Twin-width and polynomial kernels

Amadeus Reinald
ENS de Lyon

Jjoint work with
Edouard Bonnet!, Eun Jung Kim,
Stéphan Thomassé, Rémi Watrigant

Séminaire COATI
May 3rd, 2022, INRIA Sophia-Antipolis

L)

g‘\“

Lsome slides have been recklessly stolen from Edouard



Introduction
@00

Overview

Twin-width:

&
\“

")

<



Introduction
@00

Overview

Twin-width:

@ graph invariant giving a "structural complexity" measure.



Introduction
@00

Overview

Twin-width:
@ graph invariant giving a "structural complexity" measure.
@ classes of small twin-width = efficient algorithms.

<



Introduction
@00

Overview

Twin-width:
@ graph invariant giving a "structural complexity" measure.
@ classes of small twin-width = efficient algorithms.

Polynomial kernels:

<



Introduction
@00

Overview

Twin-width:
@ graph invariant giving a "structural complexity" measure.
@ classes of small twin-width = efficient algorithms.
Polynomial kernels:

@ Even more efficient algorithms based on pre-processing.

+

<



Introduction
@00

Overview

Twin-width:
@ graph invariant giving a "structural complexity" measure.
@ classes of small twin-width = efficient algorithms.
Polynomial kernels:

@ Even more efficient algorithms based on pre-processing.

Question: What problems admit polynomial kernels for classes of
small twin-width 7

(N

<



Introduction
oeo

Our results

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
On classes of bounded twin-width, CONNECTED k-VERTEX
COVER admits kernels with O(k') vertices.



Introduction
oeo

Our results

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
On classes of bounded twin-width, CONNECTED k-VERTEX
COVER admits kernels with O(k') vertices.

In this talk:

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
Unless coNP = NP /poly, k-DOMINATING SET does not admit
a polynomial kernel on graphs of twin-width at most 4.

(N

R e



Introduction
ooe

o Introduction

Q rrPT

© Twin-width

o k-DS has no polykernels

© Conclusion




FPT
®00000000

Parameters for decision problems

Decision problems:

@ "Does instance / admit a solution of size k 7",



FPT
®00000000

Parameters for decision problems

Decision problems:
@ "Does instance / admit a solution of size k 7",

For NP-hard problems, complexity exponential in |/| (ETH)...

R e



FPT
®00000000

Parameters for decision problems

Decision problems:
@ "Does instance / admit a solution of size k 7",

For NP-hard problems, complexity exponential in |/| (ETH)...
— Is large |/| really what makes a hard instance 7

R e



FPT
®00000000

Parameters for decision problems

Decision problems:
@ "Does instance / admit a solution of size k 7",

For NP-hard problems, complexity exponential in |/| (ETH)...
— Is large |/| really what makes a hard instance 7

Goal: Parameters k capturing "complexity" better than |/|.

+

R e



FPT
®00000000

Parameters for decision problems

Decision problems:
@ "Does instance / admit a solution of size k 7",

For NP-hard problems, complexity exponential in |/| (ETH)...
— Is large |/| really what makes a hard instance 7

Goal: Parameters k capturing "complexity" better than |/|.

@ Solution size,

+

R e



FPT
®00000000

Parameters for decision problems

Decision problems:
@ "Does instance / admit a solution of size k 7",

For NP-hard problems, complexity exponential in |/| (ETH)...
— Is large |/| really what makes a hard instance 7

Goal: Parameters k capturing "complexity" better than |/|.
@ Solution size,

@ Measures of "structural complexity" for graphs: diameter,
genus, treewidth...

(N

R e



FPT
O®@0000000

Fixed-Parameter Tractability (FPT)

Goal: small parameter instances = polytime algorithms.



FPT
O®@0000000

Fixed-Parameter Tractability (FPT)

Goal: small parameter instances = polytime algorithms.
A parameterized problem has instances (/, k) with parameter k.

R



FPT
O®@0000000

Fixed-Parameter Tractability (FPT)

Goal: small parameter instances = polytime algorithms.
A parameterized problem has instances (/, k) with parameter k.

Definition A parameterized problem 2 is fixed-parameter
tractable (FPT) with respects to k if there is an algorithm
deciding (I, k) in time f(k)|1|°0), for some computable f.

s"

R e



FPT
O®@0000000

Fixed-Parameter Tractability (FPT)

Goal: small parameter instances = polytime algorithms.
A parameterized problem has instances (/, k) with parameter k.

Definition A parameterized problem 2 is fixed-parameter
tractable (FPT) with respects to k if there is an algorithm
deciding (I, k) in time f(k)|1|°0), for some computable f.

+
W

R e



FPT
O®@0000000

Fixed-Parameter Tractability (FPT)

Goal: small parameter instances = polytime algorithms.
A parameterized problem has instances (/, k) with parameter k.

Definition A parameterized problem 2 is fixed-parameter
tractable (FPT) with respects to k if there is an algorithm
deciding (I, k) in time f(k)|1|°0), for some computable f.

o




FPT
0O0@000000

FPT Examples

Examples of FPT problems:

@ k-VERTEX COVER parameterized by solution size k:
— instance (G, k) solvable in time O(f(k)IGI3).



