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Preface

The notion of algorithmic complexity (also sometimes called algorithmic en­
tropy) appeared in the 1960s in between the theory of computation, probability 
theory, and information theory.

The idea of A. N. Kolmogorov was to measure the amount of information 
in finite objects (and not in random variables, as it is done in classical Shannon 
information theory). His famous paper [78], published in 1965, explains how this 
can be done (up to a bounded additive term) using the algorithmic approach.

Similar ideas were suggested a few years earlier by R. Solomonoff (see [187] 
and his other papers; the historical account and reference can be found in [103]).1 
The motivation of Solomonoff was quite different. He tried to define the notion 
of a priori probability. Imagine there is some experiment (random process) and 
we know nothing about its internal structure. Can we say something about the 
probabilities of different outcomes in this situation? One can relate this to the 
complexity measures saying that simple objects have greater a priori probability 
than complex ones. (Unfortunately, Solomonoff’s work become popular only after 
Kolmogorov mentioned it in his paper.)

In 1965 G. Chaitin (then an 18-year-old undergraduate student) submitted 
two papers [28] and [29]; they were published in 1966 and 1969, respectively. In 
the second paper he proposed the same definition of algorithmic complexity as 
Kolmogorov.

The basic properties of Kolmogorov complexity were established in the 1970s. 
Working independently, С. P. Schnorr and L. Levin (who was a student of Kol­
mogorov) found a link between complexity and the notion of algorithmic random­
ness (introduced in 1966 by P. Martin-Löf [115]). To achieve this, they introduced 
a slightly different version of complexity, the so-called monotone complexity. Also 
Solomonoff’s ideas about a priori probability were formalized in the form of prefix 
complexity, introduced by Levin and later by Chaitin. The notions of complexity 
turned out to be useful both for theory of computation and probability theory.

Kolmogorov complexity became popular (and for a good reason: it is a basic and 
philosophically important notion of algorithm theory) after M. Li and P. Vitânyi 
published a book on the subject [103] (first edition appeared in 1993). Almost 
everything about Kolmogorov complexity that was known at the moment was cov­
ered in the book or at least mentioned as an exercise. This book also provided a 
detailed historical account, references to first publications, etc. Then the books of
C. Calude [25] and A. Nies [147] appeared, as well as the book of R. Downey and
D. Hirschfeldt [49]. These books cover many interesting results obtained recently

1Kolmogorov wrote in [79], “I came to a similar notion not knowing about Solomonoff’s 
work.”

XI



PREFACExii

(in particular, the results that relate complexity and randomness with classical 
recursion theory).

Our book does not try to be comprehensive (in particular, we do not say much 
about the recent results mentioned above). Instead, we tried to select the most 
important topics and results (both from the technical and philosophical viewpoints) 
and to explain them clearly. We do not say much about the history of the topic: 
as is usually done in textbooks, we formulate most statements without references, 
but this does not mean (of course) any authorship claim.

We start the book with a section “What is this book about?” where we try to 
give a brief overview of the main ideas and topics related to Kolmogorov complexity 
and algorithmic randomness so the reader can browse this section to decide whether 
the book is worth reading.

As an appendix we reproduce the (English translation) of a small brochure 
written by one of the authors (V.U.), based on his talk for high school students 
and undergraduates (July 23, 2005) delivered during the “Modern Mathematics” 
Summer School (Dubna near Moscow); the brochure was published in 2006 by 
MCCME publishing house (Moscow). The lecture was devoted to different notions 
of algorithmic randomness, and the reader who has no time or incentive to study 
the corresponding chapters of the book in detail can still get some acquaintance 
with this topic.

Unfortunately, the notation and terminology related to Kolmogorov complexity 
is not very logical (and different people often use different notation). Even the same 
authors use different notation in different papers. For example, Kolmogorov used 
both the letters К  and H  in his two basic publications [78, 79]. In [78] he used 
the term “complexity” and denoted the complexity of a string x by K(x). Later 
in [79] he used the term “entropy” (borrowed from Shannon information theory) 
for the same notion that was called “complexity” in [78]. Shannon information 
theory is based on probability theory; Kolmogorov had an ambitious plan to con­
struct a parallel theory that does not depend on the notion of probability. In [79] 
Kolmogorov wrote, using the same word entropy in this new sense:

The ordinary definition of entropy uses probability concepts, and 
thus does not pertain to individual values, but to random val­
ues, i.e., to probability distributions within a group of values. 
[...] By far, not all applications of information theory fit ratio­
nally into such an interpretation of its basic concepts. I believe 
that the need for attaching definite meanings to the expressions 
H(x\y) and I(x\y), in the case of individual values x and у that 
are not viewed as a result of random tests with a definite law 
of distribution, was realized long ago by many who dealt with 
information theory.

As far as I know, the first paper published on the idea of 
revising information theory so as to satisfy the above conditions 
was the article of Solomonoff [187]. I came to similar conclu­
sions, before becoming aware of Solomonoff’s work in 1963-1964, 
and published my first article on the subject [78] in early 1965.
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The meaning of the new definition is very simple. Entropy 
H(x\y) is the minimal [bit] length of a [...] program P that per­
mits construction of the value of x, the value of y being known,

# (я |г /)=  min 1{P).
A(P,y)—x

This concept is supported by the general theory of “computable”
(partially recursive) functions, i.e., by theory of algorithms in 
general.

[...] The preceding rather superficial discourse should prove 
two general theses.

1) Basic information theory concepts must and can be 
founded without recourse to the probability theory, and in such 
a manner that “entropy” and “mutual information” concepts are 
applicable to individual values.

2) Thus introduced, information theory concepts can form 
the basis of the term random,, which naturally suggests that ran­
domness is the absence of regularities.2

And earlier (April 23, 1965), giving a talk “The notion of information and the 
foundations of the probability theory” at the Institute of Philosophy of the USSR 
Academy of Sciences, Kolmogorov said:

So the two problems arise sequentially:
1. Is it possible to free the information theory (and the 

notion of the “amount of information” ) from probabilities?
2. It is possible to develop the intuitive idea of randomness 

as incompressibility (the law describing the object cannot be 
shortened)?

(The transcript of his talk was published in [85] on p. 126).
So Kolmogorov uses the term “entropy” for the same notion that was named 

“complexity” in his first paper, and denotes it by letter H  instead of К .
Later the same notion was denoted by C (see, e.g., [103]) while the letter К  

is used for prefix complexity (denoted by KP(x) in Levin’s papers where prefix 
complexity was introduced).

Unfortunately, attempts to unify the terminology and notation made by differ­
ent people (including the authors) have lead mostly to increasing confusion. In the 
English version of this book we follow the terminology that is most used nowadays, 
with few exceptions, and we mention the other notation used. For the reader’s 
convenience, a list of notation used (p. xv) and index (p. 505) are provided.

Acknowledgments
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2The published English version of this paper says “random is the absence of periodicity”, 
but this evidently is a translation error, and we correct the text following the Russian version.
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Basic notions and notation

This section is intended for people who are already familiar with some notions 
of Kolmogorov complexity and algorithmic randomness theory and want to take 
a quick look at the terminology and notation used throughout this book. Other 
readers can (and probably should) skip it and look back only when needed.

The set of all integer numbers is denoted by Z, the notation N refers to the 
set of all non-negative integers (i.e., natural numbers), R stands for the set of all 
reals. The set of all rational numbers is denoted by Q. Dyadic rationale are those 
rationale having the form m /2n for some integer m  and n.

The cardinality of a set A is denoted by \A\.
When the base of the logarithmic function is omitted, it is assumed that the 

base equals 2, thus logx means the same as log2 x (as usual, ln:r denotes the natural 
logarithm).

We use the notation [x\ for the integer part of a real number x (the largest 
integer number that is less than or equal to x). Similarly, \x] denotes the smallest 
integer number that is larger than or equal to x.

Orders of magnitude. The notation /  ^  g+ 0(1), where /  and g are expressions 
containing variables, means that for some c the inequality /  ^  g + c holds for all 
values of variables. In a similar way we understand the expression /  ^  g + 0(h) 
(where h is non-negative): it means that for some c for all values of variables, the 
inequality /  ^  g + ch holds. The notation f  — g + 0(h) (where h is non-negative) 
means that for some c for all values of variables we have \f — g\ ^  ch. In particular, 
/  = 0 (h ) holds if l/l ^  ch for some constant c; the notation /  = Q(h) means that 
l/l ^  ch for some constant c > 0 (usually /  is positive). The notation /  = 0(fi) 
means that c\h ^  |/ | ^  C2/1 (again, usually /  is positive).

В denotes the set {0,1}. Finite sequences of zeros and ones are called binary 
strings. The set of all binary strings is denoted by E. If A is a finite set (an 
alphabet), then An denotes the set of all strings of length n over the alphabet A, 
that is, the set of all sequences of length n, whose terms belong to A. We denote 
by A* the set of all strings over the alphabet A (including the empty string A of 
length 0). For instance, E — B*. The length of a string x is denoted by l(x). The 
notation ab refers to the concatenation of strings a and b, that is, the result of 
appending b to a. We say that a string a is a prefix of a string b if b = ax for some 
string x. We say that a is a suffix of a string b if b = xa for some string x. We say 
that a is a substring of b, if b = xay for some strings x and у (m other words, a is 
a suffix of a prefix of b or the other way around).

We also consider infinite sequences of zeros and ones, and Q denotes the set of 
all such sequences. The set of infinite sequences of elements of a set A is denoted 
by A°°, thus D, = B°°. For a finite sequence x we use the notation Qx for the set of 
all infinite sequences that start with x (i.e., have x as a prefix). Sets of this form

X V



X V I BASIC NOTIONS AND NOTATION

are called intervals. The concatenation xoj of a finite sequence x and an infinite 
sequence w is defined in a natural way.

In some contexts it is convenient to consider finite and infinite sequences to­
gether. We use the notation E for the set of all finite and infinite sequences of zeros 
and ones, i.e., E = SUfi, and Ex denotes the set of all finite and infinite extensions 
of a string x.

We consider computable functions whose arguments and values are binary 
strings. Unless stated otherwise, functions are partial (not necessarily total). A 
function /  is called computable if there is a machine (a program, an algorithm) 
that for all x, such that f (x)  is defined, halts on input x and outputs the result 
f (x)  and does not halt on all inputs x outside the domain of / .  We also consider 
computable functions whose arguments and values are finite objects of different 
type, like natural numbers, integer numbers, finite graphs, etc. We assume that 
finite objects are encoded by binary strings. The choice of an encoding is not im­
portant provided different encodings can be translated to each other. The latter 
means that we can algorithmically decide whether a string is an encoding of an 
object and, if this is the case, we can find an encoding of the same object with 
respect to the other encoding.

Sometimes we consider computable functions of infinite objects, like real num­
bers or measures. Such considerations require rigorous definitions of the notion of 
computability, which are provided when needed (see below).

A set of finite objects (binary strings, natural numbers, etc.) is called com- 
putably enumerable, or just enumerable, if there is a machine (a program, an algo­
rithm) without input that prints all elements from the set (and no other elements) 
with arbitrary delays between printing consecutive elements. The algorithm is not 
required to halt even when the set is finite. The order in which the elements are 
printed can be arbitrary.

A real number a is computable if there exists an algorithm that computes 
a with any given precision: for any given rational e > 0, the algorithm must 
produce a rational number at distance at most £ from a (in this case we say that 
the algorithm computes the number). A real number a is lower semicomputable 
if it can be represented as a limit of a non-decreasing computable sequence of 
rational numbers. An equivalent definition: a is lower semicomputable if the set of 
rational numbers that are less than a is enumerable. A sequence of real numbers 
is computable if all its terms are computable, and given any n we are able to find 
an algorithm computing the nth number in the sequence. The notion of a lower 
semicomputable sequence of reals is defined in an entirely similar way (for any given 
n we have to find an algorithm that lower semicomputes the nth number).

We consider measures (more specifically, probability measures, or probability 
distributions) on Q. Every measure can be identified by its values on intervals flx. 
So measures are identified with non-negative functions p on strings which satisfy 
the following two conditions: p{A) = 1 and p(x) = p(x0) + p(x 1) for all x. Such 
measures are called measures on the binary tree. We consider also semimeasures 
on the binary tree, which are probability measures on the space E of all finite and 
infinite binary sequences. They correspond to functions p such that p(A) = 1 and 
p(x) ^  p(x0) + p(xl). We consider also semimeasures on natural numbers, which are 
defined as sequences {pi} of non-negative reals with YlienPi ^  1- ^  natural to
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identify such sequences with probability distributions on the set Nj_, which consists 
of natural numbers and of the special symbol _L (undefined value).

Among all semimeasures (on the tree or on natural numbers) we distinguish 
lower semicornputable ones. Both the class of lower seinicomputable serniineasures 
on the tree and the class of lower semicornputable semimeasures on natural numbers 
have a maximal semimeasure (up to a multiplicative constant). Any maximal lower 
semicornputable semimeasure is called an a priori probability (on the tree or on 
natural numbers). The a priori probability of a natural number n is denoted by 
m(n); the a priori probability of a node x in the binary tree (that is, of the string x) 
is denoted by a(x). We use also the notation m{x) for a binary string x, which means 
an a priori probability of the number of x with respect to some fixed computable 
one-to-one correspondence between strings and natural numbers.

The plain Kolmogorov complexity is denoted by C(x), the prefix Kolmogorov 
complexity is denoted by K (x) (and by K'{x) when we want to stress that we are us­
ing prefix-free description modes). The same letters are used to denote complexities 
of pairs, triples, etc., and to denote conditional complexity. For instance, C(x\y) 
stands for the plain conditional complexity of x when у is known, and m(x,y\z)  
denotes the a priori probability of the pair (x,y) (that is, of the corresponding 
number) when z is known. The monotone Kolmogorov complexity is denoted by 
AM, and the a priori complexity (negative logarithm of the a priori probability on 
the tree) is denoted by K A . (In the literature monotone complexity is sometimes 
denoted by Km and Km and the a priori complexity is denoted by KM.) Finally, 
the decision complexity is denoted by K R .

В В (n) denotes the maximal halting time of the optimal decompressor on inputs 
of length at most n (if the optimal prefix decompressor is meant, then we use the 
notation BP(n)). The function BB{n) is closely related to the function B(n) 
defined as the maximal natural number of Kolmogorov complexity at most n.

We use also several topological notions. The space Nj_ consists of natural 
numbers and of a special element _L (undefined value); the family of open sets 
consists of the whole space and of all sets that do not contain _L. This topological 
space, as well as the space £ (where the family of open sets consists of all unions 
of sets of the form £ x), is used for the general classification of complexities. For 
the spaces 0. and £ and for the space of real numbers, we call a set effectively open 
if it is a union of a computably enumerable family of intervals (sets of the form £ x 
for the second space and intervals with rational endpoints for the space of reals).

Most notions of computability theory (including Kolmogorov complexity) can 
be relativized, which means that all involved algorithms are supplied by an external 
procedure, called an oracle. That procedure can be asked whether any given number 
belongs to a set A. That set is also called an oracle. Thus we get the notions of 
“decidability relative to an oracle A”, “computability relative to A”, etc. In the 
corresponding notation we use the superscript A, for example, CA(x).

In the chapter on classical information theory, we use the notion of Shannon en­
tropy of a random variable £. If the variable has к possible outcomes and p i , . .. ,Pk 
are their probabilities, then its Shannon entropy H (£) is defined as — YlkPk l°gVk- 
This definition makes sense also for pairs of jointly distributed random variables. 
For such a pair the conditional entropy of a random variable £ when i] is known is 
defined as H {£, rf) —H(r)). The difference if(£) + H (rj) — H (£, 77) is called the mutual
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information in random variables £ and rj and is denoted by I(£:rj). A similar no­
tation I(x:y) is used in algorithmic information theory. As I(x:y)  is commutative 
only up to a small error term, we usually say “the information in x about y” and 
define this notion as C(y) — C(y\x).



INTRODUCTION

W hat is this book about?

W hat is Kolmogorov complexity?

Roughly speaking, Kolmogorov complexity means “compressed size”. Pro­
grams like zip, gzip, bzip2, compress, rar, a rj, etc., compress a file (text, image, 
or some other data) into a presumably shorter one. The original file can then be 
restored by a “decompressing” program (sometimes both compression and decom­
pression are performed by the same program). Note that we consider here only 
lossless compression.

A file that has a regular structure can be compressed significantly. Its com­
pressed size is small compared to its length. On the other hand, a file without 
regularities can hardly be compressed, and its compressed size is close to its origi­
nal size.

This explanation is very informal and contains several inaccuracies—both tech­
nical and more essential. First, instead of files (sequences of bytes) we will consider 
binary strings (finite sequences of bits, that is, of zeros and ones). The length of 
such a string is the number of symbols in it. (For example, the string 1001 has 
length 4, and the empty string has length 0.)

Here are the more essential points:
• We consider only decompressing programs; we do not worry at all about 

compression. More specifically, a decompressor is any algorithm (a pro­
gram) that receives a binary string as an input and returns a binary string 
as an output. If a decompressor D on input x terminates and returns 
string y, we write D(x) — y and say that x is a description of y with 
respect to D. Decompressors are also called description modes.

• A description mode is not required to be total. For some x, the compu­
tation D(x) may never terminate and therefore produces no result. Also 
we do not put any constraints on the computation time of D: on some 
inputs the program D may halt only after an extremely long time.

Using recursion theory terminology, we say that a description mode is a partial 
computable (=partial recursive) function from E to E, where E = {0,1}* stands for 
the set of all binary strings. Let us recall that we associate with every algorithm D 
(whose inputs and outputs are binary strings) a function d computed by D ; namely, 
d(x) is defined for a string x if and only if D halts on x, and d(x) is the output of 
D on x. A partial function from E to E is called computable if it is associated with 
(=computed by) some algorithm D. Usually we use the same letter to denote the 
algorithm and the function it computes. So we write D(x) instead of d(x) unless it 
causes a confusion.

Assume that a description mode (a decompressor) D is fixed. (Recall that D is 
computable according to our definitions.) For a string x consider all its descriptions,

i
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that is, all y such that D(y) is defined and equals x. The length of the shortest 
string y among them is called the Kolmogorov complexity of x with respect to D:

CD(x) = min{ l(y) I D(y) = .r}.

Here l(y) denotes the length of the string y; we use this notation throughout the 
book. The subscript D indicates that the definition depends on the choice of the 
description mode D. The minimum of the empty set is defined as +oo, thus Co(x) 
is infinite for all the strings x outside the range of the function D (they have no 
descriptions).

At first glance this definition seems to be meaningless, as for different D we ob­
tain quite different notions, including ridiculous ones. For instance, if D is nowhere 
defined, then Co is infinite everywhere. If D(y) — Л (the empty string) for all y, 
then the complexity of the empty string is 0 (since D(Л) = Л and 1(A) = 0), and 
the complexity of all the other strings is infinite.

Here is a more reasonable example: consider a decompressor D that just copies 
its input to output, that is, D(x) — x for all x. In this case every string is its own 
description and Co(x) = l(x).

Of course, for any given string x we can find a description mode D that is 
tailored to x and with respect to which x has small complexity. Indeed, let D(A) — 
x. This implies Co(x) = 0.

More generally, if we have some class of strings, we may look for a description 
mode that favors all the strings in this class. For example, for the class of strings 
consisting of zeros only we may consider the following decompressor:

D(bin(n)) = 000... 000 (n zeros),

where bin(n) stands for the binary notation of natural number n. The length of 
the string bin(n) is about log2 n (does not exceed log2 n + 1). With respect to 
this description mode, the complexity of the string consisting of n zeros is close 
to log2 n. This is much less that the length of the string (n). On the other hand, 
all strings containing symbol 1 have infinite complexity Co­

lt may seem that the dependence of complexity on the choice of the decom­
pressor makes impossible any general theory of complexity. However, that is not 
the case.

O ptim al description modes

A description mode is better when descriptions are shorter. According to this, 
we say that a description mode (decompressor) D\ is not worse than a description 
mode Z)2 if

CDl(x) ^  Co2(x) + c
for some constant c and for all strings x.

Let us comment on the role of the constant c in this definition. We consider a 
change in the complexity bounded by a constant as “negligible”. One could say that 
such a tolerance makes the complexity notion practically useless, as the constant c 
can be very large. However, nobody managed to get any reasonable theory that 
overcomes this difficulty and defines complexity with better precision.

Example. Consider two description modes (decompressors) Di and Z)2. Let 
us show that there exists a description mode D which is not worse than both of
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0 ( 0! / )  =  Di(y),
D(ly)  = D2(y).

In other words, we consider the first bit of a description as the index of a description 
mode and the rest as the description (for this mode).

If y is a description of x with respect to D\ (or D2 ), then 0y (respectively, 1 y) 
is a description of x with respect to D as well. This description is only one bit 
longer, therefore we have

Cd {x) ^  Cd1 (t) + 1,
Cd (x) ^  Cd2(x) + 1

for all x. Thus the mode D is not worse than both D\ and D^-
This idea is often used in practice. For instance, a zip-archive has a preamble; 

the preamble says (among other things) which mode was used to compress this 
particular file, and the compressed file follows the preamble.

If we want to use N  different compression modes, we need to reserve initial 
log2 N  bits for the index of the compression mode.

Using a generalization of this idea, we can prove the following theorem:

T heorem 1 (Solomonoff-Kolmogorov). There is a description mode D that is 
not worse than any other one: for every description m,ode D' there is a constant c 
such that

Cd (x) ^  Cd'(x ) + c
for every string x.

A description mode D having this property is called optimal.

P roof. Recall that a description mode by definition is a computable function. 
Every computable function has a program. We assume that programs are binary 
strings. Moreover, we assume that by reading the program bits from left to right, we 
can determine uniquely where it ends, that is, programs are “self-delimiting”. Note 
that every programming language can be modified in such a way that programs are 
self-delimiting. For instance, we can double every bit of a given program (changing 
0 to 00 and 1 to 11) and append the pattern 01 to its end.

Define now a new description mode D as follows:

D{Py) = P{y),
where P is a program (in the chosen self-delimiting programming language) and 
y is any binary string. That is, the algorithm D scans the input string from the 
left to the right and extracts a program P from the input. (If the input does not 
start with a valid program, D does whatever it wants, say, it goes into an infinite 
loop. The self-delimiting property guarantees that the decomposition of input is 
unique: if Py — P'y1 for two programs P and P \  then one of the programs is a 
prefix of the other one.) Then D applies the extracted program P to the rest of the 
input (y) and returns the obtained result. (So D is just a “universal algorithm”, or 
“interpreter” ; the only difference is that program and input are not separated, and 
therefore we need to use a self-delimiting programming language.)

Let us show that indeed D is not worse than any other description mode P. We 
assume that the program P is written in the chosen self-delimiting programming
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language. If y is a shortest description of the string x with respect to P, then Py 
is a description of x with respect to D (though not necessarily a shortest one). 
Therefore, compared to P, the shortest description is at most l(P) bits longer, and

CD( x ) ^ C P(x) + l(P).
The constant l(P) depends only on the description mode P (and not on x). □

Basically, we used the same trick as in the preceding example, but instead 
of merging two description modes, we join all of them. Each description mode 
is prefixed by its index (program, identifier). The same idea is used in practice. 
A self-extracting archive is an executable file starting with a small program (a 
decompressor); the rest is considered as an input to that program. This program 
is loaded into the memory, and then it decompresses the rest of the file.

Note that in our construction, the optimal decompressor works for a very long 
time on some inputs (as some programs have large running time) and is undefined 
on some other inputs.

Kolmogorov complexity

Fix an optimal description mode D and call Cd (x) the Kolmogorov complexity 
of the string x. In the notation Cx>(.t) we drop the subscript D and write just C(x).

If we switch to another optimal description mode, the change in complexity is 
bounded by an additive constant: for any two optimal description modes D\ and 
D2 there is a constant c(D\, D2) such that

ICDl (x ) -  Cd2{x)\ <  c(Dx, D2)
for all x. Sometimes this inequality is written as

Cd A x) =  Cd2(x ) +  0 ( 1) ,

where 0 (1) stands for a bounded function of x.
Could we then consider the Kolmogorov complexity of a particular string x 

without having in mind a specific optimal description mode used in the definition 
of С(.т)? No, since by adjusting the optimal description mode, we can make the 
complexity of x arbitrarily small or arbitrarily large. Similarly, the relation “string x 
is simpler than ÿ \  that is, C(x) < C(y), has no meaning for two fixed strings x 
and y: by adjusting the optimal description mode, we can make any of these two 
strings simpler than the other one.

One may then wonder whether Kolmogorov complexity has any sense at all. 
Trying to defend this notion, let us recall the construction of the optimal description 
mode used in the proof of the Solomonoff-Kolmogorov theorem. This construction 
uses some programming language, and two different choices of this language lead 
to two complexities that differ at most by a constant. This constant is in fact the 
length of the program that is written in one of these two languages and interprets 
the other one. If both languages are “natural”, we can expect this constant to be 
not that huge, just several thousands or even several hundreds. Therefore if we 
speak about strings whose complexity is, say, about 105 (i.e., a text of a long and 
not very compressible novel), or 106 (which is reasonable for DNA strings, unless 
they are compressible much more than the biologists think now), then the choice 
of the programming language is not that important.

Nevertheless one should always have in mind that all statements about Kol­
mogorov complexity are inherently asymptotic: they involve infinite sequences of
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strings. This situation is typical also for computational complexity: usually upper 
and lower bounds for complexity of some computational problem are asymptotic 
bounds.

Complexity and inform ation

One can consider the Kolmogorov complexity of x as the amount of informa­
tion in x. Indeed, a string of zeros, which has a very short description, has little 
information, and a chaotic string, which cannot be compressed, has a lot of informa­
tion (although that information can be meaningless—we do not try to distinguish 
between meaningful and meaningless information; so, in our view, any abracadabra 
has much information unless it has a short description).

If the complexity of a string x is equal to k, we say that x has к bits of 
information. One can expect that the amount of information in a string does not 
exceed its length, that is, C(x) ^  l(x). This is true (up to an additive constant, as 
we have already said).

T heorem 2. There is a constant c such that
C(x) ^  l(x) + c

for all strings x.

PROOF. Let D(y) = у for all y. Then Cd {x) = l(x). By optimality, there 
exists some c such that

C(x) ^  Cd{x) + c — l(x) + c 

for all x. □

Usually this statement is written as follows: C(x) ^  l(x) + 0(1). Theorem 2 
implies, in particular, that Kolmogorov complexity is always finite, that is, every 
string has a description.

Here is another property of “amount of information” that one can expect: the 
amount of information does not increase when algorithmic transformation is per­
formed. (More precisely, the increase is bounded by an additive constant depending 
on the transformation algorithm.)

Theorem 3. For every algorithm A there exists a constant c such that
C(A(x)) < C(x) + c 

for all x such that A(x) is defined.

PROOF. Let D be an optimal decompressor that is used in the definition of 
Kolmogorov complexity. Consider another decompressor D'\

D'{p) = A{D{p)).
(We apply first D and then A.) If p is a description of a string x with respect to D 
and A(x) is defined, then p is a description of A(x) with respect to D' . Let p be a 
shortest description of x with respect to D. Then we have

Cdi(A(x)) ^  l(p) = Cd (x) = C(x).
By optimality we obtain

C(A(x)) ^  Cd.(A(x)) + c ^  C(x) + c
for some c and all x. □
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This theorem implies that the amount of information “does not depend on the 
specific encoding”. For instance, if we reverse all bits of some string (replace 0 
by 1 and vice versa), or add a zero bit after each bit of that string, the resulting 
string has the same Kolmogorov complexity as the original one (up to an additive 
constant). Indeed, the transformation itself and its inverse can be performed by an 
algorithm.

Here is one more example of a natural property of Kolmogorov complexity. Let 
X and y be strings. How much information does their concatenation xy  have? We 
expect that the quantity of information in xy  does not exceed the sum of those in x 
and y. This is indeed true; however, a small additive term is needed.

Theorem 4. There is a constant c such that for all x and y 

C{xy) < C(x) + 2 log C(x) + C{y) + c.

Proof. Let us try first to prove the statement in a stronger form, without 
the term 2 log C(x). Let D be the optimal description mode that is used in the 
definition of Kolmogorov complexity. Define the following description mode D '. 
If D{jp) = x and D(q) — y, we consider pq as a description of xy , that is, we let 
D'(pq) = xy. Then the complexity of xy with respect to D' does not exceed the 
length of pq, that is, l{p) + l{q). If p and q are minimal descriptions, we obtain 
Co' (з̂ у) ^  CD{x) + Co{y)- By optimality the same inequality holds for D in place 
of D', up to an additive constant.

What is wrong with this argument? The problem is that D' is not well defined. 
We let D'ijpq) = D(p)D(q). However, D' has no means to separate p from q. It may 
happen that there are two ways to split the input into p and q yielding different 
results:

V\4i=V242 but D{pi)D{qi) ф D(p2)D(q2).

There are two ways to fix this bug. The first one, which we use now, goes 
as follows. Let us prepend the string pq by the length l(p) of string p (in binary 
notation). This allows us to separate p and q. However, we need to find where 
l(p) ends, so let us double all the bits in the binary representation of l(p) and then 
put 01 as separator. More specifically, let bin(fc) denote the binary representation 
of integer k, and let x be the result of doubling each bit in x. (For example, 
bin(5) = 101, and bin(5) = 110011.) Let

D'{ bin(/(p)) Olpq) = D{p)D(q).

Thus D' is well defined: the algorithm D' scans bin(/(p)) while all the digits are 
doubled. Once it sees 01, it determines l(p), and then scans l(p) digits to find p. 
The rest of the input is q, and the algorithm is able to compute D(p)D(q).

Now we see that Со'(ху) is at most 2/(bin(/(p))) + 2 + l(j>) + l{q). The length 
of the binary representation of l(p) is at most log2 /(p) + 1. Therefore, xy has a 
description of length at most 2 log2 l(p) + 4 + l{jp) + l(q) with respect to D', which 
implies the statement of the theorem. □

The second way to fix the bug mentioned above goes as follows. We could 
modify the definition of Kolmogorov complexity by requiring descriptions to be 
self-delimiting; we discuss this approach in detail in Chapter 4.
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Note also that we can exchange p and q and thus prove that 

C(xy) ^  C(x) + C(y) + 2 log2 C(y) + c.

How tight is the inequality of Theorem 4? Can C(xy) be much less than 
C(x) + C(y)? According to our intuition, this happens when x and y have much in 
common. For example, if x — y, we have C(xy) = C(xx) = C(x) + 0(1), since xx 
can be algorithmically obtained from x and vice versa (Theorem 3).

To refine this observation, we will define the notion of the quantity of infor­
mation in x that is missing in y (for all strings x and y). This value is called 
the Kolmogorov complexity of x conditional to y (or “given y” ) and is denoted by 
C(x\y).  Its definition is similar to the definition of the unconditional complexity. 
This time the decompressor D has access not only to the (compressed) description, 
but also to the string y. We will discuss this notion later in Section 2. Here we 
mention only that the following equality holds:

C(xy) = C(y) + C(x I у) + О (log n)

for all strings x and у of complexity at most n. The equality reads as follows: the 
amount of information in xy is equal to the amount of information in у plus the 
amount of new information in x (“new” = missing in y).

The difference C(x) — C(x\ y) can be considered as “the quantity of information 
in у about x”. It indicates how much the knowledge of у simplifies x.

Using the notion of conditional complexity, we can ask questions like this: How 
much new information does the DNA of some organism have compared to that of 
another organism’s DNA? If d\ is the binary string that encodes the first DNA and 
d2 is the binary string that encodes the second DNA, then the value in question is 
C(d\ |^2)- Similarly we can ask what percentage of information has been lost when 
translating a novel into another language: this percentage is the fraction

C (original | translation) /  C (original).

The questions about information in different objects were studied before the 
invention of algorithmic information theory. The information was measured using 
the notion of Shannon entropy. Let us recall its definition. Let £ be a random 
variable that takes n values with probabilities p \ , ...  ,pn- Then its Shannon entropy 
#(£) is defined as

#(£) = X ^ ( “ log2Pi)-
Informally, the outcome having probability pi carries log(l/pj) = — log2Pi bits of 
information (=surprise). Then #(£) can be understood as the average amount of 
information in an outcome of the random variable.

Assume that we want to use Shannon entropy to measure the amount of infor­
mation contained in some English text. To do this, we have to find an ensemble of 
texts and a probability distribution on this ensemble such that the text is “typical” 
with respect to this distribution. This makes sense for a short telegram, but for a 
long text (say, a novel) such an ensemble is hard to imagine.

The same difficulty arises when we try to define the amount of information in 
the genome of some species. If we consider as the ensemble the set of the genomes 
of all existing species (or even all species that ever existed), then the cardinality of 
this set is rather small (it does not exceed 21000 for sure). And if we consider all
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its elements as équiprobable, then we obtain a ridiculously small value (less than 
1000 bits); for the non-uniform distributions the entropy is even less.

So we see that in these contexts Kolmogorov complexity looks like a more 
adequate tool than Shannon entropy.

Complexity and randomness

Let us recall the inequality C(x) < l(x) + 0(1) (Theorem 2). For most of 
the strings its left-hand side is close to the right hand side. Indeed, the following 
statement is true:

Theorem 5. Let n be an integer. Then there are less than 2n strings x such 
that C(x) < n.

P ro o f. Let D be the optimal description mode used in the definition of Kol­
mogorov complexity. Then only strings D(y) for all y, such that l(y) < n, have 
complexity less than n. The number of such strings does not exceed the number of 
strings y such that l(y) < n, i.e., the sum

1 + 2 + 4 + 8 + ... + 2n_1 = 2n -  1 
(there are 2k strings for each length к < n). □

This implies that the fraction of strings of complexity less than n — c among all 
strings of length n is less than 2n-c/2n =  2“c. For instance, the fraction of strings 
of complexity less than 90 among all strings of length 100 is less than 2“ 10,

Thus the majority of strings (of a given length) are incompressible or almost 
incompressible. In other words, a randomly chosen string of the given length is 
almost incompressible. This can be illustrated by the following mental (or even 
real) experiment. Toss a coin, say, 80000 times, and get a sequence of 80000 bits. 
Convert it into a file of size 10000 bytes (8 bits = 1 byte). One can bet that no 
compression software (existing before the start of the experiment) can compress the 
resulting file by more than 10 bytes. Indeed, the probability of this event is less 
than 2“80 for every fixed compressor, and the number of (existing) compressors is 
not so large.

It is natural to consider incompressible strings as “random” ones: informally 
speaking, randomness is the absence of any regularities that may allow us to com­
press the string. Of course, there is no strict borderline between “random” and 
“non-random” strings. It is ridiculous to ask which strings of length 3 (i.e., 000, 
001, 010, Oil, 100, 101, 110, 111) are random and which are not.

Another example: assume that we start with a “random” string of length 10000 
and replace its bits by all zeros (one bit at a step). At the end we get a certainly 
non-random string (zeros only). But it would be naive to ask at which step the 
string has become non-random for the first time.

Instead, we can naturally define the “randomness deficiency” of a string x as 
the difference l(x) — C(x). Using this notion, we can restate Theorem 2 as follows: 
the randomness deficiency is almost non-negative (i.e., larger than a constant). 
Theorem 5 says that the randomness deficiency of a string of length n is less than 
d with probability at least 1 — l / 2d (assuming that all strings are équiprobable).

Now consider the Law of Large Numbers. It says that most of the n-bit strings 
have frequency of ones close to 1/2. This law can be translated into Kolmogorov 
complexity language as follows: the frequency of ones in every string with small
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randomness deficiency is close to 1/2. This translation implies the original state­
ment since most of the strings have small randomness deficiency. We will see later 
that actually these formulations are equivalent.

If we insist on drawing a strict borderline between random and non-random 
objects, we have to consider infinite sequences instead of strings. The notion of 
randomness for infinite sequences of zeros and ones was defined by Kolmogorov’s 
student P. Martin-Löf (he came to Moscow from Sweden). We discuss it in Section 3. 
Later C. Schnorr and L. Levin found a characterization of randomness in terms of 
complexity: an infinite binary sequence is random if and only if the randomness 
deficiency of its prefixes is bounded by a constant. This criterion, however, uses 
another version of Kolmogorov complexity called monotone complexity.

Non-com putability of C and B erry’s paradox

Before discussing applications of Kolmogorov complexity, let us mention a fun­
damental problem that reappears in any application. Unfortunately, the function C 
is not computable: there is no algorithm that given a string x finds its Kolmogorov 
complexity. Moreover, there is no computable non-trivial (unbounded) lower bound 
for C.

T heorem 6. Let к be a computable (not necessarily total) function from £  
to N. (In other words, к is an algorithm that terminates on some binary strings 
and returns natural numbers as results.) I f к is a lower bound for Kolmogorov 
complexity, that is, k(x) ^  C(x) for all x such that k(x) is defined, then к is 
bounded: all its values do not exceed some constant.

The proof of this theorem is a reformulation of the so-called Berry’s paradox. 
This paradox considers

the minimal natural number that cannot be defined by at most 
fourteen English words.

This phrase has exactly fourteen words and defines that number. Thus we get a 
contradiction.

Following this idea, consider the first binary string whose Kolmogorov com­
plexity is greater than a given number N. By definition, its complexity is greater 
than N. On the other hand, this string has a short description that includes some 
fixed amount of information plus the binary notation of N  (which requires about 
log2 N  bits), and the total number of bits needed is much less than N  for large N. 
That would be a contradiction if we knew how to effectively find this string given 
its description. Using the computable lower bound k, we can convert this paradox 
into the proof.

Proof. Consider the function B(N)  whose argument N  is a natural number. 
It is computed by the following algorithm:

perform in parallel the computations k(A), k(0), fc(l), k(00), 
k(01), k( 10), fc(ll),... until some string x such that k(x) > N  
appears; then return x.

If the function к is unbounded, then the function В is total and k(B(N)) > N  
by construction for every N.  As к is a lower bound for K,  we have C(B(N)) > N.  
On the other hand B(N)  can be computed given the binary representation bin(iV)



1 0 INTRODUCTION. WHAT IS THIS BOOK ABOUT?

of N,  therefore
C(B(N))  < C(hm(N)) + 0(1) ^  /(bin(iV)) + 0(1) ^  log2 N  + 0(1)

(the first inequality is provided by Theorem 3 and the second one is provided by 
Theorem 2; term 0(1) stands for a bounded function). So we obtain

N  < C( B{ N) ) ^ \ og 2N  + 0(l),  

which cannot happen if N  is large enough. □

Some applications of Kolmogorov complexity

Let us start with a disclaimer: the applications we will talk about are not real, 
practical applications; we just establish relations between Kolmogorov complexity 
and other important notions.

Occam’s razor. We start with a philosophical question. What do we mean 
when we say that a theory provides a good explanation for some experimental data? 
Assume that we are given some experimental data and there are several theories to 
explain the data. For example, the data might be the observed positions of planets 
in the sky. We can explain them as Ptolemy did, with epicycles and deferents, 
introducing extra corrections when needed. On the other hand, we can use the 
laws of the modern mechanics. Why do we think that the modern theory is better? 
A possible answer: the modern theory can compute the positions of planets with 
the same (or even better) accuracy given fewer parameters. In other words, Kepler’s 
achievement is a shorter description of the experimental data.

Roughly speaking, experimenters obtain binary strings and theorists find short 
descriptions for them (thus proving upper bounds for complexities of those strings); 
the shorter the description, the better the theorist.

This approach is sometimes called “Occam’s razor” and is attributed to the 
philosopher William of Ockham who said that entities should not be multiplied 
beyond necessity. It is hard to judge whether he would agree with such an inter­
pretation of his words.

We can use the same idea in more practical contexts. Assume that we design 
a machine that reads handwritten zip codes on envelopes. We are looking for a 
rule that separates, say, images of zeros from images of ones. An image is given as 
a Boolean matrix (or a binary string). We have several thousands of images and 
for each image we know whether it means 0 or 1. We want to find a reasonable 
separating rule (with the hope that it can be applied to the forthcoming images). 
What does “reasonable” mean in this context? If we just list all the images in 
our list together with their classification, we get a valid separation rule—at least 
it works until we receive a new image—however, the rule is way too long. It is 
natural to assume that a reasonable rule must have a short description, that is, it 
must have low Kolmogorov complexity.

Often an explanation for experimental data is only a tool to predict the future 
elements of the data stream. This aspect was the main motivation for Solomonoff 
[187]; it is outside the scope of our book and is considered in the book of M. Hutter
[es]-

Foundations of probability theory. The probability theory itself, being 
currently a part of measure theory, is mathematically sound and does not need any 
extra “foundations”. The difficult questions arise, however, if we try to understand
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why this theory could be applied to the real-world phenomena and how it should 
be applied.

Assume that we toss a coin a thousand times (or test some other hardware 
random number generator) and get a bit string of length 1000. If this string contains 
only zeros or equals 0101010101... (zeros and ones alternate), then we definitely 
will conclude that the generator is bad. Why?

The usual explanation: the probability of obtaining a thousand zeros is negli­
gible (2“ 100°) provided the coin is fair. Therefore, the conjecture of a fair coin is 
refuted by the experiment.

The problem with this explanation is that we do not always reject the generator: 
there should be some sequence a  of a thousand zeros and ones which is consistent 
with this conjecture. Note, however, that the probability of obtaining the sequence 
a as a result of fair coin tossing is also 2“ 1000. So what is the reason behind our 
complaints? What is the difference between the sequence of a thousand zeros and 
the sequence a?

The reason is revealed when we compare the Kolmogorov complexities of these 
sequences.

Proving theorem s of probability theory. As an example, consider the 
Strong Law of Large Numbers. It claims that for almost all (according to the the 
uniform Bernoulli probability distribution) infinite binary sequences, the limit of 
frequencies of ones in their initial segments equals 1/ 2.

More formally, let ft be the set of all infinite sequences of zeros and ones. 
The uniform Bernoulli measure on ft is defined as follows. For every finite binary 
string X, consider the set ftx consisting of all infinite sequences that start with x. 
For example, ft a = ft- The measure of ftx is equal to 2~l(x'>. For example, the 
measure of the set floi, that consists of all sequences starting with 01, equals 1/4.

For each sequence со = u)qcvicv2 . . . consider the limit of the frequencies of ones 
in the prefixes of co, that is,

u>o + CJi + ... + <vn_ihm -------------------------- .
n —>oo Tl

We say that u> satisfies the Strong Law of Large Numbers (SLLN) if this limit exists 
and is equal to 1/2. For instance, the sequence 010101..., having period 2, satisfies 
the SLLN, and the sequence 011011011..., having period 3, does not.

The SLLN says that the set of sequences that do not satisfy SLLN has measure 
0. Recall that a set A C ft has measure 0 if for all e > 0 there is a sequence of 
strings то, x\, X2, ... such that

A C ftXo U ftXl UftX2U.. .
and the sum of the series

2~i(xo) _|_ 2~l(xi) -|- 2~dx2) _|_

(the sum of the measures of ftXi) is less than e.
One can prove SLLN using the notion of a Martin-Löf random sequence men­

tioned above. The proof consists of two parts. First, we show that every Martin-Löf 
random sequence satisfies SLLN. This can be done using Levin-Schnorr random­
ness criterion (if the limit does not exist or differs from 1/ 2, then the complexity 
of some prefix is less than it should be for a random sequence).

The second part is rather general and does not depend on the specific law of 
probability theory. We prove that the set of all Martin-Löf non-random sequences
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has measure zero. This implies that the set of sequences that do not satisfy SLLN 
is included in a set of measure 0 and hence has measure 0 itself.

The notion of a random sequence is philosophically interesting in its own right. 
In the beginning of twentieth century Richard von Mises suggested using this no­
tion (he called it in German Kollektiv) as a basis for probability theory (at that 
time the measure theory approach had not yet been developed). He considered the 
so-called “frequency stability” as a main property of random sequences. We will 
consider von Mises’ approach to the definition of a random sequence (and subse­
quent developments) in Chapter 9.

