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Graphs and trigraphs

Fig. Trigraph: edges, non-edges, or red edges
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Contractions in trigraphs

@ |dea behind twin-width: group near-twins.

o Contraction of v and v: record "twin" errors with red edges.

2/26



Introduction

[¢] lele]e}

Contractions in trigraphs

@ |dea behind twin-width: group near-twins.

@ Contraction of v and v: record "twin" errors with red edges.

edges to N(u)AN(v) turn red, for N(u)n N(v) red is absorbing
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maximum red degree at most d.
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Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.

abcdefg

Maximum red degree = 0

overall maximum red degree = 2 — tww(G)<2.
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Algorithmic Implications

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)
For a graph G with tww d given a d-sequence, and any FO
formula ¢: Deciding G |= ¢ can be done in FPT time
f(I¢pl,d)-n.

4/26



Introduction
000e0

Algorithmic Implications

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)
For a graph G with tww d given a d-sequence, and any FO
formula ¢: Deciding G |= ¢ can be done in FPT time
f(I¢pl,d)-n.

Some problems expressible in FO:

4/26



Introduction
000e0

Algorithmic Implications

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)
For a graph G with tww d given a d-sequence, and any FO
formula ¢: Deciding G |= ¢ can be done in FPT time
f(I¢pl,d)-n.

Some problems expressible in FO:

® k-IS : 3xq..3x, A1<i<jck 7(Xi = X V E(xi, %7)),

4/26



Introduction
000e0

Algorithmic Implications

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)
For a graph G with tww d given a d-sequence, and any FO
formula ¢: Deciding G |= ¢ can be done in FPT time
f(I¢pl,d)-n.

Some problems expressible in FO:
® k-IS : 3xq..3x, A1<i<jck 7(Xi = X V E(xi, %7)),
@ k-DS : 3x1..3x,Vx Vicick(x = %) V Vi<ic<k E(X, 7).
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Graphs of bounded twin-width

Classes with bounded tww:
@ Bounded treewidth, rank-width, queue/stack number,
@ Proper minor-closed, map graphs, posets of bounded width...

In this talk: what structures/subgraphs are forced by high tww?

Theorem (B,K,R,T,W ’21+)
Graphs of girth =5 forbidding induced subdivisions of theta
have bounded twin-width.

...............

.................
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Question
o High parameter G = forced structure/subgraph H?

o FEquivalently: G forbidding H = low parameter?
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Parameters and graph minors

Question
o High parameter G = forced structure/subgraph H?

o FEquivalently: G forbidding H = low parameter?

A restrictive approach: forbidding minors

@ minor: H obtained from G by vertex deletion, edge deletion,
edge contraction.

Theorem (B,K,T,W '20)
For any H, H-minor free graphs have bounded twin-width.
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Treewidth and Minors

Obstruction: k x k-walls have treewidth Q(k).

Fig. A 6 x6-wall.
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Treewidth and Minors

Obstruction: k x k-walls have treewidth Q(k).

Fig. A 6 x6-wall.

Theorem (Robertson, Seymour '86)
Graphs forbidding a wall minor have bounded treewidth.
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Treewidth and induced thetas

Theorem (Sintiari, Trotignon '19)
There exist theta-free graphs of arbitrarily large girth and
treewidth.
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Treewidth and induced thetas

Theorem (Sintiari, Trotignon '19)
There exist theta-free graphs of arbitrarily large girth and
treewidth.

AANN

Theorem (Abrishami, Chudnovsky, Hajebi, Spirkl '21)
There exists ¢ s.t. for any (Theta, triangle)-free G,
tw(G) < clog(IV(G)I).
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For degeneracy:

Theorem
Any K -free graph forbidding an induced subdivision of H is
f(t, H)-degenerate.
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Degeneracy and induced subdivisions

For degeneracy:

Theorem
Any K -free graph forbidding an induced subdivision of H is
f(t, H)-degenerate.

What about twin-width?
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Twin-width and induced subgraphs

What graphs can we hope to forbid?
@ o(log(n))-subdivisions of K, have unbounded tww.
@ Subcubic graphs have unbounded tww

Optimistic conjecture: forbidding any subcubic graph + sparse =
bounded twin-width?
In this talk: forbid theta-free, girth =5
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Twin-width and mixed minors

Theorem (Bonnet, Kim, Thomassé, Watrigant ’30)
If 30 s.t. Adj;(G) is t-mixed free, then tww(G) = 22 “
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Twin-width and mixed minors

Theorem (Bonnet, Kim, Thomassé, Watrigant ’gO)
If 30 s.t. Adj;(G) is t-mixed free, then tww(G) = 22 “

(1 1]1 1 1|1 1 0]
0 1|1 00f101
0 0/00O0J0O01
0 1/0 0 1010
10/011]010
01]111f100
|1 0f1 1 1f[0o0 1]

Fig. A 3 mixed-minor and a 4-grid minor
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Twin-width and mixed minors

Theorem (Bonnet, Kim, Thomassé, Watrigant ’gO)
If 30 s.t. Adj;(G) is t-mixed free, then tww(G) = 22 “

11|t 11f110 111 1)1 1]1 0
011 00]101 0 1[1 ofo 1]o 1
00[000[001 0 0fo 0ojo o0fo 1
01001010 0 1[0 of1 o1 0
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Twin-width and mixed minors

Theorem (Bonnet, Kim, Thomassé, Watrigant ’gO)
If 30 s.t. Adj;(G) is t-mixed free, then tww(G) = 22 “

11|t 11f110 111 1)1 1]1 0
011 00]101 0 1[1 ofo 1]o 1
00[000[001 0 0fo 0ojo o0fo 1
01001010 0 1[0 of1 o1 0
Tofol1l01o0 1 0o 1|1 0f1 0
01{111{100 0 1[1 1|1 10 0
|1 011 1]0o0 1] |1 0f1 1|1 o]0 1]

Fig. A 3 mixed-minor and a 4-grid minor

In particular: o forbidding t-grid minor = bounded tww.