FPT
0O0@000000

FPT Examples

Examples of FPT problems:
@ k-VERTEX COVER parameterized by solution size k:
— instance (G, k) solvable in time O(f(k)IGI3).

o HAMILTONIAN CYCLE parameterized by treewidth tw:
— instance (G, tw) solvable in time O(tw™|G|)



FPT
000800000

Kernels

How to devise an FPT algorithm? One strategy:



FPT
000800000

Kernels

How to devise an FPT algorithm? One strategy:

@ Pre-process input to get rid of "useless" information,



FPT
000800000

Kernels

How to devise an FPT algorithm? One strategy:
@ Pre-process input to get rid of "useless" information,

@ obtain "small" sized instance dependent only on k,

R



FPT
000800000

Kernels

How to devise an FPT algorithm? One strategy:
@ Pre-process input to get rid of "useless" information,
@ obtain "small" sized instance dependent only on k,

@ Run bruteforce — complexity explosion only in k.



FPT
000800000

Kernels

How to devise an FPT algorithm? One strategy:
@ Pre-process input to get rid of "useless" information,
@ obtain "small" sized instance dependent only on k,

@ Run bruteforce — complexity explosion only in k.

Definition Kernel for parameterized problem 2 :
e Polytime reduction from instance (I,k) for 2 to
equivalent instance (I', k") for 2.
@ output instance has size |I'l = h(k), and k' is bounded by
a function of k.

(N

R



FPT
0O000@0000

Better than FPT: polynomial kernels

Theorem
A parameterized problem is FPT iff it admits a kernel.



FPT
0O000@0000

Better than FPT: polynomial kernels

Theorem
A parameterized problem is FPT iff it admits a kernel.

For FPT problems, can we get even more efficient?



FPT
0O000@0000

Better than FPT: polynomial kernels

Theorem
A parameterized problem is FPT iff it admits a kernel.

For FPT problems, can we get even more efficient?

@ FPT = Kernel, but the kernel size can be very large...



FPT
0O000@0000

Better than FPT: polynomial kernels

Theorem
A parameterized problem is FPT iff it admits a kernel.

For FPT problems, can we get even more efficient?
@ FPT = Kernel, but the kernel size can be very large...

@ A kernel for parameter k is polynomial if |/'| = O(kP).



FPT
0O000@0000

Better than FPT: polynomial kernels

Theorem
A parameterized problem is FPT iff it admits a kernel.

For FPT problems, can we get even more efficient?
@ FPT = Kernel, but the kernel size can be very large...
@ A kernel for parameter k is polynomial if |/'| = O(kP).

Problems with polynomial kernels:

s"

R e



FPT
0O000@0000

Better than FPT: polynomial kernels

Theorem
A parameterized problem is FPT iff it admits a kernel.

For FPT problems, can we get even more efficient?
@ FPT = Kernel, but the kernel size can be very large...
@ A kernel for parameter k is polynomial if |/'| = O(kP).
Problems with polynomial kernels:
@ k-VERTEX-COVER, k-DOMINATING-SET on sparse graphs
(Kt ¢-free).

(N

R e



FPT
0O000@0000

Better than FPT: polynomial kernels

Theorem
A parameterized problem is FPT iff it admits a kernel.

For FPT problems, can we get even more efficient?
@ FPT = Kernel, but the kernel size can be very large...
@ A kernel for parameter k is polynomial if |/'| = O(kP).
Problems with polynomial kernels:

@ k-VERTEX-COVER, k-DOMINATING-SET on sparse graphs
(Kt’t—fFGE).
< can we prove that a problem has no polykernel?

(N

R e



FPT
000008000

Example: k-LONGEST PATH

LONGEST PATH Parameter: k
Input: Graph G, integer k
Question: Does G have a simple path of length k7




FPT
000008000

Example: k-LONGEST PATH

LONGEST PATH Parameter: k
Input: Graph G, integer k
Question: Does G have a simple path of length k7

@ NP-hard, but FPT: admits a 2kn¢ algorithm, thus a kernel,

s"

R e



FPT
000008000

Example: k-LONGEST PATH

LONGEST PATH Parameter: k
Input: Graph G, integer k
Question: Does G have a simple path of length k7

@ NP-hard, but FPT: admits a 2kn¢ algorithm, thus a kernel,

@ what about a polynomial kernel?

s"

R e



FPT
0O00000e00

k-LONGEST PATH has no polykernels o)

Assume polykernel of size k€.



FPT
0O00000e00

k-LONGEST PATH has no polykernels o)

Assume polykernel of size k€.
o Consider t=n°+1 instances (Gi,k),...,(Gg, k), with n=1Gj],



FPT
0O00000e00

k-LONGEST PATH has no polykernels o)

Assume polykernel of size k€.
o Consider t=n°+1 instances (Gi,k),...,(Gg, k), with n=1Gj],

t
@ Take G = U G;, and consider instance (G, k),

i=1



FPT
0O00000e00

k-LONGEST PATH has no polykernels o)

Assume polykernel of size k€.
o Consider t=n°+1 instances (Gi,k),...,(Gg, k), with n=1Gj],
t
@ Take G = U G;j, and consider instance (G, k),
i=1
@ Polykernel returns (G, k") from (G, k) in poly(n).



FPT
0O00000e00

k-LONGEST PATH has no polykernels o)

Assume polykernel of size k€.
o Consider t=n°+1 instances (Gi,k),...,(Gg, k), with n=1Gj],
t
@ Take G = U G;j, and consider instance (G, k),
i=1
@ Polykernel returns (G, k") from (G, k) in poly(n).

(G, k) is positive © (G', k") is positive < 3i:(G;, k) is positive.