Lower bounds for com putational complexity. Kolmogorov complexity 
turned out to be a useful technical tool when proving lower bounds for computa­
tional complexity. Let us explain the idea using the following model example.

Consider the following problem. Initially, a string x of length n is located in 
the n leftmost cells of the tape of a Turing machine. The machine has to copy x, 
that is, to get xx  on the tape (the string x is intact and its copy is appended), and 
halt.

Since the middle of the 1960s it has been well known that a (one-tape) Turing 
machine needs time proportional to n2 to perform this task. More specifically, one 
can show that for every Turing machine M  that can copy every string x, there 
exists some e > 0 such that for all n there is a string x of length n whose copying 
requires at least en2 steps.

Consider the following intuitive argument supporting this claim. The number 
of internal states of a Turing machine is a constant (depending on the machine). 
That is, the machine can keep in its memory only a finite number of bits. The 
speed of the head movement is also limited: one cell per step. Hence the rate of 
information transfer (measured in bit■ cell/step) is bounded by a constant depending 
on the number of internal states. To copy a string x of length n, we need to move n 
bits by n cells to the right; therefore, the number of steps should be proportional 
to n2 (or more).

Using Kolmogorov complexity, we can make this argument rigorous. A string 
is hard to copy if it contains maximal amount of information, i.e., its complexity is 
close to n. We consider this example in detail in Section 8.2 (p. 233).

A com binatorial in terpretation  of Kolmogorov complexity. We con­
sider here one example of this kind (see Chapter 10, p. 313, for more detail). One 
can prove the following inequality for the complexity of three strings and their 
combinations:

2C(xyz) ^  C(xy) + C{xz) + C(yz) + O(logn)

for all strings x, y, z of length at most n.
It turns out that this inequality has natural interpretations that are not related 

to complexity at all. In particular, it implies (see [65]) the following geometrical 
fact:

Consider a body В in a three-dimensional Euclidean space with coordinate axes 
OX, OY,  and OZ.  Let V be R’s volume. Consider B's orthogonal projections onto 
coordinate planes OXY,  OXZ,  and OYZ.  Let Sxy, Sxz, and Syz be the areas of 
these projections. Then

V 2 ^  Sxy • Sxz • Syz.
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Here is an algebraic corollary of the same inequality. For every group G and 
its subgroups X,  Y,  and Z, we have

Л, r7\2 ^ \ X D Y \ - \ X n Z \ - \ Y n Z \n r nz i 2 > J 1 -------,
where \H\ denotes the number of elements in H.

Gödel incompleteness theorem . Following G. Chaitin, let us explain how 
to use Theorem 6 in order to prove the famous Gödel incompleteness theorem. This 
theorem states that not all true statements of a formal theory that is “rich enough” 
(the formal arithmetic and the axiomatic set theory are two examples of such a 
theory) are provable in the theory.

Assume that for every string x and every natural number n, one can express 
the statement C(x) > n as a formula in the language of our theory. (This statement 
says that the chosen optimal decompressor D does not output x on any input of 
length at most n; one can easily write this statement in formal arithmetic and 
therefore in set theory.)

Let us generate all the proofs (derivations) in our theory and select those of 
them which prove some statement of the form C(x) > n where x is some string 
and n is some integer (statements of this type have no free variables). Once we 
have found a new theorem of this type, we compare n with all previously found n ’s. 
If the new n is greater than all previous n ’s, we write the new n into the “records 
table” together with the corresponding xn.

There are two possibilities: either (1) the table will grow infinitely, or (2) there 
is the last statement C(X) > N  in the table which remains unbeaten forever. If (2) 
happens, there is an entire class of true statements that have no proof. Namely, all 
true statements of the form C(x) > n with n > N  have no proofs. (Recall that by 
Theorem 5 there are infinitely many such statements.)

In the first case we have infinite computable sequences of strings xq,x\ ,X2 • • • 
and numbers no < n\ < П2 < . ..  such that all statements C(xi) > щ are provable. 
We assume that the theory proves only true statements; thus, all the inequalities 
C(xi) > щ are true. Without loss of generality, we can assume that all Xi are 
pairwise different (we can omit Xi if there exists j  < i such that Xj = Xi ; every string 
can occur only finitely many times in the sequence xq,x\ ,X2 ... since щ —> oo as 
i —> oo). The computable function k, defined by the equation k(xi) = щ, is then an 
unbounded lower bound for Kolmogorov complexity. This contradicts Theorem 6.



CHAPTER 1

Plain Kolmogorov com plexity

1.1. Definition and main properties

Let us recall the definition of Kolmogorov complexity from the introduction. 
This version of complexity was defined by Kolmogorov in his seminal paper [78]. 
In order to distinguish it from later versions we call it the plain Kolmogorov com­
plexity. Later, starting from Chapter 4, we will also consider other versions of 
Kolmogorov complexity, including prefix versions and monotone versions, but for 
now by Kolmogorov complexity we always mean the plain version.

Recall that a description mode, or a decompressor, is a partial computable 
function D from the set of all binary strings H into E. A partial function D is 
computable if there is an algorithm that terminates and returns D(x) on every 
input X in the domain of D and does not terminate on all other inputs. We say 
that y is a description of x with respect to D if D{y) =  x.

The complexity of a string x with respect to description mode D is defined as

CD(x) = min{l(y) I D(y) = x}.

The minimum of the empty set is +oo.
We say that a description mode D\ is not worse than a description mode D2 

if there is a constant c such that Cdx (x) ^  Cd2 (x ) + c for all x and write this as 
CDl(x) ^  C d 2(x) + 0(1).

A description mode is called optimal if it is not worse than any other description 
mode. By the Solomonoff-Kolmogorov universality theorem (Theorem 1, p. 3) 
optimal description modes exist. Let us briefly recall its proof. Let U be an 
interpreter of a universal programming language, that is, U(p , x) is the output of 
the program p on input x. We assume that programs and inputs are binary strings. 
Let

D(px) — U(p, x).
Here p и  p stands for any computable mapping having the following property: 
given p we can effectively find p and also the place where p ends (in particular, if p 
is a prefix of q, then p = q). This property implies that D is well defined. For any 
description mode D' let p be a program of D' . Then

Cd (x) ^  Cd'(x) + l{p)-
Indeed, for every description y of x with respect to D' the string py is a description 
of x with respect to D.

Fix any optimal description mode D , and let C(x) (we drop the subscript) 
denote the complexity of x with respect to D. (As we mentioned, in the first paper 
of Kolmogorov [78] the letter К  was used, while in his second paper [79] the letter 
H  was used. We follow here the notation used by Li and Vitånyi [103].)

15
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As the optimal description mode is not worse than the identity function x >-»• x, 
we obtain the inequality C{x) ^  l(x) + 0(1) (Theorem 2, p. 5).

Let A be a partial computable function. Comparing the optimal description 
mode D with the description mode y (-»• A(D(y)), we conclude that

0(А(ж))^0(ж) + 0(1),

showing the non-growth of complexity under algorithmic transformations (Theo­
rem 3, p. 5).

Using this inequality, we can define Kolmogorov complexity of other finite ob­
jects, such as natural numbers, graphs, permutations, finite sets of strings, etc., 
that can be naturally encoded by binary strings.

For example, let us define the complexity of natural numbers. A natural num­
ber n can be written in binary notation. Another way to represent a number by a 
string is as follows. Enumerate all the binary strings in lexicographical order

A, 0, 1, 00, 01, 10, 11, 000, 001, 010, Oil, 100,...

using the natural numbers 0,1, 2,3,...  as indexes. This enumeration is more con­
venient compared to binary representation as it is a bijection. Every string can be 
considered as an encoding of its index in this enumeration. Finally, one can also 
encode a natural number n by a string consisting of n ones.

Using either of these three encodings, we can define the complexity of n as 
the complexity of the string encoding n. Three resulting complexities of n differ 
at most by an additive constant. Indeed, for every pair of these encodings there 
is an algorithm translating the first encoding into the second one. Applying this 
algorithm, we increase the complexity at most by a constant. Note that the Kol­
mogorov complexity of binary strings is defined up to an additive constant, so the 
choice of a computable encoding does not matter.

As the length of the binary representation of a natural number n is equal to 
logn + 0(1), the Kolmogorov complexity of n is at most logn + 0(1). (By log we 
denote binary logarithms.)

Here is another application of the non-growth of complexity under algorithmic 
transformations. Let us show that deleting the last bit of a string changes its 
complexity at most by a constant. Indeed, all three functions x i-». xO, i  4  i l ,  
x ^  (x without the last bit) are computable.

The same is true for the first bit. However this does not apply to every bit of 
the string. To show this, consider the string x consisting of 2n zeros; its complexity 
is at most C(n) + 0(1) ^  logn + 0(1). (By log we always mean binary logarithm.) 
There are 2n different strings obtained from x by flipping one bit. At least one of 
them has complexity n or more. (Recall that the number of strings of complexity 
less than n does not exceed the number of descriptions of length less than n, which 
is less than 2n; see Theorem 5, p. 8.)

Incrementing a natural number n by 1 changes C(n) at most by a constant. 
This implies that C(n) satisfies the Lipschitz property, for some c and for all m, n, 
we have \C(m) — C{ri)\ ^  c|m — n|.

[T] Prove a stronger inequality: \C(m) — C(n)\ ^  \m — n| + c for some c and for 
all m, n € N, and, moreover, \C(m) — C(n)\ ^  2 log \ m  — n\ + c (the latter inequality 
assumes that m Ф n).
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Several times we have used the upper bound 2n for the number of strings x 
with C(x) < n. Note that, in contrast to other bounds, it involves no constants. 
Nevertheless this bound has a hidden dependence on the choice of the optimal 
description mode: if we switch to another optimal description mode, the set of 
strings x such that C(x) < n can change!

|~2~| Show that the number of strings of complexity less than n is in the range 
[2n-c; 2n] for some constant c for all n.

(Hint: The upper bound 2n is proved in the introduction, the lower bound is 
implied by the inequality C(x) ^  l(x) + c: the complexity of all the strings of length 
less than n — c is less than n.)

Show that the number of strings of complexity exactly n does not exceed 2n 
but can be much less: e.g., it is possible that this set is empty for infinitely many n.

(Hint: Change an optimal description mode by adding 0 or 11 to each descrip­
tion so that all descriptions have even length.)

[~3~| Prove that the average complexity of strings of length n is equal to n + 0(l).
(Hint: Let ak denote the fraction of strings of complexity n — k among strings of 

length n. Then the average complexity is by kak less than n. Use the inequality
ctfc ^  2~k and the convergence of the series Y^k/2k.)

In the next statement we establish a formal relation between upper bounds of 
complexity and upper bounds of cardinality.

Theorem 7. (a) The family of sets Sn =  {x \ C(x) <  n} is enumerable, and 
|S„| < 2n for all n. Here |Sn| denotes the cardinality of Sn.

(b) IfVn (n — 0,1,...  ) is an enumerable family of sets of strings and \ Vn\ < 2n 
for all n, then there exists c such that C(x) < n + c for all n and all x € Vn.

In this theorem we use the notion of an enumerable family of sets. It is de­
fined as follows. A set of strings (or natural numbers, or other finite objects) is 
enumerable (= computably enumerable — recursively enumerable) if there is an al­
gorithm generating all elements of this set in some order. This means that there 
is a program that never terminates and prints all the elements of the set in some 
order. The intervals between printing elements can be arbitrarily large; if the set is 
finite, the program can print nothing after some time (unknown to the observer). 
Repetitions are allowed, but this does not matter since we can filter the output and 
delete the elements that have already been printed.

For example, the set of all n such that the decimal expansion of \p2 has exactly 
n consecutive nines is enumerable. The following algorithm generates the set: com­
pute decimal digits of \pl starting with the most significant ones. Once a sequence 
of consecutive n nines surrounded by non-nines is found, print n and continue.

A family of sets Vn is called enumerable if the set of pairs {(n, x) \ x € Vn} 
is enumerable. This implies that each of the sets Vn is enumerable. Indeed, to 
generate elements of the set Vn for a fixed n, we run the algorithm enumerating the 
set {(n, x) I x € Vn} and print the second components of all the pairs that have n 
as the first component. However, the converse statement is not true. For instance, 
assume that Vn is finite for every n. Then every Vn is enumerable, but at the same 
time it may happen that the set {(n, x ) \ x € Vn} is not enumerable (say Vn — {0} 
if n 6 S  and Vn = 0  otherwise, where S  is any non-enumerable set of integers). 
One can verify that a family is enumerable if and only if there is an algorithm that
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given any n finds a program generating Vn. A detailed study of enumerable sets 
can be found in every textbook on computability theory, for instance, in [184].

P r o o f . Let us prove the theorem. First, we need to show that the set 

{(n,x) I X £ Sn} = {{n . x ) I C(x) < n},

where n is a natural number and x is a binary string, is enumerable.
Let D be the optimal decompressor used in the definition of C. Perform in 

parallel the computations of D on all the inputs. (Say, for к = 1, 2 ,... we make к 
steps of D on к first inputs.) If we find that D halts on some у and returns x, the 
generating algorithm outputs the pair (l(y) + l,x). Indeed, this implies that the 
complexity of x is less than l(y) + 1, as у is a description of x. Also it outputs all 
the pairs (l(y) + 2, x), (l(y) + 3, x) ■ ■ • in parallel to the printing of other pairs.

For those familiar with computability theory, this proof can be compressed to 
one line:

C(x) < n 3y (l(y) < n A D(y) — x).
(The set of pairs (x, y) such that D(y) — x is enumerable, being the graph of 
a computable function. The operations of intersection and projection preserve 
enumerability.)

The converse implication is a bit harder. Assume that Vn is an enumerable 
family of finite sets of strings and | Fn| < 2n. Fix an algorithm generating the 
set {(n ,x ) I x £ Кг}. Consider the description mode Dy  that deals with strings 
of length n in the following way. Strings of length n are used as descriptions of 
strings in Vn. More specifically, let xk be the fcth string in Vn in the order the 
pairs (n, x) appear while generating the set {(n, x) \ x £ Vn}. (We assume there 
are no repetitions, so xo, xi, X2, ■ ■ ■ are distinct.) Let yk be the kth string of length 
n in lexicographical order. Then yk is a description of Xk, that is, D(yk) = Xk- As 
|V |̂ < 2n, every string in Vn gets a description of length n with respect to D.

We need to verify that the description mode Dy  defined in this way is com­
putable. To compute Dy(y),  we find the index к of у in the lexicographical ordering 
of strings of length l{y). Then we run the algorithm generating pairs (n,x) such 
that x £ Vn and wait until к different pairs having the first component l(y) appear. 
The second component of the last of them is Dy(y).

By construction, for all x £ Vn we have Cdv {x) ^  n. Comparing Dy  with the 
optimal description mode, we see that there is a constant c such that C(x) < n + c 
for all x £ Vn. Theorem 7 is proven. □

The intuitive meaning of Theorem 7 is as follows. The assertions “the number of 
strings with a certain property is small” (is less than 2г) and “all the strings with a 
certain property are simple” (have complexity less than i) are equivalent provided 
the property under consideration is enumerable and provided the complexity is 
measured up to an additive constant (and the number of elements is measured up 
to a multiplicative constant).

Theorem 7 can be reformulated as follows. Let f (x)  be a function defined on all 
binary strings and which takes as values natural numbers and a special value +oo. 
We call /  upper semicomputable, or enumerable from above, if there is a computable 
function (x, к) F(x, к) defined on all strings x and all natural numbers к such
that

F(x, 0) ^  F(x, 1) ^  F(x, 2) ^  •
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and
f (x) — lim F(x, к)

к—>oo
for all X.  The values of F are natural numbers as well as the special constant +oo. 
The requirements imply that for every к the value F(x , к) is an upper bound of 
f(x).  This upper bound becomes more precise as к increases. For every x there 
is a A: for which this upper bound is tight. However, we do not know the value of 
that k. (If there is an algorithm that given any x finds such к , then the function /  
is computable.) Evidently, any computable function is upper semicomputable.

A function /  is upper semicomputable if and only if the set

Gf  = {(x,n) I f(x) < n}

is enumerable. This set is sometimes called the “upper graph of / ”, which explains 
the strange names “upper semicomputable” and “enumerable from above”.

Let us verify this. Assume that a function /  is upper semicomputable. Let 
F(x,k)  be the function from the definition of semicomputability. Then we have

f(x)  < n 3k F(x, к) < n.

Thus, performing in parallel the computations of F(x, к) for all x and k, we can 
generate all the pairs in the upper graph of / .

Assume now that the set Gf  is enumerable. Fix an algorithm enumerating this 
set. Then define F(x , к) as the best upper bound of /  obtained after к steps of 
generating elements in Gf.  That is, F(x,k)  is equal to the minimal n such that 
the pair (x, n + 1) has been printed after к steps. If there is no such pair, let 
F(x, k) — Too.

Using the notion of an upper semicomputable function, we can reformulate 
Theorem 7 as follows.

T h eo r e m  8. (a) The function C is upper semicomputable and

\{x I C(x) < n}\ < 2n

for all n.
(b) If  a function C' is upper semicomputable and |{x | C'{x) < n}\ < 2n for 

all n, then C(x) ^  C'{x) + c for som,e c and for all x.

Note that the upper bound 2n of the cardinality of \{x \ C'{x) < n}\ in item 
(b) can be replaced by a weaker upper bound 0 ( 2n).

Theorem 8 allows us to define Kolmogorov complexity as a minimal (up to an 
additive constant) upper semicomputable function к that satisfies the inequality

\{x I k(x) < n}\ ^  0 ( 2n).

One can replace the requirement of minimality in this definition by some other prop­
erties of G. In this way we obtain the following axiomatic definition of Kolmogorov 
complexity [173]:

Theorem 9. Let к be a natural-valued function defined on binary strings. As­
sume that к satisfies the following properties:

(a) к is upper semicomputable (enumerability axiom);
(b) for every partial computable function A from E to E, the inequality

k(A(x)) ^  k(x) + c
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is valid for some c and all x in the domain of A (the axiom guarantees that com­
plexity does not increase);

(c) the number of strings x such that k(x) < n is in the range [2n~Cl ; 2n+c'2] 
for som.e c\, C2 and for any n (calibration axiom).

Then k(x) = C(x) + 0(1), that is, the difference |k(x) — C{x)| is bounded by a 
constant.

P roof. Theorem 8 implies that C(x) ^  k(x) + 0(1). So we need to prove that
k(x) ^  C(x) + 0(1).

Lemma 1. There is a constant c and a computable sequence of finite sets of 
binary strings

M 0 C M i C M 2 C • • • 

with the following properties: the set Mi has exactly 2г strings and k(x) ^  i + c for 
all x € Mi and all i.

Computability of Mo, Mi, М2 , ■ ■ ■ means that there is an algorithm that given 
any i computes the list of elements of M*.

PROOF. By axiom (c) there exists a constant c such that for all i the set

Ai — {x I k(x) < i + c}
has at least 2г elements. By item (a) the family Ai is enumerable. Remove from 
Ai all the elements except 2* strings generated first. Let Bi denote the resulting 
set. The list of the elements of Bi can be found given i: we wait until the first 2г 
strings are generated. The set Bi is not necessarily included in Bi+\. To fix this 
we define Mi inductively. We let Mo = Bo, and we let Mi+1 be equal to Mi plus 
any 2г elements of Bi+i that are outside Mi. Lemma 1 is proven.

Lemma 2. There is a constant c such that k(x) ^  l(x) + c for all x (recall that 
l(x) denotes the length of x).

P roof. Let Mo, Mi, М 2 , . . .  be the sequence of sets from the previous lemma. 
There is a computable one-to-one function A defined on the union of all Mi that 
maps Mj+i \  Mi onto the set of binary strings of length i. (Recall that the set 
Mj+1 \  Mi has exactly 2г strings.) By item (b) we have k(A(y)) < k(y) + c' for 
some c' and all x. For all x of length i there is y € M*+1 \  Mi such that A(y) — x, 
hence k(x) ^  k(y) + c' ^  i + c for some c and all i. Lemma 2 is proven.

Let us finish the proof of the theorem. Let D be the optimal description mode, 
and let p be a shortest description of x with respect to D. Then

k(x) = k(D(p)) < k(p) + 0(1) ^  l(p) + 0(1) = C(x) + 0(1).
Note that we have used property (b) twice: in the proof of Lemma 2 and just 
now. □

|~4~[ Assume that strings over the alphabet {0,1,2,3} are used as descriptions. 
Prove that in this case the Kolmogorov complexity, defined as the length of the 
shortest description (with respect to an optimal description mode), is equal to half 
of the regular complexity (up to an additive constant).

|~5~| (Continued) Formulate and prove a similar statement for the n-letter al­
phabet.
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|~6~| Assume that /  : N —> N is a total computable increasing function and

Ihn inf f (n  + l) / /(n )  > 1.

Let An be an enumerable family of finite sets such that \ An\ ^  /(n) for all n. Prove 
that there is a constant c such that Cix) < log/(n) + c for all n and all x G An.

|~7~| Prove that for some constant c and for every n the following holds. For 
every string x of length n one can flip a bit in x so that the resulting string y 
satisfies the inequality C(y) ^  n — logn + c.

{Hint-. For a given natural к consider a Boolean matrix of size к x (2fc — 1) whose 
columns are all non-zero strings of length k. (Such matrix is used for Hamming 
codes.) Consider the linear mapping B2 -1 —> Bfc defined by this matrix, where 
В denotes the field {0,1}. It is easy to verify that for every vector x one can flip 
one bit in x so that the resulting string у is in the kernel of this mapping, and 
the elements of the kernel have complexity at most 2k — к + 0(1). This gives the 
desired result for n = 2k — 1; if n does not have the form 2k — 1, we can flip one of 
the first 2k — 1 bits for an appropriate k.)

1.2. Algorithmic properties

The function C is upper semicomputable. On the other hand, it is not com­
putable and, moreover, it has no unbounded computable lower bounds (Theorem 6, 
p. 9).

This implies that all optimal description modes are necessarily non-total, that 
is, some strings describe nothing. Indeed, if a description mode D is total, then we 
can compute Cd {x) just by trying all descriptions in lexicographical order until we 
find the shortest one.

At first glance, this contradicts to our intuition: the bigger the domain of D , 
the better D is. If the optimal decompressor D is undefined on some string y, then 
we can define another description mode D' as follows. Let D'{y) be equal to a 
string 2 of complexity (with respect to D) greater than l{y), and let D' coincide 
with D on all other strings. The description mode D' is a bit better than D , as the 
complexity of all strings except 2 remains the same while the complexity of 2 has 
been decreased.

There is no formal contradiction here, as D is still not worse than D' (they differ 
only at one point, the difference between the complexities is bounded by a constant, 
and both D and D' are optimal). However, this is still a bit strange. This obser­
vation was made by Yu. Manin in his book Computable and non-computable [114] 
(by the way, in this book he also discussed the computational power of quantum 
mechanics long before quantum computing became fashionable).

A similar argument shows that the domain of every optimal description mode 
is undecidable. (The set of strings is called decidable, or computable, if there is an 
algorithm that for any given string decides whether it belongs to the set or not.) 
Indeed, if there were an algorithm deciding whether D(x) is defined or not, then 
there would be a total computable extension of D (for example, let D{x) = 0 for all 
x outside the domain of D). This extension would be a total optimal description 
mode, but this is impossible as we have seen.

As a byproduct we get an algorithm whose domain is undecidable. This is one 
of the central theorems in computability theory (see, for example, [184]).
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In general the notion of Kolmogorov complexity has a number of connec­
tions with computability theory. Recently, many interesting facts were discovered; 
see [147, 49]. We consider here only two basic examples (a simple set of simple 
strings and the complexity of large numbers).

1.2.1. Simple strings and simple sets. In this section, the word “simple” 
has two unrelated meanings. First, when applied to strings, it means that the 
Kolmogorov complexity of the string is small. Second, it is applied to sets of 
strings. The notion of a simple set was introduced by the American logician Emil 
Post and has no relation to Kolmogorov complexity.

Definition. An enumerable set A is simple (according to Post) if its comple­
ment is infinite but has no infinite enumerable subset.

Call a string x simple if C(x) < l(x)/2.
T heorem 10. The set of all simple strings is simple in the sense of Post.
P roof. That set S  of all simple strings is enumerable. Indeed, the function 

C is upper semicomputable, and if C(x) is less than |x|/2, this can be seen while 
approximating C(x) from above.

The number of strings of complexity less than n/2 does not exceed 2n/2. There­
fore the fraction of simple strings among strings of length n is negligible, and the 
complement of S  is infinite.

Assume now that the complement of S  has an infinite enumerable subset U. We 
can use U to obtain a computable unbounded lower bound of C. To find a string of 
complexity greater than t, we can generate elements of U until we find a string щ of 
length greater than 21. As U is infinite, there is such a string. The complexity of щ 
is greater than t ; otherwise, ut is simple. Without loss of generality we can assume 
that the strings щ, t = 1 ,2 ,... are pairwise different. Thus the function щ i-> t 
is a computable unbounded lower bound for C. This contradicts to Theorem 6 
(page 9). □

Note that the choice of the threshold Z(x)/2 in the definition of a simple string 
was not essential. The proof of Theorem 10 would work as well with l(x) — 1 or 
log log/(x) in place of Z(x)/2.

1 . 2 . 2 . Complexity of large numbers. Let us identify a natural number m 
with the binary string having index m in the standard enumeration of binary strings. 
In this way C becomes a function of a natural argument. The function C(m) goes 
to infinity as m —> oo. Indeed, for all n there are only finitely many integers of 
complexity less than n. However, the convergence is not effective. That is, there is 
no algorithm that, for every given n, finds a number N  such that the complexity 
of N  and of all larger numbers is bigger than n. Indeed, such an algorithm would 
provide an effective way to describe the number N , whose complexity is at least n, 
by logn + 0(1) bits. We have seen this in the proof of Theorem 6 (p. 9).

In this section, we study in detail the rate of convergence of C to infinity. 
Following Chaitin [31], we consider for every natural n the largest number В in) 
whose complexity is at most n:

В (n) = max{m G N | C(m) + n}.
The function п\-л B (n) may be called the modulus of the convergence of C(m ) to 
infinity (see Figure 1). Indeed, C(x) > n for all x > B (n) (and B (n) is the minimal
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F igure 1. The definition of B (n ): the value C(m) does not exceed 
n —1 form — B(n—1) (the case when C(B (n—1)) = n —1 is shown), 
and C{m) ^  n for all m  > B(n — 1). At the point m = B(n), 
the value of C does not exceed n (the case when C(B(n)) = n 
is shown), and C{m) > n for all m  > B(n).  The case when 
C(m) is even greater than n + 1 for all m > B(ri) is shown, thus 
B(n + 1) = B{n). For m  G (B(n — 1 ),B(n)], the value of the 
function C^(m)  is equal to n.

number with this property). Note also that it can happen (for small values of n) 
that C{m) > n for all m. In this case we let B(n) — —1.

The function В can be considered as an inverse function to the function
C^(N) = min{C(m) | m  > N}.

The function Ĉ> grows very slowly. It takes the value n between B(n — 1) and 
B(n), more precisely, on the interval (B(n — 1 ),Æ(n)]. The slow increase of C^ 
corresponds to the fast increase of В . The latter can be illustrated by the following 
result.

T heorem 11. Let f  be a computable function from N to N. Then B(n) ^  f(n)  
for all but finitely many n.

Note that /  may be a partial function. In this case we claim that B(n) > f(n)  
for all sufficiently large n that are in the domain of / .

P roof. As algorithmic transformations do not increase complexity, for some 
constant c for all n we have

C(f(n)) < C{n) + 0(1) < logn + c.
On the other hand, the definition of В and the inequality f (n) > B(n) imply 
C{f{n)) > n. Thus

n < C(f(n)) < logn + c 
whenever f(n) > B(n). This can happen only for finitely many n. □

Let us reformulate the definition of B(n) as follows. Let D be the optimal 
description mode used in the definition of Kolmogorov complexity. Then B (n) is 
the maximal value of D on strings of length at most n:

B(n) = max{£)(x) | l(x) < n}.
Recall that we identify natural numbers and binary strings and consider the values 
of D as natural numbers. The minimum of the empty set is defined as —1.
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Consider now any partial computable function d : S -A N in place of D, and let

Bd(n) — max{d(x) | l(x) < n and d(x) is defined}.

The next theorem shows that the function В is the largest function among all 
functions Bd in the following sense:

Theorem 12. For every function d there is a constant c such that

В din) ^  B(n + c)

for all n.

P r o o f . For every x of length at most n, the complexity of d(x) is less than 
n + c for some constant c. Indeed, the complexity of d(x) exceeds at most by a 
constant the complexity of x, which is less than n + 0(1). Hence d(x) does not 
exceed the largest number of complexity n + c or less, i.e., B(n + c). □

This (trivial) observation is useful in the following special case. Let M  be an 
algorithm, and let X  be a set of binary strings. A halting problem for M  restricted 
to X  is the following problem: given a string x £ X , find out whether M  terminates 
on x or not.

A classical result in computability theory states that for some algorithm M  the 
unrestricted halting problem (X  = £) for M  is undecidable.

We are interested now in the case when X  is the set of all strings of bounded 
length. Fix some algorithm M  and consider the running time t(x) of M  for some 
input x. If M  does not halt on x, then t(x) is undefined. Thus the domains of t 
and M  coincide. By definition, B t(n) is the maximal running time of M  on inputs 
of length at most n. If we know Bt(n) or any larger number m, we can solve the 
halting problem for M  and every input x of length at most n: Run M  on input x\ 
if the computation does not terminate after m steps, it never terminates.

We have seen that B t(n) ^  B(n  + c) for some constant c (depending on M). 
Therefore, the knowledge of B (n + c) or any greater number is enough to solve the 
halting problem of M  on inputs of length at most n. In other words, the following 
holds:

Theorem 13. For every algorithm M there is a constant c and another 
algorithm A having the following property. For every n and for every number 
t > B(n  + c), the algorithm A, given n and t, produces the list of all strings x 
of length at most n such that M  halts on input x.

This theorem says that the halting problem for inputs of length at most n is 
reducible to the problem of finding a number greater than B(n + c).

If M  is the optimal decompressor D, then the converse is also true: given n 
and the list of all strings x of length at most n in the domain of D , we can find
в {n).

Continuing this argument, we can prove the following result:

Theorem 14. Let BB (n) denote the maximal running time of the optimal 
decompressor D on strings of length at most n (in the domain of D). Then

BB (n) < B(n + c) and В (n) < BB (n + c) 

for some c and all n.
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Proof. Let an be the most time-consuming description of length at most n, 
that is, the string x of length at most n in the domain of D that maximizes the 
running time of D on x. Knowing n and an, one can generate the list of all strings 
of length at most n in the domain of D, and hence the number BB(n).  Both n and 
an can be encoded in one string of length n + 1, the string 0 • • • 01an (there are 
n — l(ctn) zeros in the beginning). Therefore, the Kolmogorov complexity of BB (n) 
is at most n + 0(1), and BB(n) < B(n + c) for some c and all n.

Let us prove the second inequality of the theorem showing that every t > BB(n) 
has complexity at least n — 0(1). Assume that t has a description и of length k\ 
we need to show that к > n — 0(1). Knowing и and n, one can effectively obtain 
a string of complexity greater than n. Indeed, we reconstruct t (from и) and 
wait t steps for every description of size at most n. This gives us all strings of 
complexity at most n, and we can take some other string. By definition of B(n) 
we conclude that the pair (u,n) has complexity at least n — 0(1). On the other 
hand, this pair can be described using к + 0(log(n — к)) bits if we join the self­
delimited description of n — k and u. Therefore, к + 0(log(n — к)) ^  n — 0(1), and 
(n — k) — 0(log(n — к)) < 0(1), hence n — к ^  0(1). (We assumed that n > k; 
otherwise, there is nothing to prove.) □

This theorem shows that, within an additive constant in the argument, B(n) 
is the maximal running time of the optimal decompressor on descriptions of length 
at most n. A similar function appeared in the literature under the name of “busy 
beaver function”. It was introduced by T. Rado [150] and is defined usually as the 
maximal number of ones on the tape of Turing machine with n states and binary 
tape alphabet (1 and blank) after it terminates (starting with blank tape).

More generally, given n and any object from the following list, we can find any 
other object from the list for a little bit smaller value of n:

(a) the list of all strings of Kolmogorov complexity at most n with their 
Kolmogorov complexities;

(b) the number of such strings;
(c) B(n);
(d) BB(n)\
(e) the list of all strings of length at most n in the domain of the optimal 

decompressor (the halting problem for the optimal decompressor restricted 
to inputs of length at most n);

(f) the number of such strings;
(g) the most time-consuming input of length at most n for the optimal de­

compressor;
(h) the graph Tn of the function C(x) on strings x of length n;
(i) the lexicographically first string 7n of length n with Kolmogorov com­

plexity at least n (it exists since the number of strings of complexity less 
than n is less than 2n).

More specifically, the following statement holds.

T heorem 15. The complexity of every object in (a)-(i) is equal to n + 0(1). 
These objects are equivalent to each other in the following sense: Let X n and Yn 
be objects described in two items among (a)-(i). Then there is a constant c and an 
algorithm that given n and X n finds Yn- C•
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P r o o f . The equivalence of (d), (e), (f), and (g) is easy. Each of the objects (d),
(e), (f), and (g) together with n determines the list of all terminating computations 
of the optimal decompressor D on strings of length at most n. Indeed, knowing 
BB(n), we can run D on all inputs of length at most n for BB(n) steps. Knowing
(e), that is, the list of strings of length at most n in the domain of D, we can run 
D on all those strings until all the computations terminate (and we know that this 
happens). Knowing (f), the number of strings of length at most n on which D 
terminates, we run D on all strings of length at most n until the desired number 
of computations do terminate. Knowing the string (g), we run D on that string, 
count the number of steps t, and then run D on all other strings of length at most 
n for t steps.

Conversely, the list of all halting computations of the optimal decompressor D 
on strings of length at most n together with n identifies each of the objects (d)-(g) 
as well as the objects (a)-(c). Therefore, by transitivity (which is easy to check), 
all the objects (d)-(g) are equivalent.

Let us prove now that (a)-(c) are equivalent to each other and equivalent to
(d)-(g). Given the list of strings of complexity at most n, we can find the number 
of them (so (a)—>(b)) and the largest number of complexity at most n (so (a)—>(c)).

It is not that easy to find (a) given (b) and n. Given n and the number of strings 
of complexity at most n, we can reconstruct the list of these strings (generating 
them until we obtain the desired number of strings) and find a maximal number 
among them ((b)—»(c)). But we still do not know the Kolmogorov complexity of 
the generated strings. We will prove the implication (c)—»(a) indirectly, by showing
(c)->(d); we know already that (d) implies (a). This will prove that all objects
(a)-(g) are equivalent.

The implication (c)—>(d) follows from Theorem 14. We know that B(n)  is an 
upper bound for BB(n — c) (for appropriate c). Thus, given n and B(n),  we can 
find BB (n — c) as follows: run D on all inputs of length at most n — c within B (n ) 
steps. Then find BB (n — c) as the number of steps in the longest run.

It remains for us to consider the objects (h) and (i). The implication (a)—»(h) 
is easy. Indeed, for some constant c the complexity of every string of length n — c 
does not exceed n. If we know the list (a) and n, then removing all the strings of 
length different from n — c from the list, we get (h) for n — c.

The conversion (h)—>(i) is straightforward.
Thus it remains to prove (i)—>(a). It is enough to show that, given the lex­

icographically first string 7n of length n and complexity at least n, we can find 
BB(n  — 0(1)) or a number greater than BB(n  — 0(1)). This can be done as 
follows.

Given 7n, find n, and for each string x of length n preceding 7n in lexicographi­
cal order, find a description px of x that has length n or less, and find out the running 
time tx of D on px. (Note that px may be not the shortest description of x.) Let T  
be the maximum of tx for those x. We claim that T  > BB{n — c) for some c that 
does not depend on n. Assume that this inequality is false, that is, T  ^  BB(n — c). 
We will prove that then c is small. Consider the most time-consuming description 
an- c of length at most n — c; let n — c — d be its length. Given an- c and c + d, we 
can find n and BB (n — c). From this we can find 7n: run D on all strings of length 
at most n within BB (n — c) steps. Consider all the strings of length n for which 
we have found descriptions of length n or less. Then 7n is the lexicographically
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first remaining string (since T  ^  BB(n — c) according to our assumption). As the 
complexity of 7n is at least n, we have n ^  C(7n) < (n — c — d) + 2 log(c + d) + 0 (1), 
hence (c + d) = 0 (1).

We have thus proven the equivalence of objects (a)-(h). It remains to prove 
that the complexity of each of them is n + 0 (1).

Let X n be one of objects (a)-(h). We have just proven that X n can be obtained 
from 7n+c and n (actually, we do not need n, as n = /(7n+c) — c). Therefore, 
C(Xn) ^  C(ln+c) + 0(1) < n + 0(1).

To prove the lower bound of C(Xn), let n — d be the complexity of X n. For 
some constant c the string 7n_c can be obtained from the shortest description of 
X n of length n — d and from d (note that n can be retrieved from the length of 
the shortest description and d). Thus, n — c ^  C(^n- c) ^  (n — d) + 21ogd + 0(1). 
Therefore, d ^  2 logd + c + 0(1) and, hence, d = 0(1). □

[~8~| The objects in Theorem 15 depend on the choice of the optimal decompres­
sor. In the proof we assumed that the same optimal decompressor is used in all the 
items (a)-(h). Prove that the statement of the theorem remains true if different 
decompressors are used.

[~9~| Prove that the complexity of all the objects in Theorem 15 becomes O(logn) 
if we relativize the definition of Kolmogorov complexity by (F, that is, if we allow 
the decompressor to query the oracle for the halting problem.

We have seen that there exist a constant c and an algorithm A that, given the 
string 7n, solves the halting problem for the optimal decompressor on inputs of 
length at most n — c. This means that given an “oracle” that finds 7n for every 
given n, we can solve the halting problem. The same can be done given an oracle 
deciding whether a given string x is incompressible, that is, C(x) ^  l(x). Indeed, 
using that oracle, we can find 7n by probing all strings of length n.

Using the terminology of computability theory, we can say that the halting 
problem is Turing reducible to the set of incompressible strings (or its complement, 
the set of compressible strings). This implies that the halting problem is also 
reducible to the “upper graph” of C, that is, to the set {(x , k ) | C(x) < к}. Using 
the terminology of computability theory, we say that the set of compressible strings 
(as well as the upper graph of C) is Turing complete in the class of enumerable sets 
(this means that it is enumerable and that the halting problem is Turing reducible 
to it).

10 Find some upper bound for the number of oracle queries for the set

{(x, к) I C(x) < к}

needed to solve the halting problem for a fixed machine M  and for all strings of 
length at most n.

11 1 1 Let /  be a computable partial function from N to N. Prove that there 
is a constant c such that for all n, such that f ( B ( n )) is defined, the inequality 
B(n + c) ^  f ( B (n)) is true.

(Hint: The complexity of f (B(n))  is at most n + 0(1).)
12 Call a set U r-separable [137] if every enumerable set V disjoint with U 

can be separated from U by a decidable set, that is, there is a decidable set R that 
includes V and is disjoint with U.



28 1. PLAIN KOLMOGOROV COMPLEXITY

(a) Prove that the the set {(x ,k ) | C{x) < k} (the upper graph of C) is an 
r-separable set. The set of compressible strings is r-separable, too.

{Hint-. Assume that the upper graph of C is disjoint with some enumerable set 
V. The set of the second components of pairs in V is finite, otherwise we get an 
unbounded computable lower bound for C. That is, V is included in a horizontal 
strip of finite height. The intersection of the strip with the upper graph is finite.)

(b) We say that a set U\ is m-reducible to a set U2 if there is a total computable 
function /  such that U\ = f ~ 1{U2 ). Prove that if U2 is r-separable and U\ is m- 
reducible to [/2, then U\ is r-separable as well.

{Hint: If V is an enumerable set disjoint with U\, then /(V) is an enumerable 
set disjoint with U2 . If R is a decidable set separating /(V ) and U2 , then f ~ 1{R) 
is a decidable set separating V and U\.)

(c) Prove that there is an enumerable set that is not r-separable (such a set 
does not m -reduce to the upper graph of C).

{Hint: There is a pair of disjoint enumerable inseparable sets.)

Following [74], prove that the following problems are equivalent: “for a 
given integer n find some string of complexity at least n” and “for a given algorithm 
without input find some string that is different from its output” (if the algorithm 
does not terminate, any string is OK). An oracle that fulfills one of these tasks can 
be used to (effectively) fulfill the other.

{Hint: Given an algorithm, we can provide an upper bound for the complex­
ity of its output—it is bounded by complexity (and therefore the length) of the 
algorithm itself. On the other hand, to provide a string of high complexity means 
to provide a string which is guaranteed to be different from the outputs of finitely 
many algorithms. At first, this looks like a more difficult task than for one algo­
rithm (as the oracle does). However, the following trick helps: we may assume that 
the outputs are tuples and construct a tuple that differs from the output of ith 
algorithm in ith position.)

13

14 (Continued) Prove that both these problems are equivalent to the problem 
of computing a fixed-point free function: “for every algorithm construct another 
algorithm that computes a different function” (not the same as the first one).

15 (Continued) Prove that an enumerable oracle can solve these problems if 
and only if it solves the halting problem (M. Arslanov proved this result without 
using Kolmogorov complexity).

{Hint: Assume that an enumerable oracle A allows us to compute strings of 
arbitrarily high complexity. Then let us compute a string of complexity at least n 
using this oracle, and look at all elements of A that were questioned during this 
computation. How many steps are needed to enumerate all this elements? This is 
a big number: any T  greater than this number, has Kolmogorov complexity of at 
least n, since T -approximation of A can be used instead of A. On the other hand, 
having an oracle for A, we can find T  for a given n.)

Kolmogorov complexity and functions В  and BB turn out to be useful in 
studying the so-called “generic” and “coarse” algorithms that solve the halting 
problem for most inputs (the fraction of errors converges to zero); see [11]. The 
versions of these functions based on prefix complexity were introduced by Gâcs [57]; 
see also [4] for recent results related to the busy beaver functions for different 
versions of Kolmogorov complexity.
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We have shown only several (simple) examples that show how Kolmogorov com­
plexity is related to computability theory (also called recursion theory). This area 
is now actively growing, so we refer the interested reader to two recent monographs 
[147] by A. Nies and [49] by R. Downey and D. Hirschfeldt.

Theorem 15 selects some very special objects among all objects of complexity n 
(in fact, one object up to equivalence is described above). At first glance, this seems 
strange: our intuition says that all random (incompressible) strings of length n 
should be indistinguishable, and any special property of a string could be used to 
compress it. However, we have found a very special random string 7n of length n. 
This paradox can be explained as follows: the individual properties of 7n do allow 
us to find a short description for 7n, but we need the oracle for O' to decompress 
that description.

We will come back to this question in Section 5.7, which discusses “the number 
of wisdom” fl, and in Section 14.3, which studies two-part descriptions.

Finally, let us note that although all the objects in Theorem 15 are equivalent, 
they have very different lengths. The lengths of (a), (b), (e)-(i) are about n while 
the length of (c) and (d) grows faster than every computable function of n.



CHAPTER 2

Com plexity of pairs and conditional com plexity

2.1. Complexity of pairs

As we have discussed, we can define complexity of any constructive object using 
(computable) encodings by strings. In this section we deal with pairs of strings. A 
pair x ,y  can be encoded, e.g., by a string [x,y] — xOly; here x stands for x with 
doubled bits. Any other computable encoding i , ! / 4  [x,y\ could be used (of course, 
we need that [x,y\ ф [x',y'] if x ф x' or у ф у'). Any two encodings of this type 
are equivalent (there are translation algorithms in both directions), so Theorem 3 
(p. 5) guarantees that complexities of the different encodings of the same pair differ 
by 0(1).

