### Twin-width and forbidden subdivisions

Amadeus Reinald ENS de Lyon & IBS

*joint work with* Édouard Bonnet<sup>1</sup>, Eun Jung Kim, Stéphan Thomassé, Rémi Watrigant

DIMAG Seminar June 13th, 2022, IBS Daejeon

<sup>&</sup>lt;sup>1</sup>Some figures are courtesy of Édouard

Introduction •0000 Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

# Graphs and trigraphs



Fig. Graph: edges, non-edges

Introduction ●0000 Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

# Graphs and trigraphs



Fig. Trigraph: edges, non-edges, or red edges

Connected BFS Decomposition

Bounding the twin-width

## Contractions in trigraphs

• Idea behind twin-width: group near-twins.



# Contractions in trigraphs

- Idea behind twin-width: group near-twins.
- **Contraction** of *u* and *v*: record "twin" errors with red edges.





Connected BFS Decomposition

Bounding the twin-width

### Contractions in trigraphs

- Idea behind twin-width: group near-twins.
- Contraction of *u* and *v*: record "twin" errors with red edges.



edges to  $N(u) \triangle N(v)$  turn red, for  $N(u) \cap N(v)$  red is absorbing

Bounding the twin-width

# Twin-width

**Definition (Twin-width)** tww(G): minimal d such that G admits a **contraction sequence** where all trigraphs have **maximum red degree** at most d.



Maximum red degree = 0 overall maximum red degree = 0

Bounding the twin-width

# Twin-width

**Definition (Twin-width)** tww(G): minimal d such that G admits a **contraction sequence** where all trigraphs have **maximum red degree** at most d.



Bounding the twin-width

# Twin-width

**Definition (Twin-width)** tww(G): minimal d such that G admits a **contraction sequence** where all trigraphs have **maximum red degree** at most d.



Bounding the twin-width

# Twin-width

**Definition (Twin-width)** tww(G): minimal d such that G admits a **contraction sequence** where all trigraphs have **maximum red degree** at most d.



Bounding the twin-width

# Twin-width

**Definition (Twin-width)** tww(G): minimal d such that G admits a **contraction sequence** where all trigraphs have **maximum red degree** at most d.



Maximum red degree = 1 overall maximum red degree = 2

Bounding the twin-width

# Twin-width

**Definition (Twin-width)** tww(G): minimal d such that G admits a **contraction sequence** where all trigraphs have **maximum red degree** at most d.



Maximum red degree = 1 overall maximum red degree = 2

Bounding the twin-width

# Twin-width

**Definition (Twin-width)** tww(G): minimal d such that G admits a **contraction sequence** where all trigraphs have **maximum red degree** at most d.



Maximum red degree = 0overall maximum red degree = 2.

Bounding the twin-width

## Twin-width

**Definition (Twin-width)** tww(G): minimal d such that G admits a **contraction sequence** where all trigraphs have **maximum red degree** at most d.



Maximum red degree = 0 overall maximum red degree =  $2 \rightarrow tww(G) \le 2$ .

Connected BFS Decomposition

Bounding the twin-width

## Algorithmic Implications

### **Theorem (Bonnet, Kim, Thomassé, Watrigant '20)** For a graph G with tww d given a d-sequence, and any FO formula $\phi$ : Deciding $G \models \phi$ can be done in FPT time $f(|\phi|, d) \cdot n$ .

Connected BFS Decomposition

Bounding the twin-width

# Algorithmic Implications

**Theorem (Bonnet, Kim, Thomassé, Watrigant '20)** For a graph G with tww d given a d-sequence, and any FO formula  $\phi$ : Deciding  $G \models \phi$  can be done in FPT time  $f(|\phi|, d) \cdot n$ .

Some problems expressible in FO:

Connected BFS Decomposition

Bounding the twin-width

# Algorithmic Implications

**Theorem (Bonnet, Kim, Thomassé, Watrigant '20)** For a graph G with tww d given a d-sequence, and any FO formula  $\phi$ : Deciding  $G \models \phi$  can be done in FPT time  $f(|\phi|, d) \cdot n$ .

Some problems expressible in FO:

• k-IS :  $\exists x_1 ... \exists x_k \land_{1 \leq i \leq j \leq k} \neg (x_i = x_j \lor E(x_i, x_j)),$ 

Bounding the twin-width

# Algorithmic Implications

**Theorem (Bonnet, Kim, Thomassé, Watrigant '20)** For a graph G with tww d given a d-sequence, and any FO formula  $\phi$ : Deciding  $G \models \phi$  can be done in FPT time  $f(|\phi|, d) \cdot n$ .