FPT
0O00000e00

k-LONGEST PATH has no polykernels o)

Assume polykernel of size k€.
o Consider t=n°+1 instances (Gi,k),...,(Gg, k), with n=1Gj],

t
@ Take G = U G;j, and consider instance (G, k),
i=1

@ Polykernel returns (G, k") from (G, k) in poly(n).

(G, k) is positive © (G', k") is positive < 3i:(G;, k) is positive.

@ G’ is computed in polytime,

s"

R e



FPT
0O00000e00

k-LONGEST PATH has no polykernels o)

Assume polykernel of size k€.
o Consider t=n°+1 instances (Gi,k),...,(Gg, k), with n=1Gj],

t
@ Take G = U G;j, and consider instance (G, k),
i=1

@ Polykernel returns (G, k") from (G, k) in poly(n).

(G, k) is positive © (G', k") is positive < 3i:(G;, k) is positive.
@ G’ is computed in polytime,

o G'is (very) small: |G| <k®<n®<t: less than one bit per
initial instance,

(N

R e



FPT
0O00000e00

k-LONGEST PATH has no polykernels o)

Assume polykernel of size k€.
o Consider t=n°+1 instances (Gi,k),...,(Gg, k), with n=1Gj],

t
@ Take G = U G;j, and consider instance (G, k),
i=1

@ Polykernel returns (G, k") from (G, k) in poly(n).

(G, k) is positive © (G', k") is positive < 3i:(G;, k) is positive.
@ G’ is computed in polytime,

o G'is (very) small: |G| <k®<n®<t: less than one bit per
initial instance,

@ kernelization must have dismissed / "solved" one G; entirely...
in polynomial time — absurd. pse,

)

R e



FPT
000000080

Ruling out polynomial kernels

Formalization: given problem £, and parameterized problem 2.

Definition 2.1 (OR-composition) Polytime reduction:

R



FPT
000000080

Ruling out polynomial kernels

Formalization: given problem £, and parameterized problem 2.

Definition 2.2 (OR-composition) Polytime reduction:

@ Input: Instances h,...,I; for £,

R



FPT
000000080

Ruling out polynomial kernels

Formalization: given problem £, and parameterized problem 2.

Definition 2.3 (OR-composition) Polytime reduction:
@ Input: Instances h,...,I; for £,
@ Output: Instance J for 2.

+

i

R



FPT
000000080

Ruling out polynomial kernels

Formalization: given problem £, and parameterized problem 2.

Definition 2.4 (OR-composition) Polytime reduction:
@ Input: Instances h,...,I; for £,
@ Output: Instance J for 2.

J is positive for 2 © 3i s.t. [; is positive for Z.

+

i

R



FPT
000000080

Ruling out polynomial kernels

Formalization: given problem £, and parameterized problem 2.

Definition 2.5 (OR-composition) Polytime reduction:
@ Input: Instances h,...,I; for £,
@ Output: Instance J for 2.

J is positive for 2 © 3i s.t. [; is positive for Z.

Theorem (Bodlaender, Jansen, Kratsch '12)

If an NP-hard problem ¥ admits an OR-composition into a
parameterized problem £, then 2 does not admit a
polynomial kernel unless coNP < NP /poly.

(N

)

R



FPT
0O0000000e

Graph invariants and FPT

"Meta-theorems" for problems expressible by logic formulas:

2given a tree decomposition
| 12/32



FPT
0O0000000e

Graph invariants and FPT

"Meta-theorems" for problems expressible by logic formulas:

Theorem 1 (Courcelle '90) Given a MSO formula ¢ on a
graph G, deciding whether ¢ is satisfied by G is FPT in || on
graphs of bounded tree-width?.

s"

2given a tree decomposition ) \
| 12/32



FPT
0O0000000e

Graph invariants and FPT

"Meta-theorems" for problems expressible by logic formulas:

Theorem 1 (Courcelle '90) Given a MSO formula ¢ on a
graph G, deciding whether ¢ is satisfied by G is FPT in || on
graphs of bounded tree-width?.

Lot of FO problems are FPT on some classes of unbounded tw,
goal:
@ Analogue of Courcelle for FO logic ?

@ With some broader parameter than tw

2given a tree decomposition ) \
e 12/32

s"




FPT
0O0000000e

Graph invariants and FPT

"Meta-theorems" for problems expressible by logic formulas:

Theorem 1 (Courcelle '90) Given a MSO formula ¢ on a
graph G, deciding whether ¢ is satisfied by G is FPT in || on
graphs of bounded tree-width?.

Lot of FO problems are FPT on some classes of unbounded tw,
goal:

@ Analogue of Courcelle for FO logic ?

@ With some broader parameter than tw twin-width

2given a tree decomposition ) \
e 12/32

s"




Twin-width
00000000

Motivation

Definition In graph G, u,v e V(G) are twins if N(u) = N(v).



Twin-width
00000000

Motivation

Definition In graph G, u,v e V(G) are twins if N(u) = N(v).

@ Twins "behave the same" w.r.t the rest of the graph,



Twin-width
00000000

Motivation

Definition In graph G, u,v e V(G) are twins if N(u) = N(v).

@ Twins "behave the same" w.r.t the rest of the graph,

@ exploitable algorithmically: modular decomposition,
cographs...

R e



Twin-width
00000000

Motivation

Definition In graph G, u,v e V(G) are twins if N(u) = N(v).