Let us fix some encoding [x,y\ . The Kolmogorov complexity of a pair x ,y  is 
defined as C([x,y]) and is denoted by C(x,y).  Here are some evident properties:

• C(x,x) — C(x) + 0(1);
• C(x, y) = C(y. x) + 0(1);
.  C(x) ^  C(x, y) + 0(1); C(y) ^  C(x, у ) + 0(1).

The following theorem gives an upper bound for the complexity of a pair in 
terms of complexities of its components:

T heorem 16.

C(x,y)  < C(x) + 21og C(x) + C(y) + 0(1);
C{x,y) ^  C(x) + logC(x) + 2 log log C{x) + C{y) + 0(1);
C(x, y) ^  C{x) + log C(x) + log log C(x) + 2 log log log C(x) + C(y) + 0(1);

(We can continue this sequence of inequalities indefinitely. Also, one can ex­
change x and y.)

PROOF. This proof (for the first inequality) was already explained in the in­
troduction (Theorem 4, p. 6). The only difference is that we considered the con­
catenation xy instead of a pair. Let us repeat the argument for pairs.

A computable mapping x i-+ x (here x and x are binary strings) is called a 
prefix-free encoding, if for any two different strings x and у the string x is not a 
prefix of the string y. (In particular, x ф у if x ф у.) This guarantees that both и 
and v can be uniquely reconstructed from ûv.

An example of a prefix-free encoding is ж и  xOl, where x stands for x with 
doubled bits. Here the block 01 is used as a delimiter. However, this encoding is 
not the most space-efficient one, since it doubles the length. A better prefix-free 
encoding is

x i  ̂x — bin(/(x)) Olx,

31
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where (bin(/(:r)) is the binary representation of the length l{x) of the string x). 
Now

l{x) = l{x) + 21og/(:r) + 0(1).
This trick can be iterated: for any prefix-free encoding x h+ x , we can construct 
another prefix-free encoding

x h-> bin(/(:r)):r.

Indeed, if bin(/(:r)):r is a prefix of bin(l(y))y, then one of the strings bin(/(:r)) and 
bin(/(?/)) is a prefix of the other one, and therefore Ып(/(ж)) = bin(/(r/)). Therefore 
ж is a prefix of у , and l(x) = l(y), so x = y. (In other words, we uniquely determine 
the length of the string, since a prefix-free code is used for it, and we then get the 
string itself knowing where it ends.)

In this way we get a prefix-free encoding such that

l(x) = l(x) + logl(x) + 2 log log l(x) + 0(1),

then (one more iteration)

l(x) = l(x) + log l(x) + log log l(x) + 2 log log log l(x) + 0(1),

etc.
Now we return to the proof. Let D be the optimal decompressor used in the 

definition of Kolmogorov complexity. Consider a decompressor D' defined as

D'(pg) =  [D(p),D(q)],

where p is a prefix-free encoding and [•, •] is the encoding of pairs (used in the 
definition of pairs complexity). Since p is a prefix-free encoding, D' is well defined 
(we can uniquely extract p out of pq).

Let p and q be the shortest descriptions of x and y. Then pq is a description 
of [x,y], and its length is exactly as we need in our theorem. (The more iterations 
we use for the prefix-free encoding, the better bound we get.) □

Theorem 16 implies that

C(x, y) < C(x) + C(y) + O(logn)

for strings x and у of length at most n: one may say that the complexity of a 
pair does not exceed the sum of the complexities of its component with logarithmic 
precision.

16 Suggest a natural definition for the complexity of a triple. Show that 
C(x , y, z) < C(x) + C(y) + C(z) + O(logn) for every three strings x , у , z of length 
at most n.

A natural question arises: is it true that C(x,y) ^  C(x) + C{y) + 0(1)?
A simple argument shows that this is not the case. Indeed, this inequality would 

imply C(x, y) ^  l(x) + l(y) + 0(1). Consider some N.  For each n = 0,1, 2 ,.. . ,  A, 
we have 2n strings x of length n and 2N~n strings у of length N  — n. Combining 
them, we (for a given n ) obtain 2N different pairs (x, y). The total number of pairs 
(all n = 0 ,1 ,..., Af give different pairs) is (N + 1)2N.

Assume that indeed C(x,y) < l{x) + l(y) + 0(1) = A + 0(1) for all these pairs. 
Then we get (N + 1)2N different strings [ж, у] of complexity at most N  + 0(1), but 
this is impossible (Theorem 7, p. 17, gives the upper bound 0{2N)).
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I 17 I Prove that there is no constant c such that

C(x, y) ^  C(x) + log C(x) + C(y) + c

for all X and y.
(Hint: Replace C in the right-hand side by I and count the number of corre­

sponding pairs.)
18 ( a ) Prove that

for any prefix-free encoding i h î  (here S is the set of all binary strings).
(b) Prove that if a prefix-free encoding increases the length of an n-bit string 

at most by f(n),  i.e., if l(x) < l(x) + f(l(x)), then E n 2“ ^ " ' < oo.
This problem explains why a coefficient 2 appears in Theorem 16 (p. 31): the

series
V  1 V  1 V  1^  n2 ’ ^  n(logn)2 ’ ^  n log n (log log n)

converge, while the series

V 1 V  1 V  1' n ’ n log n ’ ' n log n log log n ’
diverge.

The following problem describes functions that can be used for bounds similar 
to Theorem 16.

19 Let / :  N —>■ N be a non-decreasing total computable function. Prove that 
the following three properties are equivalent:

(a) C(x, y) < C(x) + C(y) + f(C(x))  + 0(1);
(b) C(x,y) < l(x) + l(y) + f(l(x)) + 0(1);
(c) E n 2" /(n) < °°-
(Hint: .(a) obviously implies (b); to get the reverse implication, consider the 

shortest descriptions. To derive (a) from (c), one can count pairs with l(x) + 
f(l(x)) + l(y) < щ one can also use results about prefix complexity (see Chapter 4, 
Problem 107). Finally, to derive (c) from (b), note that the right-hand side in (b) 
is at most n + 0(1) if l(x) = к and l(y) = n — к — f(k),  for к + f(k)  ^  n. So the 
number of such pairs is at least '^/ 2к2п~к~ ^ к"> = 2n ^2k 2~^k  ̂ where the sum is 
taken over all к such that к + f(k)  ^  n.)

20 Prove that all the inequalities of Theorem 16 become false if the coefficient 
2 is replaced by 1 but remain true with the coefficient 1 + e for any e > 0.

(Hint: See the preceding problem.)
21 Prove that

C(x, y) < C(x) + log C(x) + C(y) + log C(y) + 0(1).

22 (Continued) Prove a stronger inequality:

C(x,y) ^  C(x) + C(y) + log(C(z) + C(y)) + 0(1).

(Note that C(x) + C(y) can be replaced by max(0(x), C(y)). This gives a factor 
at most 2, which makes 0(1) after taking logarithms.)
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23 Prove that C(x, C(x)) = C(x) + 0(1).
{Hint: C(x,C(.x)) ^  C(x) + 0(1) for evident reasons. On the other hand, the 

shortest description of x determines both x and C{x).)
24 Prove that if C(x) ^  n and C{y) ^  n, then C(x, y) ^ 2 n  + 0(1).

2.2. Conditional complexity

When transmitting a file, one could try to save communication charges by 
compressing that file. The transmission could be made even more effective if an old 
version of the same file already exists at the other side. In this case we need only 
describe the changes made. This could be considered as a kind of motivation for 
the definition of conditional complexity of a given string x relative to a (known) 
string y.

A conditional decompressor is a computable function D of two arguments, 
the description and the condition (both arguments and the value of D are binary 
strings). If D{y, z) — x, we say that y is a (conditional) description of x when z is 
known (or relative to z). The complexity C d {x \z) is then defined as the length of 
the shortest conditional description:

CD(x\z) = min{l{y) I D(y, z) = x}.
We say that (conditional) decompressor D\ is not worse than D2 if

CDl(x\z) ^  C d 2(x\ z )  + c
for some constant c and for all x and г. A conditional decompressor is optimal if 
it is not worse than any other conditional decompressor.

T h eo r e m  17. There exist optimal conditional decompressors.

P r o o f . This conditional version of the Solomonoff- Kolmogorov theorem can 
be proved in the same way as the unconditional one (Theorem 1, p. 3).

Fix some programming language where one can write programs for computable 
functions of two arguments, and let

D(py, z) =p{y,z),
where p{y, z) is the output of program p on inputs у and г, and p is the prefix-free 
encoding of p.

It is easy to see now that if D' is a conditional decompressor and p is a program 
for D' , then

CD{x\z) ^  CD'(x\z) + l(p).
The theorem is proved. □

Again, we fix some optimal conditional decompressor D and omit index D in 
the notation.

Let us start with some simple properties of conditional complexity.

C(x I y) ^  C{x) + 0(1); 
C{x\x) = 0(1);

C{f{x,y)\y)  < C(x\y) -f 0(1); 
C{x\y) < C{x\g{y)) + 0(1).

T h eo r e m  18.
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Here g and /  are arbitrary computable functions (of one and two arguments, 
respectively) and the inequalities are valid if f{x,y)  and g(y) are defined.

P r o o f . First inequalitj': Any unconditional decompressor can be considered 
as a conditional one that ignores the second argument.

Second inequality: Consider D such that D(p, z) — z.
Third inequality: Let D be the optimal conditional decompressor used to define 

complexity. Consider another decompressor D' such that

D'[p, y) = f (D(p,y) ,y),
and apply the optimality property.

A similar argument works for the last inequality, but D' should be defined in 
a different way:

D'{p,y) =  D(p,g(y)).
The theorem is proven. □

25 Prove that conditional complexity is “continuous as a function of its second 
argument”: C(x\yO) — C(x\y)  + 0(1); C(x\yl) — C(x\y) + 0(1). Using this 
property, show that for every string x and for every non-negative integer I ^  C(x) 
there exists a string y such that C(x\y) — I + 0(1).

A similar argument based on two-dimensional topology is used in [156].
Prove that for any fixed y the function x C(x \ y) differs from C at most26

by 2C(p) +  0(1).
Prove that C([x, z] \ [y, z]) ^  C(x\y) + 0(1) for any strings x,y , z  (here27

stands for the computable encoding of pairs).
Fix some “reasonable” programming language. (Formally, we require the28

corresponding universal function to be a Gödel one. This means that a translation 
algorithm exists for any other programming language; see, e.g., [184].) Show that 
the conditional complexity C(x\y) is equal (up to an 0(1) additive term) to the 
minimal complexity of a program that produces output x on input y.

(Hint: Let D be an optimal conditional decompressor. If we fix its first argu­
ment p, we get a program of complexity at most l(p) + 0(1). On the other hand, 
if program p maps y to x, then C(x\y) = C(p(y)\y) ^  C(p) + 0(1).)

This interpretation of conditional complexity as a minimal complexity of a 
program with some property will be considered in Chapter 13.

If we restrict ourselves to total programs (that terminate on all inputs), we 
get an essentially different notion of conditional complexity that can be called total 
conditional complexity.

Show that the notion of total conditional complexity CT(x \ y), the minimal 
(plain) complexity of a total program that maps y to x , is well defined (i.e., it 
changes at most by 0(1) when we change the programming language in a reasonable 
way). Prove that

C ( x \ y ) ^ C T ( x \ y ) ^ C ( x )

29

with 0(l)-precision.
30 Show that the total complexity sometimes exceeds significantly the usual

conditional complexity: for every n there exist two n-bit strings x and y such that 
C(x\y) — 0(1) while CT(x\y)  ^  n.
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[Hint: Let us enumerate all programs of complexity less than n defined on all 
n-bit strings, and maintain two n-bit strings x and y with the following property: 
none of the programs found maps y to x. When a new program is found that 
maps y to x, we choose a fresh value of y and then choose an appropriate x. This 
process is effective if n (=length of y) is given, it defines a partial function у н-» x, 
so C(x\y)  = 0(1) for every pair selected.)

Let x and у be bit strings such that CT(x\y)  ^  n and CT(y\x)  < n. 
Prove that there exists a program of a computable permutation of the set of bit 
strings that maps x to у and has complexity at most 2n + 0(1).

(Hint: It is easy to construct a string v of length 2n + 0(1) that encodes a 
pair of total programs /  that maps x to у and g that maps y to x. We may 
assume without loss of generality that x and y have 0 as their first bits. Consider 
a binary relation R on the set of strings that have first bit 0, defined as R(u, v) : 
( f ( u ) — v) and (g(v) = и )). This is a decidable one-to-one correspondence between 
decidable sets of strings with infinite complements, and it can be easily extended 
to a computable permutation.)

31

32 Show that the upper bound in the preceding problem cannot be improved 
significantly: for every к there are two strings x and у of length n — 2k + 0(1) 
such that C(x),C(y) ^  к + 0(1) (and therefore CT(x\y), CT(y\x)  ^  к + 0(1)), 
but every permutation of n-bit strings that maps x to у has complexity at least 2k.

(Hint: Let us first select (arbitrarily) 2k strings у and pair them with some 
string x. Let us enumerate computable permutations of n-bit strings that have 
complexity less than 2k. If and when all selected pairs are served by some of these 
permutations, choose a new string x that is connected (by existing permutation) 
with at most half of the selected y-strings. After that Q,(2k) new permutations are 
needed to connect new x to all y-strings. Therefore at most 22k/Q(2k) — 0(2k) 
x-strings will be used, so the final x and у have complexity at most к + 0(1). The 
selection of x connected with at most half of selected y-strings is always possible, 
since each of the у-strings is connected with a small fraction of x-strings, and we 
can change the order of summation in the double sum. Note that this argument 
may be used to guarantee that one of the strings x and у belongs to a given set of 
2k strings.)

See [136] for the detailed proofs of these results about total conditional com­
plexity.

Many properties of unconditional complexity have conditional counterparts 
with essentially the same proofs. Here are some of these counterparts.

• Function C (-1 •) is upper semicomputable (this means that the set of triples 
(x,y,n) such that C(x\y) < n is enumerable).

• For any у and n the set of all strings x such that C(x \y) < n has cardi­
nality less then 2n.

• For any у and n there exists a string x of length n such that C(x \y) ^  n.

33 Prove that for any strings у and 2 and for any number n there exists a 
string x of length n such that C(x \ y) ^  n — 1 and C(x \z) ^  n — 1.

(Hint: Both requirements are violated by a minority of strings.)
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T heorem 19. Let (x , y ) h-* k(x,y) be an upper semicomputable function such 
that the set {x \ k(x,y) < n} has cardinality less than 2n for any string y and 
integer n. Then C(x | у) < k(x, у) + c for some c and for all x and y.

The proof repeats the proof of Theorem 8.
Using conditional complexity, we get a stronger inequality for the complexity 

of pairs (compared with Theorem 16, p. 31):

T heorem 20.

C(x, y) < C(x) + 2 log C(x) + C(y I x) + 0(1).

P r o o f .  Let D\ be an optimal unconditional decompressor, and let D2 be an 
optimal conditional decompressor. Construct a new unconditional decompressor 
D'  as follows:

D'(pq) = [Di(p), D2(q, Di(p))\.
Here p stands for the prefix-free encoding of p, and [•, •] is a computable encoding 
of pairs used in the definition of the complexity of pairs. Let p be the shortest 
D\ -description of x, and let q be the shortest ^ - d e s c r ip t io n  of y conditional to x. 
Then the string pq is a ^-description of [x, у]. Therefore,

C(x,y) < CD'(x, y) + 0(1) ^  l{p) + l{q) + 0(1).

As we have seen, one can choose a prefix-free encoding in such a way that l(p) is 
bounded by l(p) + 2 logl(p) + 0(1) (see the proof of Theorem 16, p. 31), and we 
get a desired inequality. □

As before, we may replace 2 log C(x) by log C(x) + 2 log log C(x), etc., getting 
a better bound. We also can use conditional complexity in the logarithmic term 
and write

C(x, у) ^  C(x) -I- C(y I x) + 2 log C(y I x) + 0(1).
(In the proof we should then replace D'(pq) by D'(qp).)

34 Prove that

C(x I z) < C(x \y) + 2 logC(x Iy) + C(y \ z) + 0(1)

for all x, y, z (a sort of triangle inequality).
If we are not interested in the exact form of the additional logarithmic term, 

the statement of Theorem 20 can be reformulated as

C(x, y) ^  C{x) + C(y I x) + O(logn)

for all strings x, y of length at most n.
It turns out1 that this inequality is in fact an equality.

T heorem 21 (Kolmogorov-Levin).

0(x, у) = C(x) + C(y I x) + О (log n)

for all strings x , у of length at most n.

1This is the first non-trivial statement in this chapter, and probably the first non-trivial 
result about Kolmogorov complexity; it was proven independently by Kolmogorov and Levin and 
published in [79, 225].
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Figure 2. The section At of the set A of all simple pairs

PROOF. Since we already have one inequality, we need to prove only that 
C(x,y) ^  C(x) + C(y\x) + O(logn)

for all X and y of length at most n.
Let X and y be some strings of length at most n. Let a be the complexity 

C(x, y) of the pair (x, y). Consider the set A of all pairs whose complexity does not 
exceed a. Then A is a set of cardinality 0(2°) (in fact, at most 2a+1) and (x, y) is 
one of its elements.

For each string t consider the “vertical section” At of A:
At = {и I (t,u) € A)

(see Figure 2). The sum of the cardinalities of all At (over all strings t) is the 
cardinality of A and does not exceed 0(2a). Therefore there are few “large” sections 
At, and this is the basic argument we need for the proof.

Let m be equal to |_log2 |Âe|J where x is the first component of the pair (x, y) 
we started with. In other words, assume that cardinality of Ax is between 2m and 
2m+1. Let us prove that

(1) C(y |x) does not exceed m  significantly;
(2) C(x) does not exceed a — m significantly.
We start with (1). Knowing a, we can enumerate the set A. If we know also x, 

we can select only pairs whose first component equals x. In this way we get an 
enumeration of Ax. To specify y, it is enough to determine the ordinal number of у 
in this enumeration (of Ax). This ordinal number takes m + 0 (l)  bits, and together 
with a we get m  + O(logn) bits for the conditional description of у given x. Note 
that a = C(x,y) does not exceed 0(n) for strings x and у of length n. Therefore, 
we need only O(logn) to specify a and n , and

C(y |x) < m + O(logn).
Now let us prove (2). Consider the set В  of all strings t such that the cardinality 

of At is at least 2771. The cardinality of В  does not exceed 2a+1/2m; otherwise, the 
sum \A\ = \At \ would be greater than 2a+1. We can enumerate В  if we know a 
and m. Indeed, we should enumerate A and group together the pairs with the same 
first coordinate. If we find 2m pairs with the same value of the first coordinate, we 
put this value into B. Therefore, the string x (as well as every element of В ) can 
be specified by (a — m) + O(logn) bits: a — m  + 1 bits are needed for the ordinal



2.2. CONDITIONAL COMPLEXITY 39

number of x in the enumeration of B. and О (log 77,) is used to specify a and m. So 
we get,

C(x) < (a -  m) + О (log 72), 
and it remains to add this inequality and the preceding one. □

This theorem can be considered as the complexity counterpart of the following 
combinatorial statement. Let d b e a  finite set of pairs. Its cardinality is (obviously) 
bounded by the product of the cardinality of A's projection onto the first coordinate 
and the maximal cardinality of the sections Ax. This corresponds to the inequality 
C(x,y) ^  C(x) + C(y I x) + О (log 72). The reverse inequality needs a more subtle 
interpretation. Let A be a set of pairs, and let p and q be some numbers such 
that the cardinality of A does not exceed pq. Then we can split A into parts P 
and Q with the following properties: the projection of P onto the first coordinate 
has at most p elements, while all the sections Qx of Q (for element in Qx the first 
coordinate equals x) have at most q elements. (Indeed, let P be the union of all 
sections that have more than q elements. The number of such sections do not exceed 
p. The remaining elements form Q.) We return to this combinatorial translation 
in Chapter 10.

Note that in fact we have not used the lengths of x and y, only their complex­
ities. So we have proved the following statement:

T h eo r em  22 (Kolmogorov-Levin, complexity version).
C{x, у) = C(x) + C(y I x) + О (log C(x, y)) 

for all strings x and y.

35 Give a more detailed analysis of the additive terms in the proof, and show
that

C{x) + C{y\x) < C(x,y)  + 31ogC(x,y) + 0(loglogO(x,7/)).
36 Show that if C(x,y\k,  I) < k+l, then C(x \ k j )  < k+ 0( 1) or C(y \ x, k, I) <

I + O(l).
(Hint: This is what we actually proved in the proof of Theorem 22.}
37 Show that О (log 77.) terms are unavoidable in the Kolmogorov-Levin the­

orem in both directions: for each n there exist strings x and у of length at most n 
such that

C(x,y) > C(x) + C(y\x)  + logn -  0(1) 
as well as strings x and у of length at most n such that

C(x,y) ^  C(x) + C(y\x) -  log72 + 0(1).
(Hint: For the first inequality we can refer to the remark after Theorem 16 

(p. 31). For the second note that C(x, l(x)) = C(x) for every x, while C(x\l(x)) 
can be equal to l(x) + 0(1) and C(x) + 0(1). Then we can take a random length 
between n/2 and n and a random string of this length.)

38 Prove that changing one bit in a string of length n changes its complexity
at most by log 72 + О (log log 77.). Prove the same for the conditional complexity 
0(х|тг).

As we have seen in Problem 7 (p. 21), for every 72-bit string x there exists 
another string x' of the same length that differs from x in one position only such 
that C(x') < 72 — log72 + 0(1) (and therefore C(x' \n) < n — logn + 0(1)). In
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particular, if x is incompressible (given n), one can change one bit in x and decrease 
C(x I n).

One can also move in the other direction: if C(x | n) is small enough (this means 
that C(x\n) ^  an  for some positive constant a), we can increase this complexity 
by changing one bit in n: there exists some a > 0 such that for each n-bit string x 
with C(x I n) ^  an  one can change one bit in x and get another n-bit string x' such 
that C(x' \n) > C(x\n).  (The proof of this statement requires a more involved 
combinatorial argument [24] than the decrease in complexity.)

39 Fix some unconditional decompressor D. Prove that for some constant c 
and for all integers n and к the following statement is true: if some string x has at 
least 2k descriptions of length at most n, then C(x | к) ^  n — к + c.

(Hint: Fix some k. For each n consider all strings x that have at least 2k 
descriptions of length at most n. The number of these strings does not exceed 
2n~fc, and we can apply Theorem 19, p. 36.)

Using this problem, we can prove the following statement about unconditional 
complexity (see [103, Exercises 4.3.9, 4.3.10]):

40 Let D be some optimal unconditional decompressor. Then there exists 
some constant c such that for any string x the number of shortest D-descriptions 
of x does not exceed c.

(Hint: The previous problems show that C(x) ^  n — к + 2 log к + 0(1), so for 
C(x) — n, we get an upper bound for k.)

4 1 1 Prove that there exists a constant c with the following property: if for 
some x and n the probability of the event C(x \ у) ^  к (all strings у of lengths n 
are considered as équiprobable here) is at least 2~l, then C(x\n, I) ^  к + 1 + c.

(Hint: Connect each string у of length n to all strings x such that C(x \y) ^  k. 
We get a bipartite graph that has 0(2n+k) edges. In this graph the number of 
vertices x that have degree at least 2n~l does not exceed 0 (2k+l). Note that 
C(x\n, I) does not include к—this is not a typo!)

This problem could help us in finding the average value of C(x\ y) for given x 
and all strings у of some length n. It is evident that C(x \y) ^  C(x\n) + 0(1) since 
n — l(y) is determined by y. It turns out that for most strings у (of given length) 
this inequality is close to an equality:

42 Prove that there exists some constant c such that for each string x and for 
all natural numbers n and d the fraction of strings у such that C(x | y) < C(x | n)—d 
(among all strings of length n) does not exceed cd?/2d. Using this statement, prove 
that the average value of C(x | y) taken over all strings у of a given length n equals 
C(x\n) + 0(1) (the constant in 0(1) does not depend on x and n).

43 Prove that C(x\k)  < к implies C(x) ^  к + 0(1).
(Hint: See Theorem 7. One can also note that if a conditional description of x 

given к has length k, then к is known anyway, and if this description is shorter, we 
have enough space to specify the difference between к and the description length.)

A similar (though not identical) statement:

(Hint: Assume that x has a conditional description q with condition C(x) that 
is shorter than C(x). Then one can specify x by providing q and the difference

44 Prove that C(x) = C(x \C(x)) + 0(1).
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C(x) — l(q), and we get a description of x that is shorter than C(x)—a contradic­
tion.)

45 Prove that for every n there exists an n-bit string x such that

C(C(x) |x) = logn — 0(1).

(This is a maximal possible value, since C(x) ^  n for n-bit string x.)
This result (in a bit weaker form) was proven long ago by P. Gâcs [55]. Re­

cently E. Kalinina and B. Bauwens suggested a simple game-theoretic proof of this 
statement. Here is a sketch of their argument (see [6] for details). Consider a 
rectangular game board of width 2n and height n. Two players, White and Black, 
make alternating moves and place pawns of their respective colors into the board 
cells. Unlike chess, each cell may contain both white and black pawns (at most 
one of each color). At each move a player may place several pawns into different 
cells (or no pawns at all); after a pawn is placed, it cannot be moved or removed. 
Also Black can irreversibly mark some cells. The players should obey the following 
restrictions:

(a) each of the players can place at most 2г pawns at row i (the bottom row 
has number 0, the upper row has number n — 1);

(b) Black can mark at most half of the cells in each column.
A white pawn is declared killed if its cell is marked or if there is a black pawn 

below it (in the same column). The game does not end formally (though it is 
essentially a finite game); White wins if in the limit there is at least one non-killed 
white pawn.

White has a winning strategy in this game: place a pawn in the top row and 
wait until it is killed. If it is killed by the black pawn below, switch to the next 
column (for example, White can go from left to right starting with the leftmost 
column). If the pawn was killed by marking its cell, White places another pawn 
just below the first one, etc. (We may assume that Black makes only the move 
needed to kill White’s pawn; since only the limit position matters in the game, all 
of Black’s other moves can be postponed.) Recall that Black can mark at most half 
of the column, so Black is forced to put some pawn in the column at some point. 
It cannot be done in all columns, since the sum of 2г for all rows is less (by 1) than 
the width of the table. Note also that White will not violate restrictions on the 
number of pawns in each row, since in all the columns (except the currently active 
one) under each white pawn (in row i) there is a black pawn (in some row j  < i), 
and the sum of 2J for all j  < i is less that 2г and there is a space for one more 
white pawn.

After a winning strategy for White is described, consider the following “univer­
sal” strategy for Black: the cell (x, i) is marked as soon as we find that C(i\x) < 
logn — 1; a black pawn in placed at (x , i ) when a conditional description of x 
(given n) of length i is found. It is easy to check that Black obeys the game rules. 
White wins, and a live white pawn at the cell (ж,г) means that C(x\n)  > г and 
C(i\x) ^  logn — 1. Since the actions of White (playing against the computable 
strategy of Black) are computable, we conclude that C(x |n) < i + 0(1): the set of 
white pawns in row i is enumerable and it contains at most 2г elements.

This argument shows that C(C(x\n)\x)  ^  logn — 1 (not exactly what we 
wanted). To get the desired result, we should change the game and consider in 
parallel boards of all sizes.
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46___Prove that for some constant c for any string x and for every number n,
there exists a string y of length n such that

C(xy) ^  C(x I n) + n — c.
(.Hint : For a given n the number of strings x, such that C(xy) < к for any у of 

length n. does not exceed 2A’/2 n, and this property is enumerable. So we can apply 
Theorem 19 (p. 36).)

47 Let /  be a function with natural arguments and values. Assume that
f(n)  + eh ^  /(n  + h) < /(n ) + (1 -  e)h

for some e > 0 and for all n and h. Prove that there exist an infinite bit sequence 
Ш whose n-bit prefix has complexity f(n)  + 0(1) for every n.

(Hint: Let us add blocks of length h where h is large enough. Each new block 
being added to an n-bit prefix increases complexity by more than f (n  + h) — /(n) 
or by less than f (n  + h) — f(n),  depending on the current situation (whether we 
are below or above the boundary). To find a block with a big complexity increase, 
we may use the previous problem; for a block with a small increase, we can use a 
block of zeros. Note that (large enough) h is fixed, so it is enough to control the 
complexity on the blocks’ boundaries.)

48 Prove that an infinite sequence xqX\X2 • • • of zeros and ones is computable 
if and only if the values C(xо • ■ • xn_\ | n) (the complexities of its prefixes conditional 
to their lengths) remain bounded by a constant.

(Hint: Consider an infinite binary tree. Let S be the enumerable set of vertices 
(binary strings) that have conditional complexity (w.r.t. their length) less than 
some constant c. The horizontal sections of S have cardinality 0(1). We need to 
derive from this that each infinite path that lies entirely inside S is computable. 
We may assume that S is a subtree (only the strings whose prefixes are in S remain 
in S ).

Let u) be an infinite path that goes through S only. At each level n we count 
vertices in S on the left of oj (ln vertices) and on the right of oj (rn vertices). Let 
L = lim sup ln and R = lim sup rn. Let N  be the level such that L and R are never 
exceeded after this level. Knowing L, R, and N, we can compute arbitrarily large 
prefixes of oj. We should look for a path tt in a tree such that at some level above 
N  there are at least L elements of S on the left of тг and at some (possibly other) 
level above N  there are at least R elements on the right of 7Г. When such a path tt 
is found, we can be sure that its initial segment (up to the first of those two levels) 
coincides with oj. This result was published in [108] (attributed to A.R. Meyer).)

49 Prove that in the previous problem a weaker assumption is sufficient: 
instead of C{xо ■ • • xn- \  |n) = 0(1), we can require that C(xо • • • xn_i) < logn + c 
for some c and for all n.

(Hint: In this case we get an enumerable set S of strings (=tree vertices) with 
the following property: the number of vertices below level N  is 0(N).  This means 
that the average number of vertices per level is bounded by a constant. To use the 
previous problem, we need a bound for all levels and not for the average value. We 
can achieve this if we consider only vertices x G S that have an extension of length 
2l(x) that goes entirely inside S. This result was published in [33].)

Following Problem 48, we can suggest different definitions of the complexity 
notion for computable bit sequences:
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• A minimal complexity of a program that, given n, computes xq - • ■ x n-i.  
We can also consider a program that computes xv for input n, which gives 
the same (up to 0(1)) complexity. We denote this complexity by C(x).

• A minimal complexity of a program that, given n, computes xq ■ ■ ■ xn for 
all sufficiently large n. For other n (finitely many of them) this program 
may provide a wrong answer or never terminate. Complexity defined in 
this way is denoted by C00(x).

• max{0(x'o • • -x’n_i |n) | n — 0,1,...}, denoted by M(x).
• limsup,,^^ C(x0 ■ ■ ■ xn_i I n), denoted by Moc(x).

There are evident relations between the notions

iliooty) ^  M(x)  < C(x)

(up to 0(1) additive term) and

Moo{x) ^  О00(.т) < C(x)

(with the same precision).
50 Prove that there exists a computable bit sequence x such that Оoc{x) is

much less than M(x)  (and, therefore, much less than C(x)). More precisely, there 
exists a sequence xm of computable sequences such that C00(xm) — О (login) and 
M(xm) ^  m.

(Hint: Consider the sequence xm = ym000 • ■ •, where ym is the lexicograph­
ically first string of length m  that has conditional complexity (given m) at least

51 Prove that for some computable sequence x the value of M(x)  is much
less than C(x). More precisely, there exist a sequence xm of computable sequences 
such that M(xm) = O(logm) and C(xm) ^  m.

(Hint : Consider the sequence x m — ( lßß(m^000 • • • ), where the number of ones 
before trailing zeros equals BB(m),  defined on p. 24.)

52 Prove that Coo(x) ^  2M00(x) + 0(1).
(Hint: Use the same argument as in Problem 48.)
In fact, the constant 2 in the preceding problem is optimal, as shown in [52].

53 Consider strings of length n that have complexity at least n (incompressible 
strings).

(a) Prove that the number of incompressible strings of length n is between 2n~c 
and 2n — 2n~c (for some c and for all n).

(b) Prove that the cardinality of the set of incompressible strings of length n 
has complexity n — 0(1) (note that this implies the statement (a)).

(c) Prove that if a string x of length 2n is incompressible, then its halves xq 
and xq (of length n) have complexity n — 0(1).

(d) Prove that if a string x of length n is incompressible, then each of its 
substrings of length к has complexity at least к — О (log n).

(e) Prove that for any constant c < 1 all incompressible strings of sufficiently 
large length n contain a substring of \c log2 n\ zeros.

(Hints: (a) There is at most 2n — 1 descriptions of length less than n, and part 
of them is used for shorter strings: Any string of length n — d (for some d) has 
complexity less than n. This gives a lower bound for the number of incompressible
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strings. To prove the upper bound, note that strings of length n that have a prefix 
of к zeros could be described by 2 log к + (n — k) bits.

(b) Let t be the shortest description of the number of incompressible strings. If 
t has n — k bits, then knowing t and log к additional bits, we can reconstruct first n 
and then the list of all incompressible strings of length n, so the first incompressible 
string has complexity less than n, a contradiction.

(c) If one part of the string is has a short description, the entire string has a 
short description that starts with prefix-free encoding of the difference between the 
length and complexity of the compressible part.

(d) If a string has a simple substring, then the entire string can be compressed 
(we need to specify the substring, its position, and the rest of the string).

(e) Let us count the number of strings of length n that do not contain к zeros in 
a row; a recurrent relation shows that this number grows like a geometric sequence 
whose base is the maximal real root of the equation x = 2 — ( l / xk), and we can 
get a bound for complexity of strings that do not have к zeros in a row.)

54 Prove that (for some constant c) for every infinite sequence X0 X1 X2 • • • of
zeros and ones there exist infinitely many n such that

C(xqX\ • • • xn- \ ) ^  n — logn +  c.

Prove that there is a constant c and the sequence xqX\X2 • • • such that 
C(xqXi • • • £n_i) ^  n — 2 logn — c

for all n.
(Hint: The series J ^ l /n  diverges while the series ^ )( l /n 2) converges. For 

details see Theorem 95 and 99.)
This result was published by Martin-Löf [117] for conditional complexity (and 

a reference to an earlier unpublished work in Russian was given for unconditional 
complexity; see also [225, Theorem 2.6]).

55 For a string x of length n let us define d(x) and dc(x) as follows: 
d(x) — n — C(x) and dc(x) = n — C{x\n).  

Show that they are rather close to each other:
dc(x) — 2 logdc(x) — 0(1) ^  d(x) ^  dc(x) + 0(1).

(Hint: We need to show that C(x\n) = n—d implies C(x) ^  n—d+21ogd+0(l). 
Indeed, let us take the conditional description of x of length n — d and put it after 
the self-delimiting description of d that has size 2 log d + 0(1). Knowing this string, 
we can reconstruct d, then n, and finally x.})

Prove that d(xy) = d(x) + d(y\x) + О (log d(xy)) for every two n-bit strings56
x and y. (Here d(u) = l(u) — C(u).)

(Hint: Use Problem 36.)
The intuitive meaning of the difference between length and complexity as a 

kind of “randomness deficiency” is discussed (for different complexity versions) in 
Chapter 5 and Chapter 14.

Prove that for sufficiently large values of a constant c the enumerable set57
of pairs (x,y) such that C(x\y) < c is Turing complete (one can solve the halting 
problem using an oracle for such a set).

(Hint: Use Problem 15 and the fact that the output of a program has 0(1) 
conditional complexity given the program.)
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2.3. Complexity as the am ount of information

As we know (Theorem 18), the conditional complexity C(y\x) does not exceed 
the unconditional one C(y) (up to a constant). The difference C(y) — C(y\x) tells 
us how the knowledge of y makes x easier to describe. So this difference can be 
called the amount of information in x about y. We use the notation I(x:y).

Theorem 18 says that I(x:y)  is non-negative (up to a constant): there exists 
some c such that I(x:y)  ^  c for all x and y.

Let /  be a computable function. Prove that I(f(x):y)  ^  I{x:y) + c for 
some c and for all x, y such that /(x) is defined.

A generalization of this statement to probabilistic algorithms is possible.
Let /(x , r) be a computable function of two arguments, and let r be chosen 

at random uniformly among n-bit strings for some n. Then for each I the probability 
of the event

I(f(x,r):y)  > I{x:y)+l
does not exceed 2~l+ot'C^ +c^ .

(Hint: Use the conditional version of Problem 41.)
These properties of information can be described as conservation laws for in­

formation (about something) in algorithmic or random processes. As Levin once 
put it, “by torturing an uninformed person you do not get any evidence about the 
crime.” He discusses this property (for different notions of information) in [100].

Recall that
C(x, y) = C(x) + C(y I x) + О (log C(x, y))

(Theorem 22, p. 39). This allows us to express conditional complexity in terms of 
an unconditional one: C(y |x) = C(x,y) — C(x) + 0(logC(x,y)).  Then we get the 
following expression for the information:

I(x:y) = C(y) -  C(y\x) = C(x) + C(y) -  C(x,y) + 0(logC(x,y)).
This expression immediately implies the following theorem:

59

58

THEOREM 23 (Information symmetry).
I(x:y) = I(y:x) + 0(logC(x,y)).

So the difference between I(x:y) and I(y:x) is logarithmically small compared 
to C(x, y). The following problem shows that at the same time this difference could 
be comparable with the values I(x:y) and I(y:x) if they are much less than C(x, y).

60 Let x be a string of length n such that C{x\n) ^  n. Show that 
/(x :n) = C{n) + 0(1) and /(n :x) = 0(1).

The property of information symmetry (up to a logarithmic term) explains 
why I(x:y) (or I(y:x)) is sometimes called mutual information in two strings x 
and y. The connection between mutual information, conditional and unconditional 
complexities, and pair complexity can be illustrated by a (rather symbolic) picture 
(see Figure 3).

It shows that strings x and у have I(x:y)  ~  I(y:x)  bits of mutual information. 
Adding C(x\y)  bits (information that is present in x but not in y, the left part), 
we obtain

I(y:x) + C(x\y) «  (C(x) -  C(x\y)) + C(x\y) = C(x)
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F ig u r e  3 . M u tua l in form ation  and con d ition a l com p lex ity

x,y

F ig u r e  4. Common information in overlapping substrings

bits (matching the complexity of x). Similarly, the central part together with 
C(y\x)  (the right part) give C(y). Finally, all three parts together give us

C(x I y) + I(x : y) + C{y I x) = C(x) + C(y \ x) = C(x \ y) + C(tj) = C(x, y)

bits (all equalities are true up to О (log n) for strings x and у of length at most n ).
In some cases this picture can be understood quite literally. Consider, for 

instance, an incompressible string r = rq • • -rn of length n, so C{r\ ■ ■ - rn) ^  n. 
Then any substring и of x has complexity l(u) up to O(logn) terms. Indeed, since 
и is a substring of r, we have r = tuv for some strings t, v. Then

l(r) = C(r) ^  C(t) + C(u) + C(v) ^  l(t) + l(u) + l(v) — l(r)

(up to a logarithmic error), and therefore all the inequalities are equalities (with 
the same logarithmic precision).

Now take two overlapping substrings x and у (Figure 4). Then C(x) is the 
length of x and C(y) is the length of у (up to O(logn)).

The complexity C(x, y) is equal to the length of the union of segments (since 
the pair (x,y) is equivalent to this union plus information about lengths requiring 
0(log?r) bits).

Therefore, conditional complexities C(x\y), C(y \x) and the mutual informa­
tion I(x:y) are equal to the lengths of the corresponding segments (up to O(logn)).

However, the mutual information cannot always be extracted in the form of 
some string (like it happened in our example, where this common information is 
just the intersection of strings x and y). As we will see in Chapter 11, there exist 
two strings x and у that have large mutual information I{x:y) but there is no string 
г that represents (materializes) this information in the following sense: C(z \ x) ~  0, 
C(z I y) «  0 (all information that is present in г is also present both in x and in y), 
and C(z) ~  I(x:y)  (all mutual information is extracted). In our last example we 
can take the intersection substring for г, but in general this is not possible.

61 Prove that for any string x of length at most n the expected value of the
mutual information I(x:y) in x and the random string у of length n is O(logn)
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Now we move to triples of strings instead of pairs. Here we have an important 
tool that can be called relativization: most of the results proved for unconditional 
complexities remain valid for conditional complexities (and proofs remain valid with 
minimal changes). Let us give some example of this type.

A theorem about the complexity of pairs (p. 31) says that
C(x, y) < C(x) + 2 log C(x) + C{y) + 0(1).

Replacing all complexities by conditional ones (with the same condition z in all 
cases), we get the following inequality:

C(x,y\z)  ^  C(x\z)  + 2\ogC(x\z) + C(y\z) + 0(1).
By conditional complexity of a pair x,y  relative to z we mean, as one can expect, 
the conditional complexity of its encoding: C(x,y\z) = C([x,y\\z). As for un­
conditional complexity, the choice of encoding is not important (the complexity 
changes by 0(1)).

The proof of this relativized inequality repeats the proof of the unrelativized 
one: we combine the description p for x (with condition z) and the description q for 
y (with condition z) into a string pq that is a description of \p, q] (with condition z) 
relative to some suitable conditional decompressor.

This is nothing really new. However, we may express all the conditional com­
plexities in terms of unconditional ones: recall that C(x,y\z)  = C(x,y,z)  — C(z) 
and C(x\z) — C(x, z) — C(z), C(y\z) — C(y, z) — C(z) (with logarithmic precision). 
Then we get the following theorem:

T h e o r e m  24.

C(x. y, z) + C(z) < C(x, z) + C(y. z) + O(logn) 
for all strings x, y : z of complexity at most n.

Sometimes this inequality is called the basic inequality for complexities.
The same relativization can be applied to Theorem 21 (p. 37) that relates 

the complexity of a pair and conditional complexity. Then we get the following 
statement:

T h e o r e m  25.

C(x,y\z) = C(x\z) + C(y\x,z)  + O(logn) 
for all strings x , y, z of complexity at most n.

PROOF. We can follow the proof of Theorem 21, replacing unconditional de­
scriptions by conditional ones (with г as the condition). Doing this, we replace 
C(y\x) by C(y Ix, z). One can say that now we work in three-dimensional space 
with coordinates x,y , z  and apply the same arguments simultaneously in all planes 
parallel to the xy plane.

If this argument does not look convincing, there is a more formal one. Express 
all the conditional complexities in terms of unconditional ones:

C(x, y\z) = C{x, y, z) -  C{z),
and for the right-hand side

C(x\z)  + C(y\x,z)  = C(x,z) — C(z) + C(y,x,z)  — C(x,z).
We see that both sides coincide (up to O(logn)). (A careful reader may note that 
this simplified argument gives larger hidden constants in 0(logn)-notation.) □
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62 Prove that in Theorem 25 the weaker assumption “C(x\z)  and C(y\x,z)
do not exceed n” is sufficient.

We also relativize the definition of mutual information and let I(x:y\z)  be the 
difference C(y\z) — C(y\x,z).  As for the case of (unconditional) information, this 
quantity is non-negative (with 0(1) precision). Replacing conditional complexities 
by the expressions involving unconditional ones (with logarithmic precision), we 
can rewrite the inequality I(x:y\z)  ^  0 as

C(y I z) -  C(y IX, z) = C(y, z) -  C(z) -  C(y, x, z) + C(x, z) ^  0.