Some problems expressible in FO:

- k-IS :  $\exists x_1 ... \exists x_k \land 1 \leq i \leq j \leq k} \neg (x_i = x_j \lor E(x_i, x_j)),$
- k-DS :  $\exists x_1 \dots \exists x_k \forall x \bigvee_{1 \leq i \leq k} (x = x_i) \lor \bigvee_{1 \leq i \leq k} E(x, x_i).$

Classes with bounded tww:

• Bounded treewidth, rank-width, queue/stack number,

Classes with bounded tww:

- Bounded treewidth, rank-width, queue/stack number,
- Proper minor-closed, map graphs, posets of bounded width...

Classes with bounded tww:

- Bounded treewidth, rank-width, queue/stack number,
- Proper minor-closed, map graphs, posets of bounded width...

In this talk: what structures/subgraphs are forced by high tww?

Classes with bounded tww:

- Bounded treewidth, rank-width, queue/stack number,
- Proper minor-closed, map graphs, posets of bounded width...

In this talk: what structures/subgraphs are forced by high tww?

### Theorem (B,K,R,T,W '21+)

Graphs of girth  $\ge$  5 forbidding **induced subdivisions** of theta have bounded twin-width.



#### Question

- High parameter  $G \Rightarrow$  forced structure/subgraph H?
- Equivalently: G forbidding  $H \Rightarrow$  low parameter?

#### Question

- High parameter  $G \Rightarrow$  forced structure/subgraph H?
- Equivalently: G forbidding  $H \Rightarrow$  low parameter?

A restrictive approach: forbidding minors

#### Question

- High parameter  $G \Rightarrow$  forced structure/subgraph H?
- Equivalently: G forbidding  $H \Rightarrow$  low parameter?

#### A restrictive approach: forbidding minors

• minor: *H* obtained from *G* by vertex deletion, edge deletion, edge contraction.

#### Question

- High parameter  $G \Rightarrow$  forced structure/subgraph H?
- Equivalently: G forbidding  $H \Rightarrow$  low parameter?

#### A restrictive approach: forbidding minors

• minor: *H* obtained from *G* by vertex deletion, edge deletion, edge contraction.

#### Theorem (B,K,T,W '20)

For any H, H-minor free graphs have bounded twin-width.

Connected BFS Decomposition

Bounding the twin-width

# Treewidth and Minors

#### Obstruction: $k \times k$ -walls have treewidth $\Omega(k)$ .



Fig. A  $6 \times 6$ -wall.

Connected BFS Decomposition

Bounding the twin-width

# Treewidth and Minors

#### Obstruction: $k \times k$ -walls have treewidth $\Omega(k)$ .



Fig. A  $6 \times 6$ -wall.

#### **Theorem (Robertson, Seymour '86)** Graphs forbidding a wall **minor** have bounded treewidth.

Bounding the twin-width

# Treewidth and induced subdivisions

Can we be less restrictive ?

Bounding the twin-width

# Treewidth and induced subdivisions

Can we be less restrictive ?

• Forbid induced subdivisions of some H?

# Treewidth and induced subdivisions

Can we be less restrictive ?

- Forbid induced subdivisions of some H?
- $K_t$  breaks induced subgraphs  $\rightarrow$  sparse classes

Bounding the twin-width

# Treewidth and induced subdivisions

Can we be less restrictive ?

- Forbid induced subdivisions of some H?
- $K_t$  breaks induced subgraphs  $\rightarrow$  sparse classes
- Sparse:  $K_t$ -free,  $K_{t,t}$ -free, high girth...

# Treewidth and induced subdivisions

Can we be less restrictive ?

- Forbid induced subdivisions of some H?
- $K_t$  breaks induced subgraphs  $\rightarrow$  sparse classes
- Sparse:  $K_t$ -free,  $K_{t,t}$ -free, high girth...

Question

Sparse + forbidden subdivision of subwall  $\Rightarrow$  bounded tw?

# Treewidth and induced subdivisions

```
Can we be less restrictive ?
```

- Forbid induced subdivisions of some H?
- $K_t$  breaks induced subgraphs  $\rightarrow$  sparse classes
- Sparse:  $K_t$ -free,  $K_{t,t}$ -free, high girth...

**Question** Sparse + forbidden subdivision of subwall  $\Rightarrow$  bounded tw?

A **theta** is a subdivision of  $K_{2,3}$ .