@ Twins "behave the same" w.r.t the rest of the graph,

@ exploitable algorithmically: modular decomposition,
cographs...

R e



Twin-width
00000000

Motivation

Definition In graph G, u,v e V(G) are twins if N(u) = N(v).

@ Twins "behave the same" w.r.t the rest of the graph,

@ exploitable algorithmically: modular decomposition,
cographs...

Idea:

@ Obtain efficient algorithms by leveraging "near-twins",

+

i

R e



Twin-width
00000000

Motivation

Definition In graph G, u,v e V(G) are twins if N(u) = N(v).

@ Twins "behave the same" w.r.t the rest of the graph,

@ exploitable algorithmically: modular decomposition,
cographs...

Idea:
@ Obtain efficient algorithms by leveraging "near-twins",

o Efficiency depends on how "near" vertices are to being twins
— twin-width.

(N

R e



Graphs and trigraphs

Fig. Graph: edges, non-edges



Twin-width
[e] lelelelele]e)

Graphs and trigraphs

Fig. Trigraph: edges, non-edges, or red edges

R






Twin-width
[e]e] lelelee]e)

Contractions in trigraphs

Intuitive goal: group near-twins together.
Contraction of u and v: record "twin" errors with red edges.




Twin-width

[e]e] le]elele]e]

Contractions in trigraphs

Intuitive goal: group near-twins together.
Contraction of u and v: record "twin" errors with red edges.

edges to N(u)AN(v) turn red, for N(u) nN(v) red is absorbing

pre

*

R e



Twin-width
[e]e]e] lelelele)

Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.

Maximum red degree = 0 ey
overall maximum red degree = 0 m
| 16/32



Twin-width
[e]e]e] lelelele)

Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.

Maximum red degree = 2 ey
overall maximum red degree = 2 m
| 16/32

s"



Twin-width
[e]e]e] lelelele)

Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.

Maximum red degree = 2 ey
overall maximum red degree = 2 m

| 16/32

+

P



Twin-width

[e]e]e] lelelele]

Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.

Maximum red degree = 2 ey
overall maximum red degree = 2 m

| 16/32

+

P



Twin-width
[e]e]e] lelelele)

Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.

adg

Maximum red degree =1 ey
overall maximum red degree = 2 m

| 16/32

+

P



Twin-width
[e]e]e] lelelele)

Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.

adg

Maximum red degree =1 ey
overall maximum red degree = 2 m

| 16/32

+

P



Twin-width
[e]e]e] lelelele)

Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.

abcdefg

Maximum red degree = 0 ey
overall maximum red degree = 2 . m

| 16/32

+

P



Twin-width
[e]e]e] lelelele)

Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.

abcdefg

Maximum red degree = 0 ey

-

overall maximum red degree = 2 — tww(G)<2. m

| 16/32



Twin-width
[e]e]e] lelelele)

Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.

+

Contraction sequences — dynamic programming ~

P

R e



Twin-width
[e]e]e] lelelele)

Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.

o Contraction sequences — dynamic programming ey

-

@ bounded red degree — few "complicated" updates. m

| 16/32



Twin-width
[e]e]e]e] lelele)

Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?

O

O

O—0O—C0O—C0O—0
O—0O—"C0O—"—C0——0
O O ) ) Q

Maximum red degree = 0
overall maximum red degree = 0

+

i

R



Twin-width
[e]e]e]e] lelele)

Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?

O—0O O

¢
O
p
¢

O—O—C0O—C0O—0
O—O—"C0O—"—C0——0
O O ) ) Q

Maximum red degree = 3
overall maximum red degree = 3

R



Twin-width
[e]e]e]e] lelele)

Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?

\,

)
N
)
N
)
N
)
/

O—0O

J
N
J
N
J
O

Maximum red degree = 4
overall maximum red degree = 4

R



Twin-width
[e]e]e]e] lelele)

Example: twin-width of grids

Grids have unbounded tree-width...

what about twin-width?

() ()

O—O——C0O—=0
) () ) f)
J -/ N .
() ) ) f)
/ \/ N .
() ) ) f)
/ W/ ) .
() ) ) e
/ ) \)

Maximum red degree = 4
overall maximum red degree = 4

17/32



Twin-width
[e]e]e]e] lelele)

Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?

O—0O O

S
O

./
)
N
)
N
)
/

)
N
)
W/
)
N
)
N\

O

Maximum red degree = 4
overall maximum red degree = 4

R



Twin-width
[e]e]e]e] lelele)

Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?

O—0O O

S
O

./
)
W/
)
N
)
N\

N
J
N
J
N
J

O

Maximum red degree = 4
overall maximum red degree = 4

R



Twin-width
[e]e]e]e] lelele)

Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?

O—0O O

S
O

O—O—0—0
O—O—0—0
O—O0—0—0

Maximum red degree = 3
overall maximum red degree = 4

R



Twin-width
[e]e]e]e] lelele)

Example: twin-width of grids

Grids have unbounded tree-width... what about twin-width?