So we get the basic inequality of Theorem 24 again.
In fact, almost all known equalities and inequalities that involve complexities 

(unconditional and conditional) and information (and have logarithmic precision) 
are immediate consequences of Theorems 21 and 24. The first examples of linear 
inequalities for complexities that do not follow from basic inequalities were found 
fairly recently (see [222, 223]) and they are rather complicated and not very intu­
itive. We discuss them in Section 10.13; we conclude our discussion here with two 
simple corollaries of basic inequalities.

Independent strings. We say that strings x and y are “independent” if 
I(x:y) ~  0. We need to specify what we mean by but we always ignore the 
terms of order O(logn) where n is the maximal length (or complexity) of the strings 
involved.

Independent strings could be considered as some counterpart of the notion of 
independent random variables, which is central in probability theory. There is a 
simple observation: if a random variable £ is independent with the pair of random 
variables (a,ß), then £ is independent with a and with ß (separately).

The Kolmogorov complexity counterpart of this statement (if a string x is 
independent with a pair (y , z ), then x is independent with y and x is independent 
with z) can be expressed as the inequality

I(x : (y, z)) ^  I{x:y)

(and the similar inequality for z instead of y). This inequality is indeed true (with 
logarithmic precision), and it is easy to see if we rewrite it in terms of unconditional 
complexities,

C{x) + C{y, z) -  C(x , y, z) ^  C(x) + C(y) -  C(x, y),

which after cancellation of similar terms gives a basic inequality (Theorem 24). (In 
classical probability theory one may also apply a similar inequality for Shannon 
entropies.)

Complexity of pairs and triples. On the other hand, to prove the following 
theorem (which we have already mentioned on p. 12), it is convenient to replace 
unconditional complexities by conditional ones:

T h e o r e m  26.

2C{x,y,z)  ^  C(x,y) + C(x,z) + C(y,z) + O (lo g n )

for all strings x, y, z of complexity at most n.

PROOF. M oving  C(x,y) and C(x, z) to  th e  le ft-han d  sid e and  rep lacing th e  
differences C(x , y, z) — C(x, y) and  C(x, y, z) — C(x, z) by co n d ition a l com p lex ities
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C(z\x,y)  and C(y\x,z),  we get the inequality

C(z\x,y)  + C(y\x,z)  < C(y,z) + O(logn).

It remains to rewrite the right-hand side of this inequality as C(y) + C(z\y),  and 
note that C(z\x , y) < C{z\y) and C(y\x, z ) < C(y). □

Instead we could just add two inequalities (the basic one and the inequality for 
the complexity of a pair):

C(x, y , z) + C(y) < C(x, y) + C(y, z) + O(logn),
C(x , y, z) < C(y) + C(x, z) + O(logn),

and then cancel C(y) in both sides. (This proof, as well as the previous one, has 
an important aesthetic problem: both treat x, y,z  in a non-symmetric way while 
the statement of the theorem is symmetric.)

We return to the inequality of Theorem 26 and refer to its geometric conse­
quences in Chapter 10.

We can provide a more systematic treatment of the different complexity quan­
tities related to three strings as follows. There are seven basic quantities: three 
of them are complexities of individual strings, another three are complexities of 
pairs, and one more is the complexity of the entire triple. Other quantities such as 
conditional complexity and mutual information can be expressed in terms of these 
seven complexities. To understand better what requirements these seven quanti­
ties should satisfy, let us make a linear transformation in the seven-dimensional 
space and switch to new coordinates. Consider seven variables ai ,û2, ... ,а? that 
correspond to the seven regions shown in Figure 5.

F i g u r e  5. N ew  coord in ates a\, <1 2 , .  • . ,  0 ,7

Form ally, th e  coord in ate  tran sform ation  is g iven  by th e  fo llow ing equations: 

C(x) = ûi + Û2 T a4 T a5?
C(y)  =  Û2 +  a 3 +  a 5 +  a 6?

C(z) =04  + 05 + 06 + a75 
C(x, y) = ai + a2 + a3 + a4 + a5 + a6,
C(x, z) = ai + a2 + <24 + a5 + a6 + a7,
C(y, z) = a2 + a3 + a4 + a5 + a6 + a7,

C(x, y , z) — ai + Û2 + a 3 + a 4 “b a5 + a6 + a7-
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Indeed, it is easy to see that these equations determine an invertible linear transfor­
mation of M7: each 7-t.uple of complexities corresponds to unique value of variables
<2i, . . . ,  Й7.

Conditional complexities and expressions for mutual information are combi­
nations of complexities and therefore could be rewritten in new coordinates. For 
example,
I{x:y) = C(x) + C(y) — C(x, y) = a2 + a5 and C(x\y) = C(x,y) ~C(y)  = cq + a 4.

What is the intuitive meaning of these new coordinates? It is easy to see that 
ai = C(x\y, z) (with logarithmic precision). The meaning of аз (and a?) is similar. 
The coordinate a2 (with the same precision) is I(x:y\z); coordinates a4 and üq 
have similar meaning (see Figure 6). In particular, we conclude that for any strings 
x, y, z the corresponding values of coordinates a\ . a2, аз, а4, üq, a-j are non-negative 
(up to O(logn) for strings X, y, z of complexity at most n).

F i g u r e  6. The complexity interpretation of new coordinates

The coordinate as is more delicate. Informally, we would like to understand 
it as the “amount of mutual information in three strings x, y, z”. Sometimes the 
notation I(x:y.z)  is used. However, the meaning of this expression is not quite 
clear, especially if we take into account that as can be negative.

Consider the following example where as < 0. Let x and y be two halves of 
an incompressible string of length 2n. Then C(x) = n, C(y) — n , C(x,y) = 2n, 
and I(x\y) — 0 (up to O(logn)). Consider a string z of length n which is a bitwise 
sum modulo 2 of x and y (XOR-operation). Then each of the strings x,y, z can 
be reconstructed if two others are known; therefore, the complexities of all pairs 
C(x,y), C(y, z), C(x, z) are equal to 2n (again up to O(logn)), and the complexity 
C(x, y, z) is also 2n. The complexity of z is equal to n (it cannot be larger, since 
the length is n; on the other hand, it cannot be smaller, since z and y form a pair 
of complexity 2n).

The values of a\ , . . . ,  a-j for this example are shown in Figure 7.
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F i g u r e  7. Two independent incompressible strings of length n 
and their XOR

Note that even if a5 is negative, the sums 05+ 02, 05 + 04 and a5 + üq, being 
mutual information expressions for pairs, are 11011-negative. (In our examples these 
sums are equal to 0.)

This example corresponds to the simple case of secret sharing of secret 2 be­
tween two people: if one of them knows x and the other one knows y, then neither of 
them has any information about 2 in isolation (since I (x :z ) ~  0 and I{y:z) «  0)), 
but together they can reconstruct 2 as a bitwise sum of x and y.

One can check that we have already given a full list of inequalities that are 
true for complexities of three strings and their combinations (all a,;, except for 05, 
are non-negative, as well as the three sums mentioned above). We return to this 
question in Chapter 10.

Our diagram is a good mnemonic tool. For example, consider again the in­
equality

C{x, y, z) ^  C(x, y) + C(x, 2) + C(y, 2).
In our new variables it can be rewritten as 02 + 04 + 05 + ae ^  0 (you can easily 
check it by counting the multiplicity of each a* in both sides of the inequality). It 
remains to note that 02 + 05 ^  0, 04 ^  0, and ae ^  0. (Alas, the symmetry is 
broken again!)

63 Prove that I(xy .z)  = I(x:z) + I(y:z\x )  + 0(\ogn) for strings æ,y, 2 of 
complexity at most n.

(Hint: Use the diagram.)
This problem shows that information in xy about 2 can somehow be split into 

two parts: information in x about 2 and information in y about 2 (when x is 
known). This is somehow similar to the equality C(x, y) = C(x) + C(y \ x), but now 
complexity is replaced by the quantity of information about 2. As a corollary we 
immediately get that if xy is independent with 2, then x is independent with 2 and, 
at the same time, y is independent with 2 when x is known. (Here independence 
means that mutual information is negligible.) A symmetric argument shows that y 
is independent with 2 and x is independent with 2 when y is known.

64 Show that properties “x is independent with y” and ux is independent 
with y when 2 is known” are quite different: each of them can be true when the 
other is false.

65 We say that strings x, y, 2, t form a Markov chain (a well-known notion in 
probability theory now transferred to algorithmic information theory) if I(x  : 2 1 y) 
and I((x,y) : t\z ) are negligible. (Of course, we need to specify what is “negligible” 
to get a formal definition.) Show that the reversed sequence of strings also forms a 
Markov chain, i.e., that I(t:y \z)  and I((t,z) :x \y ) are negligible.
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(.Hint: Since I((x,y) :t\z) = I (y : t\z ) + I(x :t |y, z), the left-hand side in this 
equality is zero if and only if both terms in the right-hand side are zero; and the 
second term in the right-hand side does not change when the order of x, y , z, t is 
reversed.)



CHAPTER 3

M artin-Löf randomness

Here we interrupt the exposition of Kolmogorov complexity and its properties 
to define another basic notion of the algorithmic information theory, the notion 
of a Martin-Löf random (or “typical”) sequence. This chapter does not refer to 
the preceding one, which is not used again until Chapter 5 where we characterize 
randomness in terms of Kolmogorov complexity.

Let us recall some basic facts of measure theory for the case of the Cantor space 
of infinite sequences of zeros and ones.

3.1. Measures on Q

Consider the set Q = BN whose elements are infinite sequences of zeros and 
ones. This set is called Cantor space. For a binary string x we consider a set of 
all infinite sequences that have initial segment x. For example, Qoo is the set of all 
sequences that start with two zeros, and Од = ^  (where Л is the empty string).

The sets Q.x are called intervals. All intervals and all unions of arbitrary families 
of intervals are called open subsets of Q. In this way we get a topology on Q, and 
this topology corresponds to a standard distance function on Q defined as follows: 
the longer the common prefix two sequences ш — coquji • • • and ui1 = u>qU)'x • • • have, 
the smaller the distance between them:

d(w,w') = 2“n,
where n is the smallest index such that и>п ф u)'n.

Prove that topological space Q is homeomorphic to the Cantor set on the66
real line. (This set is obtained from [0,1] by deleting the middle third, then the 
middle third of two remaining segments and so on.)

However, we are interested in measure theory rather than topology. A family 
of subsets of Q is called a a-algebra if it is closed under finite or countable unions 
and intersections, and under negation (taking the complement).

A minimal cr-algebra that contains all intervals Q.x (and therefore all open sets) 
is called the algebra of Borel sets.

Consider an arbitrary cr-algebra that contains all intervals. Let p be a function 
that maps every set in this cr-algebra into a non-negative real number, and has the 
following property (called a-additivity)-.

if a set A is a union of a countable or finite family of disjoint 
sets Ao, A\, A 2 , ... that belong to the cr-algebra on which p is 
defined, then

p{A) — p {Aq) +  p(Ai)  +  р{АФ) +  • • •

(the right-hand side is a finite sum or a converging series with 
non-negative terms).

53
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Then fi is called a measure on Q, and the value ß{Ä) is called the measure of the 
set A. The set A for which ц(А ) is defined, is called /r-measurable.

A measure fi such that //(Г2) = 1 is called a probability distribution on Q. 
Elements of the cr-algebra that is the domain of /j are called events, and /j(A) is 
called the probability of the event A.

Any measure is monotone (А С В  implies /r(A) ^  ß{B)). Indeed,

р ( В) - 1 л { А)  = ц { В \ А ) >  0.

Another important property of measures is continuity: if a set В  is a union of 
increasing sequence of sets

B0 c  B x C B2 C • • • ,

then ß(Bn) tends to ti(B) as n oo. (Indeed, let us apply the additivity property 
to all sets Ai = Д  \  Д - i  and then to all sets Аг such that i ^  n.) A similar 
property holds for decreasing sequences of sets.

For any measure /j on Q let us consider a function p defined of binary strings
as

p(x) = n(Qx).
This function has non-negative real values and satisfies the additivity property

p(x) = p(x 0) +p{x 1)

for any string x. (Indeed, the interval Qx is the union of its two halves Qxq and 
ПХ1, which are disjoint sets.)

As we know from measure theory (the Lebesgue theorem), an inverse transition 
is possible. Namely, for every additive function p on binary strings that has non­
negative real values, the Lebesgue theorem provides a measure pi such that /x(Qx) = 
p(x) for all binary strings x.

The measure provided by the Lebesgue theorem has the following additional 
property: if /r(A) = 0 for some set A and В  C A, then pi(B) is defined (and therefore 
pt(B) = 0). In the sequel we consider only measures that have this additional 
property.

We do not explain the Lebesgue construction here but refer the reader to any 
textbook in measure theory, e.g., [81, 63]. However, let us recall the definition 
of sets having measure 0, since the Martin-Löf definition of randomness uses its 
effective version.

Let p be an additive non-negative real-valued function on strings. We call p(x) 
the measure of the interval Qx. A subset A C fl is a null set (a set of measure 0) 
if for every e > 0 there exist a finite or countable family of intervals that cover A 
and have total measure at most e.

In other words, a set A is a null set if there exists a function (e,i) (->■ x(s,i) 
(the first argument is a positive real, the second argument is a non-negative integer; 
values are binary strings) such that

•  A C  f^x(e,0) LI U  f^x(e52) ' ' ' cUld
• p(x(e, 0)) + p(x{e, 1)) + p{x{e, 2)) + • • ■ ^  e

for every positive e. Note that the family of intervals can be finite, since we do not 
require the function x to be total (undefined values are skipped both in the union 
and in the sum).
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Here are some simple but useful observations:
• The definition does not change if we restrict ourselves to rational values 

of £ (or even let e = 2~k for integer k).
• Any subset of a null set is a null set.
• A finite or countable union of null sets is a null set. (Indeed, to cover the 

union by a family of intervals of total measure less than e, we combine 
the covers of its parts that have measure less than er/2, ^/4, er/8, etc.).

• Assume that p is chosen in such a way that any singleton is a null set 
(it is equivalent to the following property: for any infinite sequence и =

• ■ • the limit of р(и>о ■ ■ -cjn) (as n oo) equals 0). Then every 
finite or countable set is a null set.

A uniform measure on О assigns to each interval the number :

p(x) = 2~n for all strings x of length n.

The uniform measure is closely related to the standard measure on E (or, more 
precisely, on [0,1]). Formally, the measure of a set А C fl is equal to the measure 
of the set of reals whose binary expansions are elements of A. (In fact, the cor­
respondence between infinite binary fractions and reals in [0, 1] is not a bijection, 
since numbers of the form k/2l for integer к and I have two representations, e.g., 
0.01111 • • • = 0.10000 • • •. But this happens only for a countable family of reals, 
and measure theory easily ignores this.)

Indeed, the reals, whose binary expansions start with x, form an interval, and 
the length of this interval is 2~n where n is the length of x. This implies that for 
every interval I  C [0,1] the uniform measure of the sequences that represent reals 
in I  is equal to the length of the interval I.

Probability theory describes the uniform distribution as the probability distri­
bution for the outcomes of independent fair coin tossing. Indeed, for n independent 
fair coin tossings, all 2n binary strings of length n appear with the same probability 
2~n. The set Qx is the event “a random sequence of zeros and ones starts with ж”, 
and this event has probability

Similarly, we may consider a biased coin assuming that coin tossings are still in­
dependent. The corresponding measure (probability distribution) is called Bernoulli 
measure (or Bernoulli distribution) with parameters q,p (probabilities of 0 and 1 
respectively; we assume that p,q ^  0, and p + q = 1).

With respect to this distribution, the event “sequence cj starts with a string 
x” has probability qupv where и and v are the numbers of zeros and ones in x. In 
other words, we consider a function

x*->qu{x)pv{x\

where u{x) and v{x) stand for the numbers of zeros and ones in x, respectively. (It 
is easy to check that this function has the additivity property.)

3.2. The Strong Law of Large Numbers

To see all these notions in action, let us state and prove the so-called Strong 
Law of Large Numbers (SLLN).

Fix some p, q ^  0 such that p + q — 1. Let Ap be the set of all infinite sequences
• • • of zeros and ones such that the limit frequency of ones exists and is equal
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to p, i.e.,
+  • • • +  OJn-1lim --------------------------

n —>oo n
= p.

T heorem 27. The set Ap has measure 1 with respect to Bernoulli distribution 
with parameters p and q.

In other words, the complement of Ap, i.e., the set of all sequences that either 
do not have limit frequency at all or have a limit frequency different from p, is a 
null set (according to this distribution).

P roof. We prove this theorem for the uniform case (i.e., for p — q — 1/2) by 
an explicit calculation. The general case is left as an exercise (see also Section 9.6).

Let us consider first a finite number of coin tossings and fix some n. All 
binary strings of length n have the same probability. We claim that most of them 
have approximately n j2 ones. Assume that some threshold e is fixed. How many 
sequences have more than (1/2 + e)n ones? The answer can be found using the 
Pascal triangle: we have to sum up all the terms in the nth row starting from some 
point that is slightly on the right of the midpoint. In this part we have a decreasing 
sequence of less than n terms, so the sum in question is bounded by the first term 
multiplied by n. (We do not need to be very accurate in our bounds and ignore 
factors that are polynomial in n. So we can omit the factor n in our bound.)

The first term of the sum is the binomial coefficient
n!

k\(n — k)V

where к is the smallest integer not less than (1/2 + e)n. We use Stirling’s approxi­
mation

m! = \ / ( 2tt + o(l))m  ̂ ,

where e is the base of natural logarithms. Ignoring polynomial (in n) factors and 
using the notation и = к/n, v = (n — k)/n, we get

n! ^  (n/e)n nn
k\(n — k)\ {k/e)k(Jji — k)/e)n~k kk{n — k)n~k

_ ____ ^ 1 _ 2H(u,v)n
(un)UTl(vn)vn yUTlyvn ’

where
H(u, v) = — и log и — v log V.

The value H(u, v) is called the Shannon entropy of a random variable that has two 
values whose probabilities are и and v. (We study Shannon entropy in Chapter 7.) 
Figure 8 shows the corresponding graph (note that v = 1 — u). It is easy to check 
that H(u, 1 — u) achieves its maximal value (equal to 1) only at и = 1/2.

Now we see that the number of binary strings of length n that have frequency of 
ones greater than (1/2 + e) does not exceed ро1у(п)2я (1/2+е,1/2~е)п and therefore 
is bounded by 2cn+°̂ n\  where c is some constant less than 1 (depending on e). 
Therefore, the fraction of these strings (among all strings of length n) exponentially 
decreases as n increases. The same is true for the strings that have frequency of 
ones less than(l/2  — e).
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Figure 8 . Shannon entropy as a function of и

Let us see where we are. For each fixed e > 0 we have proved the following 
statement:

Lemma. The fraction of strings of length n where frequency of ones differs 
from 1/2 at least by e (among all strings of length n) does not exceed some Sn that 
decreases exponentially as n increases.

This lemma (without any specific claims for the fast convergence Sn —> 0) is 
called the Law of Large Numbers. To prove the Strong Law of Large Numbers we 
need to know that the series ]T)n Sn is convergent.

We need to prove that the set A \ / 2  of all sequences that have limit frequency 
of ones equal to 1/2 has measure 1. In other words, we need to prove that the 
complement of this set (we denote this complement by B) is a null set.

According to the definition of limit, the set В  is the union (over all e > 0) of 
the sets B£. Here B£ is the set of all sequences such that frequency of ones in their 
prefixes exceeds 1/2 + e (or is less than 1/2 — e) infinitely many times.

Evidently, we can consider only a countable set of different e (e.g., only rational 
values), and the countable union of null sets is a null set. Therefore it remains to 
prove that the set B£ is a null set for each e.

The set B£ consists of the sequences that have arbitrarily long “bad” prefixes. 
Here a bad prefix is a string where the frequency of ones differs from 1/2 by more 
than e. Therefore, for each N  the set B£ is covered by the family of intervals 
Qx where x ranges over all bad strings of length at least N. The total (uniform) 
measure of all these intervals does not exceed

Sn + <5jv+i + Sn +2 + • • • »
and this sum can be made small since the series ]TA Si is convergent.

(Probability theorists call this argument the Borel-Cantelli lemma. In its gen­
eral form this lemma says that if the sum of measures of some sets A o ,A \,... is 
finite, then the set of all points that belong to infinitely many Ai is a null set.) □

One can get a bound for the number of bad strings of length n without Stirling’s 
approximation. We do it separately for bad strings that have too many and too few 
ones. For example, let us consider the set of all “bad” strings that have frequency 
of ones greater than 1/2 + e. To get a bound for the cardinality of this set, consider 
two distributions (measures) on the set of all strings of length n. The first one,
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called L, is the uniform distribution: all strings have probability 2~n. The second 
one, called S, is biased (ones are more likely than zeros) and corresponds to n 
independent coin tosses where one appears with probability p = 1/2 + e. In other 
words, S(x ) = qupv for a string x that has и zeros and v ones (here q = 1/2 — £ is 
the probability of zero outcome). The ratio S{x)/L{x) increases when the number 
of ones in x increases, and for all bad strings this ratio is at least 2n/2H p̂,q̂ n. 
Therefore, the total L-measure of all bad strings does not exceed their total S- 
measure divided by this lower bound. Recalling that the total S'-measure of all bad 
strings does not exceed 1, we conclude that the total L-measure (i.e., the fraction) 
of all bad strings does not exceed 2H(j>,q'>n/2n. So we get another proof of our bound, 
which is less technical (though more difficult to find). This proof works not only for 
the uniform Bernoulli measure (p = 1/ 2), but also for arbitrary p (after appropriate 
changes).

67 Prove the Strong Law of Large Numbers for arbitrary p.
(Hint: Let po and qo be fixed positive reals such that po + qo = 1. Then 

the expression — po logp — go log q, where p, q are arbitrary positive reals such that 
p + q — 1, is minimal when p — po, q = go- See also Section 9.6, p. 275.)

People often say that “the Strong Law of Large Numbers guarantees that in 
every random sequence (with respect to uniform Bernoulli measure) the frequency 
of ones tends to 1/2.” (The case of non-uniform Bernoulli measures is similar.) 
However, in this sentence the word “random” should not be understood literally: 
the phrase “every random sequence satisfies a” (for some condition a) is an id­
iomatic expression that means that the set of all sequences that do not satisfy a is 
a null set.

A natural question arises: Can we define the notion of a random sequence in 
such a way that this idiomatic expression can be understood literally? Let us fix 
some distribution on Q, say, the uniform Bernoulli distribution. We would like to 
find some subset of Q and call its elements “random sequences”. Our goal would 
be achieved if for any condition a the following two statements were equivalent:

• all random sequences satisfy the condition a\
• the set of all sequences that does not satisfy a is a null set.

In other words, the sets of measure 1 should be exactly those sets that contain 
all random sequences (and, maybe, some non-random ones).

One more reformulation: the set of all random sequences should be the smallest 
(with respect to inclusion) set of measure 1, and the set of non-random sequences 
should be the largest (with respect to inclusion) null set. Now it easy to see that 
our goal cannot be achieved. Indeed, any singleton in Q is a null set. However, the 
union of all these singletons is the entire space Q.

In 1965 Per Martin-Löf (a Swedish mathematician who was Kolmogorov’s stu­
dent at that time) found that we can save the game if we restrict ourselves to 
“effectively null sets”. There exists a largest (with respect to inclusion) effectively 
null set, and therefore we can define the notion of a random sequence is such a 
way that any condition a is satisfied for all random sequences if and only if the 
set of all sequences that do not satisfy a is an effectively null set. The Martin-Löf 
construction is explained in Section 3.3.
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3.3. Effectively null sets

Let a measure on fl be fixed, and let p(x) be the measure of the interval flx. 
We say that a set A c  fl is an effectively null set (with respect to the given 

measure) if for every e > 0 one can effectively find a family of intervals that cover 
A and whose total measure does not exceed e.

Some details should be specified in this definition. First, we consider only 
rational values of e (otherwise it is not clear how e could be given to an algorithm). 
Second, we need to specify how the sequence of intervals (that cover A) is generated. 
We do this as follows:

Definition. A set A c  fl is called an effectively null set (with respect to a 
given measure) if there exists a computable function x(-, •) whose first argument is 
a positive rational number, its second argument is a natural number and values are 
binary strings, such that

(1) А С Дг(е,0) U Дг(е,1) и Пх(е,2) ' ' ' ,
(2) p(x(e, 0)) +  p(x(e, 1)) +  p(x(e, 2)) +  ■ ■ ■ ^ e

for any rational e > 0. Note that we do not require the function x to be total; if 
x(e,i) is undefined, the corresponding term (in both conditions) is omitted.

68 Show that we get an equivalent version of the definition if we consider an 
algorithm that gets e > 0 as an input and enumerates a set of binary strings (by 
printing its elements with arbitrary delays between elements) such that intervals 
flx for generated x cover A and have total measure (the measure of the union of 
the intervals) at most e. (Note that the total measure can be much smaller than 
the sum of measures, if the intervals are not disjoint.)

69 Show that we get an equivalent definition if we consider only rational 
numbers of the form 2~k (for integer к) instead of all rational e. Show that the 
definition does not change if we replace the sign ^  by < in the second inequality.

(Hint: Subtract from each interval its part covered by previous intervals, pos­
sibly splitting it into several intervals.)

70 Show that we get an equivalent definition if we require that for each e > 0
the domain of the function i x(e,i) is an initial segment of N (or N itself).

I 7 1 1 Show that we get an equivalent definition if we require that the family of 
intervals is decidable (instead of being enumerable).

(Hint: An interval can be split into small parts, so we may assume that intervals 
in the sequence have non-increasing length, and the family of intervals becomes 
decidable.)

Let us give some examples of effectively null subsets of fl (with respect to the 
uniform measure).

A singleton, whose only element is a sequence of zeros, is an effectively null set. 
Indeed, for every e > 0, we find an integer к such that 2' ~k < £, and consider a 
covering that consists of one interval fioo---o (corresponding to the string of к zeros).

Formally speaking, x(e, 0) = 0fc, where 0k stands for the sequence formed by 
к zeros, and к is the smallest integer such that 2' ~k < £. The values x(e,i) are 
undefined for i > 0.

In this example the sequence 0000 • • • can be replaced by an arbitrary com­
putable sequence of zeros and ones; we need only consider its prefix of length к 
instead of 0k.
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However, for non-computable sequences the situation could be different:

an effectively null set.
(Hint: Consider all computable functions x that satisfy the second condition of 

the definition of an effectively null set. There are countably many such functions. 
For each of them consider the largest set A that satisfies requirement (1) of the 
definition (i.e., the intersection of the unions of coverings over all e). This set is an 
(effectively) null set, and the union of a countable family of those sets is a null set. 
Therefore, there exists a sequence cu which does not belong to this union.)

Let us note that the statement of this problem is a straightforward corollary 
of the Martin-Löf theorem on the existence of the largest effectively null set (The­
orem 28, p. 61) proved later in this section, and the hint follows its proof. As we 
will see later, the set {w} is an effectively null set if and only if the sequence ui is 
not “Martin-Löf random”.

It is easy to construct a non-computable sequence u> such that the singleton {w} 
is an effective null set. Indeed, consider any sequence of the form w = 0?0?0?0 • ■ • 
(each second term is zero, the rest is arbitrary). Let us show that {w} is indeed an 
effectively null set. To find a covering with total measure 2“n, consider all strings 
of length 2n that are formed by n arbitrary bits interleaved with n zeros (as in u>). 
There are 2n strings of this form, and each corresponds to an interval of length 
2-2n, so the total measure is 2“n.

In fact we have proved a bit more: the set of all sequences that have only 
zeros at even positions is an effectively null set. Therefore, each of its subsets (in 
particular, every singleton) is an effectively null set.

Let us now return to the definition of an effectively null set and separate the 
requirements used in this definition. We say that a computable function x is “regu­
lar” if is satisfies the requirement (2). The requirement (1) then says that for every 
rational e > 0 the set A is a subset of the union

72 Prove that there exists a sequence u> E S7 such that singleton {w} is not

^ х (е ,0 )  C  ^ x ( £ , l )  LI Г2x(e ,2) •

Therefore, a regular function “serves” all the subsets of the set

(^a;(e,0) L  ^ x ( e , l )  L  x(e,2) ' ' ' ) ^ x(e , i )•
£>0 £>0 i

So for each (computable) regular function x we get an effectively null set (defined 
by the formula above), and effectively null sets are all these sets (for all regular 
functions) and all their subsets, and that’s all.

Before we formulate the Martin-Löf theorem, let us give the definition of a 
computable measure on the set Q.

A real number a is called computable if there exists an algorithm that computes 
rational approximations to a with any given precision. Formally, a  is a computable 
real if there exists a computable function e h-> a(e) defined on all positive rational 
numbers and having rational values such that

I a — a(e)| < £
for all rational £ > 0.

73 Show that we get an equivalent definition if we additionally require that 
all approximations given by a are approximations from below, i.e., a(e) < a 
for all £.
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(Hint: We can transform any approximation to the approximation from below 
losing only factor 2 in precision.)

74 Prove that the sum, difference, product, and quotient of two computable
reals are computable reals.

Prove that e (the base of natural logarithms) and тг are computable. 
Prove that elementary functions (roots, sine, exponent, logarithm, etc.)

75
76

preserve computability, i.e., have computable values for computable arguments. 
(We assume, of course, that the base is computable in the cases of logarithms and 
exponents.)

A measure p on Q is computable if measures of all intervals are computable 
reals, and, moreover, we can effectively find an approximation algorithm for p(Llx) 
given X.  Here is a formal definition:

Definition. A measure p on the set Q is computable if there exists a com­
putable function {x,e) !->■ a(x,e), defined for all strings x and all positive rational 
numbers e, such that

\ß(üx) -  a(x, e)| < £
for all x and e.

This definition does not assume that the measure of the entire space Q equals 1, 
but in fact we will use it only in this case (i.e., for probability distributions).

Theorem 28. Let p be a computable measure on fl. Then there exists a largest 
effectively null set with respect to p. In other words, the union of all effectively 
p-null sets is an effectively p-null set.

PROOF. As we have seen, for each regular function x we get a corresponding 
effectively null set. Since there is countably many regular functions, we get count­
ably many effectively null sets, and their union contains every effectively null set. 
Therefore, the union of all effectively null sets is a null set. (When speaking about 
null sets and effectively null sets, we have in mind measure p.)

However, we need more: we have to prove that this union is an effectively null 
set. To achieve this goal, we enumerate all regular functions and then use the 
effective version of the theorem that says that the countable union of null sets is a 
null set.

For technical reasons it is convenient to change a bit the definition of a regular 
function. Namely, we now say that a computable function x(-, •) is regular if all the 
finite partial sums of the series

p(x(e, 0)) + p(x(e, 1)) + p(x(£, 2)) + • • •
are less than e (note the strict inequality). Here p(x) stands for p(iïx). This makes 
our requirements for regular functions a bit stronger (if all partial sums are less 
than e, the sum of the series does not exceed e, but the reverse is not always true). 
However, the notion of the effectively null set is not affected, since we always can 
replace e by (say) e/2.

In the sequel the regular functions are understood in this modified sense (in 
fact, regular functions are used only locally in the proof of the Martin-Löf theorem).

The following lemma allows us to enumerate all regular functions.
Lemma. There exists a computable (partial) function

{q,e,i) i-» X(q,e,i)
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(where q and i are natural numbers, e is a positive rational number) such that for 
any fixed q we get a regular function X q (of two remaining arguments), and all 
regular functions can be obtained in this way.

P r o o f . Let us enumerate all programs for the functions of two arguments 
(whether these functions are regular or not); we get a computable sequence of 
programs, and the gth term of this sequence is called the “gth program” in the rest 
of the proof.

Then we define X(q , e, i) as the output of the gth program on input e, i, assum­
ing that some conditions are met; otherwise X(q,e,i) is undefined. The conditions 
guarantee that all X q are regular, and that regular functions are untouched.

To compute X(q,e,i), we apply the gth program in parallel to all pairs

(£,0), (£, 1), . • • ,

(starting with one step of the first computation, then making two steps of the first 
two computations, etc.).

When some computation terminates with some output, we interrupt this pro­
cess to verify that strings obtained so far do not violate the regularity condition. 
This means that we start to compute more and more precise approximations to p(z) 
for all of these strings until we could guarantee that the sum of all of these p(z) is 
less then e (this happens if the sum of approximations is less than e minus the sum 
of approximation errors). (Since ß is computable, we can compute approximations- 
to p(z) for any 2 with any precision.)

It is possible that we do not return from this interruption; this happens if the 
sum of measures is not less than e.

Now X (q, £, i) is defined as the output of the gth program on (e, i) if this output 
appears and passes the test during the process described.

If the gth program computes a regular function, the verification will never fail 
and X q coincides with this function. On the other hand, for every q the function 
X q is regular: if for some £ the gth program (applied to £ and all i = 0 ,1 ,2 ,...) 
generates strings whose total measure is too large, only finitely many of the strings 
will be let through, and their total measure is still less than e. The lemma is proven.

I 77 I Explain why we need to change the definition of correctness.
(Answer: If the sum consists of a finite number of terms and their sum is 

exactly £, we may never know this.)
Now we finish the proof of the Martin-Löf theorem. Let X  be the function 

provided by the lemma. For all q = 0,1,2,.. .  consider the effectively null set Zq 
that corresponds to the regular function X q. Every effectively null set by definition 
is a subset of Zq for some q. It remains to show that the union Zq U Z\ U • • • is an 
effective null set.

We do the same trick that is used to prove that a countable union of null sets 
is a null set. To find a covering of total measure less that e for (J Zq, we combine 
the (£/2)-covering for Zq with (£/4)-covering for Z\, etc.

More formally, we consider a function x (e, i), that is defined as

x (e, [q,k]) = X(q,E/2q+l,k).

Here [q, k] stands for the number of pair q, к under some computable bijection 
between N2 and N. □
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Now we are ready to give the definition of the Martin-Löf random sequence. 
Assume that some computable measure ß on the set Q is fixed.

Definition. A sequence ш is called Martin-Löf random (ML-random) with 
respect to ß if u> does not belong to the largest effectively null set (with respect to 
ß) provided by Theorem 28.

Reformulation: A sequence is Martin-Löf random if it does not belong to any 
effectively null set.

One more version: A sequence ш is Martin-Löf random if the singleton {cj} is 
not an effectively null set.

A digression: terminology. The notion of Martin-Löf randomness is a 
refinement of the intuitive idea of a “typical sequence”. One could say that a 
sequence is “typical” if it does not have any regularities or special features which 
separate it from most sequences. (If somebody says that “Mr. X is a typical math 
professor”, she probably means that Mr. X has no special characteristics that make 
him different from the majority of math professors.) A “special feature” is a feature 
that is possessed only by a negligible fraction of the objects considered (sequences). 
For example, if a sequence ш starts with 0, this is not a special feature, since half 
of the sequences start with 0. On the other hand, if each other term of ш is zero, 
this is indeed a special feature.

This informal idea is implemented in the Martin-Löf definition: a special fea­
ture is a feature that corresponds to an effectively null set, and therefore typical 
sequences are sequences that do not belong to any effectively null set, i.e., Martin- 
Löf random sequences.

It would be more logical to use the word “typical” for Martin-Löf’s definition 
and reserve the word “random” for a more general intuitive notion that can be 
formalized in different ways (and the idea of a typical sequence is one of them). 
However, the attempts to introduce a new, more logical, terminology often make 
the situation worse. (Authors have to confess that this can be said about their own 
attempts!) And there is already a lot of confusion—the term “random sequence” 
is already used in different ways.

So we keep the term Martin-Löf random sequence (ML-random sequence) for 
the definition given above and keep the general term random sequence for a vague 
philosophical notion of randomness that needs additional clarification to become a 
mathematical notion. (End of digression.)

The following statement is a trivial corollary of the Martin-Löf theorem; how­
ever, it deserves careful consideration since it looks counterintuitive.

T heorem 29. A set A C Q is an effectively null set if and only if all its 
elements are not Martin-Löf random (are non-typical).

In particular, the set of all non-ML-random sequences is the largest effectively 
null set, and the set of all ML-random sequences has measure 1.

PROOF. Indeed, any element of any effectively null set is not ML-random by 
definition; on the other hand, if all elements of some set A are not ML-random, 
then A is a subset of the largest effectively null set, and therefore A is an effectively 
null set. □
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What is strange here? Intuitively, a set A is a null set if it has “few elements” ; 
the nature of these elements does not matter much. Any singleton {w} C Q is a 
null set, and this does not depend on the properties of the sequence u>.

On the other hand, now we see that if we replace null sets by effectively null 
sets, the situation changes drastically: We may put as many non-ML-random (non­
typical) sequences in a set as we wish, and it would remain an effectively null 
set. But just one ML-random (typical) sequence added is enough to destroy this 
property.

For example, recall that any computable sequence forms an effectively null 
singleton (with respect to uniform measure). We immediately get the following 
corollary:

T heorem 30. The set of all computable sequences of zeros and ones is an 
effectively null subset of fl ( with respect to the uniform measure).

It is interesting to note that this observation was made before Martin-Löf gave 
the definition of randomness, while developing the constructive version of calculus 
(the Zaslavsky construction [221] is used for many counterexamples; it deals with 
real numbers instead of bit sequences).

In the next section we explore the properties of ML-random sequences (with re­
spect to the uniform measure). We end this section with the following nice criterion 
for ML-randomness which is attributed to R. Solovay in [34].

T heorem 31. A sequence u> is not ML-random with respect to a computable 
measure p if and only if there exists s computable sequence of intervals with a finite 
sum of measures that covers uj infinitely many times, i.e., a computable sequence 
of binary strings xq,x\,X 2 , ■ ■ ■ such that

and ui E QXi for infinitely many i .
P roof. Assume that w is not ML-random. Then for each e we can effectively 

find a computable sequence of intervals that covers {w} and has a sum of measures 
less than e. Then we combine these sequences for e = 1 ,1/2,1/4,1/8,... and get 
a computable sequence of intervals with a sum of measures not exceeding 2 that 
covers и  infinitely many times (at least once for each e).

On the other hand, assume that there is a computable sequence xo, x\, X2 , ... 
of strings such that the sum of measures of corresponding intervals Qx. does not 
exceed some constant c and infinitely many of them contain w. We may assume 
without loss of generality that c is a rational number. To find a covering for w that 
has a sum of measures less than e, we consider the set Mjv of all sequences in fl 
that are covered at least N  times. Here AT is a positive integer such that c/N  < e. 
It is easy to see that Mjv can be represented as the union of a computable sequence 
of disjoint intervals (while reading xq,x\, ..., we discover more and more elements 
of Мдг and add respective intervals as they appear). Therefore the set {w} is an 
effectively null set and the sequence uj is not ML-random. □

Remark. This result is a constructive version of the Borel-Cantelli lemma (if 
the sum of measures of sets Aq, A \ , . . .  is finite, then the set of all points that belong 
to infinitely many A{ is a null set), and our argument is an effective version of a 
classical proof of the Borel-Cantelli lemma. However, we should be careful since
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not any classical proof can be effectivized. The standard proof (since the series is 
converging, its tails could be made as small is needed) does not work here, since 
there is no way to find an appropriate tail given e.

Martin-Löf randomness is defined for computable measures: we used com­
putability to prove that the largest effectively null set exists. One could reformulate 
the definition and call a sequence random (for an arbitrary measure ß on Г2) if it 
does not belong to any effectively null set. For this notion B. Kjos-Hansen sug­
gested the name Hippocratic randomness (and P. Gâcs suggested the more neutral 
name blind randomness). This is not the only existing notion of randomness with 
respect to non-computable measures; we do not go into detail here and mention 
only that one can use uniform tests of randomness (following Levin and Gâcs, see 
[13]).

78 Prove that for an upper semicomputable measure there exists the largest 
effectively null set. (We do not assume here that the measure of the entire Q equals 
1; otherwise, all upper semicomputable measures would be computable.)

79 Construct an example of a (non-computable) measure for which there is
no largest effectively null set.

{Hint: Construct a measure that has two properties at the same time: (1) every 
computable sequence forms a singleton that is an effective null set (moreover, some 
prefix already has measure zero); (2) every algorithm that pretends to generate an 
effectively null set either gives an interval whose measure is too big or does not 
cover some computable sequence. This can be done by a diagonal argument where 
we consider one by one all the computable sequences and all possible algorithms.)

80 Show that there is a non-computable measure for which there exists the
largest effectively null set.

(.Hint: Consider a non-computable measure that is very close to the uniform 
one (say, at most twice as large and at most twice as small for all sets).)

3.4. Properties of M artin-Löf randomness

The Strong Law of Large Numbers also provides an example of an effective null 
set (with respect to the uniform measure).

Theorem 32. A set of all bit sequences that do no have limit frequency 1/2 is 
an effectively null set with respect to the uniform measure.

P roof. It is enough to prove that for every rational e > 0 the set of all 
sequences such that frequency of ones is greater than 1/2 + e infinitely many times 
(or less than 1/2 — e infinitely many times) is an effective null set.

Indeed, the upper bound for the measure of this set achieved in the proof of 
the Strong Law of Large Numbers in the previous section (Theorem 27, p. 56) is 
effective: the set of intervals was the set of all sufficiently long strings with large 
frequency deviation, and its total measure was effectively bounded by a tail of the 
converging geometric series. □

The statement of this theorem can be reformulated as the property of individual 
ML-random sequences:
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Theorem 33. Let oj = ojqoj\ • • • be an ML-random sequence with respect to the 
uniform measure. Then

t  aJo + uji + • ■ • -f- a>n-i 1lilTL --------------------------- = - .n-¥ OO n 2
A similar statement is true for arbitrary Bernoulli measure. Let p and q be 

computable positive reals such that p + q = 1. Consider the Bernoulli measure 
with parameters q and p (the sequence of independent coin tossing with success 
probability p). It is easy to check that this is a computable measure (since p and q 
are computable).

T heorem 34. Any ML-random sequence with respect to Bernoulli measure 
with computable parameters q,p has limit frequency p.

P roof. Indeed, the upper bound for the probability of large deviations (ob­
tained by comparing the given Bernoulli measure with the other one with shifted 
p, see Problem 67, p. 58), gives an explicit bound and an explicit set of intervals, 
so we get an effectively null set. □

There are several other properties of ML-randomness with respect to the uni­
form measure:

Theorem 35. Let oj be an ML-random sequence with respect to the uniform 
measure. Then any other sequence which is obtained from oj by a finite number of 
insertions/deletions/changes is also ML-random.

P roof. It is enough to show that adding a zero/one in the beginning of an 
ML-random sequence or deleting the first term of an ML-random sequence gives an 
ML-random sequence. Indeed, assume that sequence oj is not ML-random, i.e., it 
forms an effectively null singleton: for each e one can effectively construct a covering 
by intervals with total measure less than e. Let us add zero at the beginning of 
all these intervals (i.e., the corresponding strings). We get a covering for 0oj whose 
measure is twice as small. This argument shows that if oj is not ML-random, then 
0oj is not ML-random either. (A similar argument works for 1 oj.)

On the other hand, if we delete the first bit of all strings that form a covering 
for oj, we get a family of intervals of measure twice as large that covers oj' (obtained 
from oj by deleting the first bit). Therefore, oj' is not ML-random either. □

81 Prove that by replacing all zeros by ones and vice versa in an ML-random 
sequence (with respect to the uniform measure) we get an ML-random sequence.

The following problem shows that a computable subsequence of an ML-random 
sequence is ML-random.

Let no, ni, П2, . ..  be a computable sequence of different integers (щ /  nj 
if i /  j). Let oj = OJ0 OJ1OJ2 • • • be an ML-random sequence. Then its subsequence

82

oj\n — OJnoOJniOJn2 • • •

is ML-random.
(Hint: Any interval Q.x in a cover for oj\n produces a finite family of intervals 

whose union is the set of sequences whose (no, n \ , . . . ,  ni_i)-subsequence coincides 
with X (here i is the length of the string x). The total measure of these intervals 
equals 2”*, the measure of Qx.)
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More general selection rules are considered in Chapter 9 (p. 261) where the fre­
quency approach to the notion of randomness (von Mises’ approach) is considered.

