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Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Graphs and trigraphs
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Contractions in trigraphs

Idea behind twin-width: group near-twins.

Contraction of u and v : record "twin" errors with red edges.

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uvuv
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Contraction of u and v : record "twin" errors with red edges.

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u)∩N(v) red is absorbing
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Twin-width

Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.
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Definition (Twin-width) tww(G): minimal d such that G
admits a contraction sequence where all trigraphs have
maximum red degree at most d.
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Algorithmic Implications

Theorem (Bonnet, Kim, Thomassé, Watrigant ’20)
For a graph G with tww d given a d-sequence, and any FO
formula φ: Deciding G |=φ can be done in FPT time
f (|φ|,d) ·n.

Some problems expressible in FO:
k-IS : ∃x1...∃xk

∧
1ÉiÉjÉk ¬(xi = xj ∨E (xi ,xj)),

k-DS : ∃x1...∃xk∀x ∨
1ÉiÉk(x = xi)∨∨

1ÉiÉk E (x ,xi).
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Graphs of bounded twin-width

Classes with bounded tww:
Bounded treewidth, rank-width, queue/stack number,

Proper minor-closed, map graphs, posets of bounded width...
In this talk: what structures/subgraphs are forced by high tww?

Theorem (B,K,R,T,W ’21+)
Graphs of girth Ê 5 forbidding induced subdivisions of theta
have bounded twin-width.
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Parameters and graph minors

Question
High parameter G ⇒ forced structure/subgraph H?
Equivalently: G forbidding H ⇒ low parameter?

A restrictive approach: forbidding minors
minor: H obtained from G by vertex deletion, edge deletion,
edge contraction.

Theorem (B,K,T,W ’20)
For any H, H-minor free graphs have bounded twin-width.
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Treewidth and Minors
Obstruction: k ×k-walls have treewidth Ω(k).

Fig. A 6×6-wall.

Theorem (Robertson, Seymour ’86)
Graphs forbidding a wall minor have bounded treewidth.
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Treewidth and induced subdivisions
Can we be less restrictive ?

Forbid induced subdivisions of some H?
Kt breaks induced subgraphs → sparse classes
Sparse: Kt -free, Kt ,t -free, high girth...

Question
Sparse + forbidden subdivision of subwall ⇒ bounded tw?

A theta is a subdivision of K2,3.
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Treewidth and induced thetas

Theorem (Sintiari, Trotignon ’19)
There exist theta-free graphs of arbitrarily large girth and
treewidth.

Theorem (Abrishami, Chudnovsky, Hajebi, Spirkl ’21)
There exists c s.t. for any (Theta, triangle)-free G,
tw(G)É c log(|V (G)|).
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Degeneracy and induced subdivisions

For degeneracy:

Theorem
Any Kt ,t -free graph forbidding an induced subdivision of H is
f (t ,H)-degenerate.

What about twin-width?
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Twin-width and induced subgraphs

What graphs can we hope to forbid?

o(log(n))-subdivisions of Kn have unbounded tww.
Subcubic graphs have unbounded tww

Optimistic conjecture: forbidding any subcubic graph + sparse ⇒
bounded twin-width?
In this talk: forbid theta-free, girth Ê 5
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Twin-width and mixed minors

Theorem (Bonnet, Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G)= 22O(t) .
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Fig. A 3 mixed-minor and a 4-grid minor

In particular: σ forbidding t-grid minor ⇒ bounded tww.
Example: DFS on trees.
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Roadmap

Find a grid-free order ⇒ bounded twin-width,

Build an order according to structural properties of the class,
Large grid minors ⇒ witness induced thetas.
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Candidates: BFS, DFS...
Little information on connected subgraphs, hard finding thetas.
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Connected BFS Decomposition

Idea: BFS exploring connected parts instead of vertices.

Y ⊆V is a minimal connected neighbourhood of X ⊆V if:

N(X )⊆Y ,
y ,y ′ ∈Y in the same CC of G\X are in the same CC of G [Y ].

Connected BFS: Y0 = {v }, Yi+1 := mcn(Y0∪ ...∪Yi)

14 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Connected BFS Decomposition

Idea: BFS exploring connected parts instead of vertices.
Y ⊆V is a minimal connected neighbourhood of X ⊆V if:

N(X )⊆Y ,
y ,y ′ ∈Y in the same CC of G\X are in the same CC of G [Y ].

Connected BFS: Y0 = {v }, Yi+1 := mcn(Y0∪ ...∪Yi)

14 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Connected BFS Decomposition

Idea: BFS exploring connected parts instead of vertices.
Y ⊆V is a minimal connected neighbourhood of X ⊆V if:

N(X )⊆Y ,

y ,y ′ ∈Y in the same CC of G\X are in the same CC of G [Y ].
Connected BFS: Y0 = {v }, Yi+1 := mcn(Y0∪ ...∪Yi)

14 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Connected BFS Decomposition

Idea: BFS exploring connected parts instead of vertices.
Y ⊆V is a minimal connected neighbourhood of X ⊆V if:

N(X )⊆Y ,
y ,y ′ ∈Y in the same CC of G\X are in the same CC of G [Y ].