O—0O O

S
O

O—O—0—0
O—O—0—0
O—O0—0—0

Maximum red degree = 3
overall maximum red degree = 4 = twin-width <4

pre

*

R



)
Q@
o
>
O
<
o
©
M
O
=
©
T
Ko
o
S
S
X
L

A dense graph with bounded twin-width:

Maximum red degree = 0

0

overall maximum red degree



)
Q@
o
>
O
<
o
©
M
O
=
©
T
9
o
S
S
X
L

A dense graph with bounded twin-width:

Maximum red degree = 2
overall maximum red degree

2



)
Q@
o
>
O
<
o
©
M
O
=
©
T
9
o
S
S
X
L

A dense graph with bounded twin-width:

Maximum red degree = 3
overall maximum red degree

3



)
Q@
o
>
O
<
o
©
M
O
=
©
T
Ko
o
S
S
X
L

A dense graph with bounded twin-width:

Maximum red degree = 3

3

overall maximum red degree



Maximum red degree = 3
overall maximum red degree = 3



Maximum red degree = 3
overall maximum red degree = 3



Maximum red degree = 3
overall maximum red degree = 3



Maximum red degree = 3
overall maximum red degree = 3

R e



Maximum red degree = 2
overall maximum red degree = 3



Maximum red degree = 2
overall maximum red degree = 3 = twin-width <3



Twin-width
00000080

Twin-width : FPT first order problems

Recall Courcelle for MSO and tree-width:

3given a tree decomposition
“4given a contraction sequence



Twin-width
00000080

Twin-width : FPT first order problems

Recall Courcelle for MSO and tree-width:

Theorem (Courcelle '90)
Given a MSO formula ¢ on a graph G, deciding ¢ on G is
FPT in |¢| on graphs of bounded tree-width’.

3given a tree decomposition

“given a contraction sequence \
| 19/32



Twin-width
00000080

Twin-width : FPT first order problems

Recall Courcelle for MSO and tree-width:

Theorem (Courcelle '90)
Given a MSO formula ¢ on a graph G, deciding ¢ on G is
FPT in |¢| on graphs of bounded tree-width’.

Analogue: FO and twin-width:

3given a tree decomposition

“given a contraction sequence \
| 19/32

s"



Twin-width
00000080

Twin-width : FPT first order problems

Recall Courcelle for MSO and tree-width:

Theorem (Courcelle '90)
Given a MSO formula ¢ on a graph G, deciding ¢ on G is
FPT in |¢| on graphs of bounded tree-width’.

Analogue: FO and twin-width:

Theorem (Bonnet, Kim, Thomassé, Watrigant ’'20)
Given a FO formula ¢ on a graph G, deciding ¢ on G is FPT
with respects to |¢p| on classes of bounded twin-width*.

3given a tree decomposition AN

“given a contraction sequence \
e 19/32



Twin-width
0000000

Consequences

Some problems expressible in FO:



Twin-width
0000000

Consequences

Some problems expressible in FO:

@ k-IS : 3xq..3xxk A1<i<jck 7(Xi = X V E(Xi, x})),



Twin-width
0000000

Consequences

Some problems expressible in FO:
@ k-IS : 3xq..3xxk A1<i<jck 7(Xi = X V E(Xi, x})),
@ k-DS : 3x1..3xxVx Vicick(Xx = Xi) V Vi<ick E(X, 7).

are FPT in solution size k for bounded tww.

R



Twin-width
0000000

Consequences

Some problems expressible in FO:
@ k-IS : 3xq..3xxk A1<i<jck 7(Xi = X V E(Xi, x})),
@ k-DS : 3x1..3xxVx Vicick(Xx = Xi) V Vi<ick E(X, 7).

are FPT in solution size k for bounded tww.

Some classes of bounded twin-width:

R e



Twin-width
0000000

Consequences

Some problems expressible in FO:
@ k-IS : 3xq..3xxk A1<i<jck 7(Xi = X V E(Xi, x})),
@ k-DS : 3x1..3xxVx Vicick(Xx = Xi) V Vi<ick E(X, 7).

are FPT in solution size k for bounded tww.

Some classes of bounded twin-width:

@ Bounded tree-width, rank-width, queue number...

+

5

20/32



Twin-width
0000000

Consequences

Some problems expressible in FO:
@ k-IS : 3xq..3xxk A1<i<jck 7(Xi = X V E(Xi, x})),
@ k-DS : 3x1..3xxVx Vicick(Xx = Xi) V Vi<ick E(X, 7).

are FPT in solution size k for bounded tww.

Some classes of bounded twin-width:
@ Bounded tree-width, rank-width, queue number...

@ Proper minor closed — planar graphs.

+

5

20/32



Twin-width
0000000

Consequences

Some problems expressible in FO:
@ k-IS : 3xq..3xxk A1<i<jck 7(Xi = X V E(Xi, x})),
@ k-DS : 3x1..3xxVx Vicick(Xx = Xi) V Vi<ick E(X, 7).

are FPT in solution size k for bounded tww.

Some classes of bounded twin-width:
@ Bounded tree-width, rank-width, queue number...
@ Proper minor closed — planar graphs.

— very broad !

+

5

20/32



k-DS has no polykernels
9000000000

Twin-width and polykernels

On classes of bounded twin-width:



k-DS has no polykernels
9000000000

Twin-width and polykernels

On classes of bounded twin-width:
o Connected k-VC admits a O(k?) kernel,



k-DS has no polykernels
9000000000

Twin-width and polykernels

On classes of bounded twin-width:
o Connected k-VC admits a O(k?) kernel,

@ k-Independent Set admits no polykernel.

R



k-DS has no polykernels
9000000000

Twin-width and polykernels

On classes of bounded twin-width:
o Connected k-VC admits a O(k?) kernel,
@ k-Independent Set admits no polykernel.

What about dominating set ?