Bounding the twin-width

# Treewidth and induced subdivisions

```
Can we be less restrictive ?
```

- Forbid induced subdivisions of some H?
- $K_t$  breaks induced subgraphs  $\rightarrow$  sparse classes
- Sparse:  $K_t$ -free,  $K_{t,t}$ -free, high girth...

**Question** Sparse + forbidden subdivision of subwall  $\Rightarrow$  bounded tw?

A **theta** is a subdivision of  $K_{2,3}$ .



Bounding the twin-width

# Treewidth and induced thetas

### Theorem (Sintiari, Trotignon '19)

There exist theta-free graphs of arbitrarily large girth and treewidth.
Connected BFS Decomposition

Bounding the twin-width

#### Treewidth and induced thetas

# Theorem (Sintiari, Trotignon '19)

There exist theta-free graphs of arbitrarily large girth and treewidth.



Connected BFS Decomposition

Bounding the twin-width

# Treewidth and induced thetas

# Theorem (Sintiari, Trotignon '19)

There exist theta-free graphs of arbitrarily large girth and treewidth.



**Theorem (Abrishami, Chudnovsky, Hajebi, Spirkl '21)** There exists  $c \ s.t.$  for any (Theta, triangle)-free G,  $tw(G) \leq c \log(|V(G)|)$ .

Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

#### Degeneracy and induced subdivisions

For degeneracy:

#### Theorem

Any  $K_{t,t}$ -free graph forbidding an induced subdivision of H is f(t, H)-degenerate.

Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

#### Degeneracy and induced subdivisions

For degeneracy:

Theorem

Any  $K_{t,t}$ -free graph forbidding an induced subdivision of H is f(t, H)-degenerate.

What about twin-width?

Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

#### Twin-width and induced subgraphs

What graphs can we hope to forbid?

What graphs can we hope to forbid?

•  $o(\log(n))$ -subdivisions of  $K_n$  have unbounded tww.

What graphs can we hope to forbid?

- $o(\log(n))$ -subdivisions of  $K_n$  have unbounded tww.
- Subcubic graphs have unbounded tww

What graphs can we hope to forbid?

- $o(\log(n))$ -subdivisions of  $K_n$  have unbounded tww.
- Subcubic graphs have unbounded tww

Optimistic conjecture: forbidding any subcubic graph + sparse  $\Rightarrow$  bounded twin-width?

What graphs can we hope to forbid?

- $o(\log(n))$ -subdivisions of  $K_n$  have unbounded tww.
- Subcubic graphs have unbounded tww

Optimistic conjecture: forbidding any subcubic graph + sparse  $\Rightarrow$  bounded twin-width?

In this talk: forbid **theta-free**, girth  $\ge 5$ 



Connected BFS Decomposition

Bounding the twin-width

#### Twin-width and mixed minors

#### **Theorem (Bonnet, Kim, Thomassé, Watrigant '20)** If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$ .

Connected BFS Decomposition

Bounding the twin-width

#### Twin-width and mixed minors

**Theorem (Bonnet, Kim, Thomassé, Watrigant '20)** If  $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$  is t-mixed free, then  $tww(G) = 2^{2^{O(t)}}$ .

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |

Fig. A 3 mixed-minor and a 4-grid minor

Connected BFS Decomposition

Bounding the twin-width

#### Twin-width and mixed minors

**Theorem (Bonnet, Kim, Thomassé, Watrigant '20)** If  $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$  is t-mixed free, then  $tww(G) = 2^{2^{O(t)}}$ .

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |

Fig. A 3 mixed-minor and a 4-grid minor

In particular:  $\sigma$  forbidding *t*-grid minor  $\Rightarrow$  bounded tww.

Connected BFS Decomposition

Bounding the twin-width

# Twin-width and mixed minors

**Theorem (Bonnet, Kim, Thomassé, Watrigant '20)** If  $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$  is t-mixed free, then  $tww(G) = 2^{2^{O(t)}}$ .

|               | 1           | 1         | 1       | 1     | 1   | 1 | 0 |
|---------------|-------------|-----------|---------|-------|-----|---|---|
| 1 1           | 1           |           | 0       | 0     | 1   | 0 | 1 |
| 0 0 0 0       | 0 0 0       | 0 (       | (       | C     | 0   | 0 | 1 |
| 1 0 0 1       | 0 0 1       | 0 1       | 1       |       | 0   | 1 | 0 |
| 0 0 1 1 0     | 0 1 1 (     | 1 1 (     | 1 (     | (     | )   | 1 | 0 |
| 1 1 1 1 1 0   | 1 1 1 1 0   | 1 1 1 0   | 1 1 0   | 1 0   | 0   |   | 0 |
| 0 1 1 1 0 0 1 | 1 1 1 0 0 1 | 1 1 0 0 1 | 1 0 0 1 | 0 0 1 | 0 1 | 1 |   |