Let oj be an ML-random sequence with respect to the uniform measure.83
Let us split oj into two-bit blocks and then replace blocks 00 by zeros and blocks 01, 
10 and 11 by ones. Prove that the resulting sequence is ML-random with respect 
to Bernoulli measure with parameters 1/4,3/4.

(Hint: We described a transformation F : Q —> Q. The preimage of any open set 
U is open, and the uniform measure of that preimage equals the (1/4,3/4)-measure 
of the set U.)

84 (Continued) Prove that every ML-random sequence with respect to the 
non-uniform Bernoulli (1/4,3/4)-measure can be obtained in this way from a se­
quence that is ML-random with respect to the uniform measure.

(Hint: For any open set В  С S7, consider the set B' of all sequences ш such that 
i r-1({w}) С В  (the set of sequences that do not have a preimage outside £ , i.e., 
the complement to the image of the complement of В ). The image of a compact set 
is a compact set; therefore, B' is open. Show that if В is a union of an enumerable 
family of intervals, then B' is also a union of enumerable family of intervals, and 
the Bernoulli measure of B' does not exceed the uniform measure of B. See also 
the proof of a more general statement (Theorem 123, p. 181).)

What can be said about the complexity of an ML-random sequence (with re­
spect to the uniform measure) from the viewpoint of recursion theory? We know 
already that an ML-random sequence is not computable. It also cannot be a char­
acteristic function of an enumerable (recursively enumerable, computably enumer­
able) set.

Theorem 36. Let A be an enumerable set of natural numbers. Consider its 
characteristic sequence aQaya  ̂• • • (a; — 0 for i ф A and a; — 1 for i € A). This 
sequence is not ML-random.

Proof. Let к be an arbitrary natural number. Let us enumerate the set A 
and see what happens with к first bits of its characteristic sequences. As (the 
current version of) A increases, we get more and more ones in this /с-bit prefix. In 
this way we get at most к + 1 candidates; at some point we come to a final (true) 
one, but we never know that this happened already. Anyway, the set of candidates 
is enumerable and the number of candidates does not exceed к + 1 (since k-bit 
prefix can have 0 ■■■ к ones). The total measure of these intervals is (k + l)/2fc and 
therefore can be made arbitrarily small. (Note that the definition of the effectively 
null set allows us to enumerate the intervals that form a covering, and this is exactly 
what we can do in our case.) □

A natural question arises: In what sense can one explicitly provide an ML- 
random sequence? As we have seen, neither computable sequences nor character­
istic sequences of enumerable sets are random. If you are familiar with the basics 
of the recursion theory (see, e.g., [184]), you may appreciate the following result: 
There exists an ML-random sequence that belongs to the class Е2ПП2 of the arith­
metic hierarchy (this class can be also described as the class of all O'-computable 
sequences).

Theorem 37. There exists a O'-computable sequence that is ML-random with 
respect to the uniform measure.
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P ro o f. It is enough to show that for any enumerable set of strings {xo, x \ , ...} 
such that Y2 <1 /2  there exists a O'-computable sequence that does not have
any of Xi as a prefix. (Indeed, the largest effective null set has such a covering with 
total measure less than 1/2, and any sequence that is not covered is ML-random.)

The intervals Q,Xi are divided into two groups: some of them belong to the left 
half of il (i.e., Xj starts with 0) and some belong to the right half. Total measure of 
both groups at most 1/2. Therefore, at least one of the groups has total measure 
at most 1/4. However, looking at the sequence X{, we cannot find out which half 
has this property (since at any moment a new large interval can arrive).

However, the O'-oracle allows us to make this choice, since the event “measure 
exceeds 1/4” is enumerable. Then we divide this half into two parts of size 1/4 
each and choose one of them where the total measure of corresponding intervals 
does not exceed 1/8, and so on.

In this way we get a O'-computable sequence with the following property: Each 
part of its prefix is at most half-covered by our intervals. In particular, no prefix 
of this sequence can appear in the sequence Xi, and this is what we need. □

A similar but more geometric argument can be given if we consider reals in [0,1] 
instead of binary sequences. A point x € [0,1] is ML-random with respect to the 
Lebesgue measure on [0,1] if its binary representation is ML-random with respect to 
the uniform measure on the Cantor space. (A point can have two representations, 
but in this case both are computable and non-random, so we may ignore this 
problem.) One can also give an equivalent definition of randomness directly. A set 
X  C [0,1] is called an effectively null subset of [0,1] if there exists an algorithm 
that for every rational e > 0 enumerates a cover of X  that consists of intervals 
with rational endpoints whose sum of measures is less than e. Then an ML-random 
real is a real not contained in any effectively null subset of [0,1]. All this is just 
a simple reformulation of corresponding notions and results for Cantor space since 
the only difference is that some numbers have two representations (but this happens 
only for countably many computable reals), and we consider intervals with rational 
endpoints instead of intervals with dyadic-rational endpoints (this does not matter 
since we can split an interval with rational endpoints into a computable sequence 
of dyadic intervals). In particular, the following statement is true:

Prove that there exists the largest effectively null subset of [0,1] and its 
elements are reals whose binary representations are not ML-random with respect 
to the uniform measure in Cantor space.

85

Now we can point out an explicit ML-random point. Consider an enumerable 
family of open intervals that have total length less than 1 and cover all non-ML- 
random points. The union of this intervals is an open set which is a proper subset 
of [0,1]. Its complement is a closed set, and this closed set has a minimal point. 
By construction this point is ML-random.

86 Prove that the minimal point that is not covered by an enumerable family 
of open intervals with rational endpoints is lower semicomputable, i.e., it is a limit of 
an increasing computable sequence of rational numbers (and therefore is computable 
with the oracle for the halting problem O').

(See Section 5.7 (p. 157) for more detail about random reals and for an alter­
native construction of a lower semicomputable ML-random real.)
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The proof of Theorem 37 given above is a relativized version of the following 
result:

87 Assume that xq, x\ , X2 , . ..  is a computable sequence of binary strings, and

2-i(xi)
assume the sum

is less than 1 and is a computable real number. Then there exists a computable 
sequence of zeros and ones that has neither of Xi as its prefix.

{Hint: Let this sum be less than some rational S  < 1. By induction construct 
a computable sequence ujoujiuj2 • • • with the following property: the fraction of the 
set U — (J £lXi among the sequences that have prefix ujq ■ ■ ■ u>k is less than S .)

This problem is related to the definition of randomness suggested by C. Schnorr 
in [166]. He gave a more restrictive definition of an effectively null set than Martin- 
Löf. The additional requirement is that for every (rational) e > 0, the total measure 
of corresponding intervals is not only less than e but is also a computable real 
(and the approximation algorithm computably depends on e). This requirement 
is equivalent to the following one: for every e > 0 and Ô > 0, one can effectively 
find out how many terms in the series JAp(x(e, г)) are needed to make the tail 
less than 5. (For a series with non-negative terms the computability of the sum is 
equivalent to computable convergence.)

By Schnorr effectively null sets we mean the effectively null sets according 
to this modified definition. (Schnorr calls them total rekursive Nullmenge, see 
Definition 8.1 in [166]; effectively null sets (as in the Martin-Löf definition) are 
called rekursive Nullmenge, see Definition 4.1 in [166].)

88 Let us change the definition of an effectively null set in another way: now 
we require that the total measure of all intervals in the covering is exactly e. Show 
that this definition is equivalent to the definition of a Schnorr effectively null set. 
(One can also consider the measure of the union of all intervals instead of the sum 
of measures.)

Problem 87 shows that for every Schnorr effectively null set there exists a com­
putable sequence outside this set. (For simplicity let us consider the case of uniform 
measure.) On the other hand, every computable sequence (i.e., the singleton made 
of it) is a Schnorr effectively null set. Therefore, none of the Schnorr effectively 
null sets is the largest one in the class (in other words, the union of all Schnorr 
effectively null sets is not a Schnorr effectively null set). Nevertheless we can call a 
sequence which does not belong to any Schnorr null set a Schnorr random sequence 
(or Schnorr typical sequence).

Since now we have fewer effectively null sets, we may get the broader class of 
random sequences, and this is indeed the case. The following problem (together 
with the results of Chapter 5) guarantees that there exist Schnorr random sequences 
that are not ML-random.

Prove that there exists a Schnorr random sequence w = • • • whose
prefixes have logarithmic complexity, i.e., C{u>q • • -wn_i) = O(logn).

(Hint: Problem 87 shows how one can construct a computable sequence that 
does not belong to a given Schnorr effectively null set. At some point of this 
construction we can take into account another Schnorr effectively null set and get 
a computable sequence that does not belong to both. (Indeed, we need to take a

89
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sufficiently small cover for the second set that does not go out of the safety margin 
in the construction for the first set.) Moreover, we can consider infinitely many 
Schnorr effectively null sets in this way (adding them one after another). This 
will not give us a computable Schnorr random sequence (it does not exist at all), 
because we need additional information that tells us which algorithms correspond to 
Schnorr effectively null sets and which do not. But if we postpone the introduction 
of a new algorithm until the moment when the constructed prefix of our sequence 
is rather long, this additional information is logarithmic compared to the prefix 
length.)

We return to Schnorr’s definition of randomness in Section 9.8 where it is 
reformulated in terms of computable martingales.

Prove that a sequence ui is not Schnorr random if and only if there exists a90
computable sequence of strings xq, aq, . . .  such that the series Pixi) computably 
converges (has a computable sum) and infinitely many of Xi are prefixes of cj.

{Hint: This is a version of Theorem 31 for Schnorr randomness and can be 
proven in a similar way. In fact, in this case even the standard proof of the Borel- 
Cantelli lemma works.)

Another version of effectively null sets is obtained if we consider only finite 
families of intervals (each family is presented as the list of all intervals in the 
family): Given a rational e, the algorithm should output a finite list of intervals 
that cover the set and have a sum of measures less than e. This corresponds to the 
Jordan construction of measure often used in elementary calculus textbooks. In 
this way we get a smaller class of null sets (e.g., a null set cannot cover all rational 
points).

91 Prove that a set is an effectively null set in this sense if and only if it is 
contained in the complement of some effectively open set of measure 1.

The sequences not covered by any effectively null sets in this sense (=contained 
in every effectively open set of full measure) are called Kurtz random. In this 
definition we again restrict the class of effectively null sets and therefore enlarge 
the class of random sequences. Indeed we get more random sequences, as the 
following problem shows.

Show that every Schnorr random sequence (with respect to uniform mea-92
sure) satisfies the Strong Law of Large Numbers, but there exists a Kurtz random 
sequence that does not.

{Hint\ The proof of the Strong Law of Large Numbers gives a cover with a 
computable sum of measures since the series converges exponentially fast. For the 
second part, one can consider generic sequences; see Section 5.9, p. 178.)

3.5. Randomness deficiencies

Martin-Löf’s definition requires that for an effectively null set A there is an 
algorithm that, given e > 0, produces a cover of A by intervals whose total measure 
does not exceed e. The union of these intervals in an open set of measure at most e.

In general, the unions of computable sequences of intervals are called effectively 
open sets. As in the definition of effectively null sets (p. 59), we allow the com­
putable sequence to be non-total, so the empty set is also effectively open. In other 
words, an effectively open set is a union of an enumerable family of intervals.

Now the definition of an effectively null set can be reformulated as follows:
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T heorem  38. A set A is an effectively null set with respect to a measure p if 
and only if A G (~)n Un for some uniformly effectively open sets Un with p{Un) ^  
2~n. We may assume also that U\ D U2 D • • ■ ■

Speaking about uniformly effectively open sets, we mean that there exists an 
algorithm that, given n, enumerates a family of intervals whose union is Un.

P ro o f . There are several differences between this definition and the one we 
used earlier. The first difference (a trivial one) is that we use only e = 2~n.

Second, we speak here about the measure of an effectively open set, not about 
the sum of measures of intervals whose union it is. This does not matter either, since 
we may assume without loss of generality that the intervals forming an effectively 
open set are disjoint. (When a new interval appears, we subtract all the intervals 
that appeared earlier and split the rest into a union of disjoint intervals.) For 
disjoint intervals the sum of measures is equal to the measure of their union.

Finally, we require that Ui+1 С To achieve this, we can consider the 
sequence U\,U\ П [/2, U\ П U2 П [/3, ... instead of the original one. One needs to 
check only that the intersection of a finite number of effectively open sets U\C\- • -C\U\ 
is an effectively open set (and the corresponding algorithm can be effectively found 
given the algorithms for Ui). Indeed, assume that we have two algorithms that 
enumerate intervals for U\ and U2 . At every stage the current approximations for 
U\ and U2 are finite unions of intervals, and their intersection is also a finite union 
of intervals. Let us add all the intervals of this intersection to the enumerable set 
of intervals for U\ П U2 . (We can also make the intervals for U\ П U2 disjoint, see 
above.) □

In fact, Martin-Löf gave his definition of randomness in this form in [115]; a 
family Un with these properties was called a randomness test. Given such a test, 
we can define the randomness deficiency of a sequence oj as the maximal i such 
that ш G Ui. The randomness deficiency of a sequence uj is infinite when uj belongs 
to all Ui. In this version, the test not only says that all elements of Ui are non- 
random, but also says for other sequences how close they are to non-randomness 
(the deficiency increases as the sequence get closer).

We know that there exists a universal test such that the set f ji Ui is maximal. 
Martin-Löf noted that one can construct a test that is universal even in a stronger 
sense:

T heorem  39. There exists a randomness test that corresponds to the maximal 
deficiency function {up to an additive constant).

P ro o f . In fact we just need to look more closely at the construction given 
above: randomness tests

U1
u2 

u3

can be combined into a test

{Ul U Щ U • ■ • U tff+1 U • ■ • ) D (Щ U U\ U ■ • • U Ui+2 U • • • ) D • • • .

: Ui D Щ D Щ D • • • 
: U\ DU% D Ui D ■■■ 
: U3 D Un D Un D ■ ■ ■
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It is indeed a test: the measures of the sets are bounded by 1 /4+1/8  + -- - ^  1/2 
(the first one), 1/8 + 1/16 + -- - ^  1/4 (the second one), etc. The deficiency function 
for this combined test is at least dl — i for every i, where d1 is the deficiency function 
for ith test. □

The deficiency function can be considered as a compact representation of a 
decreasing family Un. We consider a function whose values are natural numbers 
and Too, and for every finite n the set Un of all u> where the function exceeds n is 
effectively open (uniformly in n).

One can slightly extend this class of functions allowing non-integer values. 
We say that a function и defined on О and having non-negative real values (plus 
a special value Too) is lower semicomputable if for every rational r the set 
{uj I u(cj) > r} is effectively open uniformly in r.

The following statement provides an equivalent definition of lower semicom­
putable functions on Q. Let us first consider basic functions on the Cantor space 
О that have rational values and depend only on some finite prefix of the argument. 
To specify a basic function, we say how many input bits it needs to read (the length 
of the prefix) and provide a table that specifies the output value for every combi­
nation of input bits. If a basic function reads m  bits, this table will consist of 2TO 
rational numbers. Such a table (and a basic function that corresponds to it) is a 
finite object, so we may speak about computable sequence of basic functions.

T heorem  40. The following properties of a function v with non-negative real 
values (Too is also allowed) are equivalent:

(a) v is lower semicomputable;
(b) v is a pointwise supremum of a computable sequence of basic functions;
(c) v is a pointwise limit of a non-decreasing computable sequence of basic 

functions',
(d) v is a sum of a series formed by a computable sequence of non-negative 

basic functions.

P ro o f . The two latter properties are equivalent since the sum and the differ­
ence of two basic functions are basic functions.

To convert the supremum into a limit, note that the maximum of a finite set 
of basic functions is a basic function.

It remains to show that the first property is equivalent to others (for example, 
the second one). Let v =  sup{ Vi. Note that supf Vi(uj) > r if and only if Vi(u>) > r 
for some i. This guarantees that the set {to \ v(co) > r} is (uniformly) effectively 
open.

For the other direction, if for each rational r we can effectively enumerate 
intervals where u{u>) > r, then и is the pointwise supremum of an enumerable 
set of basic functions that are equal to r inside the corresponding intervals and 0 
otherwise. □

Now we can give the following definition of a randomness test (without the in­
tegrality requirement and switching to the exponential scale): a probability-bounded 
randomness test with respect to a computable measure p on fl is a lower semicom­
putable non-negative function и such that

p({tv I u(co) > c}) < 1/c
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for every positive rational c. Informally, such a test finds regularities in w in such 
a way that (a) sequences with a lot of regularities (where the test value is greater 
than some c) form a small set (of measure at most 1/c) and (b) if a sequence has 
some regularity (test value is big), this regularity will be eventually found (the lower 
semicomputablity requirement).

T heorem  41. For every computable measure p on the Cantor space there ex­
ists a maximal (up to a constant factor) probability-bounded randomness test with 
respect to p. Its binary logarithm coincides with the universal test from Theorem 39 
up to an additive constant.

P ro o f . An arbitrary probability bounded test can be replaced by test with 
values of the form 2n. We replace u(cu) by the maximal power of 2 that is less 
than u(lo). The new test is still lower semicomputable and differs from the original 
one at most by a constant factor. The probability bounded test of this restricted 
form corresponds to a decreasing sequence of uniformly effectively open sets, and 
the the probability bound means that this sequence forms a randomness test in 
the Martin-Löf sense. The reverse translation is also possible. It remains to use 
Theorem 39. □

There is another slightly different notion of a randomness test. An expectation- 
bounded randomness test uses a stronger restriction on the (lower semicomputable 
non-negative) function u:

j  u(lu) dp(cu) ^  1.

T heorem  42. For every computable measure on the Cantor space there is a 
maximal (up to a constant factor) expectation-bounded randomness test with respect 
to this measure.

P ro o f . We can enumerate all lower semicomputable functions on the Cantor 
space. (For example, we can use their representations as supremums of enumerable 
sets of basic functions.) Furthermore, one can “trim” a lower semicomputable 
function and guarantee that its integral does not exceed 2, and the functions whose 
integral is at most 1 remain unchanged after the trimming. This can be done 
effectively (recall that the measure is computable). In this way we get a sequence 
of uniformly lower semicomputable functions ui,U2, ... that includes all tests and 
consists only of almost-tests (up to factor 2). Adding all the functions of this 
sequence (with computable coefficients that form a converging series with sum at 
most 1/2), we get a maximal expectation-bounded randomness test. □

Fix some maximal probability-bounded (or expectation-bounded) randomness 
test with respect to a computable measure p. The logarithm of it is called proba­
bility-bounded (resp. expectation-bounded) randomness deficiency with respect to 
p. We will denote these deficiencies as dp and dp . (We assume that the measure 
p is fixed and omit it in the notation.)

T heorem  43.

dp (w) — 21ogdp (w) ^  d p (w) < dp (w).

Both inequalities are true with 0(l)-precision (and the quantities that appear 
in them are well defined with the same precision).
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P r o o f .  The second inequality is obvious since every expectation-bounded test 
is also probability-bounded. To prove the first inequality, we need to show that the 
function

u{ ш) = 2dP(w)-21°sdP(w) 
has finite integral. (We need и to be lower semicomputable; this is because the 
function X — 2 log X is an increasing function—strictly speaking, this is not true for 
small values of x, but these values are not important for finite integral, and the 
function can be corrected there.)

To check that f  u(w) dfi(u) is finite, note that the set of <x such that d p (cj) is 
in between n and n + 1, has measure at most l/2 n (since 2dC exceeds 2n on this 
set), and the function и on this set is bounded by 0(2n/n 2). It remains to note 
that the series ^  1/n2 converges. □

93 Show that the constant 2 in Theorem 43 can be replaced by an arbitrary
number greater than 1.

We have shown, in particular, that each type of test can be used to give an 
equivalent definition of Martin-Löf randomness (we have already discussed this for 
a probability-bounded test): a sequence is ML-random if and only it its randomness 
deficiency is finite.

The difference between probability- and expectation-bounded tests resembles 
the difference between plain complexity C (studied so far) and prefix complexity 
К  (see the next chapter).

As we have said, randomness tests were introduced and studied in the 1960s and 
1970s (probability-bounded tests were introduced in a form of sequences of open 
sets by Martin-Löf; expectation-bounded were considered by Levin and Gacs) but 
then almost forgotten until recently. For more information about these tests and 
their applications, see [13]. Recently G. Novikov [149] has studied the difference 
between different versions of randomness deficiencies.



CHAPTER 4

A priori probability and prefix com plexity

4.1. Randomized algorithm s and semimeasures on N

In this section we consider algorithms (=programs, machines) equipped with 
a random number generator. That is, algorithms may perform instructions of the 
following form:

b := random.

This instruction assigns to the variable (memory cell) b a random bit (0 or 1), 
both values are assigned with equal probabilities (and independently of all previous 
random bits). To perform this instruction we toss a fair coin and write its outcome 
(heads/tails as 0/1) in the memory cell b. Algorithms including such instructions 
are called randomized or probabilistic.

The result (output) produced by a randomized algorithm depends not only on 
its input but also on the result of the coin tossing. That is, for every fixed input, 
the output of a randomized algorithm is a random variable.

Speaking formally, the probability that a randomized algorithm A outputs x is 
defined as follows. Consider the uniform Bernoulli distribution on the space ft of 
all infinite 0-1 sequences. The measure of the set ftu of all infinite extensions of a 
finite string и is equal to 2~l ûK

Let x be an input for a randomized algorithm A , and let из e ft be an infinite 
sequence of zeros and ones. We denote by A( x , uj) the output of A on input x if 
random bits used by the algorithm are taken from the sequence uj. More specifically, 
each call of a random generator returns the next bit of uj. If the algorithm A does 
not halt (for given x and uj), then the value A( x , uj) is undefined.

Let y be a possible output of A. Consider the set { uj \ A( x , uj) — y}. This set is 
the union of intervals ftz over all outcomes 2 of coin tossing that guarantee that A 
outputs y having x as input. The probability that A on input x outputs y is equal 
to the measure of this set.

In this section, we consider machines without input whose outputs are natural 
numbers. Here is an example of such machine. It tosses a coin until 1 appears and 
outputs the number of zeros preceding the first 1. The probability pi of the event 
“the output is i" is equal to 2~(г+1\  Indeed, the algorithm outputs i if and only 
if the first i random bits are zeros and the (i + l)-th bit is 1. This happens with 
probability 2~^l+1\

The sum is equal to 1 in this example. Indeed, the algorithm does not 
halt if and only if all random bits are zeros and this happens with zero probability. 
But it is also possible that some other algorithm of the type considered does not 
terminate with some positive probability.

We assign to every probabilistic machine (that has no input and produces nat­
ural numbers; after some number is produced, the machine terminates) a sequence

75
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Po.pi,...  of reals: pi is the probability that the machine outputs i. We say that the 
probabilistic machine generates the sequence po,p\,.... Which sequences Po,P\, ■.. 
can be obtained in this way? There is an obvious necessary condition: ^2pi < 1 
(since the machine cannot produce two different outputs). However, this inequality 
is not sufficient, as there are countably many randomized algorithms and uncount- 
ably many sequences satisfying this condition.

Let us answer first a simpler question. Consider the halting probability of a 
randomized machine without input, i.e., the probability that the machine halts. 
Which real numbers can appear as halting probabilities of probabilistic machines 
without input? To answer this question, we need to recall the notion of a lower 
semicomputable real number.

A real number a is lower semicomputable if it is the limit of a computable 
non-decreasing sequence of rational numbers.

94 Prove that if a  is a computable real number (i.e., there is an algorithm 
that for any given rational e > 0 computes a rational approximation to a with 
precision e), then a is lower semicomputable.

(Hint: We can construct an increasing sequence using approximations from 
below.)

95 Show that a real number a is computable if and only if both numbers a
and —a are lower semicomputable.

A real number a is lower semicomputable if and only if the set of rational 
numbers that are less than a is enumerable. (It explains why lower semicomputable 
reals are sometimes called enumerable from below.)

Indeed, let us assume that a is the limit of a non-decreasing computable se­
quence ao < ai ^  U2 ^  • • • of rationale. For each i enumerate all rational numbers 
that are less than аг. All rational numbers less than a (and no other) will appear 
in the enumeration.

Conversely, assume that we can enumerate all rational numbers that are less 
than a. Omitting all numbers in this enumeration that are less than previously 
met ones, we obtain a non-decreasing sequence whose limit is a.

Using the notion of a lower semicomputable real, we obtain the following answer 
to the above question:

T heorem  44. (a) Let M  be a probabilistic machine without input. The halting 
probability of M  is a lower semicomputable real number.

(b) Every lower semicomputable real is the halting probability of some proba­
bilistic machine.

P ro o f , (a) Let pn stand for the probability that M  halts within n steps. The 
number pn is rational: the algorithm can toss a coin at most n times within n steps, 
thus the halting probability is a multiple of l /2n.

We can find pn by simulating the run of the machine for all possible outcomes 
of the coin tossing. The sequence Po,Pi, ■ ■ ■ is non-decreasing and its limit is equal 
to the halting probability of M.

(b) Assume that a real q is lower semicomputable. That is, there is a com­
putable sequence go ^  Qi ^  52 ^  • • • of rational numbers such that q = limgn. 
We have to construct a probabilistic machine whose halting probability is equal to 
q. Let the machine toss a coin, and let bo,b\,b2 , ... be the obtained random bits. 
Consider the real number ß — O.&0&1&2 ■ ■ • ; it is uniformly distributed in [0,1]. Let
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F igure 9. Comparing ß = 0.bob\b2 • • • and q — limg;

the machine (in parallel to coin tossing) compute the rational numbers qo,qi,q2 , ■ ■ ■■ 
The machine halts when it finds out that ß < q. That is, the machine halts if for 
some i the rational number ßi = O.bo&i • • • ЬДП • • • (the currently known upper 
bound for ß) is less than g* (the currently known lower bound for q). See Figure 9 
for a symbolic representation of this argument.

The constructed machine halts if and only if ß < q. Indeed, assume that ß is 
less than q. The numbers g* tend to q and the upper bounds ßi for ß tend to /3, as 
i —> oo. Therefore for some i the number qi is greater than ßi. On the other hand, 
if the machine halts, then ß < q by construction.

Thus the halting probability of the machine is equal to the probability of the 
event ß < q. The latter probability equals the length of the segment [0,g), that is, 
to q. (Recall that ß is uniformly distributed in the segment [0,1].) □

Let us return to probability distributions that can by generated by probabilistic 
machines. First, a definition. A sequence Po,Pi,P2 , • • • is lower semicomputable if 
there is a function p(i,n), where i,n  are integers and p(i,n ) is either a rational 
number or —oo, with the following properties: the function p(i, n ) is non-decreasing 
in the second argument:

p(i,0) <p(i,  1) <p(i,  2) < • ••
and

Pi = lim p(i, n)
n —»oo

for all i.
One could say that the sequence pi is lower semicomputable if the numbers 

Pq,Pi,P2 , ■ ■ ■ are “uniformly lower semicomputable”. The next theorem provides an 
alternative way to define lower semicomputable sequences.

T heorem  45. A sequence po,pi,P2 , ■ ■ ■ is lower semicomputable if and only if 
the set of pairs (r ,i), where i is a natural number and r is a rational number less 
than pi, is enumerable.

P ro o f . Recall that a set is enumerable if there is an algorithm that generates 
all its elements in some order with arbitrary delays between consecutive elements 
(the algorithm may not halt even if the set is finite).

Assume that a sequence Po,Pi,P2 , ■ ■ ■ is lower semicomputable. Let p(i,n) be 
the function from the definition of the lower semicomputability. Arrange all the 
pairs (r, i) in a sequence so that every pair appears in the sequence infinitely many
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times. The algorithm enumerating all the pairs (r, i) with r < pi works in steps. 
On step n compare r and p(i, n) where (r, i) is the nth pair in the chosen sequence. 
If r < p(i,n), then output the pair (r,i), otherwise proceed to the next step. By 
definition, r < limn p(i,n) if and only if there exists n such that r < p(i,n). Thus 
we will output all the pairs in the set, and no other pairs.

Conversely, assume that the property r < Pi is enumerable, and let A be an 
algorithm enumerating all such pairs (r,i). To compute p(i,n), we simulate n 
steps of the computation performed by A. Consider all the pairs that appeared 
within n steps and have i as the second component. Let p(i,n ) be equal to the 
largest first component of such pairs. If there are no such pairs, let p(i,n ) = 
—oo. As n increases, new pairs may appear and p(i. n) may increase. The limit 
limnp(2,n) is equal to pi, since all the rational numbers less than pi will appear in 
the enumeration. □

We are now able to characterize probability distributions generated by proba­
bilistic machines.

T heorem  46. (a) Let M  be a probabilistic machine without input that outputs 
natural numbers. Let pi denote the probability that the machine outputs i. The 
sequence of pi is lower semicomputable and YliPi ^  1-

(b) Letpo,p\ , ... be a lower semicomputable sequence of non-negative real num­
bers such that J2iPi ^  1- There is a probabilistic machine M  that outputs every i 
with probability exactly Pi.

PROOF. The proof of item (a) is similar to the proof of corresponding statement 
in the previous theorem. We let p(i,n) be the probability that M  outputs i within 
n steps.

The proof of item (b) is also similar to the proof of corresponding assertion in 
the previous theorem. This time we assign to each natural i a subset of [0,1] and the 
machine outputs i if the real number ß = 0.bç,b\b2 ■.. belongs to the set assigned 
to i. The sets assigned to different values of i do not overlap. They may not cover 
the entire segment [0,1]. The set assigned to every i is a finite or countable union 
of half-open intervals [a, b) of total length pi. When an approximation for some pi 
increases, we add a new interval for this i (its length is the increase) just on the 
right of intervals allocated earlier. (So at each moment the used part of [0,1] is 
[0, s) for some s .)

In parallel, we toss a coin and obtain digits of the random number ß. When 
we are sure that ß gets into the set assigned to some natural number, we output 
that number.

Here is a formal argument. Let p(i, n) be the function of two variables from the 
definition of lower semicomputability. Without loss of generality we may assume 
that p(i, n) ^  0 for all г, n. Indeed, we can replace all negative values by zeros. We 
may assume also that for all n only finitely many values p(i,n ) are positive (let 
p(i,n) = 0 for all i ^  n). The probabilistic algorithm that we construct runs in 
steps. On each step we allocate some space inside [0,1]. Our goal is that after the 
nth step the total length of intervals allocated to i is equal to p(i, n) (for all i). This 
requirement is easy to keep: going from left to right, on step n we allocate for each 
i (such that p(i, n) > p(i, n — 1)) a new interval of length p(i, n) — p(i, n — 1). We 
need to do this only for finitely many i, as for i ^  n we have p(i, n) = p(i, n — 1) = 0.
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The total length of used intervals does not exceed 1, as p(i, n) ^  Pi and YjPi ^  1- 
Thus we will always be able to allocate the space we needed (at the left of the free 
space).

In parallel, the probabilistic machine tosses a coin, obtaining a random bit bn on 
step n. It halts on step n and outputs i if it is known for sure that ß = O.&0&1&2 • • • 
belongs to (the interior of) the space allocated to i, i.e., if the closed interval 
consisting of all real numbers whose binary expansion starts with bob\ • • • bn is 
included in the interior of the space allocated to i. (The interior of the segment 
[■и, v) is the interval (u, v).) By construction, for all i the measure of this set (interior 
of the space allocated to г) equals pi. □

Any sequence pi satisfying the conditions of the previous theorem is called a 
lower semicomputable semimeasure (or enumerable from below semimeasure) on N. 
Sometimes we will use also the notation p(i) for p{. We thus have two alternative 
definitions of a lower semicomputable semimeasure: (1) a probability distribution 
generated by a randomized algorithm; (2) a lower semicomputable sequence of non­
negative reals whose sum does not exceed 1. The above theorem states that these 
definitions are equivalent.

The word “semimeasure” may look strange, but unfortunately there is no other 
appropriate term in the literature. Dropping the semicomputability requirement, 
one can call any function i pi with YhiVi ^  1 a semimeasure on N. Every 
semimeasure on N defines a probability distribution on the set N U {_L} where X is 
a special symbol meaning “undefined”. The probability of the number г is pi and 
the probability of X is 1 — YhiVi- In the sequel we consider lower semicomputable 
semimeasures only (unless explicitly stated otherwise).

We have considered so far (lower semicomputable) semimeasures on the natural 
numbers. The definition of a lower semicomputable semimeasure can be naturally 
generalized to the case of binary strings or any other constructive objects in place 
of natural numbers. For example, to define a notion of a lower semicomputable 
semimeasure on the set of binary strings, we have to consider probabilistic machines 
whose output is a binary string.

Important remark: We will consider in Chapter 5 a notion of a semimeasure 
on the space consisting of all finite and infinite 0-1 sequences. Such a semimeasure 
is generated by a probabilistic machine that prints its output bit by bit and never 
indicates that the output string is finished. In particular the machine never halts. 
It leads to a different notion: all the machines considered in this section are required 
to halt after printing the output; for such machines, there is no essential difference 
between printing a binary string and a natural number.

To stress the difference between these two frameworks, semimeasures defined in 
this section are called discrete semimeasures while the ones considered in Section 5 
are called continuous semimeasures, or semimeasures on the binary tree.

4.2. M aximal semimeasures

Comparing two semimeasures on N, we will ignore multiplicative constants. 
A lower semicomputable semimeasure m  is called maximal if for any other lower 
semicomputable semimeasure m' the inequality m'(i) < cm(i) holds for some c and 
for all i. (The name greatest (instead of “maximal”) would be more accurate since 
we look for the greatest element of some partially ordered set, not the maximal 
one.)
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T h e o r e m  47. There exists a maximal lower semicomputable semimeasure on N .|

P ro o f. We have to construct a probabilistic machine M with the following 
property. The machine M should output every number i with a probability that is 
at most a constant times less than the similar probability for each other machine 
M' (the constant may depend on M' but not on i).

This is easy to achieve: consider a machine M that picks at random a proba­
bilistic machine M' and then simulates M'. The probability of picking each machine 
M' should be positive. If a machine M' is chosen with probability p, then M will 
output some i with probability at least p • (the probability that M' outputs i). Thus 
one can let c = l/p.

It remains to explain how to implement the random choice of a probabilistic 
machine. Enumerate all probabilistic machines in a natural way; let Mo, M \ , М2, . . .  
be the resulting sequence. We toss a coin until the first 1 appears. Then we simulate 
the machine Mj where i is the number of zeros preceding the first 1. □

It is instructive to prove this theorem once more using the language of lower 
semicomputable sequences instead of probabilistic algorithms. Basically, we need to 
show that there exists a convergent lower semicomputable series that upper-bounds 
all other lower semicomputable convergent series (up to a multiplicative constant). 
More formally, we should consider only series with the sum at most 1, but this is 
not essential since we ignore constant factors.

To find such a series, we sum up with certain weights all the lower semicom­
putable series with sum at most 1. The weights form a computable converging 
series. This implies that the resulting series (infinite linear combination) converges. 
By construction it will be maximal (up to a multiplicative constant). There is only 
one problem left: How do we guarantee that the resulting series is lower semicom­
putable?

The lower semicomputability of a semimeasure is witnessed by a computable 
function p : (i,n) ^  p(i,n). There are only countably many such functions, since 
there are only countably many algorithms. Enumerating all those functions, we get 
a sequence p^°\p ^ \p ^2\  ...; then we may consider the function

71

p{i,n) = ^ A fcp(fc)(i,n), 
k= 0

where A*, is a computable sequence of rational numbers with ^2k \k  ^  1, say, 
Afc = 2~k~l . The resulting function p is non-decreasing in n for every i. Indeed, as 
n increases, the number of terms in the sum defining p increases and the value of 
every term increases, too. And for all i we have

lim p(i,n) = V  Afc lim p^k\i ,n ) .
Tl—ïOO Z — V  71—>00к

That is, the constructed semimeasure is indeed equal to the sum of all lower semi­
computable semimeasures with weights \ k.

However, there is a fault in this argument: the function p(i, n) should be com­
putable, and thus we cannot use arbitrary enumeration of lower semicomputable 
functions in our construction. We need to arrange them so that the function 
p : (k ,i ,n ) i—̂ p(k^(i,n) is computable as a function of all its three arguments. 
Note that we cannot just let p ^  be the function computed by /eth program: it may
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happen that the fcth program does not define any lower semicomputable semimea­
sure. (It may compute a function which is not total or a function that sometimes 
decreases in the second argument or a function whose sum is greater than 1.)

The bug can be fixed using the following:

L em m a. Every program P computing a function of two natural arguments and 
taking rational values (and possibly the value — oo) can be algorithmically trans­
formed into a program P' having the following properties. The program P' defines 
a lower semicomputable semimeasure. I f the program P itself defines a lower semi­
computable semimeasure, then P' defines the same semimeasure.

PROOF. Let P be any program satisfying the condition of the lemma. (We do 
not assume that P is total.) First we let P'{i,n) be equal to the maximal number 
output within the first n steps in the computations of Р(г,0),... ,P(i,n). If none 
of these computations terminate within n steps or all the results are negative, we 
let P'{i,n) = 0. This definition guarantees that P'(i,n) is non-negative and is 
non-decreasing in n. For every г, if P(i,n) is defined for all n and is non-negative 
and non-decreasing in n, then limn P'(i,n) = limn P(i,n).

It remains to ensure that ^p 'i ^  1 where p\ — limn P'(i,n). To this end first 
let P'(i,n) = 0 for all n i. This transformation does not change the limit and 
preserves monotonicity in n. The advantage is that now the sum of P'(i,n) over 
all i is finite and can be computed for every n. We need that this sum does not 
exceed 1. To enforce this, we do not increase P' if we see that this would violate 
our restriction. We first trim the value P'(i,n) for n = 0, then for n = 1, etc. The 
lemma is proven.

Using the transformation described in the lemma, we arrange all the lower 
semicomputable semimeasures into a computable sequence. The weighted sum of 
all its terms is a maximal lower semicomputable semimeasure. Thus we obtain 
another proof of Theorem 47.

Fix any maximal lower semicomputable semimeasure on the natural numbers. 
We will use the notation m(i) or mi for the probability of i and the letter m for the 
semimeasure itself. The value m(i) is called the a priori probability of i. (Another 
name for m is the universal semimeasure on N.) Here is an explanation of this 
term. Assume that we are given a device (a black box) that after being turned 
on produces a natural number. For each i we want to get an upper bound for the 
probability that the black box outputs i. If the device is a probabilistic machine, 
then a priori (without any other knowledge about the box) we can estimate the 
probability of i as m{i). This estimate can be much greater than the (unknown) 
true probability, but only 0(1) times less than it.

The a priori probability of a number i is closely related to its complexity. 
Roughly speaking, the less the complexity is, the larger the a priori probability is. 
More specifically, we will show that a slightly modified version of complexity (the 
so-called prefix complexity) of i is equal to — logm(i).

4.3. Prefix machines

The difference between prefix complexity and plain complexity can be explained 
as follows. Defining prefix complexity, we consider only self-delimiting descriptions. 
This means that the decoding machine does not know where the description ends
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and has to find this information itself. One can clarify this idea in several non­
equivalent ways. We will discuss all of them further in detail.

Let us start with a following definition. Let /  be a function whose arguments 
and values are binary strings. We say that /  is prefix stable, if the following holds 
for all strings X, y.

(f(x) is defined) and (x is a prefix of у) =*> f(y)  is defined and f(y) = f(x).

T heorem  48. There exists an optimal prefix-stable decompressor (for the fam­
ily of all prefix-stable decompressors).

P ro o f . Recall that a decompressor (description mode) is a computable func­
tion mapping strings to strings. (All strings are binary.) The plain complexity is 
defined using an optimal function in the class of all such functions. Now we restrict 
the class of decompressors to computable prefix-stable functions. We assign to each 
prefix-stable function D the complexity function Kd, which is as defined earlier: 
Kp(x)  is the length of a shortest description of x with respect to D (i.e., minimal 
l(y) among all у such that D(y) — x). So the definition of Кр(х)  coincides with 
that of Cd(x); we write К  instead of C just to stress that we consider now only 
prefix-stable decompressors.

We have to show that there exists an optimal prefix-stable decompressor D (for 
the class of all prefix-stable decompressors). The latter means that for any other 
prefix-stable decompressor the inequality Kd(x)  ^  Kd<(x) + c  holds for some c and' 
all x.

Recall that for the plain complexity we have constructed an optimal decom­
pressor D by letting

D(py) =p(y).

Here p is a self-delimiting description of p , say, p = pOl where p stands for the 
string p with all bits doubled. The notation p(y) refers to the output of the pro­
gram p given input у (more precisely, the string p is interpreted as a program in a 
universal programming language).

Is this decompressor a prefix-stable one? Certainly not. Indeed, there is a 
program p computing a function that is not prefix stable, say, p(0) = a and p(00) = b 
where a ^  b. Then D(p0) — a and D(p00) = b.

To construct an optimal prefix-stable decompressor, we modify the definition of 
D as follows. We enforce prefix-stability of programs by converting every program 
p to another program \p\ that works as follows:

(1) Apply p to all inputs in parallel. If the computation of p on an input у 
halts with output 2, we write down the pair (y, z). Let {yi^zf) denote the resulting 
sequence of pairs (enumerating the graph of p: Zi = p(yi)).

(2) We delete some terms of the sequence (p*, zf). Let us call strings у and y' 
compatible if one of them is a prefix of the other one (an equivalent definition: both 
strings are prefixes of some third string). We say that a pair {yi,Zi) contradicts a 
pair (yj,Zj) if yi is compatible with pj, but Zi ^  Zj. We delete a pair (yi,Zi) if it 
contradicts some other pair (pj, zf) with j  < i. (The argument would work as well 
if we delete a pair only when it contradicts a поп-deleted previous pair.)

(3) Computing the sequence (yi,Zi) and filtering out some of its terms is a 
process that does not depend on the input for the program [p]. The input string у 
is taken into account as follows. We wait until a (non-deleted) pair (yi, zf) appears
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such that ïji is a prefix of y. Once we encounter such a pair, we print the result 2* 
and halt.

For every program p the function у \p\(y) is prefix stable. Indeed, assume 
that \p](y) = 2. By construction there is a non-deleted pair (yi,z) such that yi is 
a prefix of y. Assume furthermore that у is a prefix of y' . We need to show that 
\p](y') — z• The string yi is a prefix of y' as well, therefore \p\{y') — z or \p](y') = Zj 
where {yj,Zj) is a non-deleted pair such that j  < i and yj is a prefix of y'. In the 
latter case yj is compatible with yi and, since the pair (yi,z) does not contradict 
the pair (yj, Zj), we have Zj — z.

If p is prefix stable, then no pair is deleted in the run of its transformed ver­
sion [p]. Therefore \p\(y) is defined as p’s output on у or a prefix of y. As we assume 
that p is prefix stable, the result is the same.

Now we are able to finish the proof. Let

D(py) =  lp](y)-
We have to verify that D is prefix stable and optimal (in the class of all prefix-stable 
decompressors).

To prove the first statement, assume that p\yx is a prefix of ргР2- We need to 
show that D(pxyx) and Б (р 2 У2 ) coincide. As both the strings pi, p2 are prefixes 
of the string Р2 У2 , they are compatible. Thus pi = P2 (as the encoding p (->■ p is 
self-delimiting) and y\ is a prefix of y2- Since the program [pi] (=[рг]) is prefix 
stable, we conclude that D(pxyx) = \px\(yx) = [Р1КЫ  = \p2 Ky2 ) = D(p2y2).

So we have shown that D is prefix stable. To prove optimality, assume that 
some prefix-stable decompressor D' is given and p is its program. Then we have 
D(py) — \p](y) — p(y)- Therefore the complexity of all strings with respect to D' 
is at most l(p) greater than the complexity with respect to D. □

Let us fix some optimal prefix-stable decompressor and omit the subscript D 
in K d (x ), speaking about the prefix complexity K (x ) of x. As well as the plain 
complexity, the prefix complexity is defined up to an 0 (1) additive term.