R



k-DS has no polykernels
9000000000

Twin-width and polykernels

On classes of bounded twin-width:
o Connected k-VC admits a O(k?) kernel,
@ k-Independent Set admits no polykernel.
What about dominating set ?

k-DOMINATING SET Parameter: k
Input: Graph G, integer k
Question: Does G have a dominating set of size at most k?

+

i

R



k-DS has no polykernels
9000000000

Twin-width and polykernels

On classes of bounded twin-width:
o Connected k-VC admits a O(k?) kernel,
@ k-Independent Set admits no polykernel.
What about dominating set ?

k-DOMINATING SET Parameter: k
Input: Graph G, integer k
Question: Does G have a dominating set of size at most k?

Admits polykernels on sparse graphs... but not on bounded
twin-width.

(N

)

R



k-DS has no polykernels
000000000

OR-composition for k-DS

Recall the tool to prove no polykernels:



k-DS has no polykernels
000000000

OR-composition for k-DS

Recall the tool to prove no polykernels:

Theorem (Bodlaender, Jansen, Kratsch '12)

If an NP-hard problem & admits an OR-composition into a
parameterized problem 2, then 2 does not admit a
polynomial kernel unless coNP < NP /poly.



k-DS has no polykernels
000000000

OR-composition for k-DS

Recall the tool to prove no polykernels:

Theorem (Bodlaender, Jansen, Kratsch '12)

If an NP-hard problem & admits an OR-composition into a
parameterized problem 2, then 2 does not admit a
polynomial kernel unless coNP < NP /poly.

Goal: rule out polynomial kernels for k-DS on classes of bounded
twin-width.

s"

R



k-DS has no polykernels
000000000

OR-composition for k-DS

Recall the tool to prove no polykernels:

Theorem (Bodlaender, Jansen, Kratsch '12)

If an NP-hard problem & admits an OR-composition into a
parameterized problem 2, then 2 does not admit a
polynomial kernel unless coNP < NP /poly.

Goal: rule out polynomial kernels for k-DS on classes of bounded
twin-width.

@ 2: k-DS on a class of bounded twin-width (< 4).

(N

R



k-DS has no polykernels
000000000

OR-composition for k-DS

Recall the tool to prove no polykernels:

Theorem (Bodlaender, Jansen, Kratsch '12)

If an NP-hard problem & admits an OR-composition into a
parameterized problem 2, then 2 does not admit a
polynomial kernel unless coNP < NP /poly.

Goal: rule out polynomial kernels for k-DS on classes of bounded
twin-width.

@ 2: k-DS on a class of bounded twin-width (< 4).

@ £: NP-hard problem tailored to be "easily" composable into
2. A version of k-DS on graphs of bounded twin-width.

R



k-DS has no polykernels
[e]e] lelelelele]le]e]

Tailored k-DS on grid-like graphs

NP-hard £: k-DS on instances (G, k,2 =1{By,..., By}) s.t:
@ B partitions V(G), G has 4-sequence — G/%B,
o G/% is a subgraph of a grid,



k-DS has no polykernels
[e]e] lelelelele]le]e]

Tailored k-DS on grid-like graphs

NP-hard £: k-DS on instances (G, k,2 =1{By,..., By}) s.t:
@ B partitions V(G), G has 4-sequence — G/%B,
o G/% is a subgraph of a grid,
@ every dominating set of G intersects each B;.



k-DS has no polykernels
[e]e] lelelelele]le]e]

Tailored k-DS on grid-like graphs

NP-hard £: k-DS on instances (G, k,2 =1{By,..., By}) s.t:
@ B partitions V(G), G has 4-sequence — G/%B,
o G/% is a subgraph of a grid,
@ every dominating set of G intersects each B;.

+

i

Ry .



k-DS has no polykernels
[e]ele] lelelele]le]e]

OR-composition

Tailored k-DS, instances (/;)ie[g — k-DS, tww <4 instance (H, k)



| 24/32

—
X
&S =
[ S g
O i
c
" S - ~ ~ ~ ~ ~ S
K < oo)lfoollfoo)lfco)lfco g
3§ c ooflloollloo]llooflloo 5
g £
S0 < B
28 v !
23 S 9
«g M oo)lfoo)lfco)lfoo)lfoo Q
3 N ooflloo]lloo]lloo]]loo o
m (6]
c
< 2
£
1 Rl ERIIERIIERIIEE ]
—- ooflloo]lloo]llooflloo -
T o
= Q
~ 3]
N—r -
(7))
4] oo)lfoo)lfoo)lfoo)|foo !
2 ooJlleoJlloo)llooflloo $
) =
t ®
£ i
c - =
Ke) m Rl (ERIIERIIERIIEE "
] _ ooflloollloo]llooflloo T
L ___________
= g «© < = © < S
= O
el =
S
v
oz




k-DS has no polykernels
[e]ele] lelelele]le]e]

OR-composition

Tailored k-DS, instances (/;)ic[ — k-DS, tww <4 instance (H, k)

Fig. Instances < layers, partition classes < boxes.
In H: Top instance < dummy, half graphs cycle between classes“,



k-DS has no polykernels
[e]e]ele] Telelele]e]

Positive Tailored instance = Positive composition

Assume one instance (I here) is positive, pick its solution in H:

| &)
/ Y e e /
oo' oo oo oo
flo o oo oo oo :
}/ //////




k-DS has no polykernels
[e]e]ele] Telelele]e]