Fig. A 3 mixed-minor and a 4-grid minor

In particular:  $\sigma$  forbidding *t*-grid minor  $\Rightarrow$  bounded tww. Example: DFS on trees.

| Introduction<br>00000 | Parameters and Structure | Connected BFS Decomposition | Bounding the twin-width |
|-----------------------|--------------------------|-----------------------------|-------------------------|
| Roadmap               |                          |                             |                         |

• Find a grid-free **order**  $\Rightarrow$  bounded twin-width,

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |

| Introduction F | Parameters and Structure<br>0000000● | Connected BFS Decomposition | Bounding the twin-width |
|----------------|--------------------------------------|-----------------------------|-------------------------|
| Roadmap        |                                      |                             |                         |

- Find a grid-free **order**  $\Rightarrow$  bounded twin-width,
- Build an order according to structural properties of the class,

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |

| Introduction<br>00000 | Parameters and Structure<br>0000000● | Connected BFS Decomposition | Bounding the twin-width |
|-----------------------|--------------------------------------|-----------------------------|-------------------------|
| Roadmap               |                                      |                             |                         |

- Find a grid-free **order**  $\Rightarrow$  bounded twin-width,
- Build an order according to structural properties of the class,
- Large grid minors  $\Rightarrow$  witness induced thetas.





| OCOCO OC | arameters and Structure | Connected BFS Decomposition | Bounding the twin-width |
|----------|-------------------------|-----------------------------|-------------------------|
| Roadmap  |                         |                             |                         |

- Find a grid-free **order**  $\Rightarrow$  bounded twin-width,
- Build an order according to structural properties of the class,
- Large grid minors  $\Rightarrow$  witness induced thetas.





Candidates: BFS, DFS...

| Introduction<br>00000 | Parameters and Structure | Connected BFS Decomposition | Bounding the twin-width |
|-----------------------|--------------------------|-----------------------------|-------------------------|
| Roadmap               |                          |                             |                         |

- Find a grid-free **order** ⇒ bounded twin-width,
- Build an order according to structural properties of the class,
- Large grid minors  $\Rightarrow$  witness induced thetas.





Candidates: BFS, DFS...

Little information on **connected** subgraphs, hard finding thetas.

Connected BFS Decomposition

Bounding the twin-width

#### Connected BFS Decomposition

Idea: BFS exploring connected parts instead of vertices.

Connected BFS Decomposition

Bounding the twin-width

#### Connected BFS Decomposition

Idea: BFS exploring **connected parts** instead of vertices.  $Y \subseteq V$  is a **minimal connected neighbourhood** of  $X \subseteq V$  if:

Connected BFS Decomposition

Bounding the twin-width

#### Connected BFS Decomposition

Idea: BFS exploring **connected parts** instead of vertices.  $Y \subseteq V$  is a **minimal connected neighbourhood** of  $X \subseteq V$  if:

•  $N(X) \subseteq Y$ ,

Connected BFS Decomposition

Bounding the twin-width

#### Connected BFS Decomposition

Idea: BFS exploring **connected parts** instead of vertices.  $Y \subseteq V$  is a **minimal connected neighbourhood** of  $X \subseteq V$  if:

- $N(X) \subseteq Y$ ,
- $y, y' \in Y$  in the same CC of  $G \setminus X$  are in the same CC of G[Y].

Connected BFS Decomposition

Bounding the twin-width

#### Connected BFS Decomposition

Idea: BFS exploring connected parts instead of vertices.

- $Y \subseteq V$  is a **minimal connected neighbourhood** of  $X \subseteq V$  if:
  - $N(X) \subseteq Y$ ,

•  $y, y' \in Y$  in the same CC of  $G \setminus X$  are in the same CC of G[Y]. Connected BFS:  $Y_0 = \{v\}$ ,



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

# Connected BFS Decomposition

Idea: BFS exploring connected parts instead of vertices.

- $Y \subseteq V$  is a **minimal connected neighbourhood** of  $X \subseteq V$  if:
  - $N(X) \subseteq Y$ ,

•  $y, y' \in Y$  in the same CC of  $G \setminus X$  are in the same CC of G[Y]. Connected BFS:  $Y_0 = \{v\}$ ,



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

#### Connected BFS Decomposition

Idea: BFS exploring connected parts instead of vertices.