Example: DFS on trees.
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Roadmap

@ Find a grid-free order = bounded twin-width,

1 1]1 1)1 1]1 0
0 1[1 ofo 1o 1
0 0l0 0Jo 0J0 1
0 1[0 of1 01 0
1 0fo 11 0]1 0
0 1f1 11 1[0 0

|1 0f[1 1|1 0of0 1]
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Roadmap

@ Find a grid-free order = bounded twin-width,
@ Build an order according to structural properties of the class,

o Large grid minors = witness induced thetas.

f1 1)1 1|1 1|1 o]
0 1|1 ofo 1fo0 1
0 0]o oo ofo 1
0o 1{o of1 o1 0
1 0/0 1|1 0|1 0
0 11 11 1]0 0
|1 0|1 1|1 o]0 1]

Candidates: BFS, DFS...
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Parameters and Structure
0000000e

@ Find a grid-free order = bounded twin-width,

@ Build an order according to structural properties of the class,

o Large grid minors = witness induced thetas.

1 1]1 1)1 1]1 0
0 1[1 ofo 1o 1
0 0l0 0Jo 0J0 1
0 1[0 of1 01 0 .
1 0fo 11 0]1 0
0 1f1 11 1[0 0
|1 0f[1 1|1 0of0 1]

Candidates: BFS, DFS...
Little information on connected subgraphs, hard finding thetas.
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Connected BFS Decomposition
[o] lele]e]e]

Global structure

Let Yl.j be the j-th connected component of G[Y;] ordered
lexicographically.

@ Y is only adjacent to Yj_1 and Yj1,

@ Y; has an unique antecedent Yl.j_1 (otherwise, better YIJ_I)
Global relation between components: tree = "simple" / tww.
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Component structure

Does complexity lie inside components Yl.j? No

Lemma For any CBFS of G, each YI.J is a tree. Moreover,
each v e YI.J has an unique antecedent vleYiy.

— Complexity must lie in adjacencies between components...
© Describe the structure between layers,

© Use it to guide our ordering choice.
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Connected BFS Decomposition
000e00

Component-Antecedent Structure

How do successors of different vertices of Y;_1 relate in Y;?

Yi_1

Lemma For any YJ there is a prmc:pal path PJ s.t. any
successor v € YJ belongs to a v~t-private branch of PJ

Natural order: follow Plj exhausting private branches along the
way.
17/26
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Component-Successors Structure

Locally: for any vertex r in component YI.J:

° Yij = tree — r-branches are simple,
@ Complexity = r-branches intertwining using Yji1,

Definition Consecutivity:
shortest path between
successors of two different
r-branches.

Lemma A/l but two
r-branches admit at most
two consecutivities.

18/26
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Connected BFS Decomposition

O0000e

Constructing the total order

@ Globally: components Yij o Locally: branches in YI.j:
related as a tree little intertwining on Yji1

o — follow the CBFS order o — DFS: order branches /
lexicographically. consecutivity cycles

Fig. Inter-component BFS Fig. Intra-component DFS 19/26
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Graphs in the class — corresponding ordered matrices M.:

Roadmap:
@ Assume existence of arbitrarily large minors,
@ Use global order to localize them,

© Use local order to yield a contradiction.
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Grid minors among successive layers

@ Globally: We have ordered layers Yp< Y1 <...< Y.
@ Where can a large grid minor lie?

. (%)
; e () (%)
Ya ‘

: ONONOIO
Y2

Y1

, ORGIORO

r YL Y Ys Ya Y5 Yk

Lemma [f matrices M< have arbitrarily large grid minors,
some submatrices indexed by (Y;u Yi;1)? also do.
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Grid minors between successive layers

Locally: Y; are forests — bounded tww (DFS) — no large grid
minors
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Lemma [f matrices M< have arbitrarily large grid minors,
some submatrices indexed by Y; x Yj;1 also do.
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Grid Minors from One Component

Grid minor on Y;x Yi.1 + lexicographical CBFS:
()
y’,3 @ @
g ® @@ @

1 2 3 4 5
Ni+1 Ni+1 Ni+1 Ni+1 Ni+1

Lemma /f M. admit arbitrarily large grid minors, some
submatrices indexed by Y,.J and its successors do too.
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Assume large grid minor on Y7 and successors:
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Excluding Grid Minors

Assume large grid minor on Y7 and successors:

T ]
. N 1
@ Row sets — subforests of Y7, S P P
i @ [
@ Column sets < subpaths of Yi;1, @]
Ry| 1 1 1 1 1
@ Non-zero entries — consecutivities. rRl: [2 1 |2 [:]

Proof scheme:
@ Concentrate rows around r € Y,.J,

@ Intertwining around r violates our order

Theorem (B,K,R,T,W ’21)
Theta-free graphs of girth at least 5 have
bounded twin-width.
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Further paths

@ Do sparse O-free graphs have bounded queue/stack
number? Possibly through the same order.

@ Extend the approach to classes forbidding any subcubic
subgraph of the wall.

Thank you!
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