There is another way to define prefix complexity. Instead of prefix-stable func­
tions, we consider prefix-free functions. A function is called prefix free if every two 
different strings in its domain are incompatible. If a prefix free function is defined 
on a string, it is undefined on all its proper prefixes and extensions.

This time we restrict the class of decompressors to prefix-free ones, that is, 
computable prefix-free functions. We have the following theorem that is similar to 
Theorem 48:

T heorem 49. The class of all prefix-free decompressors contains an optimal 
element.

P roof. The proof is very similar to the proof of Theorem 48. This time we 
construct, for every program p, a prefix-free program {p} that works as follows:

(1) Just as before, run the program p on all inputs to obtain a sequence (yi, zf) 
of all pairs such that 2 = p(y).

(2) Delete all pairs (yi, zf) such that yi is compatible with yj for some j  < i.
(3) Let у denote the input to the program {p}. We find the first non-deleted 

pair (yi, Zi) with yi = у and output 2* = {p}(y).
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It is easy to verify that the mapping y i-> {p}(y) is prefix free for every p and 
coincides with the mapping y i-a p(y) if the latter one is prefix free. The rest of the 
proof repeats the corresponding part from the proof of Theorem 48. □

Let us fix some optimal prefix-free decompressor, and let K'(x ) denote the 
corresponding complexity.

Which of the complexity measures К  and K'  is “the right one”? This is a 
matter of taste. We will prove in Section 4.5 that these measures differ by an 
additive constant (and that both complexities coincide with the negative logarithm 
of the a priori probability). Thus the question is which of the two definitions (of the 
same prefix complexity) is more natural. Again this is a matter of taste. Authors 
believe that the definition based on prefix-stable functions is more natural than the 
other one (which explains why we started with it). However, sometimes the second 
definition is more convenient. For instance, its use makes easier the proof of the 
theorem on the complexity of a pair (Section 4.6).

One can find the historical account in [18] (see also the arXiv version of this 
paper); making the story short, let us mention only that prefix complexity was 
independently introduced by Levin who used prefix-stable decompressors (and de­
noted prefix complexity by KP) and Chaitin who used prefix-free ones (and denoted 
prefix complexity by H ). Now most English-language papers, following [103], use 
letter К  for prefix complexity.

The properties of К  and K'  are similar to those of the plain complexity but- 
differ in some important aspects:

• We start with a comparison of C and К  :

C ( x ) ^ K ( x )  + 0(  1) and C(x) ^ K ' ( x )  + 0(  1).

These properties are straightforward, as both prefix-stable and prefix-free 
decompressors form a subclass in the class of all decompressors.

• Recall that C(x) ^  /(ж)+0(1), as the optimal decompressor is better than 
the identity function. This argument is not valid for prefix complexity, as 
the identity function is neither prefix stable nor prefix free. We will show 
in Section 4.5 that this inequality is false for the prefix complexity.

• Nevertheless there is an upper bound for prefix complexity in terms of 
the length. We will provide such bounds for K', and the same bounds 
hold for K,  the proofs being entirely similar. Let us show that K'(x ) ^  
2l(x) + 0(1). Indeed, consider a decompressor

D(x01) — X

where x stands for the string obtained by doubling all bits in x. This 
decompressor is prefix free and K d (x ) = 2l(x) + 2. By replacing 5Ю1 by 
a more efficient self-delimiting encoding x , we can obtain better upper 
bounds. For example, letting x = Ып(/(х))01.т, we obtain the bound

K'(x) < l(x) + 21og/(x) + 0(1).

By iterating the construction, we obtain the bound

K'(x) ^  l(x) + logl(x) + 21oglog/(x) + 0(1)

and so on.
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• Like plain complexity, prefix complexity does not increase when algorith­
mic transformation is applied:

A '(A (x))^  A'(x) + 0(1).

The constant 0(1) depends on A but does not depend on x. Indeed, if 
О is a prefix-free decompressor, then so is the composition x A(D(x)). 
This is true for prefix-stable decompressors as well, so we obtain a similar 
statement for К  in place of K'. Using this property, we can define prefix 
complexity of other constructive objects, such as pairs of strings, natural 
numbers, finite sets of strings etc., without specifying how to encode them 
by binary strings.

• For prefix complexity, the inequality comparing the complexity of a pair 
of strings with their separate complexities is true up to a constant additive 
error term rather than a logarithmic one:

K(x , y) tZK(x)  + K(y) + 0(  1)

(see below Theorem 60 in Section 4.6, p. 97).
• Let D be an optimal decompressor (from the definition of plain complex­

ity). Since the the transformation р и  D{p) does not increase complexity, 
we have

К (D{p)) <  K(p) + 0(1) «  l(p) + 2 log Z(p) +  0(1).

Let p be a shortest description of x with respect to D, that is, D(p) = x 
and l(p) = C(x). Then we have

K(x) = K(D(p)) < l(p) + 21ogl(p) + 0(1)
= C(x) + 21og C(x) + 0(1).

Using stronger bounds in place of the bound K(p) < l(p)+2 log l(p)+0(1), 
we obtain the inequality

К (x) ^  C(x) + log C(x) + 2 log log C(x) + 0(1)

and other similar inequalities.

4.4. A digression: Machines with self-delimiting input

This section is not used in the sequel; here we analyze the meaning of the 
words “self-delimited input” and show that a different interpretation of them leads 
to prefix-free and prefix-stable functions (thus providing a motivation for these 
notions).

Usually the input is given to a machine in such a way that the machine knows 
where the input string starts and ends. For example, for Turing machines we usually 
assume that initially the head is located at the first symbol of the input string and 
that its last symbol is followed be a special marker, say, a blank.

Informally speaking, a machine with a self-delimited input receives the input 
bits one by one and has no indication which of them is the last one. At a certain 
time it should print a result and halt.
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# 0 1 0 0 0 1

О
Figure 10. A head on a one-way input tape

4.4.1. Prefix-free functions. Here is a refinement of this idea. Consider 
a Turing machine that has an extra infinite one-way read-only input tape. The 
leftmost cell of the tape contains a special marker #. All the other cells contain 
either 0 or 1 (Figure 10).

Initially the input tape head is located in the leftmost cell and thus scans the 
marker. The instruction performed by the machine is determined by the symbol 
on the input tape it scans (and also by the symbol on the work tape and the 
machine’s internal state, as usual). The possible actions are changing the internal 
state, writing a symbol on the work tape, and moving some of the heads (in any 
direction on the work tape and to the right on the input tape). The result of the 
computation should be written on the work tape in the usual way. The work tape 
is initially empty.

Let M be a Turing machine as described above. Let us run this machine for 
all possible contents of the input tape. If some of the computations halt, we write 
down two strings: the string x consisting of all bits scanned by the input head and 
the result у of the computation. Let Гм denote the resulting set of pairs (x,y). If 
two different pairs (x\,yi) and (^2,^2) are in Гд/, then the strings 27 and £2 are 
incompatible. Indeed, assume that 37 is a prefix of X2 . Since the computation on 
37 does not go outside 37, it will be valid for Х2 too, and the last bits of Х2 remain 
unused; thus the pair (^2, 2/2) does not belong to Гм (unless 27 = X2 —in this case 
У\ = У2 , and we get the same pair).

In particular, the first components of different pairs in Гм are different. This 
means that Гм is a graph of a function. We denote this function by 7m- Its 
arguments and values are binary strings. We say that M  computes 7м in  a prefix- 
free mode. It is easy to see that the function 7м is computable in the usual sense. 
Indeed, to compute 7m( x ), we write x  on the input tape and any symbols (say, 
zeros) to the right of x, and we then run M . If M  halts with output y, we verify 
whether M  has scanned all symbols of x  and no symbols beyond x. If the verification 
fails, we output no result; otherwise we output у and halt.

It is easy to see that the function 7м is computable and prefix free (every two 
different strings in its domain are incompatible). The converse statement is true as 
well:

Theorem 50. Every computable prefix-free function is computed by some ma­
chine in a prefix-free mode.

P roof. This statement is not that evident. Indeed, a (standard) machine 
computing a prefix-free function /  knows where the input ends and can use this 
information. We need to construct another machine M  such that 7м = /•

Informally speaking, the machine M  reads the next bit only if it can be done 
safely, i.e., when it is known that /  is not defined on a currently known part of the 
input because /  is defined on its proper extension. More precisely, fix a machine
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computing /  in the usual sense. We simulate in parallel its computations on all 
possible inputs. Sometimes we will interrupt the simulation and scan a new symbol 
from the input tape. More specifically, when a new pair (x ,y ) with f ( x )  = y 
appears, we compare x with the already scanned part r  of the input tape. If r  is 
not a prefix of x , then we do nothing and wait until the next pair (x, y) appears. 
If r  coincides with x, we output y and halt. Otherwise r  is a proper prefix of x. In 
this case we read the input tape until we find the first bit where x differs from the 
contents of the input tape, or we find out that the input tape starts with x. In the 
latter case we output y and halt. In the former case we return to the simulation 
process and continue it until the next pair (x, y) appears.

How does M  start its work? Initially the scanned part of the input tape is 
empty. Once the first pair (x, y) appears, we look at whether x is empty or not. If 
x is empty, we print y and halt. Otherwise we scan the input tape until we read x 
or find the first bit where x  differs from the contents of the input tape (finding out 
that x  is not a prefix of the input). In the first case we print y and halt. In the 
second case we wait for the next pair (x,y).

Formally speaking, we maintain the following invariant relation: after process­
ing each pair, if r  is the scanned part of the input tape, then either:

(1) f ( r )  is defined and the machine halts with the output f ( r ) ;  or
(2) r  is not a prefix of x for all pairs (x, y) that have appeared so far, but every 

proper prefix r '  of r  is a proper prefix of one of such x’s.
(A proper prefix of a string is its prefix that is different from the string itself.)
It is easy to verify that this invariant relation implies that /  = 7m- We skip 

this verification and explain informally the main idea of the construction: if the 
scanned part r  of the input is a proper prefix of a string in the domain of / ,  then 
f ( r )  is undefined, and we can safely read the next bit of the input. □

An equivalent model can be defined in more “practical” terms. Consider com­
puter programs that have instructions of the form

b := NextBit.

Executing this instruction, the program shows on the screen a prompt like “Enter 
the next bit” and waits until the user hits one of the keys “0” or “1”. After she 
does this, the input bit is recorded in b and the computation resumes.

One can assign a computable function /  to every program of this type. Namely, 
f ( x )  equals to y if the program prints y provided the user enters the bits of x 
successively in response to the program’s prompts. If the program prints the result 
before the user enters all the bits of x or if it asks for a new bit after all the bits of 
x  are entered, then f ( x )  is undefined.

It is easy to modify the arguments above to prove that programs of this type 
compute all the prefix-free functions and no others. (Moving the input head to the 
right is just reading the next input bit.)

4.4.2. Prefix-stable functions. In the previous section we considered block­
ing read primitive: program stops and waits until the next bit arrives. There is 
another possibility: bits arrive asynchronously and are placed in the input queue; 
the program may ask whether the queue is empty or not, and continue the execu­
tion. Also, if the queue is not empty, the program may get the next bit from the 
queue.
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To be more specific, we assume that the program may use the instruction

b := N extExists

to find out whether the queue is non-empty. To read a new input bit the program 
invokes the instruction

b := NextBit.
This instruction removes the first (the oldest) bit from the queue and assigns it to 
the variable b.

One should specify what happens if the instruction NextBit is performed when 
the queue is empty. We may agree that this causes a crash, or that the computation 
is delayed until the next bit arrives. It is not essential which of these two options 
is chosen, since we may guard the input statement by a waiting loop: 

w hile not N extE xists do {nothing}; 
b NextBit

The advantage of a non-blocking read operation is that we can do some useful 
work while waiting for the next input bit. On the other hand, it is not clear now 
how to define a function computed by a program, since the output of the program 
may depend not only on the input string, but also on timing.

We call a program robust if this is not the case (i.e., if the output is determined 
by the input string and does not depend on timing). If the program is robust, for 
any input string x there are two possibilities: (1) the program does not produce 
output for any delays between the consecutive bits of x; or (2) for some y, the 
program outputs y whatever delays happen between the consecutive bits of x.

In this way every robust program computes a function /  such that /(x) is 
undefined in the first case and equals y in the second case.

Theorem 51. (a) The function computed by a robust program, is both com­
putable and prefix stable.

(b) For every computable prefix-stable function there exists a robust program 
that computes it.

P roof, (a) The computability of /  is straightforward: to compute /(x), we 
start our robust program and enter all the bits of x  (with arbitrary delays). Then 
we wait until the program outputs a result, which by assumption is equal to /(x) 
if /  is defined on x and does not exist otherwise.

Let us prove that /  is prefix stable. We have to show (recall the definition from 
Section 4.3) that if a robust program produces y for some input x, then it produces 
y on every input x ' that is an extension of x. Start the program and enter all the 
bits of x (with arbitrary delays). By assumption the program produces y and then 
halts. After that, input all the remaining bits of x ' (the difference between x ' and 
x) with arbitrary delays. Obviously, these extra bits do not affect the output of 
the program. Thus the program produces output y for input x ' at least for some 
timing. Being robust, it does the same for arbitrary timing.

(b) Let /  be a computable prefix-stable function / .  The robust program r  that 
computes /  works as follows:

Using a (non-robust) algorithm that computes / ,  program r computes in par­
allel /(x) for all inputs x. At the same time r  reads all available input bits. Doing 
this, r  looks for strings x  and y such that f ( x )  = y and x is a prefix of the input 
sequence. Once such a pair (x, y) is found, program r  outputs y and halts.
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Assume that f(x) — y and all the bits of x are entered (with some delays). 
We have to prove that r outputs y and halts whatever the delays are. Indeed, at a 
certain time, r knows that f (x)  = y and all the bits of x have been entered. At that 
time the program outputs y and halts unless it has been halted earlier. The latter 
indeed can happen: the program can halt earlier with the result f(x')  where x' is 
some string compatible with x. However, since /  is assumed to be prefix stable, we 
have f(x' ) — y and the output is the same.

If f(x)  is undefined and /  is prefix stable, then f(x')  is undefined for all prefixes 
x' of x, and hence the program does not terminate. □

This theorem provides a motivation for the notion of a prefix-stable function. 
Construct an algorithm transforming every program p that uses NextBit96

and NextExists calls into a robust program p1 that computes the same function 
as p does, if p is robust (and computes some prefix-stable function if p is not). 

(H int: Use the construction from the proof of Theorem 51 back and forth.)
(Continued) Prove that there exists no algorithm that for a given pro-97

gram p decides whether p is robust or not.
(H int: This can be done in a standard way, by reducing the halting problem. 

See, e.g., [184].)

4.4.3. Continuous com putable mappings. There is another, more ab­
stract, motivation for the notion of a prefix-stable function. It goes back to a 
general theory of computable functionals of higher type, but we restrict our atten­
tion to a special case we are interested in. (See [176] for a more general approach.)

Let E denote the set of all finite and infinite binary sequences: E = S u fi. For 
a finite string x let Ex denote the set of all finite and infinite extensions of x. We 
will consider E as a partially ordered set: x  ^ y if x  is a prefix of y.

Consider a topology on E whose base consists of all sets of the form E^. This 
means that a set is open if it is a union of some sets of this form. It is easy to verify 
that we indeed get a topology. (Note that the resulting topological space does not 
satisfy the separation axiom.)

The following statement is almost obvious:

T heorem  52. A set A  С E is open i f  and only i f  i t  satisfies the following 
conditions:

(1) i f  a fin ite string x is in  A. then all fin ite and infinite extensions of x are 
in A ;

(2) i f  an infinite sequence is in  A, then some of its fin ite prefixes are in A.

P r o o f . Every union of base sets satisfies the conditions (1) and (2). Con­
versely, if a set A  satisfies both conditions, then it is equal to the union of E^ over 
all finite strings x in A. □

Add to the natural numbers a new element _L (“undefined”), and let Nj_ denote 
the resulting set. Consider the following partial order on this set: the element _L is 
less than all natural numbers, and all the natural numbers are pairwise incompa­
rable (Figure 11).

Consider the following topology on the set N U {_!_}. A set is open if it either 
does not include the element _L or it coincides with N U {_L}. It is easy to verify 
that we get a topological space (that does not satisfy the separation axiom either).
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F igure 11. The topological space Nj_

Let us identify partial mappings from E into N with total mappings from E 
into Nj_; the value _L replaces all undefined values. The next theorem characterizes 
continuous mappings (recall that a mapping is continuous if the preimage of every 
open set is open).

Theorem 53. A (total) mapping F : E —> Nj_ is continuous if and only if the 
following are true:

(1) F is increasing, i.e., x ф y implies F(x ) ф F(y) (the sign ф refers to the 
pre-ordering relations on Nj_ and E introduced above);

(2) if x is an infinite binary sequence and F(x) ф _L, then x has a finite prefix 
x' such that F(x') ф _L.

PROOF. Let F  be a continuous mapping. To verify condition (1), assume 
that x ф y but F(x) ф F(y). Then F(x) is a natural number (and not _L) and 
F(x) Ф F(y). The preimage of the open set {F(x)} contains x and does not contain 
y, hence it is not open.

Let us verify condition (2). Assume that x is an infinite sequence and F(x) ф _L. 
The preimage of the set {F(x)} is open and contains x. Thus it contains some finite 
prefix of x.

It remains to verify that any function F satisfying conditions (1) and (2) is 
continuous. We need to verify only that the preimage of every natural number is 
open (indeed, the preimage of the entire space is open, and other open sets are 
unions of singletons formed by natural numbers). It is enough to verify that the 
preimage of every natural number satisfies the conditions (1) and (2) from the 
previous theorem. This is a straightforward corollary of our assumptions. (Note 
that if x' is a prefix of x and F(x') ф _L, then F(x') — F(x), as F is increasing.) □

For any given continuous mapping F : E —> Nj_, consider the set Гр of all pairs 
(x,n) e S x N  such that F(x) = n. Note that the set Г p is only a part of the graph 
of the mapping F (we consider only finite strings x and require that n ф _L).

T heorem  54. The mapping is a bijection between continuous map­
pings E —> Nj_ and sets A c S x N  satisfying the following conditions:

(1) (x,n) e A, x фу  => (y,n) в A;
(2) (x,n) G A, (x, m) E A => m — n.

PROOF. Assume that the mapping F is continuous. If F(x) = n € N, then 
condition (1) of the previous theorem guarantees that F(y) = n for every y ^  x. 
This proves that the set Гр satisfies condition (1). As F(x) cannot be equal to 
two different numbers, condition (2) is also satisfied. Thus, for every continuous 
mapping F the set Гp has properties (1) and (2).

It is easy to see that the set Гp uniquely determines F: if x is a finite string, 
then F(x) is the second component of the (unique) pair (x,n) € Г^. If there is no
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such pair, then F{x) — _L. If x is an infinite sequence, then F(x) is determined 
uniquely as F{x') where x' is a sufficiently long prefix of x.

It remains to show that every set A having properties (1) and (2) is equal to 
Г F f°r certain F. For every finite x define F(x) as the natural number n such 
that (x,n) G A; such a number is unique due to (2).  If there is no such n, then 
let F(x) = _L. By condition (1) we get an increasing function. For every infinite 
x e E ,  let F(x) be equal to F(x') where x' is any prefix of x such that F(x') Ф _L. 
If there is no such x', then let F(x) = _L. By property (1) the value of F(x) is well 
defined. The constructed function F satisfies both conditions (1) and (2) from the 
previous theorem and is continuous. By construction we have Гp = A. □

Conditions (1) and (2) mean that the set A is a graph of a prefix-stable function. 
We thus have a one-to-one correspondence between continuous mappings £ —»■ Nx 
and prefix-stable functions.

Call a continuous mapping F: £ —)■ Nx computable if the set Г/г is enumerable. 
It is easy to verify that F is computable if and only if the restriction of F to those 
strings x G E for which f{x) Ф _L is computable in the standard sense. (A partial 
function from E to N is computable if and only if its graph is enumerable.) Thus 
computable continuous functions £ —> Nx are basically the same as prefix-stable 
functions. This gives an extra motivation for the notion of a computable prefix- 
stable function.

4.5. The main theorem  on prefix complexity

In this section, we prove that all three complexity measures, К  (defined using 
prefix-stable decompressors), K'  (defined using prefix-free decompressors), and the 
negative logarithm of the a priori probability coincide up to an additive constant. 
To this end we prove that three inequalities

— logm(x) < K{x) A K'{x) < — logm(x) 
are true up to a constant error term. We start with two easy inequalities. 

Theorem 55.
K(x) < K l(x) + 0(  1).

PROOF. This inequality would be evident if every prefix-free function were 
prefix stable. This is not the case: a prefix-free function D  is undefined on all the 
extensions of every string и in the domain of D. On the other hand, a prefix-stable 
function D  is defined on all the extensions v of every string и in the domain of D, 
and D(v) = D(u).

Therefore we need a (simple) construction. Let D  be a prefix-free decompressor. 
Define another decompressor D ' as follows: D '{y) = x if and only if D (y ') — x for 
some prefix y' of y. As D  is prefix free, such y' is unique, thus D ' is well defined. 
To compute D '(y), we just apply D  in parallel to all the prefixes y1 of у until we 
find a prefix y' such that D {y ')  is defined.

By construction the function D ' is prefix stable and extends D. Therefore the 
complexity of each string with respect to D ' does not exceed its complexity with 
respect to D. (In fact, the complexities with respect to D  and D ' coincide, as the 
described transformation D  h* D ' does not affect shortest descriptions.) □

We could try to prove the converse inequality in a similar way: consider the 
restriction of the given prefix-stable decompressor D  to minimal descriptions. That
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is, let D'(y) = z if D(y) = г, and at the same time D(y') is undefined for all proper 
prefixes y' of y. This transformation is an inverse of the transformation used in 
the proof of the last theorem; the resulting function D' is indeed prefix free. The 
problem is that it might be non-computable.

98 Find a computable prefix-stable function D for which the prefix-free func­
tion D' constructed in this way is not computable.

(Hint: Let A be an enumerable undecidable set, whose complement is thus not 
enumerable. Let /(0 п11ж) = 0 for all natural numbers n and all binary strings x. 
Also let /(Onlx) = 0 for all n G A and all x .)

This problem shows that, in a sense, the non-blocking read operation is more 
powerful than the blocking one (see Section 4.4).

Theorem 56.
— logm(x) < K(x) + 0(1).

P roof. We have to prove that 2~K^  < cm(x) for some constant c and for 
all x. Recall that m is the maximal lower semicomputable semimeasure. Thus 
it suffices to find an upper bound for the function x i-» 2" ^  that is a lower 
semicomputable semimeasure. (In this section we consider discrete semimeasures 
on the set of all binary strings, as defined in Section 4.1.)

Let us construct a probabilistic machine generating this semimeasure. Toss 
a coin to obtain a sequence 606162 • • • of random bits. Simultaneously, apply the 
optimal prefix-stable decompressor D (from the definition of К ) to all prefixes of 
the sequence 606162, .. ..  If one of the computations

D(A),D(b0), D(b0bi), D(b0bib2) , ...
terminates with a certain result, output that result and halt. Note that it does not 
matter which of the terminating computations we choose: the prefix-stability of D 
guarantees that this choice does not affect the result.

Let x be a binary string, and let p be a shortest description of x with respect 
to D. Then the machine outputs x with probability at least 2~l p̂\  Indeed, if 
the random sequence starts with p, then the result of the machine is x. Thus the 
constructed machine generates a measure that is an upper bound for 2~K^ . □

There is a slightly different proof of the same theorem, which does not involve 
probabilistic machines. The function x ^  2~K X̂') is lower semicomputable. Thus 
it is enough to show that it is a semimeasure.

T heorem 57.
] T 2 < 1.

X

P roof. For every string x let px be some shortest description of x (with respect 
to the optimal prefix-stable function from the definition of К ). For every two 
different strings x and у the strings px and py are incompatible. Thus the statement 
is a direct corollary of the following:

Lemma. Let po,Pi,P2> • • • be pairwise incompatible strings (that is, neither of 
the strings is a prefix of another one). Then JT  2~1̂  < 1.

Indeed, for every i consider the set QPi of all infinite extensions of pi. Its uniform 
Bernoulli measure is equal to 2~l(pi'). As the strings pi are pairwise incompatible,
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these sets are disjoint and the sum of the measures of all sets £lPi is at most 1. The 
lemma and Theorem 57 are proved. □

Theorem 57 implies that the inequality K (x ) ^  l(x ) + 0(1) is false (thus show­
ing the difference between the plain complexity C and the prefix complexity К ). 
Indeed, if it were true, the series

2~ÄX)
X

would converge. However, for every n the terms of this series corresponding to 
strings X of length n  sum up to 1 (there are 2n such terms and each of them is 
equal to 2~n).

Prove that even a weaker inequality K(x ) ^  l(x) + log l(x) + 0(1) is false 
(in other words, the difference K(x) — l(x) — logl(x) is not bounded by a constant).

(Hint: Use the divergence of the harmonic series.)
It remains to prove the last (and most difficult) inequality:

Theorem 58.
K '( x ) ^  — logm (x) + 0(1).

PROOF. We present first a sketch of the proof. The semimeasure m(x) is lower 
semicomputable, so we can generate lower bounds for m(x) that converge to m(x), 
but no estimates for the approximation error are given. The larger m(x) is, the 
smaller K'(x) should be, that is, the shorter description p we have to provide for x. 
The descriptions reserved for different strings must be incompatible. In geometric 
terms: for every binary string p we consider the interval Ip formed by all reals 
whose binary expansion starts with p. The descriptions p\ and p2 are incompatible 
if the intervals IPl and IP2 do not overlap. The inequality l(p) ^  — log2 m(x) means 
that the length of the interval Ip is at least m(x), i.e., ^  m(x).

Thus we have to assign to every string x an interval of length at least m (x) so 
that the intervals assigned to different strings do not overlap.

Let us specify more carefully what we need. First, for each x it suffices to 
reserve an interval of the length em(x) rather than m (x), for some fixed positive e. 
This relaxation causes the complexity to increase at most by a constant.

Second, we are allowed to use only properly aligned intervals, i.e., intervals Ip 
for some binary string p. However, given the above relaxation, this restriction is 
not essential. Indeed, every interval I  C [0,1] contains a properly aligned interval 
that is at most four times shorter.

So we arrive at a problem that is quite similar to the problem considered in 
Section 4.1. There is a sequence of clients. Each client asks for some space inside 
[0,1]; a client may increase its request from time to time. The important difference 
is that now the clients are interested not in the total space allocated but in the 
contiguous interval, and this makes our “space management” job more difficult. To 
compensate for this difficulty, we are allowed to reduce all the requests, multiplying 
them by some constant e.

Imagine that clients are processes running on a computer, and the memory 
manager has to allocate contiguous properly allocated memory according to their 
requests that increase in time. Once allocated, memory cannot be freed (and reused 
for other process).

99
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The simplest strategy is to allocate a new interval (in the free memory) each 
time the request increases. This does not work, however: if two clients’ requests in­
crease in alternating order and in small steps, the overhead cannot be compensated 
by any fixed e, and we will run out of space.

The remedy is well known: one should look forward and increase the allocated 
interval significantly even if the current increase in the request is small. For exam­
ple, one may allow only powers of 2 as the interval lengths (then the sum of the 
lengths is at most twice more than the maximal summand).

It is not hard to present a detailed proof based on this strategy, but we will 
not do that. Instead, we present a slightly different proof that uses the following 
statement often called Kraft-C haitin  lemma. This lemma can be considered as a 
computable version of the Kraft lemma from information theory (see p. 214).

Lemma. Let /о, h , h , ■ ■ ■ be a computable sequence of non-negative integers such
that

г
Then there exists a computable sequence of pairwise incompatible binary strings 
xo, X \,X 2 , ■ ■ ■ such that l(x i)  — l{.

Note that the inequality of the lemma is a necessary condition for the existence 
of such a sequence: the intervals I Xi do not overlap, and their lengths are equal to 
2~li. The lemma states that this necessary condition is also sufficient.

P r o o f . Again we have an infinite sequence of clients; the ith client demands 
we allocate a properly aligned interval of length 2~li for her. The intervals reserved 
for different clients should not overlap. We need to design a computable strategy 
to fulfill all the clients’ requests.

There are several ways to describe such a strategy. Here is probably the simplest 
one: let us maintain the representation of the free space (part of [0,1] that is not 
allocated) as the union of properly aligned intervals of different lengths.

Initially this list contains one interval [0,1]. We serve the requests lo, h ,h ,  ■ ■ ■ 
sequentially.

Assume that the current request is li, so the required length is w = 2~li. First 
note that one of the free intervals has length at least w. Indeed, if all the free 
intervals had smaller lengths, their sum (the total amount of free space) would be 
less than w since they have different lengths and the sum of powers of 2 less that 
w = 2~l is less than w.

If there is a free interval in the list that has size exactly w, our task is simple. We. 
just allocate this interval and delete it from the free list (maintaining the invariant 
relation).

Assume that this is not the case. Then we have some intervals in the list that 
are bigger than requested. Using the best-fit strategy, we take the smallest among 
these intervals. Let w' > w be its length. Then we split a free interval of size w1 
into properly aligned intervals of size w, w, 2w, 4w, 8w, . . . ,  w'/2; note that

w +  w +  2w +  4w +  8w +  • ■ • +  w '/2  =  w '.

The first interval (of size w) is allocated, and all the other intervals are added to 
the free list. We have to check out the invariant relation: all new intervals in the 
list have different sizes starting from w up to w'f 2; old free intervals cannot have 
this size since w' was the best fit in the list.
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The lemma is proven.

100 Prove that the described algorithm can be rephrased as follows: for each 
i use the the leftmost properly aligned interval of length 2~li that does not overlap 
with previously allocated intervals.

[Hint: The construction used in the proof maintains also the following property: 
the lengths of the free intervals increase from left to right.)

C o r o l l a r y . Let U be a computable sequence of natural numbers such that 
2~li < 1. Then K'(i) < k + 0(1).

Indeed, the lemma provides a computable sequence of pairwise incompatible 
strings Xi of lengths lj.. Define a computable function D  by letting D {x i)  = i. As Xi 
are pairwise incompatible, this function is prefix free. And D  is computable: given 
an input x, we compare it with Xi for all i  — 0,1, 2 ,... successively. Once we find 
that X = Xi, we output i  and halt.

(Note that, in this proof, we go back and forth between natural numbers and 
binary strings when we speak about a priori probability and complexity.)

Let us return to the proof of the theorem. Consider the maximal lower semicom- 
putable semimeasure m. By definition there exists a computable function m(x, Ï) 
taking rational values that is non-decreasing in i  such that

m(x) = lim m(x, i).
i —ïoo

Let m '(x , i)  stand for the smallest power of two (1,1/2,1/4,1/8,...) that is an 
upper bound for m (x ,i). The function m '(x ,i)  is computable and non-decreasing 
in i. Its value is between m {x ,i)  and 2m (x ,i).

Say that a pair (x , i ) is a boundary pair if m'(x, i) > m'(x,i  — 1) (or if i = 0 
and m'(x, 0) > 0).

Let us show that the sum of m'(x,i) over all boundary pairs (x , i ) does not 
exceed 4. It is enough to show that for every fixed x the sum of m'{x,i) over all 
boundary pairs (x , i ) is at most 4m(x). This is true since for every fixed x each 
term in this sum is at least twice bigger than the preceding term. Thus the sum 
is at most twice bigger than its last term, m'(x,i) for some i, which is less than 
2m(x,i). Now recall that m(x,i ) ^  m{x). We see that the sum in question is at 
most 4m(x).

The set of all boundary pairs (x, i) is decidable: to find whether a pair (x, i) is 
a boundary pair, we have to compare m '(x , i) and m '{x , i — 1).

Enumerate all the pairs (x, г) and exclude all non-boundary ones; we get a 
sequence (xo, io), (xi, ii), ■ ■ ■ of pairs. Each boundary pair appears in this sequence 
exactly once. Define ln by the equality

2~ln = m/(x„,i„)/4.

The sequence of ln is computable and

^  ^  2 =  ^  ^  m  ixni in)  5̂ 1-

П П
The corollary mentioned above implies that K'(n) ^  ln + 0(1). As xn can be 
computed given n, we have

K'(xn) < K'{n) + 0(1) < ln + 0(1) = -  logm'(xn, in) + 0(1).
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So for every x the complexity K'(x) does not exceed — logm'(x,i) if (x,i) is a 
boundary pair. Taking the maximal i with this property, we get — logm(x) + 0(1); 
therefore

K'{x) ^  — logm(x) + 0(1). □

So all three values К , К'  and — logm differ by at most a constant. Given this, 
we do not distinguish in the sequel between К  and K'  (unless the difference in their 
definitions becomes essential for some special reason), and we use notation К  for 
prefix complexity.

We tried to provide a detailed proof, and it may look complicated. The main 
idea is, nevertheless, very simple. Let us try to summarize it again. In one direc­
tion a short description p for a string x guarantees that x may appear with high 
probability (when we decompress a random sequence). In the other direction the 
argument is a bit more complicated: high probability does not mean that there is a 
short description, and the string may have many long descriptions instead. Never­
theless our space allocation algorithm manages to consolidate them: when the total 
lengths of intervals for x reaches 2~k for some к , it allocates for x a fresh interval 
of length fl(2~k). This can be done from left to right or using the Kraft-Chaitin 
lemma.

Let us note that actually we have proven the following statement that will be 
used in Section 5.6:

T h e o r e m  59. For every lower semicomputable sequence of reals po,Pi, ■ ■ ■ such 
that YliPi ^  1, one can effectively find a prefix-free decompressor D such that 
K'D{i) < -  log2 Pi + 2.

This means that given some algorithm enumerating the set of pairs (r, i) with 
r < pi, we can find an algorithm for a decompressor D satisfying the inequality 
for K'D.

4.6. Properties of prefix com plexity

In this section we continue the study of prefix complexity. We first revisit some 
already established properties and present their alternative proofs based on the a 
priori probability.

It is well known that the series ^  1/n2 converges. Multiplying its terms by 
a constant, we obtain a lower semicomputable semimeasure. Thus the a priori 
probability of a natural number n is at least c/n2 for some constant c. This implies 
that

K(n) ^  21ogn + 0(1).
Let xn be the nth string in the sequence A, 0,1,00,01,10,11,000,... of all binary 
strings. Then

K(xn) < K(n) + 0(1) ^  21ogn + 0(1) = 2l(xn) + 0(1);

the last equality is true, since xn is n + 1 in binary notation without the leading 1, 
so the length of xn is logn + 0(1). (There is a special case n = 0, as both I/O2 and 
logO are undefined; the changes needed to handle it are trivial.)

So we get the inequality K(x) ^  2l(x) + 0(1).
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To prove a better upper bound for prefix complexity, we may consider a con­
verging series

E 1
n  log n

(To prove its convergence, compare it with the corresponding integral.) Using this 
series, we obtain the inequality K (n ) < logn + 2 log log n  + 0(1) or (for strings)

K( x )  < l(x) + 2 log l(x) + 0(1)
(for the alternative proof of this inequality, see p. 84).

Using the series X) l/(n  log n(log logn)2), ^  l/(n  logn log log n(log log logn)2), 
etc., we can improve the bound further.

Now we prove the inequality relating the prefix complexity of a pair to prefix 
complexities of its components.

T h e o r e m  60.
K ( x , y ) ^ K ( x )  + K(y) + 0(  1).

Just as in the case of plain complexity, we define K(x,y)  as the complexity of 
the string [x, y] where (x, y) t-t [x, y] is a computable injective encoding of pairs of 
binary strings. The complexity of a pair does depend on the choice of the encoding; 
switching to another computable injective encoding changes complexity by at most 
an additive constant. Indeed, the translation between any two computable injective 
encodings is an algorithmic transformation.

PROOF. Consider the function m! defined as
m!{[x, y\) = m{x)m{y).

Here x and y are binary strings, [x, y\ is the encoding of the pair, and m  stands for 
the a priori probability. If z is not an encoding of any pair, we let m'(z) = 0.

The function m! is lower semicomputable (take the product of lower bounds 
for m(x) and m(y) as a lower bound for m{x)m{y)). Furthermore, we have

^ m '( z )  = ^ m '([x ,y ])  = ^ m (x )m (y ) = ^  m(x) ^ m ( y )  < 1 - 1  = 1.
x,y x,y

Thus m! is a lower semicomputable semimeasure. Comparing m! with the a priori 
probability, we obtain the inequality m'([x,y]) < cm([x,y]) for some constant c. 
Hence

K([x ,y ])^K(x)  + K(y) + 0(  1).
The theorem is proved. □

1011 Prove that the sum m([x, y]) differs from m{x) by at most a constant
factor (in both directions). Prove a similar statement for maxy m(x, y).

Let /  : N —> N be a strictly increasing computable function. Prove that102
the value J2im (k)\f(n ) < к < f (n  + 1)} differs from m(n) at most by a constant 
factor (in both directions). (So if we split the series J2n m (n) grouPs in a 
computable way, the sums of the groups form essentially the same series!)

Let us prove now Theorem 60 using decompressors. It turns out that we need 
to use prefix-free (and not prefix-stable) decompressors.

Let us prove that K'([x,y]) < K'{x) + K'{y) + 0(1). Let D be an optimal 
prefix-free decompressor used in the definition of K ' . Define a new prefix-free
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decompressor D'. Informally, the algorithm D' reads the input until it finds a 
description of x. Then it reads the rest of the input until it finds a description of y. 
Formally, we define D' as

D/(pq) = [D(p),D(q)}.

Here pq stands for the concatenation of strings p and q. In other words, we try to 
split the input into two parts p and q in such a way that both D(p) and D{q) are 
defined.

We need to verify that D' is well defined. Indeed, assume that x is represented 
as pq in two different ways, x — pq = p'q', and all the values D(p), D(q), D(p'), 
D(q') are defined. Then p and p' are compatible (being prefixes of the same string x) 
and thus coincide (as D is prefix free), hence q — q'.

In a similar way we can prove that the function D1 is prefix free. Let pq be a 
prefix of p'q', and let both belong to the domain of D. The strings p and p' are 
compatible and both D(p) and D(p') are defined, therefore p = p' . This implies 
that g is a prefix of q'. As both D(q) and D(q') are defined, we have q = q'.

The function D1 is computable: to find D'(x), we compute in parallel D(p) and 
D(q) for each possible way to split x into p and q. We have shown that there is at 
most one representation of x as pq such that D{jp) and D(q) are defined. If we find 
such p and q, we output the string [D(p), D(q)].

It remains to note that

K Di([x,y]) ^  K D(x) + K D{y).

Indeed, let p and q be shortest descriptions of x and y with respect to D. The string 
pq is a description of [x,y] with respect to D1 and has length K d (x) + Ko(y)- 

In other words, D1 reads the input as D does until p and D(p) are found, then 
reads the rest of the input again to find q and D(q).

103 Prove Theorem 60 using the definition of prefix-free decompressors in
terms of machines with blocking read operation (see Theorem 50 on p. 86).

104 A set of binary strings is called prefix free if any two elements of it are
incompatible. Show that if sets A and В  both are prefix free, then so is the set

AB = {ab \ a £ A,b £ B}.
Which proof of Theorem 60 (using a priori probability or using prefix-free 

decompressors) is easier and more natural? It is a matter of taste—the authors 
believe that the first one is more natural. The next theorem provides an opposite 
example: encoding arguments here seem to be simpler than the arguments using 
the a priori probability.

T heorem 61.
K(x,K(x))  = K(x) + 0(  1).

(Problem 23 asks us to prove the same equality for plain complexity.)

P roof. The inequality K{x) ^  K(x, K(x)) + 0(1) is straightforward, as the 
string x can by computed given the encoding [x, K{x)] of the pair.

To prove the converse inequality, let D be an optimal prefix-free decompressor 
used in the definition of prefix complexity K'. Define a new decompressor D1 as

O’ip) = [D(p),i(p)J.
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The domain of D coincides with that of D, hence D' is prefix free. Let p be a 
shortest description of x with respect to D. Then l(p) = K'(x) and therefore p is 
a description of the string [x,K'{x)\ with respect to D'. Thus

K D.{[x,K'{x)}) ^l{p)  = K'(x).
Is the theorem proven? There is one subtle point in the argument. We have 

proved the theorem for the complexity К ', defined via prefix-free decompressors. If 
we substitute К  for K'  in the equality K'{:r, K'(x)) = K'(x) +0(1), its right-hand 
side will change by an additive constant. The similar statement for the left-hand 
side is not straightforward, as K'  has two occurrences there, and the second one is 
inside the argument. But at least we have K(x,K'(x)) = K(x) + 0(1).

To finish the proof, it remains to show that the function K(x,n)  changes at 
most by a constant, as n changes by 1. This easily follows from the computability 
of mappings [x, n] [x, n + 1] and [x, n] [x, n — 1]. □

It is instructive to prove Theorem 61 using the a priori probability. Let m(x) 
be the a priori probability of x. Define the function m! as

Г к if 2~k < m(x);
m'([x, &]) =

0 otherwise.

This function is lower semicomputable: given x and k, we generate lower bounds 
for m(x) and output 0 until we find that 2~k < m(x), and then we output 2~k.

For every fixed x the sum of m'([x, к]) over all к is a geometric series formed 
by powers of 2. Therefore this sum is less than 2m(x) (the largest term of the 
series is less than m(x)). Therefore, the sum of m'([x, &]) over all x and к is finite. 
Comparing m'([x, &]) and the a priori probability of [x, к], we conclude that

m(x,k) ^  2 -fc+0(1) 
if 2~k < m(x). Taking the logarithms, we see that

K(x,k)  ^ k  + 0(  1)
whenever 2~k < m(x). The latter inequality holds for к = —[\ogm(x)\ + 1 and 
thus we have

K(x,  -Llogm(x)J + 1) < K{x) + 0(1).
It remains to recall that the function K(x ,n ) changes at most by a constant, as 
n changes by 1. The second proof of Theorem 61 (in the non-trivial direction) is 
finished.

105 This argument proves a bit more: K (x , и) ^  u+0(  1) whenever K(x) ^  u. 
How do we derive this inequality from Theorem 61 (from its statement and not from 
its proof)?

We proceed now to the algorithmic properties of the function K(x). Like 
plain complexity, prefix complexity is upper semicomputable but not computable. 
Moreover, there is no computable non-trivial (= unbounded) lower bound for K(x). 
Indeed, since K(x) ^  2C(x) + 0(1), every non-trivial lower bound of К  would yield 
a non-trivial lower bound of C.

Recall that the plain Kolmogorov complexity C(x) can be defined as the small­
est upper semicomputable function к such that the cardinality of the set {x \ k(x) < 
n} is 0(2n) for all n (Theorem 8, p. 19). Here is a similar statement for the prefix 
complexity:
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T heorem 62. The function К  is the smallest (up to an additive constant term) 
upper semicomputable function к (mapping binary strings to natural numbers and 
-foo) such that the series 2~k^  converges.

P roof. The function К  is upper semicomputable and the series Y^x 
converges. Let к be another function having these properties. Then the function 
M(x) — c2~k(x  ̂ where c is a small enough constant is a lower semicomputable 
semimeasure. As m(x) is the maximal lower semicomputable semimeasure, we 
have M(x) = 0(m(x )), that is, logM(:r) < logra(:r) + 0(1). It follows that K(x) ^  
k(x) + 0(1). □

In other words, for every upper semicomputable function к mapping binary 
strings to natural numbers and +oo, the two statements

uK(x)  ^  k(x) + 0(1)” and Û2X 2~k^  < oo”
are equivalent.