- $Y \subseteq V$  is a **minimal connected neighbourhood** of  $X \subseteq V$  if:
  - $N(X) \subseteq Y$ ,
  - $y, y' \in Y$  in the same CC of  $G \setminus X$  are in the same CC of G[Y].



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

#### Connected BFS Decomposition

Idea: BFS exploring connected parts instead of vertices.

- $Y \subseteq V$  is a **minimal connected neighbourhood** of  $X \subseteq V$  if:
  - $N(X) \subseteq Y$ ,
  - $y, y' \in Y$  in the same CC of  $G \setminus X$  are in the same CC of G[Y].



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

#### Connected BFS Decomposition

Idea: BFS exploring connected parts instead of vertices.

- $Y \subseteq V$  is a **minimal connected neighbourhood** of  $X \subseteq V$  if:
  - $N(X) \subseteq Y$ ,
  - $y, y' \in Y$  in the same CC of  $G \setminus X$  are in the same CC of G[Y].



Connected BFS Decomposition

Bounding the twin-width

#### Connected BFS Decomposition

Idea: BFS exploring **connected parts** instead of vertices.  $Y \subseteq V$  is a **minimal connected neighbourhood** of  $X \subseteq V$  if:

- $N(X) \subseteq Y$ ,
- $y, y' \in Y$  in the same CC of  $G \setminus X$  are in the same CC of G[Y].



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

## Global structure



Let  $Y_i^j$  be the *j*-th connected component of  $G[Y_i]$  ordered lexicographically.

Parameters and Structure

Connected BFS Decomposition 0 + 00000

Bounding the twin-width

# Global structure



Let  $Y_i^j$  be the *j*-th connected component of  $G[Y_i]$  ordered lexicographically.

•  $Y_i$  is only adjacent to  $Y_{i-1}$  and  $Y_{i+1}$ ,

Parameters and Structure

Connected BFS Decomposition 0 + 00000

Bounding the twin-width

# Global structure



Let  $Y_i^j$  be the *j*-th connected component of  $G[Y_i]$  ordered lexicographically.

- $Y_i$  is only adjacent to  $Y_{i-1}$  and  $Y_{i+1}$ ,
- $Y_i$  has an unique antecedent  $Y_{i-1}^j$  (otherwise, better  $Y_{i-1}^j$ ).

Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

# Global structure



Let  $Y_i^j$  be the *j*-th connected component of  $G[Y_i]$  ordered lexicographically.

•  $Y_i$  is only adjacent to  $Y_{i-1}$  and  $Y_{i+1}$ ,

•  $Y_i$  has an unique antecedent  $Y_{i-1}^j$  (otherwise, better  $Y_{i-1}^j$ ). Global relation between components: tree = "simple" / tww.

Connected BFS Decomposition

Bounding the twin-width

#### Component structure

Does complexity lie **inside** components  $Y_i^j$ ?

Connected BFS Decomposition

Bounding the twin-width

#### Component structure

Does complexity lie **inside** components  $Y_i^j$ ? **No** 

**Lemma** For any CBFS of G, each  $Y_i^j$  is a tree.

Connected BFS Decomposition

Bounding the twin-width

#### Component structure

Does complexity lie **inside** components  $Y_i^j$ ? **No** 

**Lemma** For any CBFS of G, each  $Y_i^j$  is a tree. Moreover, each  $v \in Y_i^j$  has an unique antecedent  $v^{-1} \in Y_{i-1}$ .

#### Component structure

Does complexity lie **inside** components  $Y_i^j$ ? **No** 

**Lemma** For any CBFS of G, each  $Y_i^j$  is a tree. Moreover, each  $v \in Y_i^j$  has an unique antecedent  $v^{-1} \in Y_{i-1}$ .

→ Complexity must lie in adjacencies **between** components...
Connected BFS Decomposition

Bounding the twin-width

#### Component structure

Does complexity lie **inside** components  $Y_i^j$ ? **No** 

**Lemma** For any CBFS of G, each  $Y_i^j$  is a tree. Moreover, each  $v \in Y_i^j$  has an unique antecedent  $v^{-1} \in Y_{i-1}$ .

