems admit polynomial kernels for classes of
small twin-width 7
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Our results

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
On classes of bounded twin-width, CONNECTED k-VERTEX
COVER admits kernels with O(k') vertices.

In this talk:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
Unless coNP = NP /poly, k-DOMINATING SET does not admit
a polynomial kernel on graphs of twin-width at most 4.
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© Twin-width

o k-DS has no polykernels

© Conclusion
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Parameters for decision problems

Decision problems:
@ "Does instance / admit a solution of size k 7",

For NP-hard problems, complexity exponential in |/| (ETH)...
— Is large |/| really what makes a hard instance 7

Goal: Parameters k capturing "complexity" better than |/|.
@ Solution size,

@ Measures of "structural complexity" for graphs: diameter,
genus, treewidth...
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Goal: small parameter instances = polytime algorithms.
A parameterized problem has instances (/, k) with parameter k.

Definition A parameterized problem 2 is fixed-parameter
tractable (FPT) with respects to k if there is an algorithm
deciding (I, k) in time f(k)|1|°0), for some computable f.
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FPT Examples

Examples of FPT problems:
@ k-VERTEX COVER parameterized by solution size k:
— instance (G, k) solvable in time O(f(k)IGI3).

o HAMILTONIAN CYCLE parameterized by treewidth tw:
— instance (G, tw) solvable in time O(tw™|G|)
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Kernels

How to devise an FPT algorithm? One strategy:
@ Pre-process input to get rid of "useless" information,
@ obtain "small" sized instance dependent only on k,

@ Run bruteforce — complexity explosion only in k.

Definition Kernel for parameterized problem 2 :
e Polytime reduction from instance (I,k) for 2 to
equivalent instance (I', k") for 2.
@ output instance has size |I'l = h(k), and k' is bounded by
a function of k.
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Better than FPT: polynomial kernels

Theorem
A parameterized problem is FPT iff it admits a kernel.

For FPT problems, can we get even more efficient?
@ FPT = Kernel, but the kernel size can be very large...
@ A kernel for parameter k is polynomial if |/'| = O(kP).
Problems with polynomial kernels:
@ k-VERTEX-COVER, k-DOMINATING-SET on sparse graphs
(Kt ¢-free).
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Better than FPT: polynomial kernels

Theorem
A parameterized problem is FPT iff it admits a kernel.

For FPT problems, can we get even more efficient?
@ FPT = Kernel, but the kernel size can be very large...
@ A kernel for parameter k is polynomial if |/'| = O(kP).
Problems with polynomial kernels:

@ k-VERTEX-COVER, k-DOMINATING-SET on sparse graphs
(Kt’t—fFGE).
< can we prove that a problem has no polykernel?
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LONGEST PATH Parameter: k
Input: Graph G, integer k
Question: Does G have a simple path of length k7

@ NP-hard, but FPT: admits a 2kn¢ algorithm, thus a kernel,
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Example: k-LONGEST PATH

LONGEST PATH Parameter: k
Input: Graph G, integer k
Question: Does G have a simple path of length k7

@ NP-hard, but FPT: admits a 2kn¢ algorithm, thus a kernel,

@ what about a polynomial kernel?
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k-LONGEST PATH has no polykernels o)

Assume polykernel of size k€.
o Consider t=n°+1 instances (Gi,k),...,(Gg, k), with n=1Gj],

t
@ Take G = U G;j, and consider instance (G, k),
i=1

@ Polykernel returns (G, k") from (G, k) in poly(n).

(G, k) is positive © (G', k") is positive < 3i:(G;, k) is positive.

@ G’ is computed in polytime,
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Assume polykernel of size k€.
o Consider t=n°+1 instances (Gi,k),...,(Gg, k), with n=1Gj],

t
@ Take G = U G;j, and consider instance (G, k),
i=1

@ Polykernel returns (G, k") from (G, k) in poly(n).

(G, k) is positive © (G', k") is positive < 3i:(G;, k) is positive.
@ G’ is computed in polytime,

o G'is (very) small: |G| <k®<n®<t: less than one bit per
initial instance,
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k-LONGEST PATH has no polykernels o)

Assume polykernel of size k€.
o Consider t=n°+1 instances (Gi,k),...,(Gg, k), with n=1Gj],

t
@ Take G = U G;j, and consider instance (G, k),
i=1

@ Polykernel returns (G, k") from (G, k) in poly(n).