Note that the requirement “the series 2~k^  converges” is stronger than
the requirement “the number of x such that k(x) < n is 0(2n)” used in Theorem 8. 
Indeed, if Y^x 2~k^  ^  O, then the number of x such that k(x) ^  n is at most C2n. 
This observation gives another proof of the inequality C(x) ^  K(x)  + 0(1).

It is instructive to compare plain and prefix complexity in two aspects: the 
average complexity of strings of given length and the number of strings that have 
complexity not exceeding a given bound. Let us start with the first question.

We have seen that the plain complexity of most strings of length n is close to n 
(p. 8 and Problem 2, p. 17). One could expect the prefix complexity to be slightly 
bigger.

T heorem 63. (a) K(x)  < l(x) + K(l(x)) + 0(1).
(b) For some constant c and for all n, d the fraction of strings x such that 

K(x) < n + K(n ) — d among all strings of length n is at most c2~d.

P roof, (a) Let m(x) be the a priori probability of a binary string x and 
m(n) be the a priori probability of a natural number n. Consider the function 
m'(x) = 2~nm(n) where n is the length of x. The sum of m'(x) over strings of 
length n is equal to m(n) hence ^^ra^a;) ^  1- Since the function ml is lower 
semicomputable, we conclude that m'(x) < cm(x) for some constant c and all x. 
Taking the logarithms, we obtain the inequality

K(x)  ^  n + K(n) + 0(l)
(the constant 0(1) does not depend on n).

(b) Consider the function

m'(n) =  m(x),
l ( x )=n

the total a priori probability of all strings of length n. Since m'(n) is lower semi­
computable and Xlnm/(n ) ^  I** we have m'(n) = 0(m(n)). On the other hand, 
the a priori probability of the string consisting of n zeros is at least cm(n) for some 
positive constant c. Thus we have

cim(n) < ^  m(x) ^  C2m(n).
l (x)  = Tl
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So the sum of m(x) over all binary strings of length n coincides with m(n) (up 
to a constant factor). Thus the average of m(x) over all strings x of length n is 
m(n)/2n (up to a constant factor). The fraction of strings x, such that m(x) is 2d 
times bigger than the average, is at most 2~d (Chebyshev’s inequality). □

106 Prove that the average prefix complexity of strings of length n is equal
to n + K(n) + 0(1).

(A similar question for plain complexity was considered in Problem 3.)

Now we estimate the number of strings with complexity at most n.

T heorem 64. The number of strings x with K(x) < n  is 2n~-ftr(n)+0(1).

P roof. Let cn be the number of strings x such that K(x) <  n. Let us rewrite 
the basic property of prefix complexity (the convergence of the series ^  2~K in 
terms of cn. There are exactly cn+1 — cn strings of complexity n. Therefore the 
series

^ 2 “n(cn+i -  Cn)
П

converges. Regrouping the terms of this series, we conclude that

£ ( 2 - < " - ‘) _  2~n)cn = 2 ~ n C n  < oo-

Since the function cn is lower semicomputable, this implies that 2 ncn does not 
exceed the a priori probability m(n) of n. Hence cn ^  m(n)2n = 2n K(n) (up to a 
constant factor).

On the other hand, it is easy to construct an upper semicomputable function 
к whose values are natural numbers (and Too) that takes the value n on (approxi­
mately) m(n)2n arguments. This can be done in many ways. For example, let us 
agree that for a string x of length n the value k(x) can be either +oo or n; it is 
equal to n if the ordinal number of x (in the list of all n-bit strings) is less than 
m(n)2n.

For this function A:, the series ^ 2 ”^  converges. So K(x)  ^  k(x) + 0(1), 
hence cn+o(i) ^  m(n)2n. Both m(n) and 2n change at most by a constant factor 
as n increases by 1. Thus m(n)2n = 0(cn). □

These results may create an impression that prefix and plain complexity mea­
sure essentially the same quantity but using slightly different scales, so the prefix 
complexity is (slightly) bigger just because of the shifted scale. Or, maybe, is there 
a more fundamental difference? This question can be formalized as follows: Are 
there two sequences an and bn of strings such that C(an) — C(bn) —> Too but 
K(an) — К  (bn) —> — oo? This question was answered by An. A. Muchnik and 
S. Positselsky who proved that sequences with these properties do exist [137]. An­
other proof was provided by J. Miller in [122]; this paper contains other results 
about the relation between plain and prefix complexities, but we restrict ourselves 
to several simple remarks (see also Section 4.7.4, p. 112).

Iterating the inequality

K(x) ^  l(x) + K(l(x))
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we obtain the following series of inequalities:
K(x) ^  l(x) + l(l(x)) + K(l(l(x))) + 0(1),
K(x) ^  l(x) + l(l(x)) + l(l(l(x))) + K(l(l(l(x)))) + 0(1),

etc. Similar inequalities with C instead of I can be obtained as follows. Let D be 
the optimal decompressor for plain (not prefix) Kolmogorov complexity. Combining 
the inequalities K(D(y)) ^  K(y) + 0(1) and K{x) ^  l{x) + K{l{x)) + 0(1), we get 
the following series of inequalities:

Theorem 65.
K ( x ) ^ C ( x )  + K(C(x)) + 0(  1),
K(x)  < C(x) + C(C(x)) + K(C(C(x))) + 0(1),

etc.
Note that the second inequality (as well as all others) follows from the first one 

by iteration.
1107 I Prove that

0(x, y) ^  K(x) + C(y) + 0(1)
for all X, y .

{Hint: One can compute the number of pairs for which the right-hand side is 
less than n, but it is easier to use prefix-free descriptions.)

As we mentioned, one could define random n-bit strings as strings whose (plain) 
complexity is close to n. But one can also try to use prefix complexity and require 
the prefix complexity to be maximal, i.e., close to n + K(n). The following problem 
shows that for such strings the plain complexity is also (almost) maximal.

Let X be an n-bit string such that C(x) ^  n — d for some d. Show that 
K(x) ^  n + K(n) — d + O(logd).

(Hint: Join the prefix-free descriptions for n and d and a plain description 
for X.)

The reverse statement is not true, as R. Solovay has shown; see the already 
mentioned paper of J. Miller [122] or [136, 6].

4.7. Conditional prefix complexity and complexity of pairs

4.7.1. Conditional prefix complexity. What is conditional prefix complex­
ity? Each of the definitions of prefix complexity can be modified by adding a 
condition.

We start with a definition using prefix-stable functions. A function D(y,z) is 
prefix stable with respect to y if for every 2 the function у D(y, z) is prefix stable:

D(y, z) is defined and у < y' => D(y\z)  -  D(y, z).
We assume here that the first argument of D is a binary string; the notation у ^ y '  
means that у is a prefix of y'.

Recall the definition of the (plain) conditional complexity from Section 2.2. A 
conditional decompressor (—description mode) is a computable function that maps 
pairs of binary strings to binary strings. If D(y, z) = x, then у is called a description 
of x when z is known. The complexity of x with condition 2 is the length of the 
shortest description. Then we fix an optimal conditional decompressor that gives 
minimal complexity (up to a constant).

108
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Now we consider only decompressors that are prefix stable with respect to the 
first argument. This smaller class of decompressors contains an optimal decompres­
sor (for this class). The proof of this statement is similar to the proof of Theorem 48 
(p. 82) where an optimal unconditional prefix-stable decompressor is constructed. 
We modify this proof by adding the parameter г in all formulas. More specifically, 
let

D'(py,z) = \p](y,z).
Here [p] stands for the program obtained from p via “prefix stabilization with 
respect to у for each z”. This means that for all p, z , the function у \p]{y, z) is 
prefix stable, and if the function у p(y, z) itself is prefix stable for some 2, then 
it coincides with the function у \p](y,z). It is easy to verify that this is indeed 
possible and that D' is an optimal prefix-stable (with respect to the first argument) 
decompressor.

Fix an optimal conditional prefix-stable decompressor, and denote the resulting 
complexity by K(x\z),  the prefix complexity of x with condition z.

If we consider prefix-free decompressors (instead of prefix-stable ones), we ob­
tain an alternative definition of conditional prefix complexity. The existence of an 
optimal function in this class of decompressors is proved in a similar way. The re­
sulting complexity could be denoted by K'(x\z).  Like their unconditional versions, 
functions K(x\z)  and K'(x\z)  differ by at most an additive constant, which does 
not depend on x and г:

K'(x\z) = K(x\z)  + 0(l).

As in the case of unconditional complexities, this is proved using the conditional 
a priori probability m,(x\z). It can be defined in two ways (using probabilistic 
machines and lower semicomputable semimeasures).

Let M  be a probabilistic machine with an input. Let рм{х \ z) denote the prob­
ability that M  outputs the string x for input г. The function (x,z) i-> p m (x \z) 
is lower semicomputable, and for all г the sum Y1x Pm(x \z ) does not exceed 1. 
Conversely, for every lower semicomputable function (x, z) ^  p(x \ z) that takes 
non-negative real values such that Yhx P{x \z) ^  1 f°r all z -> there exists a proba­
bilistic machine M  with рм = P-

The class of all functions рм has an optimal function, that is, the greatest one 
up to a constant factor. Fixing an optimal function in this class, we obtain the 
conditional a priori probability m.(x\z) of the string x with condition z.

The inequality K(x\z)  ^  K'(x \ z) + 0(1) is easy (as in the unconditional case). 
To show that all three quantities K(x\z),  K'(x\z)  and — \ogm(x\z) coincide up 
to an additive constant, we need to show that — \ogm(x\z) ^  K(x\z)  + 0(1) and 
K' (x\ z) ^  — \ogm,(x\z) + 0(1). We omit those proofs since they repeat their 
unconditional versions.

One could say that these inequalities and their proofs are “relativizations” of the 
respective unconditional inequalities and proofs. The relativization is understood 
here in a non-standard way. In the theory of computation, relativization means 
that the class of computable functions is replaced by the class of A-computable 
functions, i.e., the class of functions computable with a given oracle A. (Here A is 
an arbitrary set of binary strings. A function is computable with oracle A if it is 
computed by an algorithm that is allowed to make queries of the form “x G AT'. 
That is, the algorithm calls an external procedure that on input x returns true
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or fa lse  depending on whether x is in A or not.) Almost all known theorems in 
general computation theory are relativizable, i.e., they remain true if we replace 
(everywhere) computable functions by А-computable functions.

By the way, the notion of Kolmogorov complexity can be relativized in a stan­
dard way, too. That is, for every set A we can define the plain Kolmogorov complex­
ity CA{x) and the prefix Kolmogorov complexity K A(x) (see Section 6.4). However, 
we do not consider relativized Kolmogorov complexity now. Instead of algorithms 
having oracle access to a set of strings, we consider algorithms having access to a 
finite string z. In this way we obtain conditional complexity C(x\z ) or K(x\z)  
instead of C(x) (resp. K(x)). Since z is finite, the access to it does not increase the 
power of algorithms (any z-computable function is computable without z ). How­
ever, the access to z changes Kolmogorov complexity, if z contains non-negligible 
information. Here is another example of this kind of relativization: the quantity 
I(x : y \ z ) can be considered as common information in x and y relative to z.

Up to now the structure (prefix relation) used in the definition of prefix-stable 
and prefix-free functions was applied to descriptions only. The described objects, as 
well as conditions, had no structure at all. The other approach is also possible: we 
could take into consideration the binary relation “to be a prefix of” on described 
objects as well. This will lead us to monotone complexity (see Chapter 5) and 
decision complexity (Chapter 6). On the other hand, we could consider the relation 
“to be a prefix of” on conditions as well (see Section 6.3). The resulting complexities 
make sense; however, they are not well studied yet.

Note that all the requirements in the definitions of prefix-free and prefix-stable 
decompressors treat different conditions separately. For example, requiring that 
a machine can tell when the input ends, we allow this decision depend on the 
condition. This is an important remark, and we can come to wrong conclusions if 
we forget about this. One should be really careful here; for example, the statement 
of Problem 28 (p. 35) is not true for prefix complexity:

Show that K(y\x)  does not exceed the minimal prefix complexity of a 
program mapping x to y (up to an 0(1) additive term). The converse statement 
is false. (Both statements hold for every reasonable programming language; the 
additive constant depends on the chosen language.)

(Hint: It is easy to see that K{y\l{y)) ^  l(y) + 0(1). Indeed, every string y is 
its own self-delimiting description when l(y) is known. If the inequality in question 
were true, there would be 2n different programs of prefix complexity at most n.)

4.7.2. Properties of conditional prefix complexity. Let us mention sev­
eral simple results about conditional prefix complexity.

• K(x\z)  < K(x) + 0(1).
Indeed, a prefix-stable (or prefix-free) unconditional decompressor 

y i—̂ D{y) can be considered as a prefix-stable (resp. prefix-free) con­
ditional decompressor (y, z) i-> D(y) that just ignores the second argu­
ment z.

Using semimeasures: any probabilistic machine without input can be 
considered as a machine that has input but ignores it. And any lower 
semicomputable semimeasure q(x) can be treated as a family q'{x\z) = 
q{x) indexed by z.

• K(x  I x) = 0(1).

109
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Indeed, the decompressor D(y, z) — z is prefix stable (recall that 
prefix-stability is about y, not z) and K d (x \x) — 0. We can also change 
it to get a prefix-free decompressor: let D{A, z) = z where A is an empty 
string, and let D(y, z) be undefined if у ф Л. Finally, the family of 
semimeasures can be constructed as follows: q(x\x) = 1 and q(z\x) — 0 
for z ф X.

• K(f(x,  z)\z) ^  K(x\z)  + 0(1) for any computable function /  and for 
any strings x,z  such that f ( x , z ) is defined. (The constant in 0(1) may 
depend on /  but not on x and z.)

Indeed, let D be the optimal prefix-stable (resp. prefix-free) condi­
tional decompressor. The mapping D' : (y, z) i-» f (D(y,z) ,z)  is also 
a prefix-stable (resp. prefix-free) decompressor and KD>(f(x,z)\z) ^  
K D(x\z).

In terms of semimeasures the same argument goes as follows: let 
m{x\z) be the a priori probability of x with condition z. Consider the 
semimeasure

q(x I z) = ^2{т(х/  I z) \ f(x',  z) = x }

(for each z this is an image of the semimeasure x h) m(x. z) under the 
mapping x h) f(x,  z)); it is easy to check that q is lower semicomputable, 
that ^2x q{x\z) < 1 and q{f(x, z) \ z) ^  m(x\z). Since m, is optimal, we 
get the desired inequality for a priori probabilities and their logarithms.

• K{f{x)\x)  = 0(1) for any computable /  and for all x such that f(x)  is 
defined.

(A simple corollary.)
• K(x\z)  ^  K(x\ f(z ))  + 0(1) for every computable function /  and for all 

x, z if f (z)  is defined (the constant in 0(1) may depend on /  but not on 
x and z).

(Indeed, consider the decompressor (y,z) н  D(y ,f ( z )) or the condi­
tional semimeasure q(x\z) = m(x \ f(z)).)

• C(x I z) < K{x I z) + 0(1).
Indeed, prefix-stable and prefix-free decompressors form a subclass in 

the class of all decompressors used in the definition of C(x\z).
• K(x  I z) < C{x I z) + 2 log C(x\z) + 0(1).

This is a corollary of previous statements. Indeed, let D be the opti­
mal conditional decompressor (not necessarily prefix stable or prefix free). 
Then

K(D{y,z)\z) ^ K ( y \ z )  + 0{1)
^  K(y) + 0(1) ^  l(y) + 21ogl(y) + 0(1).

If у is the shortest description of x with condition z, then l(y) = 0(.т|2:).
In the same way one can prove a stronger inequality

K(x\z)  ^  C(x\z) + logC(x\z) + 2\og\ogC(x\z) + 0(1), 
etc.

4.7.3. Prefix complexity of a pair. As we have seen (Theorem 60, p. 97), 
K(x, y) ^  K(x)  + K(y) + 0(1). Let us prove a stronger inequality:

T heorem 66.
K{x,y) ^  K(x) + K(y\x) + 0(1).
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P roof. We can use either prefix-free decompressors or semirneasures. Both 
versions are instructive.

Using prefix-free decompressors. Let D be the optimal unconditional 
prefix-free decompressor. Let Dc be the optimal conditional prefix-free decom­
pressor. Consider the function D' defined as

D'(uv) = [D(u),Dc(v,D(u))\

(for и and v such that the right-hand side is defined). Following the proof of 
Theorem 60, we note that D' is well defined and is a prefix-free (unconditional) de­
compressor. The concatenation of the shortest D-description for x and the shortest 
/^-description for у (with condition x ) is a description for [x,y ].

(Note that the order of и and v is crucial for this argument. Replacing uv 
by vu, we get into a trouble: to find where v ends, we have to use the prefix-free 
property of Dc, but it is valid only for a fixed condition and D(u) is not determined 
yet.)

Using semimeasures. Let m(x) be the unconditional a priori probability of 
x, and let m(y | x) be the conditional a priori probability of y when x is known. 
Consider the function m! defined as

m!(\x,y\) = m(x)m(y\x)

(we assume that m'(z) = 0 for strings г that are not encodings of any pairs). Then 
m! is lower semicomputable (being a product of two non-negative lower semicom- 
putable functions), and

m'{z) = ^ 2  m(x)m(y \ x) = ^  [m{x) ^  rn{y \ x)] ^  ^  m(x) ^  1.
z  x , y  x  y  X

Therefore, m([x,y]) ^  £m'([x,y]) = £m(x)m(y\x). □

110 I Prove that C(x, y) ^  K(x) + C(y | x) + 0(1).
(Hint: One may use a prefix-free decompressor and append the (plain) descrip­

tion of у given x to the prefix-free description of x. We may also count the number 
of pairs such that K(x)  + C(y \ x) ^  n. We have at most 2k • m(k) • 2n~k = 2nm(k) 
pairs such that K(x ) = k, and the sum over к gives 2n • 0(1).)

Further improvements are possible. First note that we can use pairs of strings 
as conditions by using some computable injective encoding (changing the encoding, 
we change the complexity by at most a constant). For similar reasons we can speak 
about complexity of a triple of strings. Now we can write the following chain of 
inequalities (the 0(1) terms are omitted):

K(x, y) ^  K(x,K(x) ,y)  ^  K(x,K(x))  + K(y\x,K(x))  = K(x) + K(y\x,K(x)).

Here the equality K(x, K (x )) = K(x ) (Theorem 61) is used as well as the inequality 
for the entropy of pairs (Theorem 66). We get an inequality that can be considered 
as a strong form of Theorem 66, since K(y\x,K(x))  ^  K(y\x)  (because x can 
be produced from [x, K(x)] by an algorithm). As noticed by Levin (see [55]) and 
Chaitin (see [32]), this refined inequality is (remarkably) an equality:

Theorem 67.

K(x ,y ) = K(x) + K(y\x,K(x))  + 0(1).
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P roof. In one direction the inequality is already known (see the discussion 
above). One can give also a direct argument: to get a prefix-free description of a 
pair (x ,y ), it is enough to start with the shortest prefix-free description of x and 
then append the prefix-free description of y with conditions x and К (x) (note that 
K(x) is just the length of the prefix-free description of x). After the machine reads 
the first part and stops, we know both x (its output) and K(x) (the length of the 
input), so we have all needed information to restore у (in a self-delimiting way).

Using semimeasures, we can prove the same inequality as follows. Consider a 
function m! such that

m'([x,y})= ^ 2  2~km{y\x,k).
{k \2~ k' < 2m ( x ) }

This function is lower semicomputable, and its sum over all x, у is finite (for each 
x and к the sum over all у does not exceed 1, then the sum over all к such that 
2~k < 2m(x) does not exceed 4m(x), and the sum over x does not exceed 4). So we 
compare m' with the a priori probability and conclude that for к = — [log2 m.(x)J, 
we get the term that we want to estimate.

Note the important technical trick: we cannot write just
m!([x,y]) = m(x)m(y\x,K(x)),

since the semicomputability is no longer guaranteed. To avoid the problem, we 
extend the sum over all к ^  K(x).

Now let us consider the reversed inequality:
K(x)  + K(y\x,K(x))  ^  K(x, y) + 0(1).

Let us start with a simple (but incorrect!) proof of a stronger (but incorrect!) 
statement

K(x) + K(y\x)  ^  K(x,y)  + 0(\).
In terms of semimeasures this equality can be rewritten as

m(x)m(y\x)  ^  em([x,y])
(for some £ and for all x,y). Here m  stands for a priori probabilities (both condi­
tional and unconditional ones). Let us rewrite this inequality as

m{[x,y})
m(y\x ) ^  £ 

It is enough to show that the function

m'(y\x) = £

m(x)

m([x,y])
m(x)

for any fixed x is a semimeasure (for some e); after that we can compare it with the 
maximal semimeasure m(y\x)  and get the desired result. We need to show that 
the sum of m'(y \x) over у does not exceed 1:

^2m'{y \x)  =£  
у

T,y m ([x M
m(x) ^  I-

Indeed, the function x ^  ^ ym([x,y]) is a semimeasure (its sum over all x equals 
Т,х,ут ([Х’У}) ^  1), and therefoie this function is bounded by т(з :)/r  foi some £.

What is wrong with this argument? We have not checked that the semimea­
sure we constructed is lower semicomputable. There are two cases where we need to
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check this. In one of them it it is easy: the function ^  m([x,y]) is lower semicom- 
putable since m. is lower seniicomputable. But in the other case, for the function 
m([x, y])/m(x), the lower seniicomputable function m(x) is in the denominator, 
and when m(x) increases, the ratio decreases.

The correct proof of the weaker inequality follows the same scheme but uses 
some additional tricks. We have to prove that for z = K(x)  the inequality

m(y\x,z)  ^  e m([x,y]) 
m(x)

holds. The problem is that the right-hand side is not lower seniicomputable. But 
for z = K(x) we can replace m(x) «  2~K^  by 2~z and consider the function

m'(y\x,z) = m{[x,y])2z.
This function is lower seniicomputable. But now it is not a semimeasure: the sum 

m'(y \x -. z ) is bounded by 1 only if

^2m([x,y])  ^  2 ' \
y

which is not true if z is large. However, we know that

^2m([x,y}) = 0(m(x)) = 0 ( 2~K{x)), 
y

so there exists a constant c such that

z ^  K { x ) - c ^  ^2tm> {y \x , z) ^  1. 
y

But this is not enough: we need a family of semimeasures that satisfy this inequality 
for all X and z (and not only for z ~  K(x), as needed for our result). So we “trim” 
the function m! and get another function m" such that:

• function (y,x,z) m"(y \x, z) is lower seniicomputable;
• the inequality

$ > " (У |* ,* )  < 1
y

is true for all x and z;
• there exists a constant c such that

z < K(x) — c => m//(y\x, z) — т'(у\х, z).
How do we perform “trimming”? This trick was explained in Section 4.2: we look 
at the increasing approximations from below and let them through only if they do 
not violate the required bound for the sum.

Now, comparing m" with the a priori probability and taking the logarithms, 
we conclude that

z ^  K{x) — с => K(y  I x, z) ^  K(x,y) — z + d
for some c, c' and for all x, y, z.

Now we let z be equal to z — K(x) — c. Note also that changing z by 1 changes 
the value K(y\x,  z) by at most 0(1) (increasing/decreasing the second component 
of a pair is a computable function). Therefore,

K (y \x ,K (x ) -  c) = K(y\x,K(x))  + 0(1). □
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Note that Theorem 22 (p. 39), which says that C(x,y) = C(x) + C(y\x) + 
O(logn) for strings of complexity at most n, can now be proved as a corollary.

Indeed, the replacement of К  by C changes all three terms by at most O(logn). 
It remains to note that the difference between C(y | x, K(x)) and C(y | x) is bounded 
by O(logn). In this way we get a new proof of Theorem 22 that replaces counting 
by manipulations with semimeasures.

Recalling that m(x) ~  тп([х, у]) (up to a 0(1) factor, Problem 101, p. 97), 
we may rewrite the statement of Theorem 67 as

m(y\x,K(x)) ™([x,y])
Y,y m {[x M Y

The right-hand side of the equation can be interpreted as the conditional probability 
of the event “the second component of the pair equals у” where the condition is 
“the first component of the pair equals x” (but one should remember that we deal 
with semimeasures, not probability distributions).

I 111 I Prove that

K(x\z)  ^  K(x\y)  + K(y\z)  + 0(1)

for arbitrary strings x,y,z .  (This result can be improved; we may replace K(x\y)  
by a smaller term K(x\y,  z).)

I 112 I Prove the “relativized” version of Theorem 67:

К  (x, у I z) — K(x  I z) + K(y  I x, К  (x I z), z) + 0(1).

Using Theorem 67 twice, we a get a formula for the prefix complexity of a 
triple. Indeed, the triple (x, г/, z) can be considered as a pair whose first component 
is (x, y) and the second component is z. Therefore,

K{x,y,z)  = K(z\x ,y ,K(x ,y))  + K(x,y)  + 0(1).

Using Theorem 67 once again, we get the following result:

T heorem 68.

K{x ,y ,z ) = K(z \x ,y ,K(x ,y))  + K(y\x,K(x))  + K(x) + 0(1).

We can change the order of transformations (using the z-relativized version of 
Theorem 67) at the second step:

K{x,y,z)  = K(y, z\x ,K(x) )  + K(x)
= K(z \y ,K(y\x ,K(x) ) ,x ,K(x))  + K(y\x,K(x))  + K(x)

(we omit the 0(l)-terms for brevity).
It is interesting that this leads to a slightly different version of Theorem 68: the 

two last terms are the same but the first term is different. We still have the con­
ditional complexity of z but now we have two conditions K(x) and K(y\x,K(x))  
instead of K(x,y).  Note that the sum of the complexities in the condition is ex­
actly K(x,y)  according to Theorem 67. Therefore, the pair of complexities has no 
less information than K(x,y).  In fact the reverse is also true (when x and у are 
conditions). Indeed, let z be the pair (K(x), K(y\x,  K(x))); in the second formula 
the first term is zero (i.e., 0(1)). So we get the following corollary:
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T heorem 69.
K(K(x)\x,y ,K(x,y))  = 0(l) ,  

K(K(y  IX, K(x)) IX. y,K(x,y)) = 0(  1). 

(Of course the same is true for K(y) and K(x\y,  K(y)).) 
Give a direct proof of Theorem 69.113

(Hint: Knowing x, y and K(x,y),  we may look for an upper bound d for K(x) 
such that K(y\x,d)  + d becomes equal to K(x,y).  The coincidence (up 0(1)) 
implies that d — K(x) + 0(1); indeed, if d — К (x) + m  for some m, the complexity 
K(y\x,d)  can decrease (because of this m ) at most by O(logm), and the sum 
becomes bigger.)

Using Theorem 67 we can easily show that the basic inequality of Theorem 24 
(p. 47) is true with 0(Imprecision for prefix complexity (recall that we have loga­
rithmic error term for plain complexity):

Theorem 70.
K (x, y,z) + K (x ) ^  K(x,y)  + K (x, z) + 0(1) 

for arbitrary strings x,y,z .
P roof. Indeed, the right-hand side can be rewritten as

K{x) + K(y I x, K(x)) + K(x)  + K{z I x, K{x)), 
and the left-hand side equals

K{x) + K(y, z\x, K(x)) + K(x).
It remains to prove that

K(y,z \x ,K(x))  ^  K(y\x,K(x))  + K(z\x,K(x)) ,  
and this inequality is a relativized version of Theorem 60 (p. 97). □

Let us provide also a direct proof of Theorem 70 using semimeasures. We have 
to show that (up to O(l)-factors)

m(x, y, z)m(x) ^  m(x, y)m(x, z),
where m is the maximal lower semicomputable semimeasure. Dividing by m(x), 
we get an inequality

m(x, y)m(x, z
m(x) < m(x,y,z).

Let us check that the left-hand side of this inequality has a finite sum (over all 
triples x, y, z). Indeed,

E m(x,y)m(x,z)
-------- г--------  ^  m(x)

mix)

(since J2ym (x ^y) ^  тп(х) and J2zm (x ^z) ^  тп(х)\ we omit the 0(1) factors).
This is not enough: since we have m(x) in the denominator, the fraction

m(x, y)m(x, z) 
m(x)

is not (necessarily) lower semicomputable, and we cannot use the maximality prop­
erty. So we need to use the following trick (similar to the trick used in the proof of 
Theorem 67) to construct a lower semicomputable upper bound for this fraction.
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For each n consider the function mn(x,y) which is obtained from m(x,y) 
by 2-n -trimming: the sum ^ ym(x,7/) is forced to be at most 2~n. Note that 
Yly m (,x ^y) — тп(х) (up to O(l)-factors), so mn(x,y) = m(x,y)  for n = K(x). 
Then we consider the function

( x , y , z ) ^  ^ 2
n^K(x)

mn(x,y)mn(x,z)
2~n

It is an upper bound since it contains the term with n = K(x). On the other hand,

_ V
x  n ^ K ( x )

E E
x , y , z  n ^ K ( x )

mn(x, y)mn(x, z) ^  ^ y mn(x ,y)Y2z mn(x iz )
2-7 2~7

« Е Е  2' " « E  2m(x) ^  2.
x  n ^ K ( x )  X

(As before, we omit the 0(1) terms and factors; they lead only to the 0(1) factor 
in the final inequality.)

114 Show that the inequality of Theorem 26 (p. 48) is true for prefix com­
plexity with О(Imprecision:

2K(x,y,z)  ^  K(x ,y ) + K(x,z)  + K(y,z)  + 0(1)
for all strings x,y,z.

(Hint: Add the basic inequality
K(x,y,z)  + K(z) ^  K(x, z) + K(y,z)  

to the inequality K(x, y, z) < K(x, у) + К (z).)
1115 I Prove that there exists c such that for every string x and for every positive 

integer n there exists a string у of length n such that
K(x, y) ^  K (x) + n — c.

(Hint: For every z and n there exists a string у of length n such that K(y \ z) > n.)
A similar statement can be formulated for n-bit extensions of a given string x 

(its version for plain complexity makes Problem 46 on p. 42).

T h e o r e m  71.
max{K(xy) \ l(y) = n} ^  K(x\n)  + n — 0(1).

In other words, for some c and all x and n we can append n bits to x in such a 
way that the complexity becomes at least K(x \n)+n — 0(1) (this is not exactly the 
increase in the complexity since we compare K(xy ) with K(x\n)  and not K(x)).

PROOF. In terms of a priori probabilities, this inequality says that
2n min{m(xy) \ l(y) = n} ^  m{x \ n) ■ 0(1).

The left-hand side does not exceed ^~2{m(xy) \ l(y) = n} (the sum may only 
decrease if we replace all summands by the least one). But the latter sum is (as a 
function of x and n) a lower semicomputable semimeasure, so it remains for us to 
compare it with the maximal semimeasure m{x\n). □

I 116 I Show that a bit weaker statement with K(x) — K (n ) instead of K(x \ n) 
(in the right-hand side) can be derived from the statement of Problem 115.
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4.7.4. P lain and prefix complexities revisited. We have already seen 
some bounds for prefix complexity in terms of plain complexity (Theorem 65). 
There are many other relations between them. For example, the following observa­
tion (made by Levin) shows that plain complexity can be defined in terms of prefix 
(conditional) complexity.

T heorem 72. Plain complexity C(x) can be defined as the value of i such that 
K{x\i) = i. More precisely, K(x\C(x )) = C(x) + 0(1); on the other hand, if 
K(x\i)  = i + 5, then C(x) = i + 0(S).

Proof. We already noted (see Problem 44 on p. 40), that C(x) < C(x\C(x)) 
with 0(l)-precision. On the other hand, K(x\C(x)) < C(x) with the same preci­
sion. Indeed, the minimal (plain) description for x can be considered as a prefix-free 
one if its length is given as a condition. So the first statement is proven.

It remains to note that K(x\i)  changes slowly (as i changes): changing i by d, 
we change this complexity by O(logd). So the equation K(x\i)  = i has a unique 
(up to 0(1)) solution; when i deviates by some p from this solution, the difference 
between i and К (x \ i) is proportional to p. □

As noted recently by B. Bauwens, this statement can be used to relate plain and 
prefix complexity. Let us start with a special case of a formula for the complexity 
of a pair:

K(x) = K (x , K(x)) = K (K (x )) + K{x I K(x), K(K(x))).

This is true with 0(l)-precision. If we ignore terms of order 0(K(K(K(x)))),  the 
pair (K(x), К (K(x))) in the condition can be replaced by K(x)  — K(K(x)),  and 
this replacement gives us

K(x) -  K(K(x)) = K(x\K(x)  -  K(K(x)))  + 0 ( K {3\ x ))

(where K ^ ( x )  stands for the ith iteration of К ). It remains for us to apply the 
previous theorem, and we get the following result by R. Solovay [188]:

Theorem 73.

C(x) = K(x) -  K(K(x))  + 0 ( К ^ ( х ) ) .

This result can be rewritten as

(*) K(x) -  C(x) = K(K(x))  + 0 ( K {3\x)) .

Solovay noted also that we can replace К  by C in the right-hand side of (*), i.e., 
that

K(x) -  C(x) = C{C{x)) + 0 (C (3)(x)).
In fact, 0(K(3\x ) )  and 0(C^3\x ) )  denote the same precision, and the equality 
K(K(x)) — C(C(x)) holds with this precision.

Let us explain why. First of all, the already proved formula (*) for K (x) — C(x) 
implies that

IK(K(x)) -  K(C(x))\ < K(3\ x )  + 0(logR(3\x ) )

and
IC(K(x)) -  C(C(x))\ < K ^ ( x )  + 0(logK^3\x ) )
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since the difference between complexities of two numbers is bounded by the prefix 
complexity of the difference between numbers. On the other hand, we can write 
the formula for K(x) — C(x) for K(x) in place of x; in this way we get the equation

K{K{x)) -  C(K(x)) = 0 {K ^ (x ) ) .
So all four versions of complexity of x (combinations of plain and prefix complexity) 
differ at most by 0(K^3\x)) .  In particular,

K(K(x)) -  C(C(x)) = 0 ( K {3\x)) .
It remains to show that 0{K^3\x ) )  and 0(C^3\x ) )  is the same precision. Note 
that \u — v\ = 0 (K(u )) implies |K(u) — K(v)\ — 0(\ogK(u)), so K(K(K(x)))  and 
K(C(C(x))) are “logarithmically close” (we say that a is logarithmically close to b 
if \a — b\ — O(loga)). This “closeness” relation is symmetric and transitive (if we 
allow the constant to increase in О-notation). Now note that C(v) and K(v) are 
logarithmically close for every v, in particular, for v = C(C(x)), and the transitivity 
shows that K(K(K(x)))  and C(C(C(x))) are also logarithmically close, so indeed 
0(K(3\x ) )  and 0 (C ^ (x ) )  is the same precision.

In this way we obtained another result of Solovay from [188]:

T h e o r e m  74.
K(x) = C(x) + C(C(x)) + 0 (C (3)(x)).

In other words, the inequality from Theorem 65 (p. 102) is almost an equality.
117 Give a direct proof of the inequality

C(x) < K(x) -  K(K(x))  + K (3)(x) + 0(1)
by estimating the number of x that make the right-hand side of the inequality small.

(Hint: We have seen in Theorem 64 (p. 101) that the logarithm of the number 
of strings such that K(x)  < n is bounded by n — K(n) + c for some c and for 
all n. Given n, we can enumerate these strings, and each string x of this type can 
be reconstructed from n and the ordinal number of x in this enumeration. This 
ordinal number can be represented by a string и of length exactly n — K(n) + c 
(add leading zeros to its binary representation). Knowing this representation, we 
know n — K(n) (the constant c is fixed), and to reconstruct n it is enough to encode 
K(n) by a self-delimiting description of length K(K(n)).  Now concatenate this 
self-delimiting description and the string и : we get a (plain) description of x of 
length K(K(n)) + n — K(n) + c. This can be done for arbitrary string x with 
K(x) < n, in particular for all strings of prefix complexity exactly n.)



CHAPTER 5

M onotone com plexity

5.1. Probabilistic machines and semimeasures on the tree

Chapter 4 defines a priori probability by using probabilistic algorithms (ma­
chines) that may print some number as their output and then terminate. In this 
chapter we consider another type of probabilistic (=randomized) algorithms. These 
algorithms output a binary sequence bit by bit and do not necessarily terminate. 
The output, therefore, is a random variable whose values are finite and infinite 
sequences of bits (i.e., elements of the set E of all finite and infinite sequences of 
bits).

Consider the following simple algorithm of this type. It just sends random bits 
directly to the output:

while true  do 
6:=random;
OutputBit(è);

od

Its output therefore is a random variable that is uniformly distributed over £1, the 
set of all infinite binary sequences.

But it is quite possible (for some other algorithm) that some finite sequence 
is printed with positive probability. This happens when algorithm with positive 
probability stops after sending some bits to the output (or runs forever without 
sending more bits to the output).

For each algorithm A of the described type we consider a function a that is 
defined on binary strings and whose values are non-negative reals:

a(x) = Pr[the output of A starts with x].

More formally this function is defined in the following way. Each probabilistic 
algorithm defines a mapping A of the set Q (infinite sequences of zeros and ones) 
into the set E. Namely, A(co) is a sequence of output bits that appears if we use the 
terms of the sequence u) as random bits (this means that each statement b := random 
assigns to b the first unused bit of cj). For example, if A is the program mentioned 
above, then Ä(cj) = ш for all w.

Then a{x) is defined as the measure of the preimage of the set Еж under the 
mapping À (where Ex is the set of all finite and infinite sequences having prefix x). 
We say that A generates the distribution a.

1118 I What are À and a, if the algorithm A outputs an infinite sequence of 
zeros (not using random bits at all)?

A natural question arises: what is the class of all functions a that correspond 
to randomized algorithms A of the described type? The next two theorems provide

115
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the answer (given already in one of the first papers on algorithmic information 
theory, [225]):

T heorem  75. Let A be a randomized algorithm of the described type, and let 
a be the corresponding function. Then

(a) a(x) > 0 for all x\
(b) a(A) = 1 (here A is the empty string)-,
(c) a(x) ^  a(xO) + a(x 1) for every string x\
(d) the function a is lower semicomputable.

The notion of the lower semicomputable (enumerable from below) sequence of 
reals was defined in Section 4.1 (p. 75). For the functions on strings the definition 
is quite similar: we require that a(x) = limia(x,i) where a(x,i) is a computable 
function of two arguments x and i, defined for all strings x and for all non-negative 
values of i; the values a(x, i) are rational numbers or — oo, and for every fixed x the 
value a(x, i) increases as i increases.

PROOF. The first three claims are obvious:
(a) Probability is always non-negative.
(b) a (A) = 1 since the empty string is a prefix of any output.
(c) a(x) ^  a(xO) + a(x 1), since the events “the output starts with xO” and “the 

output starts with x l” are disjoint subsets of the event “the output starts with x”.
Note that inequality (c) can be strict; the difference a(x) — a(xO) — a(xl) is the 

probability of the event “the output is exactly the string x” (no bits appear after 
it).

(d) To prove that a is lower semicomputable, we need to construct approxima­
tions from below for a(x) for any given string x. Let us simulate the behavior of A 
for all possible values of random bits. During this simulation we discover values of 
random bits that guarantee that output starts with x, i.e., we find some intervals I  
in Q, such that Ä(co) starts with x for all со £ I. The probability a(x) is the measure 
of the union of all these intervals, and the approximation a(x,i) is the measure of 
the union of all the intervals discovered up to the step i of the simulation. □

A function a that is defined on all binary strings, that takes real values and 
satisfies the conditions (a)-(d) of Theorem 75, is called a lower semicomputable 
semimeasure on the binary tree. It is important not to mix semimeasures on the 
binary tree and discrete semimeasures defined in Chapter 4 that were functions 
on natural numbers (or on binary strings that correspond to natural numbers) 
and correspond to probabilistic algorithms that print some number (or string) and 
terminate. So we use the name continuous semimeasures or semimeasures on the 
binary tree for functions that satisfy conditions (a)-(c); the condition (d) selects 
among them the lower semicomputable continuous semimeasures.

1119 I Show that continuous semimeasures (functions that satisfy conditions 
(a)-(c)) are in one-to-one correspondence with measures on the set E of all finite 
and infinite binary sequences. Given a semimeasure a, find the measure of the set 
that consists of all infinite sequences that have prefix x.

(Answer: The measure of this set is the limit of the (decreasing) sequence

<Tn — a(y)\y is a string of length n that has prefix x}.

Here an is defined for n ^  l(x) and equals a(x) if n = l(x).)
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120 Show that for a semicomputable tree semimeasure the sum a(x) can 
be infinite.

(Hint: Consider the algorithm that copies random bits to output.)
The converse of Theorem 75 is also true:

T heorem 76. Every lower semicomputable continuous semimeasure is gener­
ated by some probabilistic algorithm.

P roof. The idea of the proof can be easily explained in terms of space alloca­
tion, as was done for Theorem 46 (p. 78). The difference is that now the requests 
are hierarchical. Two big organizations (called 0 and 1) need space in Q (which we 
identify with [0, 1]); the subsets allocated for 0 and 1 should be disjoint, and their 
space requests increase over time (but never become greater than 1 in total).

Each of the organizations has two divisions (called 00,01 inside 0 and 10,11 
inside 1) that request some space inside the regions allocated to their organization as 
a whole. Their requests also increase over time, but never become greater (in total) 
than the organization’s request (at the same time). Then we consider subdivisions 
(say, 01 has subdivision 010 and Oil) that have increasing requests that do not 
exceed (together) the request of their parent division, and so on.

For each subdivision x (at any level) we have increasing requests. All the 
allocations are final, i.e., the space allocated to some x remains allocated to x.

This scheme is used in the proof as follows: Having a lower semicomputable 
semimeasure a, we construct a family of requests such that the limit of the requests 
for subdivision x is equal to a(x). Then we choose a way to satisfy all the requests, 
and then we say that if a sequence of random bits gets into the region allocated to 
x, then the output of randomized algorithms starts with x.

It is more or less obvious that the requests can indeed be fulfilled. The reader 
may skip the rest of the proof, where we provide a more formal argument (and 
explain the intuitive meaning of its steps).

Lemma 1. Let a be a lower semicomputable semimeasure on the binary tree. 
Then there exists a total computable monotone (in the second argument) function 
(x, i) a(x, i) whose values are non-negative rational numbers with denominators 
being powers of two, such that

(1) limia(x,i) — a(x) for every string x;
(2) for each i the function x i-> a(x,i) is a continuous semimeasure that has 

only finitely many non-zero values.

In other words, the memory manager can impose the following additional re­
strictions:

• all the requests are dyadic-rational numbers;
• at each step only finitely many subdivisions have non-zero requests;
• at each step requests are coherent (the request of any subdivision should 

be greater than or equal to the sum of requests of its children).

PROOF. Our goal is to change the function a from the definition of lower semi­
computable semimeasure (but not change the semimeasure itself) so that it satisfies 
the requirements of Lemma 1. First, we make all values dyadic rationale. To achieve 
this, we replace a(x,i) by the maximal rational number with denominator 2 l not 
exceeding a(x,i) (negative numbers are replaced by zeros).
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Then we fulfill the second requirement and let a(x, i) be zeros for all strings x 
whose length exceeds i.

To fulfill the third requirement, we perform the replacement
a(x, i) := max (a(x, i), a(x0, i) + a(x 1, г))

iteratively starting from long strings and then decreasing the length of x. Since 
a(x) is by definition a semimeasure, these replacements do not violate the inequality 
a(x, i) ^  a(x).

It is easy to check that our corrections do not change the limit values lim* a(x, i) 
(for all x), so this limit is still equal to a(x).

Lemma 1 is proven.
To formulate the next lemma we need several auxiliary definitions. A simple 

semimeasure (on the binary tree) is a semimeasure that has only finitely many 
non-zero values, and all these values are dyadic rationale.

A simple set is the union of a finite number of intervals in Q. (Recall that an 
interval in Q is a set of the form flz that consists of all infinite sequences having 
prefix 2. Therefore, a set is simple if we need to know only a finite prefix of ш to 
decide whether u> belongs to this set.)