 $\hookrightarrow \mathsf{Complexity} \ \mathsf{must} \ \mathsf{lie} \ \mathsf{in} \ \mathsf{adjacencies} \ \mathbf{between} \ \mathsf{components}...$ 

Describe the structure between layers,

# Component structure

Does complexity lie **inside** components  $Y_i^j$ ? **No** 

**Lemma** For any CBFS of G, each  $Y_i^j$  is a tree. Moreover, each  $v \in Y_i^j$  has an unique antecedent  $v^{-1} \in Y_{i-1}$ .

- $\hookrightarrow$  Complexity must lie in adjacencies **between** components...
  - Describe the structure between layers,
  - **2** Use it to guide our **ordering** choice.

Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

# Component-Antecedent Structure



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

# Component-Antecedent Structure



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

# Component-Antecedent Structure



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

# Component-Antecedent Structure



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

# Component-Antecedent Structure



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

# Component-Antecedent Structure



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

## Component-Antecedent Structure

How do successors of **different** vertices of  $Y_{i-1}$  relate in  $Y_i$ ?



**Lemma** For any  $Y_i^j$ , there is a **principal path**  $P_i^j$  s.t. any successor  $v \in Y_i^j$  belongs to a  $v^{-1}$ -private branch of  $P_i^j$ .

Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width 0000000

# Component-Antecedent Structure

How do successors of **different** vertices of  $Y_{i-1}$  relate in  $Y_i$ ?



**Lemma** For any  $Y_i^j$ , there is a **principal path**  $P_i^j$  s.t. any successor  $v \in Y_i^j$  belongs to a  $v^{-1}$ -private branch of  $P_i^j$ .

Natural order: follow  $P_i^j$  exhausting private branches along the way.

Connected BFS Decomposition

Bounding the twin-width

#### **Component-Successors Structure**

**Locally:** for any vertex r in component  $Y_i^j$ :

Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

### Component-Successors Structure

**Locally:** for any vertex r in component  $Y_i^j$ :

•  $Y_i^j$  = tree  $\rightarrow$  *r*-branches are simple,



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

#### **Component-Successors Structure**

**Locally:** for any vertex r in component  $Y_i^j$ :

- $Y_i^j$  = tree  $\rightarrow$  *r*-branches are simple,
- Complexity = *r*-branches intertwining **using**  $Y_{i+1}$ ,



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width 0000000

### Component-Successors Structure

**Locally:** for any vertex r in component  $Y_i^j$ :

- $Y_i^j$  = tree  $\rightarrow$  *r*-branches are simple,
- Complexity = *r*-branches intertwining **using**  $Y_{i+1}$ ,

**Definition** *Consecutivity: shortest path between successors of two different r-branches.* 



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width 0000000

# Component-Successors Structure

**Locally:** for any vertex r in component  $Y_i^j$ :

- $Y_i^j$  = tree  $\rightarrow$  *r*-branches are simple,
- Complexity = *r*-branches intertwining **using**  $Y_{i+1}$ ,

**Definition** *Consecutivity: shortest path between successors of two different r-branches.* 

**Lemma** All but two r-branches admit at most two consecutivities.



Connected BFS Decomposition

Bounding the twin-width

# Constructing the total order

• **Globally:** components  $Y_i^j$  related as a tree

Connected BFS Decomposition

Bounding the twin-width

#### Constructing the total order

- **Globally:** components  $Y_i^j$  related as a tree
- → follow the CBFS order lexicographically.

Bounding the twin-width

# Constructing the total order

- **Globally:** components  $Y_i^j$  related as a tree
- → follow the CBFS order lexicographically.



#### Fig. Inter-component BFS

Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

# Constructing the total order

- **Globally:** components  $Y_i^j$  related as a tree
- → follow the CBFS order lexicographically.



Fig. Inter-component BFS

• Locally: branches in  $Y_i^j$ : little intertwining on  $Y_{i+1}$ 

Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

# Constructing the total order

- **Globally:** components  $Y_i^j$  related as a tree
- → follow the CBFS order lexicographically.

- Locally: branches in  $Y_i^J$ : little intertwining on  $Y_{i+1}$
- → DFS: order branches / consecutivity cycles



#### Fig. Inter-component BFS

Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

# Constructing the total order

- **Globally:** components  $Y_i^j$  related as a tree
- → follow the CBFS order lexicographically.