(G, k) is positive © (G', k") is positive < 3i:(G;, k) is positive.
@ G’ is computed in polytime,

o G'is (very) small: |G| <k®<n®<t: less than one bit per
initial instance,

@ kernelization must have dismissed / "solved" one G; entirely...
in polynomial time — absurd. pse,
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Ruling out polynomial kernels

Formalization: given problem £, and parameterized problem 2.

Definition 2.3 (OR-composition) Polytime reduction:
@ Input: Instances h,...,I; for £,
@ Output: Instance J for 2.
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Ruling out polynomial kernels

Formalization: given problem £, and parameterized problem 2.

Definition 2.4 (OR-composition) Polytime reduction:
@ Input: Instances h,...,I; for £,
@ Output: Instance J for 2.

J is positive for 2 © 3i s.t. [; is positive for Z.
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Ruling out polynomial kernels

Formalization: given problem £, and parameterized problem 2.

Definition 2.5 (OR-composition) Polytime reduction:
@ Input: Instances h,...,I; for £,
@ Output: Instance J for 2.

J is positive for 2 © 3i s.t. [; is positive for Z.

Theorem (Bodlaender, Jansen, Kratsch '12)

If an NP-hard problem ¥ admits an OR-composition into a
parameterized problem £, then 2 does not admit a
polynomial kernel unless coNP < NP /poly.
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"Meta-theorems" for problems expressible by logic formulas:

Theorem 1 (Courcelle '90) Given a MSO formula ¢ on a
graph G, deciding whether ¢ is satisfied by G is FPT in || on
graphs of bounded tree-width?.

Lot of FO problems are FPT on some classes of unbounded tw,
goal:

@ Analogue of Courcelle for FO logic ?

@ With some broader parameter than tw twin-width

2given a tree decomposition ) \
e 12/32
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Motivation

Definition In graph G, u,v e V(G) are twins if N(u) = N(v).

@ Twins "behave the same" w.r.t the rest of the graph,

@ exploitable algorithmically: modular decomposition,
cographs...

Idea:
@ Obtain efficient algorithms by leveraging "near-twins",

o Efficiency depends on how "near" vertices are to being twins
— twin-width.
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Graphs and trigraphs

Fig. Trigraph: edges, non-edges, or red edges
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Contractions in trigraphs

Intuitive goal: group near-twins together.
Contraction of u and v: record "twin" errors with red edges.

edges to N(u)AN(v) turn red, for N(u) nN(v) red is absorbing
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Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.

Maximum red degree = 0 ey
overall maximum red degree = 0 m
| 16/32
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Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.
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Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.
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Maximum red degree = 0 ey
overall maximum red degree = 2 . m
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Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.

abcdefg

Maximum red degree = 0 ey

-

overall maximum red degree = 2 — tww(G)<2. m
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Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.
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Contraction sequences — dynamic programming ~
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Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.

o Contraction sequences — dynamic programming ey

-

@ bounded red degree — few "complicated" updates. m

| 16/32
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Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?

O

O

O—0O—C0O—C0O—0
O—0O—"C0O—"—C0——0
O O ) ) Q

Maximum red degree = 0
overall maximum red degree = 0
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Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?

O—0O O

¢
O
p
¢

O—O—C0O—C0O—0
O—O—"C0O—"—C0——0
O O ) ) Q

Maximum red degree = 3
overall maximum red degree = 3
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Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?

\,

)
N
)
N
)
N
)
/

O—0O

J
N
J
N
J
O

Maximum red degree = 4
overall maximum red degree = 4
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Example: twin-width of grids

Grids have unbounded tree-width...

what about twin-width?

() ()

O—O——C0O—=0
) () ) f)
J -/ N .
() ) ) f)
/ \/ N .
() ) ) f)
/ W/ ) .
() ) ) e
/ ) \)

Maximum red degree = 4
overall maximum red degree = 4
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Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?

O—0O O

S
O

./
)
N
)
N
)
/

)
N
)
W/
)
N
)
N\

O

Maximum red degree = 4
overall maximum red degree = 4
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Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?

O—0O O

S
O

./
)
W/
)
N
)
N\

N
J
N
J
N
J

O

Maximum red degree = 4
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Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?

O—0O O

S
O

O—O—0—0
O—O—0—0
O—O0—0—0

Maximum red degree = 3
overall maximum red degree = 4
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Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?