Connected BFS: Y0 = {v }, Yi+1 := mcn(Y0∪ ...∪Yi)

14 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Connected BFS Decomposition
Idea: BFS exploring connected parts instead of vertices.
Y ⊆V is a minimal connected neighbourhood of X ⊆V if:

N(X )⊆Y ,
y ,y ′ ∈Y in the same CC of G\X are in the same CC of G [Y ].

Connected BFS: Y0 = {v },

Yi+1 := mcn(Y0∪ ...∪Yi)

14 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Connected BFS Decomposition
Idea: BFS exploring connected parts instead of vertices.
Y ⊆V is a minimal connected neighbourhood of X ⊆V if:

N(X )⊆Y ,
y ,y ′ ∈Y in the same CC of G\X are in the same CC of G [Y ].

Connected BFS: Y0 = {v },

Yi+1 := mcn(Y0∪ ...∪Yi)

14 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Connected BFS Decomposition
Idea: BFS exploring connected parts instead of vertices.
Y ⊆V is a minimal connected neighbourhood of X ⊆V if:

N(X )⊆Y ,
y ,y ′ ∈Y in the same CC of G\X are in the same CC of G [Y ].

Connected BFS: Y0 = {v }, Yi+1 := mcn(Y0∪ ...∪Yi)

14 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Connected BFS Decomposition
Idea: BFS exploring connected parts instead of vertices.
Y ⊆V is a minimal connected neighbourhood of X ⊆V if:

N(X )⊆Y ,
y ,y ′ ∈Y in the same CC of G\X are in the same CC of G [Y ].

Connected BFS: Y0 = {v }, Yi+1 := mcn(Y0∪ ...∪Yi)

14 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Connected BFS Decomposition
Idea: BFS exploring connected parts instead of vertices.
Y ⊆V is a minimal connected neighbourhood of X ⊆V if:

N(X )⊆Y ,
y ,y ′ ∈Y in the same CC of G\X are in the same CC of G [Y ].

Connected BFS: Y0 = {v }, Yi+1 := mcn(Y0∪ ...∪Yi)

14 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Connected BFS Decomposition

Idea: BFS exploring connected parts instead of vertices.
Y ⊆V is a minimal connected neighbourhood of X ⊆V if:

N(X )⊆Y ,
y ,y ′ ∈Y in the same CC of G\X are in the same CC of G [Y ].

Connected BFS: Y0 = {v }, Yi+1 := mcn(Y0∪ ...∪Yi)

14 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Global structure

Let Y j
i be the j-th connected component of G [Yi ] ordered

lexicographically.

Yi is only adjacent to Yi−1 and Yi+1,
Yi has an unique antecedent Y j

i−1 (otherwise, better Y j
i−1).

Global relation between components: tree = "simple" / tww.
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Component structure

Does complexity lie inside components Y j
i ?

No

Lemma For any CBFS of G, each Y j
i is a tree. Moreover,

each v ∈Y j
i has an unique antecedent v−1 ∈Yi−1.

,→ Complexity must lie in adjacencies between components...
1 Describe the structure between layers,
2 Use it to guide our ordering choice.
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Component-Antecedent Structure
How do successors of different vertices of Yi−1 relate in Yi?

Yi−1

Y j
i

Lemma For any Y j
i , there is a principal path P j

i s.t. any
successor v ∈Y j

i belongs to a v−1-private branch of P j
i .

Natural order: follow P j
i exhausting private branches along the

way.
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Component-Successors Structure
Locally: for any vertex r in component Y j

i :

Y j
i = tree → r -branches are simple,

Complexity = r -branches intertwining using Yi+1,

Definition Consecutivity:
shortest path between
successors of two different
r -branches.

Lemma All but two
r-branches admit at most
two consecutivities.

r

Yi

Yi+1

r1

r2

r3

r4

r5

r6 r7
r8

r9

r10

r11

r13
r14
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Constructing the total order

Globally: components Y j
i

related as a tree

→ follow the CBFS order
lexicographically.

Locally: branches in Y j
i :

little intertwining on Yi+1

→ DFS: order branches /
consecutivity cycles

Y0

Y 1
1

Y 1
2

Y 1
3

Y 2
2

Y 2
3 Y 3
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Y 3
2

Y 4
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Y 4
2

Fig. Inter-component BFS
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r14

Fig. Intra-component DFS
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Bounding the twin-width

Graphs in the class → corresponding ordered matrices M<:

Roadmap:
1 Assume existence of arbitrarily large minors,
2 Use global order to localize them,
3 Use local order to yield a contradiction.
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Grid minors among successive layers
Globally: We have ordered layers Y0 <Y1 < ... <Yk .
Where can a large grid minor lie?