- $\begin{array}{c} & Y_{0} \\ & Y_{1}^{1} \\ & Y_{2}^{2} \\ & Y_{2}^{2} \\ & Y_{3}^{2} \\ & Y_{3}^{2} \\ & Y_{3}^{3} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Y_{1}^{2} \\ & Y_{2}^{2} \\ & Y_{3}^{2} \\ & Y_{3}^{3} \\ & Y_{3}^{4} \\ \end{array} \\ \end{array}$ 
  - Fig. Inter-component BFS

- Locally: branches in  $Y_i^J$ : little intertwining on  $Y_{i+1}$
- → DFS: order branches / consecutivity cycles



Fig. Intra-component DFS

Parameters and Structure 00000000 Connected BFS Decomposition

Bounding the twin-width  $\bullet$ 000000

# Bounding the twin-width

Graphs in the class  $\rightarrow$  corresponding **ordered** matrices  $M_{<:}$ 

Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width  $\bullet$ 000000

# Bounding the twin-width

Graphs in the class  $\rightarrow$  corresponding **ordered** matrices  $M_{<:}$ 

Roadmap:

Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

# Bounding the twin-width

Graphs in the class  $\rightarrow$  corresponding **ordered** matrices  $M_{<:}$ 

Roadmap:

Assume existence of arbitrarily large minors,

Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width •000000

# Bounding the twin-width

Graphs in the class  $\rightarrow$  corresponding **ordered** matrices  $M_{<:}$ 

Roadmap:

- Assume existence of arbitrarily large minors,
- 2 Use global order to localize them,

Connected BFS Decomposition

Bounding the twin-width

# Bounding the twin-width

Graphs in the class  $\rightarrow$  corresponding **ordered** matrices  $M_{<:}$ 

Roadmap:

- Assume existence of arbitrarily large minors,
- 2 Use global order to localize them,
- **③** Use local order to yield a contradiction.

Connected BFS Decomposition

Bounding the twin-width  $0 \bullet 00000$ 

- **Globally:** We have ordered layers  $Y_0 < Y_1 < ... < Y_k$ .
- Where can a large grid minor lie?

Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width 000000

- **Globally:** We have ordered layers  $Y_0 < Y_1 < ... < Y_k$ .
- Where can a large grid minor lie?



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

- **Globally:** We have ordered layers  $Y_0 < Y_1 < ... < Y_k$ .
- Where can a large grid minor lie?



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width 000000

- **Globally:** We have ordered layers  $Y_0 < Y_1 < ... < Y_k$ .
- Where can a large grid minor lie?



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

- **Globally:** We have ordered layers  $Y_0 < Y_1 < ... < Y_k$ .
- Where can a large grid minor lie?



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

#### Grid minors among successive layers

- **Globally:** We have ordered layers  $Y_0 < Y_1 < ... < Y_k$ .
- Where can a large grid minor lie?



**Lemma** If matrices  $M_{<}$  have arbitrarily large grid minors, some submatrices indexed by  $(Y_i \cup Y_{i+1})^2$  also do.

Connected BFS Decomposition

Bounding the twin-width

#### Grid minors between successive layers

**Locally:**  $Y_i$  are forests  $\rightarrow$  bounded tww (DFS)  $\rightarrow$ 



Connected BFS Decomposition

Bounding the twin-width

#### Grid minors between successive layers

**Locally:**  $Y_i$  are forests  $\rightarrow$  bounded tww (DFS)  $\rightarrow$  no large grid minors



Connected BFS Decomposition

Bounding the twin-width

#### Grid minors between successive layers

**Locally:**  $Y_i$  are forests  $\rightarrow$  bounded tww (DFS)  $\rightarrow$  no large grid minors



Connected BFS Decomposition

Bounding the twin-width

#### Grid minors between successive layers

**Locally:**  $Y_i$  are forests  $\rightarrow$  bounded tww (DFS)  $\rightarrow$  no large grid minors



**Lemma** If matrices  $M_{<}$  have arbitrarily large grid minors, some submatrices indexed by  $Y_i \times Y_{i+1}$  also do.
Connected BFS Decomposition

Bounding the twin-width

### Grid Minors from One Component

Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

### Grid Minors from One Component



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

### Grid Minors from One Component



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

### Grid Minors from One Component



**Lemma** If  $M_{<}$  admit arbitrarily large grid minors, some submatrices indexed by  $Y_{i}^{j}$  and its successors do too.