Positive Tailored instance = Positive composition

Assume one instance (I here) is positive, pick its solution in H:

| &)
/ e BE /
oo' oo oo oo
flo o oo oo oo :
}/ //////




k-DS has no polykernels
[e]e]ele] Telelele]e]

Positive Tailored instance = Positive composition

Assume one instance (I here) is positive, pick its solution in H:

| &)
/ Y& @ /
oo' oo oo oo
flo o oo oo oo :
}/ //////




k-DS has no polykernels
[e]e]ele] Telelele]e]

Positive Tailored instance = Positive composition

Assume one instance (I here) is positive, pick its solution in H:

| &)
/ = BE /
oo' oo oo oo
flo o oo oo oo :
}/ //////




k-DS has no polykernels
[e]e]ele] Telelele]e]

Positive Tailored instance = Positive composition

Assume one instance (I here) is positive, pick its solution in H:

| &)
/ = BE /
oo' oo oo oo
flo o oo oo oo :
}/ //////




k-DS has no polykernels
[e]e]ele] Telelele]e]

Positive Tailored instance = Positive composition

Assume one instance (I here) is positive, pick its solution in H:

| &)
/ = BE /
oo' oo oo oo
flo o oo oo oo :
}/ //////




k-DS has no polykernels
[e]e]elele] lelele]e]

Positive composition = Positive tailored instance

Assume (H, k) is positive:

@ Dummy instance ls forces one vertex per column,

fs]
_/_1_/ 3y




k-DS has no polykernels
[e]e]elele] lelele]e]

Positive composition = Positive tailored instance

Assume (H, k) is positive:
@ Dummy instance /s forces one vertex per column,

@ ldeally : all choices on a single layer i — positive /;,

y PuP wow
_1_/ 3/

|
!
h




k-DS has no polykernels
[e]e]elele] lelele]e]

Positive composition = Positive tailored instance

Assume (H, k) is positive:
@ Dummy instance /s forces one vertex per column,
@ ldeally : all choices on a single layer i — positive /;,

@ Assume not...

y PuP wow
_1_/ 3/

|
!
h




k-DS has no polykernels
0000008000

Positive composition = Positive tailored instance
@ Non-identical layer choices — domination "gap" on C;,

Ik+3

|
Tk+2

lk+1

Ik

)
| 27/32



gap" on C;,

k-DS has no polykernels

0000008000

identical layer choices — domination

@ Non

Q
O
=
(9]
4+
0
S
N®)
(]
—
9
‘@
4+
(]
2
2
(72]
@]
o
c
.9
o
0
(@)
o
S
(]
O
(]
2
=
(7]
@]
o




k-DS has no polykernels
0000008000

Positive composition = Positive tailored instance

@ Non-identical layer choices — domination "gap" on C;,

| 27/32



k-DS has no polykernels

0000008000

Positive composition = Positive tailored instance

@ Non-identical layer choices — domination "gap" on C;,

1L q+

—

O] [OO
O) OO

€




k-DS has no polykernels
0000008000

Positive composition = Positive tailored instance

Solution ligs,d
dominated.

S
[0)@)
m 27 /32



k-DS has no polykernels

0O000000e00

0
(]
2]
(2]
(e
O
c
.9
5=
)
j-
T
o
e10]
=
)
O
(]
—
4+
c
(@)
O
3
=
-
{e70]
S
e
c
=
O
m

@ For any /;: each partition class has same neighbours in H - /;,

000 I.II

Fig. An instance after contracting classes.



k-DS has no polykernels

0O000000e00

Bounding tww: contracting partition classes

@ For any /;: each partition class has same neighbours in H - /;,
@ Contract each class — red edges created only in /;




k-DS has no polykernels

0O000000e00

Bounding tww: contracting partition classes

@ For any /;: each partition class has same neighbours in H - /;,
@ Contract each class — red edges created only in /;
@ Result: red subgraph of grid (altered for tww 4).

Fig. An instance after contracting classes. o~

R



k-DS has no polykernels
0000000080

Bounding tww: contracting instances together

@ Between instances: half-graph cycle along vertices at the
same position.

TS 3’?),, &
= o o.o. F A

o= -
; <
"0.
Fig. Instances and the half-graph cycle L}

R



k-DS has no polykernels
0000000080

Bounding tww: contracting instances together

@ Between instances: half-graph cycle along vertices at the
same position.
@ Goal: Successively contract the bottommost two instances.

= o o.o. F A

(Fe e

o= -
; <
"0.
Fig. Instances and the half-graph cycle L}

R



k-DS has no polykernels
0000000080

Bounding tww: contracting instances together

@ Between instances: half-graph cycle along vertices at the
same position.

@ Goal: Successively contract the bottommost two instances.

@ Contracting two vertices at the same position creates red
edges only locally — induction

o 0 0o 0 O )y 0 & O
o o0 0—CF 0 O
=" o=~ o~ 3 ¢

Jll

2
\
e 29/32



k-DS has no polykernels
000000000 e

Concluding

@ NP-hard Tailored k-DS OR-composes into k-DS,

Seven if a 4-sequence of the graph is given
| 30/32



k-DS has no polykernels
000000000 e

Concluding

@ NP-hard Tailored k-DS OR-composes into k-DS,

@ The composed instance has tww at most four.

Seven if a 4-sequence of the graph is given
| 30/32



k-DS has no polykernels
000000000 e

Concluding

@ NP-hard Tailored k-DS OR-composes into k-DS,

@ The composed instance has tww at most four.