...

. . .

r
r

Y1

Y1

Y2
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Y4
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Y5

· · ·
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1
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3
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Y 2
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4 Y 3

4
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3

Y 4
4

Y 4
4

Lemma If matrices M< have arbitrarily large grid minors,
some submatrices indexed by (Yi ∪Yi+1)2 also do.
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Grid minors between successive layers
Locally: Yi are forests → bounded tww (DFS) →

no large grid
minors

...

. . .

r
r

Y1

Y1

Y2

Y2

Y3

Y3

Y4

Y4

Y5

Y5

· · ·

...

Yk

Yk

Y 1
1

Y 1
2

Y 1
3

Y 1
4

Y 2
3

Y 2
4 Y 3

4

Y 2
2

Y 3
3

Y 4
4

Y 4
4

Lemma If matrices M< have arbitrarily large grid minors,
some submatrices indexed by Yi ×Yi+1 also do.

22 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Grid minors between successive layers
Locally: Yi are forests → bounded tww (DFS) → no large grid
minors

...

. . .

r
r

Y1

Y1

Y2

Y2

Y3

Y3

Y4

Y4

Y5

Y5

· · ·

...

Yk

Yk

Y 1
1

Y 1
2

Y 1
3

Y 1
4

Y 2
3

Y 2
4 Y 3

4

Y 2
2

Y 3
3

Y 4
4

Y 4
4

Lemma If matrices M< have arbitrarily large grid minors,
some submatrices indexed by Yi ×Yi+1 also do.

22 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Grid minors between successive layers
Locally: Yi are forests → bounded tww (DFS) → no large grid
minors

...

. . .

r
r

Y1

Y1

Y2

Y2

Y3

Y3

Y4

Y4

Y5

Y5

· · ·

...

Yk

Yk

Y 1
1

Y 1
2

Y 1
3

Y 1
4

Y 2
3

Y 2
4 Y 3

4

Y 2
2

Y 3
3

Y 4
4

Y 4
4

Lemma If matrices M< have arbitrarily large grid minors,
some submatrices indexed by Yi ×Yi+1 also do.

22 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Grid minors between successive layers
Locally: Yi are forests → bounded tww (DFS) → no large grid
minors

...

. . .

r
r

Y1

Y1

Y2

Y2

Y3

Y3

Y4

Y4

Y5

Y5

· · ·

...

Yk

Yk

Y 1
1

Y 1
2

Y 1
3

Y 1
4

Y 2
3

Y 2
4 Y 3

4

Y 2
2

Y 3
3

Y 4
4

Y 4
4

Lemma If matrices M< have arbitrarily large grid minors,
some submatrices indexed by Yi ×Yi+1 also do.

22 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Grid Minors from One Component
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Excluding Grid Minors

Assume large grid minor on Y j
i and successors:

Row sets ↔ subforests of Y j
i ,

Column sets ↔ subpaths of Yi+1,
Non-zero entries → consecutivities.

Proof scheme:
Concentrate rows around r ∈Y j

i ,
Intertwining around r violates our order

Theorem (B,K,R,T,W ’21)
Theta-free graphs of girth at least 5 have
bounded twin-width.
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Further paths
Do sparse θ-free graphs have bounded queue/stack
number? Possibly through the same order.

Extend the approach to classes forbidding any subcubic
subgraph of the wall.

Thank you!

25 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Further paths
Do sparse θ-free graphs have bounded queue/stack
number? Possibly through the same order.
Extend the approach to classes forbidding any subcubic
subgraph of the wall.

Thank you!

25 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Further paths
Do sparse θ-free graphs have bounded queue/stack
number? Possibly through the same order.
Extend the approach to classes forbidding any subcubic
subgraph of the wall.

Thank you!

25 / 26



Introduction Parameters and Structure Connected BFS Decomposition Bounding the twin-width

Bibliography

N. L. D. Sintiari and N. Trotignon. “(Theta, triangle)-free and
(even hole, K4)-free graphs. Part 1 : Layered wheels”. In: CoRR
abs/1906.10998 (2019). arXiv: 1906.10998. url:
http://arxiv.org/abs/1906.10998
T. Abrishami, M. Chudnovsky, S. Hajebi, and S. Spirkl. “Induced
subgraphs and tree decompositions III. Three-path-configurations
and logarithmic treewidth”. In: (2021). arXiv: 2109.01310
[math.CO]
É. Bonnet, E. J. Kim, S. Thomassé, and R. Watrigant.
“Twin-width I: tractable FO model checking”. In: (2020). arXiv:
2004.14789 [cs.DS]

26 / 26

http://arxiv.org/abs/1906.10998

	Introduction
	Twin-width

	Parameters and Structure
	Connected BFS Decomposition
	Bounding the twin-width