Parameters and Structure 00000000 Connected BFS Decomposition

Bounding the twin-width 0000000

## Excluding Grid Minors

Assume large grid minor on  $Y_i^j$  and successors:



Parameters and Structure

Connected BFS Decomposition

Bounding the twin-width

# Excluding Grid Minors

Assume large grid minor on  $Y_i^j$  and successors:

• Row sets  $\leftrightarrow$  subforests of  $Y_i^j$ ,



Connected BFS Decomposition

Bounding the twin-width 0000000

# Excluding Grid Minors

Assume large grid minor on  $Y_i^j$  and successors:

- Row sets  $\leftrightarrow$  subforests of  $Y_i^j$ ,
- Column sets  $\leftrightarrow$  subpaths of  $Y_{i+1}$ ,



Connected BFS Decomposition

Bounding the twin-width

# Excluding Grid Minors

Assume large grid minor on  $Y_i^j$  and successors:

- Row sets  $\leftrightarrow$  subforests of  $Y_i^j$ ,
- Column sets  $\leftrightarrow$  subpaths of  $Y_{i+1}$ ,
- Non-zero entries → **consecutivities**.



Connected BFS Decomposition

Bounding the twin-width

# Excluding Grid Minors

Assume large grid minor on  $Y_i^j$  and successors:

- Row sets  $\leftrightarrow$  subforests of  $Y_i^j$ ,
- Column sets  $\leftrightarrow$  subpaths of  $Y_{i+1}$ ,
- Non-zero entries → **consecutivities**.

Proof scheme:



Connected BFS Decomposition

Bounding the twin-width 0000000

# Excluding Grid Minors

Assume large grid minor on  $Y_i^j$  and successors:

- Row sets  $\leftrightarrow$  subforests of  $Y_i^j$ ,
- Column sets  $\leftrightarrow$  subpaths of  $Y_{i+1}$ ,
- Non-zero entries → **consecutivities**.

#### Proof scheme:

• Concentrate rows around  $r \in Y_i^j$ ,



Connected BFS Decomposition

Bounding the twin-width 0000000

# Excluding Grid Minors

Assume large grid minor on  $Y_i^j$  and successors:

- Row sets  $\leftrightarrow$  subforests of  $Y_i^j$ ,
- Column sets  $\leftrightarrow$  subpaths of  $Y_{i+1}$ ,
- Non-zero entries → **consecutivities**.

#### Proof scheme:

• Concentrate rows around  $r \in Y_i^j$ ,



Connected BFS Decomposition

Bounding the twin-width 0000000

# Excluding Grid Minors

Assume large grid minor on  $Y_i^j$  and successors:

- Row sets  $\leftrightarrow$  subforests of  $Y_i^j$ ,
- Column sets  $\leftrightarrow$  subpaths of  $Y_{i+1}$ ,
- Non-zero entries → **consecutivities**.

#### Proof scheme:

- Concentrate rows around  $r \in Y_i^j$ ,
- Intertwining around r violates our order



Connected BFS Decomposition

Bounding the twin-width

# Excluding Grid Minors

Assume large grid minor on  $Y_i^j$  and successors:

- Row sets  $\leftrightarrow$  subforests of  $Y_i^j$ ,
- Column sets  $\leftrightarrow$  subpaths of  $Y_{i+1}$ ,
- Non-zero entries → **consecutivities**.

#### Proof scheme:

- Concentrate rows around  $r \in Y_i^j$ ,
- Intertwining around r violates our order

#### **Theorem (B,K,R,T,W '21)** Theta-free graphs of girth at least 5 have bounded twin-width.



Connected BFS Decomposition

Bounding the twin-width 000000

### Further paths

 Do sparse θ-free graphs have bounded queue/stack number? Possibly through the same order.

### Further paths

- Do sparse θ-free graphs have bounded queue/stack number? Possibly through the same order.
- Extend the approach to classes forbidding any subcubic subgraph of the wall.

Connected BFS Decomposition

Bounding the twin-width

### Further paths

- Do sparse θ-free graphs have bounded queue/stack number? Possibly through the same order.
- Extend the approach to classes forbidding any subcubic subgraph of the wall.

#### Thank you!



### Bibliography

N. L. D. Sintiari and N. Trotignon. "(Theta, triangle)-free and (even hole,  $K_A$ )-free graphs. Part 1 : Layered wheels". In: CoRR abs/1906.10998 (2019). arXiv: 1906.10998. URL: http://arxiv.org/abs/1906.10998 T. Abrishami, M. Chudnovsky, S. Hajebi, and S. Spirkl. "Induced subgraphs and tree decompositions III. Three-path-configurations and logarithmic treewidth". In: (2021). arXiv: 2109.01310 [math.CO] É. Bonnet, E. J. Kim, S. Thomassé, and R. Watrigant. "Twin-width I: tractable FO model checking". In: (2020). arXiv: 2004.14789 [cs.DS]