O—0O O

S
O

O—O—0—0
O—O—0—0
O—O0—0—0

Maximum red degree = 3
overall maximum red degree = 4 = twin-width <4
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A dense graph with bounded twin-width:

Maximum red degree = 2
overall maximum red degree
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overall maximum red degree
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Maximum red degree = 3
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Maximum red degree = 2
overall maximum red degree = 3 = twin-width <3
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Recall Courcelle for MSO and tree-width:

Theorem (Courcelle '90)
Given a MSO formula ¢ on a graph G, deciding ¢ on G is
FPT in |¢| on graphs of bounded tree-width’.
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Twin-width : FPT first order problems

Recall Courcelle for MSO and tree-width:

Theorem (Courcelle '90)
Given a MSO formula ¢ on a graph G, deciding ¢ on G is
FPT in |¢| on graphs of bounded tree-width’.

Analogue: FO and twin-width:

Theorem (Bonnet, Kim, Thomassé, Watrigant ’'20)
Given a FO formula ¢ on a graph G, deciding ¢ on G is FPT
with respects to |¢p| on classes of bounded twin-width*.

3given a tree decomposition AN

“given a contraction sequence \
e 19/32
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Consequences

Some problems expressible in FO:
@ k-IS : 3xq..3xxk A1<i<jck 7(Xi = X V E(Xi, x})),
@ k-DS : 3x1..3xxVx Vicick(Xx = Xi) V Vi<ick E(X, 7).

are FPT in solution size k for bounded tww.

Some classes of bounded twin-width:
@ Bounded tree-width, rank-width, queue number...
@ Proper minor closed — planar graphs.

— very broad !
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On classes of bounded twin-width:
o Connected k-VC admits a O(k?) kernel,
@ k-Independent Set admits no polykernel.
What about dominating set ?

k-DOMINATING SET Parameter: k
Input: Graph G, integer k
Question: Does G have a dominating set of size at most k?
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Twin-width and polykernels

On classes of bounded twin-width:
o Connected k-VC admits a O(k?) kernel,
@ k-Independent Set admits no polykernel.
What about dominating set ?

k-DOMINATING SET Parameter: k
Input: Graph G, integer k
Question: Does G have a dominating set of size at most k?

Admits polykernels on sparse graphs... but not on bounded
twin-width.

(N

)
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OR-composition for k-DS

Recall the tool to prove no polykernels:

Theorem (Bodlaender, Jansen, Kratsch '12)

If an NP-hard problem & admits an OR-composition into a
parameterized problem 2, then 2 does not admit a
polynomial kernel unless coNP < NP /poly.

Goal: rule out polynomial kernels for k-DS on classes of bounded
twin-width.

@ 2: k-DS on a class of bounded twin-width (< 4).

@ £: NP-hard problem tailored to be "easily" composable into
2. A version of k-DS on graphs of bounded twin-width.

R



k-DS has no polykernels
[e]e] lelelelele]le]e]

Tailored k-DS on grid-like graphs

NP-hard £: k-DS on instances (G, k,2 =1{By,..., By}) s.t:
@ B partitions V(G), G has 4-sequence — G/%B,
o G/% is a subgraph of a grid,



k-DS has no polykernels
[e]e] lelelelele]le]e]

Tailored k-DS on grid-like graphs

NP-hard £: k-DS on instances (G, k,2 =1{By,..., By}) s.t:
@ B partitions V(G), G has 4-sequence — G/%B,
o G/% is a subgraph of a grid,
@ every dominating set of G intersects each B;.



k-DS has no polykernels
[e]e] lelelelele]le]e]

Tailored k-DS on grid-like graphs

NP-hard £: k-DS on instances (G, k,2 =1{By,..., By}) s.t:
@ B partitions V(G), G has 4-sequence — G/%B,
o G/% is a subgraph of a grid,
@ every dominating set of G intersects each B;.
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OR-composition

Tailored k-DS, instances (/;)ie[g — k-DS, tww <4 instance (H, k)
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OR-composition

Tailored k-DS, instances (/;)ic[ — k-DS, tww <4 instance (H, k)

Fig. Instances < layers, partition classes < boxes.
In H: Top instance < dummy, half graphs cycle between classes“,



k-DS has no polykernels
[e]e]ele] Telelele]e]

Positive Tailored instance = Positive composition

Assume one instance (I here) is positive, pick its solution in H:

| &)
/ Y e e /
oo' oo oo oo
flo o oo oo oo :
}/ //////




k-DS has no polykernels
[e]e]ele] Telelele]e]