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
Unless coNP = NP /poly, k-DOMINATING SET on graphs of
twin-width at most 4 does not admit a polynomial kernefP.

+

Seven if a 4-sequence of the graph is given ) k
| 30/32



Conclusion
0000

Further Directions

@ Does k-DS on tww <3 admit polynomial kernels?



Conclusion
0000

Further Directions

@ Does k-DS on tww <3 admit polynomial kernels?

@ Is there a linear kernel for Connected-VC?



Conclusion
0000

Further Directions

@ Does k-DS on tww <3 admit polynomial kernels?

@ Is there a linear kernel for Connected-VC?

Thank you!



Conclusion
(o] Jelele]

Bibliography

E. Bonnet, E. J. Kim, S. Thomassé, and R. Watrigant.
“Twin-width |: tractable FO model checking”. In: (2020). arXiv:
2004.14789 [cs.DS]

H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. “Kernelization
Lower Bounds By Cross-Composition”. In: (2012). arXiv:
1206.5941 [cs.CC]

G. Philip, V. Raman, and S. Sikdar. “Polynomial Kernels for
Dominating Set in Graphs of Bounded Degeneracy and Beyond”.
In: ACM Trans. Algorithms 9.1 (Dec. 2012). 1sSN: 1549-6325.
DOI: 10.1145/2390176.2390187. URL:
https://doi.org/10.1145/2390176.2390187

E. Bonnet, E. J. Kim, A. Reinald, S. Thomassé, and R. Watrigant.
“Twin-width and polynomial kernels”. In: (2021). arXiv:
2107.02882 [cs.DS] e

.,
.
)
-}
P

R e


https://doi.org/10.1145/2390176.2390187

Conclusion
[e]e] Tele]

A (sub)quadratic kernel for C-VC on VC-density 1

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21)
There exists f s.t. for any G of tww( d) and X < V(G):
number of distinct neighborhoods in X is at most f(d)|X]|.



Conclusion
[e]e] Tele]

A (sub)quadratic kernel for C-VC on VC-density 1

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21)
There exists f s.t. for any G of tww( d) and X < V(G):
number of distinct neighborhoods in X is at most f(d)|X]|.

Kernel pre-processing;:
@ Bounded tww G: take X 2-approx for VC,

s"

R e



Conclusion
[e]e] Tele]

A (sub)quadratic kernel for C-VC on VC-density 1

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21)
There exists f s.t. for any G of tww( d) and X < V(G):
number of distinct neighborhoods in X is at most f(d)|X]|.

Kernel pre-processing;:
@ Bounded tww G: take X 2-approx for VC,
o if |X|=2k+1 : no solution,

s"

R e



Conclusion
[e]e] Tele]

A (sub)quadratic kernel for C-VC on VC-density 1

Lemma (Bonnet, Kim, R., Thomassé, Watrigant '21)
There exists f s.t. for any G of tww( d) and X < V(G):
number of distinct neighborhoods in X is at most f(d)|X]|.

Kernel pre-processing;:
@ Bounded tww G: take X 2-approx for VC,
o if |X|=2k+1 : no solution,

@ — in X, number of distinct neighbourhoods < f(d)k

(N

R e



Conclusion
000e0

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is S< V(G)\ X with identical
neighbourhood in X and |S| > k, delete a vertex of S.



Conclusion
000e0

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is S< V(G)\ X with identical
neighbourhood in X and |S| > k, delete a vertex of S.

S, ISI<k

Fig. Resulting instance: (G', k)



Conclusion
000e0

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is S< V(G)\ X with identical
neighbourhood in X and |S| > k, delete a vertex of S.

S, ISI<k

Fig. Resulting instance: (G', k)

If (G, k) has a solution, replace deletion with twin — reconnects T




Conclusion
000e0

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is S< V(G)\ X with identical
neighbourhood in X and |S| > k, delete a vertex of S.

S, ISI<k

Fig. Resulting instance: (G', k)

If (G, k) has a solution, replace deletion with twin — reconnects T
If (G',k) has a solution T, T is also a solution for (G, k),

(N

R



Conclusion
000e0

A (sub)quadratic kernel for C-VC on VC-density 1

Reduction rule: If there is S< V(G)\ X with identical
neighbourhood in X and |S| > k, delete a vertex of S.

S, ISI<k

Fig. Resulting instance: (G', k)

If (G, k) has a solution, replace deletion with twin — reconnects T
If (G',k) has a solution T, T is also a solution for (G, k),
o Take deleted s, S\sZ T as ind. set with |S|> k, .
@ Therefore N(S)< T, and s is covered by T in G. %

R




Conclusion
0000e

Concluding

@ Applying the reduction yields an equivalent instance,



Conclusion
0000e

Concluding

@ Applying the reduction yields an equivalent instance,
@ The kernel has size at most f(d)* k2,



Conclusion
0000e

Concluding

@ Applying the reduction yields an equivalent instance,
@ The kernel has size at most f(d)* k2,



Conclusion
0000e

Concluding

@ Applying the reduction yields an equivalent instance,

@ The kernel has size at most f(d) * k2,

Theorem (Bonnet, Kim, R., Thomassé, Watrigant '21)
On classes of VC-density 1, CONNECTED k-VERTEX COVER
admits kernels with O(k?) vertices (and even O(k*%)).



	Introduction
	FPT
	Twin-width
	k-DS has no polykernels
	Conclusion