Positive Tailored instance = Positive composition

Assume one instance (I here) is positive, pick its solution in H:

| &)
/ e BE /
oo' oo oo oo
flo o oo oo oo :
}/ //////




k-DS has no polykernels
[e]e]ele] Telelele]e]

Positive Tailored instance = Positive composition

Assume one instance (I here) is positive, pick its solution in H:

| &)
/ Y& @ /
oo' oo oo oo
flo o oo oo oo :
}/ //////




k-DS has no polykernels
[e]e]ele] Telelele]e]

Positive Tailored instance = Positive composition

Assume one instance (I here) is positive, pick its solution in H:

| &)
/ = BE /
oo' oo oo oo
flo o oo oo oo :
}/ //////




k-DS has no polykernels
[e]e]ele] Telelele]e]

Positive Tailored instance = Positive composition

Assume one instance (I here) is positive, pick its solution in H:

| &)
/ = BE /
oo' oo oo oo
flo o oo oo oo :
}/ //////




k-DS has no polykernels
[e]e]ele] Telelele]e]

Positive Tailored instance = Positive composition

Assume one instance (I here) is positive, pick its solution in H:

| &)
/ = BE /
oo' oo oo oo
flo o oo oo oo :
}/ //////




k-DS has no polykernels
[e]e]elele] lelele]e]

Positive composition = Positive tailored instance

Assume (H, k) is positive:

@ Dummy instance ls forces one vertex per column,
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Positive composition = Positive tailored instance

Assume (H, k) is positive:
@ Dummy instance /s forces one vertex per column,
@ ldeally : all choices on a single layer i — positive /;,

@ Assume not...

y PuP wow
_1_/ 3/

|
!
h




k-DS has no polykernels
0000008000

Positive composition = Positive tailored instance
@ Non-identical layer choices — domination "gap" on C;,
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)
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Positive composition = Positive tailored instance

Solution ligs,d
dominated.
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@ For any /;: each partition class has same neighbours in H - /;,
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Fig. An instance after contracting classes.
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Bounding tww: contracting partition classes

@ For any /;: each partition class has same neighbours in H - /;,
@ Contract each class — red edges created only in /;
@ Result: red subgraph of grid (altered for tww 4).

Fig. An instance after contracting classes. o~
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Bounding tww: contracting instances together

@ Between instances: half-graph cycle along vertices at the
same position.
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Fig. Instances and the half-graph cycle L}
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Bounding tww: contracting instances together

@ Between instances: half-graph cycle along vertices at the
same position.
@ Goal: Successively contract the bottommost two instances.
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Fig. Instances and the half-graph cycle L}
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Bounding tww: contracting instances together

@ Between instances: half-graph cycle along vertices at the
same position.

@ Goal: Successively contract the bottommost two instances.

@ Contracting two vertices at the same position creates red
edges only locally — induction
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Concluding

@ NP-hard Tailored k-DS OR-composes into k-DS,
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Concluding

@ NP-hard Tailored k-DS OR-composes into k-DS,

@ The composed instance has tww at most four.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
Unless coNP = NP /poly, k-DOMINATING SET on graphs of
twin-width at most 4 does not admit a polynomial kernefP.

+

Seven if a 4-sequence of the graph is given ) k
| 30/32
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Further Directions

@ Does k-DS on tww <3 admit polynomial kernels?

@ Is there a linear kernel for Connected-VC?

Thank you!
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A (sub)quadratic kernel for C-VC on VC-density 1

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21)
There exists f s.t. for any G of tww( d) and X < V(G):
number of distinct neighborhoods in X is at most f(d)|X]|.

Kernel pre-processing;:
@ Bounded tww G: take X 2-approx for VC,
o if |X|=2k+1 : no solution,

@ — in X, number of distinct neighbourhoods < f(d)k
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A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is S< V(G)\ X with identical
neighbourhood in X and |S| > k, delete a vertex of S.

S, ISI<k

Fig. Resulting instance: (G', k)

If (G, k) has a solution, replace deletion with twin — reconnects T
If (G',k) has a solution T, T is also a solution for (G, k),
o Take deleted s, S\sZ T as ind. set with |S|> k, .
@ Therefore N(S)< T, and s is covered by T in G. %
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Concluding

@ Applying the reduction yields an equivalent instance,

@ The kernel has size at most f(d) * k2,

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
On classes of VC-density 1, CONNECTED k-VERTEX COVER
admits kernels with O(k?) vertices (and even O(k*%)).
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