A simple family is a family of simple sets Ax (for all binary strings x) such 
that only finitely many sets among Ax are non-empty and for each string x the sets 
Axо and Axi are disjoint subsets of Ax. For such a family the function x ha p(Ax), 
where p stands for the uniform measure on Cl, is a simple semimeasure. We say 
that the family Ax implements this semimeasure.

Lemma 2. Each simple semimeasure can be implemented by a simple family.
P ro o f . We construct this family starting from the empty string x and then 

gradually increase the length of the index string x. At each step our goal is to find 
two disjoint simple sets Axо and Axl inside the set Ax that is already constructed. 
This is possible since the required measures do not exceed (in total) the measure 
of Ax. Lemma 2 is proven.

Lemma 3. Let b(x) be a simple semimeasure, and let Bx be a simple family 
of intervals that implements b. Let c be another simple semimeasure such that 
c(x) ^  b(x) for all x. Then we can construct a simple family Cx implementing c 
such that Cx D Bx for all x.

P ro o f . Let us repeat the argument used to prove Lemma 2. Now we have 
two disjoint simple subsets of a simple set, and we need to increase their measures 
(keeping them disjoint). It is easy to see that this is indeed possible if the space 
restrictions are not violated. Lemma 3 is proved.

The proofs of Lemmas 2 and 3 are effective in a natural sense: both simple 
semimeasures and simple families are finite objects, and there is an algorithm that 
constructs the simple family given the simple semimeasure(s).

Now we apply Lemma 3 iteratively to the simple semimeasures provided by 
Lemma 1. In this way we get a two-parametric family of simple sets U(x,i) such 
that

• the description of U(x,i) (i.e., the list of intervals) is a computable func­
tion of x and г;

• the uniform measure of the set U(x,i) is equal to a(x,i) (and therefore 
tends to a(x) as i -A oo);



5.1. PROBABILISTIC MACHINES AND SEMIMEASURES ON THE TREE 119

• for each x and i the sets U(xO,i) and U(xl,i)  are disjoint subsets of the 
set U(x,i);

• U(x,i) C U(x,i + 1) for each x and i.
Now the probabilistic algorithm that generates the semimeasure a can be con­

structed as follows: we construct the sets U(x,i) for all x and i and in parallel 
generate random bits obtaining a sequence со. If at some step we discover that 
со E U(x, i) for some x and г, we output those bits of the string x that have not yet 
been printed.

Note that if a; € U(x.i), then со E U(y,i) for every prefix y of x. Note also 
that со cannot be an element of both U(x,i) and U(x',i) if strings x and x' are 
incompatible (neither of them is the prefix of the other one). Therefore the bits 
sent to the output never need to be “recalled”.

An output of this algorithm starts with some string x if and only if the sequence 
со of random bits belongs to the union of the increasing sequence of sets U(x, i ) (for 
г = 0 ,1, 2 ,...). The probability of this event is the limit of measures of the sets 
U(x,i), and this limit is by construction equal to a(x), so we have achieved our 
goal. □

Theorems 75 and 76 show that lower semicomputable semimeasures can be 
equivalently defined as probability distributions generated by randomized algo­
rithms (of the described class).

There is an important special case when a randomized algorithm almost surely 
generates an infinite sequence (i.e., the probability of getting a finite sequence is 
zero). Such algorithms generate computable measures, as the following theorem 
shows.

T heorem 77. (a) Let у be a computable measure onfl. Then function p defined 
on the Cantor space as p(x) — a lower semicomputable semimeasure and
p(x) — p(x0) +p(x  1) for all x.

(b) If a lower semicomputable semimeasure p satisfies the equality p{x) = 
p{x0) + p(x 1) for all x, then it determines some computable measure on £7.

P roof, (a) If a real number a is computable and an is a rational approximation 
to a with accuracy 1/n, then bn — an — 1 /n  is a lower bound for a that is at most 2/n  
apart from a. The sequence bn constructed in this way can violate the monotonicity 
requirement but we may replace it by the sequence cn = max(&o, 6i , ,bn) and get 
a non-decreasing sequence of rational numbers converging to a. Therefore, every 
computable real number is lower semicomputable. Doing this in parallel for all x, 
we obtain computable rational lower bounds for p(x) tending to p(x), and we prove 
that every computable measure is a lower semicomputable semimeasure. Since 
is the union of two disjoint subsets and we also have p(x) = p{x0) +p{x 1).

(b) Assume that p is a lower semicomputable semimeasure that satisfies our 
condition, i.e., p(x) — p(x0) +p(x 1) for all x. We show inductively how p(x) can be 
computed with arbitrary precision for every x. For empty x we have p(A) = 1 by 
definition. Imagine that we already know how to find p(x) with arbitrary precision 
for some string x. How can we do the same for p(x0) and p(x 1)? We have to wait 
until the sum of (increasing) lower bounds for p(x0) and p(x 1) becomes close enough 
to the (decreasing) upper bound for p(x). In other words, an upper bound for p(x 1) 
can be obtained if we take an upper bound for p(x) (constructed recursively) and 
subtract a lower bound for p{x0), and vice versa. □
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This theorem can be interpreted in the following way. Assume that we need 
a generator of random reals (^sequences of zeros and ones) whose output has a 
prescribed distribution p (this means that the probability of getting an output 
that starts with x is equal to p(x)). Then Theorems 76 and 77 guarantee that 
if p is a computable distribution, then such a generator can be implemented as a 
randomized algorithm that uses the internal source of random bits that has uniform 
distribution.

The construction used in the proof of Theorem 76 can be applied to every 
lower semicomputable continuous semimeasure; in the special case when we deal 
with computable measures, there is a much simpler approach. Let us divide the 
interval [0,1] into two parts of lengths p(0) and p( 1). The first part is then divided 
again into parts of length p(00) and p(01), the second one is divided into parts of 
length p(10) and p(ll), and so on. In this way for each string 2 we get an interval 
7Tz inside [0, 1], and the intervals ttz for all strings 2 of any given length cover [0, 1] 
without overlaps.

Now construct the probabilistic algorithm as follows. This algorithm uses in­
dependent tosses of a fair coin to get a sequence a of random bits that has uniform 
distribution. This sequence is considered as a binary representation of some real in 
[0,1]; this real is also denoted by a. In parallel the probabilistic algorithms looks 
for binary strings 2 such that the real number a lies strictly inside the interval 
7Гz (and this is guaranteed by the available information about a and the current 
approximations to the endpoints of 7rz ; these approximations are computed with 
increasing precision).

The strings 2 discovered in this way are compatible (one being a prefix of 
another). The more bits of a we know, the longer 2 can be. These strings are 
prefixes of some bit sequence that is the output of our randomized algorithm.

The algorithm described can output a finite sequence. This happens if a coin­
cides with an endpoint of some ttz . However, there are countably many endpoints, 
so this event has probability 0. Note also that the output of the algorithm starts 
with 2 if and only if a belongs to the (open) interval ttz , so  the probabilities are 
correct.

More formally, we have described a transformation T  of the input bit sequence 
a into the output bit sequence ß = T(a) such that the image of uniform measure 
under T  is the measure p.

(This trick is well known. For example, imagine that you have a fair coin and 
you need to simulate the coin that has probabilities 2/3 and 1/3. Then you generate 
a random real uniformly distributed in [0, 1] (by fair coin tossing) and compare this 
real number with threshold 2/3. To simulate the second coin tossing, you divide 
both intervals [0,2/3] and [2/3,1] in the same proportion 2 : 1. The algorithm 
described earlier does exactly this.)

Theorem 76 shows that it is enough to have a physical generator of indepen­
dent symmetric random bits (a fair coin) to emulate arbitrary other computable 
probability distribution and even arbitrary continuous semimeasure. In fact, a 
“computably biased” coin could work as well, as the following problem shows.

11211 Show that in Theorem 75 one can replace uniform distribution by an 
arbitrary computable distribution and even an arbitrary semimeasure.

(Hint: The composition of two algorithmic transformations is an algorithmic 
transformation itself.)
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122 Show that in Theorem 76 one can replace uniform distribution by arbi­
trary computable distribution that does not have atoms, i.e., every singleton has 
measure 0.

(Hint: A computable measure P can be transformed into the uniform one as 
follows: as we get 2 from a P-generator, we output a string x such that the segment 
7Г% is entirely in the open interval Ix (of numbers whose binary representation starts 
with x).)

It is important here that the measure does not have atoms: if uj has positive 
measure, then the value Ä(uj) has positive probability and we cannot get a uniform 
output distribution (that does not have atoms). But, as we have seen, this is the 
only obstacle.

More difficult problem arises if we do not know exactly the distribution of our 
(“low-quality”) source of random bits. Can we still generate some distribution that 
is at least close to the uniform one? This question can be formalized in terms of the 
randomness extractors — both in combinatorial terms and in terms of Kolmogorov 
complexity. See the survey by A. Wigderson [219] and the references in this survey 
for the combinatorial setting, and the survey of M. Zimand [224]; we do not go 
into this direction in our book.

5.2. M aximal semimeasure on the binary tree

T heorem 78. The class of all lower semicomputable semimeasures on the bi­
nary tree has the greatest element (up to a constant factor): there eoästs a semimea­
sure a in this class such that for every other a' in the same class the inequality 
a'(x) ^  ca(x) holds for some constant c and for all x.

PROOF. We can use the same idea as for semimeasures on N (Theorem 47, 
p. 80). Consider a probabilistic machine A that first chooses at random some 
probabilistic machine and then simulates it. If a semimeasure a' corresponds to a 
probabilistic machine A', then a'(x) < (1 /e)a(x) where e is the probability that 
machine A' is chosen. □

Another proof deals with functions, not machines: first we construct a sequence 
ao, a i , ... of semimeasures and then consider the function a = Â a* where A* are 
computable coefficients that have sum 1 (e.g., A* =

A delicate point: we need a sequence that includes all (tree) semimeasures that 
are computable from below, and the sequence itself should be computable from 
below. This means that we need a lower semicomputable function (i,x) h* u(i ,x) 
such that (1) for any fixed i the function щ : x h-> u(i,x) is a tree semimeasure; 
(2) the sequence щ contains all lower semicomputable tree semimeasures.

This can be done either by enumerating all probabilistic machines (and that cor­
responds to the first proof) or by enumerating all lower semicomputable functions 
and then trimming them to make them semimeasures and leaving them unchanged 
if they already are semimeasures. See the similar argument for semimeasures on N 
(Section 4.2, p. 79). In this process, if the condition p(x) ^  p(x0)+p(xl) is violated, 
we should increase p(x) and so on, unless in the end this makes p(A) greater than 1.

123 Provide the missing details in this argument.

Remark. The first proof of Theorem 78 gives a bit more than we have claimed. 
Indeed, in this proof we obtain the lower bound not only for the probability of
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the event “output starts with x”, which is p(x), but also a lower bound for the 
probability of the event “the output is exactly x”, which is p(x) —p(x0) —p{x 1). So 
not only a(x), but also a(x) — a(x0) — a(xl) is maximal for the universal machine 
we constructed.

124 Prove that all these arguments can be applied to the case of algorithms 
that send natural numbers (not bits) to the output one at a time. These algorithms 
correspond to lower semicomputable semimeasures on the set of all (finite and 
infinite) sequences of natural numbers.

125 (Continued) Let m  be the maximal lower semicomputable semimeasure 
on the set of all finite and infinite sequences of natural numbers. Show that its 
restriction on the sequences of length 1 coincides (up to an 0 (1) factor) with the 
discrete a priori probability on natural numbers (Chapter 4), and its restriction to 
binary sequences coincides (up to an 0 (1) factor) with the maximal semimeasure 
provided by Theorem 78.

Show that a(Onl) and m(n)126 differ at most by an 0 (1) factor in both 
directions, where a is the maximal continuous semimeasure from Theorem 78, and 
m(n) is the a priori probability of integer n as defined in Chapter 4. (Instead of 
Onl, one can use arbitrary prefix-free encoding of integers.)

(Hint: See Theorem 79 below.)
Let us fix some maximal lower semicomputable semimeasure on the binary tree 

and denote it by a(x). It is known as the universal continuous semimeasure. One 
can call a(x) the continuous a priori probability of x, to distinguish it from the 
discrete a priori probability defined in Chapter 4. However, the expression

KA (x) = — log a(x)
can be called the a priori complexity of a string x with no risk of confusion: the 
minus logarithm of the discrete a priori probability (Chapter 4) coincides with the 
prefix complexity and therefore does not require a special name. Since different 
maximal semimeasures differ at most by an 0 (1) factor, the a priori complexity is 
defined up to an additive 0 (1) term.

There is no universally accepted notation for the a priori complexity: sometimes 
it is denoted by KM(x). We use К A (x) for the a priori complexity, reserving KM(x) 
for monotone complexity as defined later in this chapter. (When KM(x) is used for 
the a priori complexity, the monotone complexity is usually denoted by Km(x) or 
K m ( x ) . )

In the next section we study the properties of the a priori complexity. Let 
us note that by definition the a priori complexity need not be an integer (or even 
rational) number. But this does not matter much, since most of the statements 
about complexity are true “up to an 0 (1) term”, and we may replace — loga(x) 
by a minimal integer n such that 2~n < a(x). An important detail: we use the 
strict inequality since we want the resulting function to be lower semicomputable. 
In the sequel we indicate the rare cases where this rounding (or its absence) can be 
important.

5.3. A priori complexity and its properties

Theorem 79. (a) The a priori complexity is monotone: if x is a prefix of y, 
then KA (x) ^  KA (y).
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(b) KA (X) < l(x) + 0(1) for each x.
(c) KA (x) < K(x)  + 0(1) for each x.
(d) Let £o,£i, • • • be a computable sequence of incompatible binary strings (i.e., 

none of them is a prefix of another one). Then

KA (Xi) = K{Xi) + 0(1) = K(i) + 0(1).

(e) K(x)  ^  KA (x) + 2 logl(x) + 0(1).
(f) Moreover, K(x)  ^  KA (x) + K(l(x)) + 0(1).
(g) and even more, K(x\l(x)) < KA (x) + 0(1).
(h) A sequence of zeros and ones is computable if and only if the a priori 

complexity of its prefixes is bounded.
(i) If f  : £  —> Nj_ is a computable continuous mapping, then

K ( f ( x ) ) ^ K A ( x )  + 0 (  1) 

for each string x such that f(x) is defined (is not equal to _L).

P roof, (a) The measure of a subset of a set does not exceed the measure of 
the set itself.

(b) The function p(x) = 2 ~1̂  is a lower semicomputable semimeasure. There­
fore p(x) ^  ca(x) for some c and all x.

(c) The machines that output a binary string (as a whole) and then halt, 
form a subclass of the machines that generate output bits one by one. Therefore, 
m(x) ^  ca(x) where m  is the discrete a priori probability (as defined in Chapter 4).

It is instructive to rephrase this argument using semimeasures. Let m'(x) be 
the sum of m(y) taken over all strings y that have prefix x (including x itself). Here 
m  is the discrete a priori probability. Modify m! , and let m'(A) be equal to 1. Then 
m! is a semimeasure on the binary tree and therefore m(x) < m'(x) = 0 (a(x)).

(d) Let Xi be a computable sequence of incompatible binary strings. The func­
tion i H  a(xi) (where a is the continuous a priori probability) is a lower semicom­
putable semimeasure on N. Indeed, it is lower semicomputable; the events “output 
starts with x f  are disjoint, and therefore the sum of their probabilities does not 
exceed 1. Therefore K(i) < К A (xf) + 0(1).

On the other hand, K(xi) = K(i) + 0(1), since i can be algorithmically trans­
formed into Xi and vice versa; finally, KA (xi) ^  K(xi) + 0(1) according to (c).

(e) Let a be the universal continuous semimeasure. Consider the function и 
defined as u(x) — a(x)/l(x)2. It is lower semicomputable. Moreover, since the 
sum of a(x) over all strings x of length n does not exceed 1 (these strings are all 
incompatible), we get

£«<*> = £  £  =
X n  l (x)=n n

so we get the desired inequality.
(f) This can be proved in a similar way. This time we let u(x) = a(x)m(l(x)) 

where m  is the a priori probability on N (as defined in Chapter 4).
(g) Consider the function

u(x, n )
a(x), if l(x) = n, 

0, if l(x) /  n.
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Then for each n the function x u(x, n ) is a semimeasure in the sense of Chapter 4
(the sum of values does not exceed 1), and we get the desired inequality.

(h) For a given computable (infinite) sequence w of zeros and ones, consider a 
probabilistic algorithm that ignores random bits and just computes and sends to 
the output the sequence u> (bit by bit). The corresponding semimeasure equals 1 
on any prefix of w; therefore, the universal semimeasure (whose logarithm is the a 
priori complexity) of all prefixes of w is greater than some positive constant.

The converse implication is a bit more complicated. Assume that the a priori 
probabilities (the values of the universal semimeasure a on the binary tree) of all 
prefixes of u> are greater than some rational e > 0. Consider the set В of all binary 
strings x such that a(x) > e. The set В contains all prefixes of w and is a subtree (if 
some string is in J3, then all its prefixes are in В ). Moreover, any prefix-free subset 
of В (that does not contain a sequence and its prefix at the same time) has at most 
\ / e elements (since the corresponding events are disjoint, their total probability 
does not exceed 1). Finally, the set В is enumerable (having more and more precise 
approximations to a(x) from below, we eventually discover all elements in B).

These properties of В are sufficient to conclude that the sequence u> is com­
putable. Indeed, consider the maximal (having the maximal cardinality) prefix-free 
subset x i , ... ,xn of B. For each of Xi consider all its continuations that belong to 
B. All of them (for a given г) are prefixes of one sequence; otherwise, we can find 
two inconsistent strings and replace Xi by them (and this is not possible, since the 
subset is maximal).

So for each i we have a (finite or infinite) branch in В going through Xi, and 
it is computable since В is enumerable. The sequence w is one of these branches 
(otherwise we could add a sufficiently long prefix of u> to the set that is maximal—a 
contradiction).

(i) Consider the probabilistic machine that corresponds to the maximal semi-
computable semimeasure on the binary tree, and apply function /  to its output. 
This composition is a probabilistic machine as defined in Chapter 4, and it remains 
to compare it to the universal machine that generates the maximal lower semicom- 
putable semimeasure on N (the logarithm of this semimeasure is К + 0(1)). □

Note that the a priori complexity is quite different from the complexities already 
known (plain and prefix complexities). Its definition uses a tree structure that exists 
on the set of finite binary strings, and algorithmic transformations that ignore this 
structure can increase the a priori complexity more than by 0 (1).

127 Show that one can find a string x that has an 0(1) a priori complexity 
but xR (reversed x) has arbitrarily large complexity. (Formally: there exists c 
such that for every n there is a string x satisfying the inequalities KA (x) < c and 
KA (xR) > n .)

(Hint: The string x can be of the form 100 • • • 0.)
So (unlike for plain or prefix complexity) we cannot define the a priori complex­

ity of arbitrary constructive objects (pairs, graphs, finite sets, etc.) since it depends 
on the encoding.

The difference between the a priori complexity of a string x of length n and 
other complexities of x (plain, prefix) is still O(logn). However, it is important 
that n stands for the length of x, not for the complexity of x. (For example, if
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X is a string of n zeros, its a priori complexity is bounded while plain and prefix 
complexities are not.)

Prove that for every string x at least one of the numbers К A (xO) and 
KA(x  1) is at least KA(x)  + 1. (In this problem it is important that KA(x)  is 
defined as — loga(x) without integer rounding.) Prove that for every string x and 
every integer n there exists a string у of length n such that К A (xy) ^  К A (x) + n. 
Prove that there exists an infinite binary sequence u> such that К A (x) ^  l(x) for 
every prefix of u>.

128

Compare the last problem with Theorem 71 (p. I l l )  and Problem 46 (p. 42); 
note that with the a priori complexity we can get rid of condition n and even the 
constant 0 (1) appearing there.

129 Prove that the differences C(x) — К A (x) and К A (x) — C(x) could be of 
order logn for some strings of length n (and for arbitrarily large n).

(Hint: C(x) can be much greater than KA (x) if x consists of zeros only. On 
the other hand, C{x) is smaller than К A (x) if x is a prefix of a sequence from the 
preceding problem. In this case KA(x) — l(x) + 0(1), but C(x) can be smaller 
than l(x) by log/(x); see Problem 54.)

130 Prove that

KA (xy) < K(x)  + KA (y) + 0(1),

where xy is the concatenation of strings x and y. It is important that x is on the 
left of y: show that for KA (yx) the statement is false.

(Hint: Let U be a probabilistic algorithm in the sense of Chapter 4 that gener­
ates the discrete a priori probability on strings. Let V be the probabilistic algorithm 
that generates the continuous a priori probability. Then combine U and V as fol­
lows: first, run U until it outputs something and terminates. Then run V using the 
fresh random bits and add its output bits to the string generated by U. To show 
that К A (xy) cannot be replaced by К A (yx), let у = On and x = 1.)

(Cf. Theorem 71 on p. I l l  and Problem 46 on p. 42; note that now we do not 
have n as a condition, and we even do not have the term 0 (1) in the inequality.)

Another property of the a priori complexity is an immediate consequence of its 
definition. Let ß be a computable measure on Q. Then for some c and every x we 
have

KA (x) ^  — log ß(Clx) + c-

Indeed, the a priori probability on the binary tree is greater than ß (or any other 
computable measure, or even lower semicomputable semimeasure) up to a 0 (1) 
factor, and it remains to take logarithms.

This (very simple) property is important since it is the basis for a criterion of 
Martin-Löf randomness in terms of the a priori complexity: a sequence u> is ML- 
random with respect to a computable measure ß if and only if this inequality turns 
into an equality for prefixes of cj, i.e., if the difference — \ogß(Qx) — KA(x)  has 
a constant upper bound for all x that are prefixes of ui (it always has a constant 
lower bound as we just mentioned).

This criterion follows from Schnorr-Levin theorem that provides randomness 
criterion in terms of monotone complexity and we postpone its proof to Section 5.6
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where Schnorr-Levin criterion is considered. But first we have to define mono­
tone complexity (Section 5.5), and this definition uses the notion of a computable 
mapping of the space E into itself (Section 5.4).

One can characterize the a priori complexity as the smallest upper semicom- 
putable (=enumerable from above) function that satisfies some condition, as was 
done for plain complexity in Theorem 8 (p. 19) and for prefix complexity in Theo­
rem 62 (p. 100). Here is the corresponding statement:

T heorem 80. The function KA is a minimal (up to an additive constant) 
upper semicomputable function к such that

2~ k ^  ^  1

for any prefix-free set M  of binary strings.

PROOF. Since the strings x € M  are incompatible (none of them is a prefix of 
another one), the corresponding sets Ea; (of all finite and infinite sequences with 
prefix x) are disjoint and the sum of probabilities does not exceed 1.

On the other hand, let к be an upper semicomputable function that satisfies 
this condition. We have to construct a lower semicomputable semimeasure that is 
greater that 2~k. The latter function is lower semicomputable but is not necessarily 
a semimeasure; its values on ж, ж0, and ж1 can be unrelated. So we need first to 
increase к when it is unavoidable. Let u(x) be the supremum of all sums of the 
form

2~k(y)
y £ M

over all prefix-free M  sets of extensions of ж. It is easy to check that u(x) is indeed 
a lower semicomputable semimeasure and 2” ^ ^  does not exceed a(x). □

11 3 1 1 Let us consider functions b on binary strings with values in [0,1] that have 
the following property: there exists a measure p on the tree such that b(x) ^  p($lx)-

(a) Show that every semimeasure on a tree has this property.
(b) Show that for every lower semicomputable function b with this property 

there exists a lower computable semimeasure on the tree that is an upper bound 
for b.

5.4. Com putable mappings of type E —> E

In Chapter 4 we defined prefix complexity (in terms of shortest descriptions) 
and the a priori probability (in terms of probabilistic machines). It turned out that 
it is essentially the same notion (one is the logarithm of the other).

In this chapter we have defined the other notion of a priori probability (the 
continuous one), and a natural question arises: Does it correspond to some nat­
ural notion of complexity defined in terms of descriptions? Indeed, such a notion 
exists; it is called monotone complexity (though it differs slightly from the a priori 
complexity). However, to give its definition (see Section 5.5 below), we first need 
to introduce some auxiliary notions.

The algorithms (machines) used in the definition of the universal semimeasure 
on the binary tree consist of two parts: the random bits generator and the algorithm 
that transforms the sequence of random bits into the output. In this section we 
look more closely at this second part and introduce the notion of a computable
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mapping of the set E (of all finite and infinite sequences of zeros and ones) into 
itself. Let us stress that we consider mappings that are defined everywhere on E; 
however, some of their values can be equal to the empty string Л (that represents 
an undefined value in some sense).

5.4.1. Continuous mappings of type E —» E. Let / :  E —> E be a mapping 
defined on the entire E. We say that /  is continuous if it has the following two 
properties:

(1) /  is monotone: if x G E is a prefix of some y G E, then /(x ) is a prefix of
/Ы -

(2) The value f(uj) for an infinite sequence cj is the least upper bound of the 
values /(x ) on all finite prefixes x of the sequence cj.

We use the notation x =4 y for the relation “x is a prefix of y" ; here x, y G E 
may be finite or infinite. We have x ^  x for any x; if x ^  y for an infinite sequence 
x, then x — y. Requirement (1) says that /  is monotone with respect to the partial 
order =<! on E. This requirement guarantees that the values /(x) for all finite prefixes 
x of some sequence to are compatible (extend each other); their “union” (—least 
upper bound under ^-ordering) coincides with /(oi) due to (2).

132 Show that the notion of continuity defined above is the standard conti­
nuity notion with respect to the topology on E defined in Section 4.4.3 (p. 89).

(Hint: A very similar notion of continuous mappings E —> Nx was studied in 
the same section.)

Let / :  E E be a continuous mapping. Consider the set Гf  that consists of 
all pairs (x,y) of binary strings x and у such that y =4 /(x). (The set Гf may be 
called the lower graph of the mapping /.)

For any continuous /  : E —» E, the set Г/  has the following three properties:
(1) (x, Л) G Г/ for every string x;
(2) If (x, y) G Vf, then (x', y') G Г f for every x' x and y' ^  y.
(3) If (x, y\) and (x, yf) belong to Г/, then the strings y\ and г/2 are compatible 

(one of them is a prefix of another one).
The first two properties are obvious. The third one is true since any two prefixes 

of a (finite or infinite) sequence are compatible.
The following theorem shows that a continuous mapping is defined uniquely by 

its lower graph.

T heorem 81. The mapping f  Г/ is a one-to-one correspondence between 
continuous functions of type E —> E and sets of pairs of strings that satisfy condi­
tions (l)-(3).

P roof. Let /  be a set of pairs satisfying conditions (l)-(3). These conditions 
guarantee that for any string x the set Fx of all у such that (x, y) G F is non-empty 
and every yi ,y 2 £ Fx are compatible. Let /(x) be the least upper bound of Fx. 
Property (2) guarantees that x =4 x' implies /(x) ^  f(x')  (since Fx increases as x 
increases). Therefore we may define f(cj) as the union (least upper bound) of /(x) 
for all strings x ^  oj. Then the mapping /  is continuous. It is easy to check that 
we get a mapping which is an inverse mapping to the correspondence /  (->• Гf . □

A continuous mapping /  : E —» E is called computable if the corresponding set 
Г/ is enumerable. (By definition all computable mappings are continuous.)
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This definition is self-contained and does not require any interpretation in terms 
of machines. All we say below about the interpretation of this notion in terms of 
machines of special type is not necessary (and is not used in the sequel). However, 
to give a motivation for this definition, it is instructive to understand which type of 
machine (program) corresponds to computable continuous mappings of type E —> E.

5.4.2. M onotone machines with non-blocking read operation. Let us
consider programs that use a non-blocking read operation (we can get the next bit 
from the input queue and also check whether this queue is non-empty). We have 
discussed this type of input paradigm in Section 4.4.2, p. 87. However, now we 
assume that the output is created bit by bit, using the procedure OutputBit(fe) 
with a Boolean argument.

The output sequence generated by a program of this type can be finite or infi­
nite. In general, it depends not only on the input sequence but also on the timing 
(the moments when keys “0” and “1” were pressed). We say that a machine (pro­
gram) is ro b u s t if the timing does not matter, i.e., if the output sequence depends 
only on the input sequence but not on the timing. (Of course, the output timing 
may still depend on the input timing.) A robust program determines (computes) 
some mapping of the set E into itself.

Theorem 82. R o b u s t p ro g r a m s  c o m p u te  c o m p u ta b le  m a p p in g s  ( in  th e  a b s tr a c t  
se n se , a s d e sc r ib e d  a b o v e );  o n  th e  o th e r  h a n d , e v e r y  c o m p u ta b le  m a p p in g  is  c o m ­
p u te d  b y  s o m e  ro b u s t p ro g ra m .

P roof. Assume that M  is a robust program. Let x and x' be two (finite or 
infinite) sequences such that x =<! x ' . Let us show that M(x) M(x') where M(z) 
stands for the output of program M  on the input 2 (since M  is robust, the output 
depends only on 2, not on the timing). If x is infinite, this is trivial (x = x'). 
Assume that x is finite. There are two possibilities: M(x)  is either finite or infinite.

If M(x)  is finite, let us submit input x and wait until M(x)  appears at the 
output. This should happen at some point; after that we submit the remaining 
bits of x' (that are not in x) to the input. Then we get output M(x') which by 
construction is the extension of M(x).

If M(x)  is infinite, then every bit of M(x)  should appear at some time after we 
submit x to the input. Since the remaining bits of x' can be sent after this moment, 
this bit should appear also in M(x').  Therefore, M(x) = M(x') in this case.

It is also clear that for an infinite sequence из the value M(u>) is the union of 
M(x)  for finite x =<! u)\ indeed, at each moment only a finite number of input bits 
have been read.

The set of all pairs of strings x, у  such that у  =<! M(x)  is enumerable since we 
can enumerate it by simulating the behavior of M  on all inputs. So each robust 
machine computes a computable mapping.

On the other hand, let /  be an arbitrary computable mapping. We show how 
to construct a robust machine M  that computes it. The machine M  enumerates 
the lower graph Г/ of the mapping / .  At the same time M  reads input bits and 
stores them. If it turns out that Г/  includes a pair (x, y )  such that x is a prefix 
of the input sequence, we output the remaining bits of у  (requirements (2) and (3) 
guarantee that all the strings у  found in this way are compatible, so there is no 
need to recall the bits already sent to the output). □
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5.4.3. Computable mappings can be enumerated. The definition of com­
putability based on robust machines seems to be more natural than the abstract 
one. However, it has the same drawback as in the case of prefix-stable programs: 
there is no (algorithmic) way to find out whether a given program is robust. So the 
class of robust programs is not a syntactically defined class.

Nevertheless, there exists an algorithmic transformation of programs that con­
verts every program into a robust one (and does not change the mapping computed 
by it if it was robust). This transformation goes back and forth between mappings 
and corresponding enumerable sets: we transform a program into an enumerable 
set of pairs (i.e., into an algorithm enumerating this set), then we trim this set of 
pairs and transform it back into a program.

We do not describe this process in detail, since robust programs are more a mo­
tivation for the definition of a computable mapping than a technical tool. Instead, 
we prove that the set of computable mappings is enumerable in the following sense:

Theorem 83. There exists an enumerable set U of triples (n,x,y) (here n is 
a natural number while x and y are binary strings) such that:

(a) for every n the set Un — {(x,y) | (n, x , y ) € U} is a lower graph of some 
computable mapping un : E —> E (i.e., it satisfies requirements (l)-(3) of Theo­
rem 81);

(b) every computable mapping of the set E into itself is equal to un for some n.

Proof. Consider the universal enumerable set W  of triples: every enumerable 
set of pairs appears among Wn. Then we trim W  to enforce requirements (l)-(3) for 
all Wn and leave unchanged the sets Wn that already satisfy these requirements. 
After that all Wn are lower graphs for some computable mappings wn and any 
computable mapping appears among wn.

The trimming is made in two steps: first we delete inconsistencies and then we 
fill the gaps. The inconsistency appears when two pairs (x\,y\) and (£2,2/2) are 
found such that x\ is compatible with £2 but y\ is not compatible with 2/2 • (It is 
easy to see that two pairs with this property cannot both appear in the lower graph 
of a continuous mapping.) To eliminate it, we delete the pair that appeared later 
in the enumeration. Then we fill the gaps by adding all pairs (x , Л) and adding for 
each pair (x , y ) all the pairs (x' ,y') with x1 )p x and y' =4 y. It is easy to see that 
the set remains enumerable and is the one we need. □

Theorem 83 is used in the next section to prove that an (optimal) monotone 
complexity function exists.

5.5. M onotone complexity

To define monotone complexity, we use computable mappings of type E —> E 
as decompressors (description modes). For a fixed decompressor D: E —> E the 
monotone complexity of a string x (with respect to D) is defined as the minimal 
length of a string у such that x =<; D(y). Monotone complexity is denoted by 
KM D(x).

(This definition can be applied to infinite sequences x without any changes, but 
we follow the tradition and consider KM d (x ) only for finite x unless the opposite 
is said explicitly.)
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133 Prove that the monotone complexity of an infinite sequence (defined in 
a natural way) is the limit of the increasing sequence of monotone complexities of 
its prefixes.

T heorem 84. There exists an optimal decompressor, i.e., a computable map­
ping D \ E —> E such that KM p is minimal up to an additive constant: for any 
computable D' : E —> E there exists a constant c such that

KMd {%) ^  KM d'(x) -+■ c
for every string x.

P roof. Let U be the set of triples whose sections are the lower graphs of all 
computable mappings (constructed in Theorem 83, p. 129). Let Dn be a computable 
mapping that has lower graph Un. Then let us define a mapping D as

D(nz) = Dn(z),
where n is the prefix-free encoding of the number n (say, its binary representation 
with doubled digits followed by 01) and 2 is an arbitrary element of E. In terms 
of the lower graph, consider the set of all pairs (nu,v) such that (n,u,v) € U. 
It is easy to check that we indeed get a computable mapping. If some (mono­
tone) decompressor D' has number n (i.e., its lower graph coincides with Un), then 
КМр(х)  < KM d'(x) + l(n) for every x. □

As usual, we fix some optimal monotone decompressor (description mode), i.e., 
some computable mapping D that satisfies the statement of this theorem, and define 
monotone complexity of a string x as KM d (x ). We use the notation KM(x) (the 
subscript D is omitted).

(Warning: Sometimes the notation KM{x) is used for the a priori complexity. 
Usually in this case the monotone complexity is denoted by Km, as in [103], or
K m . )

T heorem  85. (a) Monotone complexity is a monotone function, i.e.,

KM(x)  ^  KM(y) if x ^ y \
(b) the function KM is upper semicomputable\
(c) KM{x) <J(x) + 0 (l);
(d) KM(x) ^  K(x)  + 0(1);
(e) К A (x) ^  KM(x) + 0 (  1);
(f) an infinite sequence of zeros and ones is computable if and only if the mono­

tone complexity of its prefixes is bounded;
(g) if f  ■ T, - ï  Y, is a computable mapping, then KM(f(x))  < KM(x)  + 0(1) 

(the constant hidden in 0 (1) may depend on f  but not on æ);
(h) if f  : E —> Nj_ is a computable mapping, then K(f(x))  ^  KM(x)  + 0(1) 

(the constant hidden in 0 (1) may depend on f  but not on x).

It is instructive to compare these statements with the properties of the a priori 
complexity given in Theorem 79 (p. 122). Since monotone complexity is not smaller 
than the a priori complexity (statement (e)), some properties of the a priori com­
plexity are automatically valid for monotone complexity. In particular, we conclude 
immediately that K (x \ l(x)) ^  KM(x)+0(l )  and K(x)  ^  KM(x)+K(l(x))+0(  1). 
Note also that for computable sequences of incomparable strings (none is a prefix
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of another one) the prefix and the a priori complexities coincide up to an addi­
tive constant and monotone complexity is between them. Therefore it coincides 
with them: if x q , x \ , . . .  is a computable sequence and Xi ^  Xj for i ^  j, then 
KM(xi) = KA {xi) + 0(1) = K{xi)  + 0(1).

PROOF. Statement (a) is a direct consequence of the definition: if D(u) y, 
then D(u) X for every x that is a prefix of y. One could say that in the definition 
of monotone complexity one needs to describe not the string exactly, but any of its 
extensions, and the longer the string is, the more difficult this task becomes (the 
set of extensions becomes smaller).

Statement (b) is true since the lower graph of a computable mapping is enu­
merable, and the set of triples (x , y , r ), such that l(y) < r and (y , x ) belongs to the 
lower graph, is enumerable, too. The upper graph of KM is a projection of this set.

To prove (c) it is enough to note that the identity mapping E —> E such that 
D(x) — x for all x G E is computable.

To compare KM and К  (statement (d)) it is enough to note that any com­
putable mapping E —» Nj_ becomes a computable mapping of type E —» E if Nx 
is embedded into E (and _L becomes an empty string). More formally, let D be 
a prefix-stable decompressor used in the definition of К . In can be extended to 
a computable mapping of type E —> E (the strings where D was undefined are 
mapped into Л, and the values on infinite strings are determined by the continuity 
requirement).

To compare KM and К A (statement (e)), we have to recall the remark we 
started with: a probabilistic algorithm is a random bits generator whose output 
is fed into a computable mapping of E into itself. Let D be the optimal decom­
pressor used in the definition of the monotone complexity. Consider a probabilistic 
algorithm that feeds a random sequence into D. What is the probability of getting 
some string x (or some its extension) as the output? Obviously, this probability is 
at least 2~1̂  for any string у such that D(y) x , since the random string starts 
with у with probability 2~l ŷ\  and this guarantees that the output of D starts with 
x. (We return to the comparison of KM and KA in Theorem 87.)

In statement (f), one implication is a straightforward corollary of the corre­
sponding statement of Theorem 79. The other implication is obvious—all the 
prefixes of a computable sequence ui have bounded complexity since there exists 
a computable mapping E —> E that is equal to ui everywhere.

To prove (g), let us consider the monotone decompressor that is the composi­
tion of an optimal monotone decompressor and the mapping / .  Note that in this 
statement the sequence f(x)  can be infinite. If we do not want to deal with the 
complexities of infinite sequences, the statement should be reformulated as follows: 
for each /  there exists a constant c such that for all x,y  such that у f(x)  the 
inequality KM(y) ^  KM{x) + c holds.

A similar argument works for (h), but this time the composition of the optimal 
monotone decompressor and /  is a prefix-stable decompressor. (One can also derive 
this statement from a similar statement about the a priori complexity.) □

134 Prove that KM(xy)  < K{x) + KM{y) + 0(1) (here xy stands for the 
concatenation of strings x and y). In particular, KM(xy)  ^  K(x)  + I(y) + 0(1).
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(Hint: Consider the optimal prefix-free decompressor Dp and the optimal 
monotone decompressor Dm. Now let D'(uv) = Dp(u)Dm(v) (when Dp stops 
reading the input, the remaining part of the input is read by Dm).)

135 Show that in the preceding problem one can replace KM(y)  by the condi­
tional monotone complexity KM(y\x ) defined in a natural way (we do not require 
monotonicity with respect to condition x, see Chapter 6 for details).

136 Prove that statement (g) remains true if we replace KM  by KA (in the 
both sides of the inequality).

(Hint: The mapping /  can be applied to the output of a probabilistic machine; 
the new probabilistic machine is not better than the optimal one.)

We can give an equivalent definition of monotone complexity that does not use 
computable mappings of type E —> E; in this way we get a simpler (but somewhat 
less natural, in our opinion) definition.

Let £ be the set of all binary strings. Consider the binary relation “to be 
compatible” on this set: x is compatible with y x ^  у ох y ^  x (an equivalent 
property requires that x and y are prefixes of the same string). An enumerable set 
(binary relation) D C £ x £ is called consistent if it has the following property:

(x \i Ui)i{x 2 , У2 ) and (xi is compatible with X2 ) => (y\ is compatible with г/2)

for all x i, x 2 , Vi, У2 - Then the monotone complexity of a string у with respect to 
D is defined as the minimal length of a string x such that (x, y) G D. There is an 
optimal consistent enumerable binary relation on £.

1137 I Prove that this definition leads to a notion of monotone complexity that 
differs from the previous one by at most 0 (1).

(Hint: The lower graph of any computable mapping E —» E is a consistent bi­
nary relation. On the other hand, if О is a consistent binary relation, the gap filling 
described in the proof of Theorem 83 makes it a lower graph of some computable 
mapping.)

It is instructive to compare this definition with the definition of plain complexity 
(where we use graphs of computable functions, i.e., uniform enumerable sets instead 
of consistent relations D). In the definition of monotone complexity we do not 
require D to be a graph of some function: several pairs (x, y) with the same x and 
different у are allowed; we require only that all y’s in these pairs are compatible. 
This makes KM  smaller. For example, all prefixes of some computable sequence 
(say, 0000 ••• ) have bounded complexity (note that C(0n) = C(n) is about logn 
for most n).

On the other hand we apply additional restrictions: if a string x is a description 
of some string y, then the strings that are compatible with x can be descriptions 
only of strings that are compatible with y. This makes complexity larger. This 
is especially clear when we consider complexities of the elements of a computable 
sequence of pairwise incompatible strings: in this case monotone complexity coin­
cides with prefix complexity, and the difference can be about logn for strings of 
length n.

Summing up (and recalling that both the a priori complexity and the plain 
complexity differ from the prefix complexity at most by О (logn) for strings of 
length n), we come to the following conclusion:
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T h e o r e m  86. The difference between C(x) and KM(x) is bounded by O(logn) 
for strings of length n and may be both positive and negative with absolute value 
logn — 0 (1) for n-bit strings for infinitely many n.

We return to the comparison of different versions of complexity in Chapter 6. 
Now we provide only one statement of this type:

T h e o r e m  87. The difference KM(x)—KA (x) is not bounded from above; more­
over, for infinitely many n there exists an n-bit string x for which this difference is 
at least log logn — О (log log logn).

This theorem (proved by Day [48]) strengthens an old result by Gåcs [57] that 
established a weaker lower bound for the difference KM(x) — К  A (x). Both papers 
use a reduction to a game, for which a strategy for one of the players is constructed.

Recall that in both definitions (of KM(x ) and К  A (x)) we use computable 
continuous mapping / :  E —>■ E and consider the preimage of the set Ex of all 
sequences starting with x. Defining К  A , we are interested in the measure of this 
preimage, while for KM we are looking for the largest interval of type Ey which is 
a subset of this preimage. This shows that К  A K M f , and the difference can be
large, if the preimage is sparse (if it consists of large number of small intervals). The 
question is how large this difference could be for an optimal computable mapping.

We have seen a similar situation before. Recall our metaphor of space alloca­
tion (we allocate subsets of [0, 1] for countably many clients) used in the proofs of 
Theorem 46 (p. 78) and Theorem 58 (p. 93). The difference between prefix com­
plexity and the logarithm of the a priori probability on N has the same nature (the 
difference between the total measure and the maximal contiguous interval). How­
ever, in that case we were able to perform some kind of consolidation by modifying 
the description mode, and the price was just a constant factor.

Now we have a more delicate task since our clients form a hierarchy. This makes 
reorganization more difficult and consolidation leads to more than the constant 
factor overhead.

5.5.1. The proof of Gåcs—Day theorem . This is probably the most diffi­
cult argument in the entire book (though we tried hard to simplify the arguments 
from original papers of Gåcs and Day), and it is not used in the rest of the book, 
so feel free to skip it if it looks too difficult.

We start by describing some game. The two players are called Client and 
Server. The game has two parameters: a rooted tree and some rational d ^  1. 
At each moment of the game the vertices of the tree are labeled by non-negative 
rational numbers; the label of vertex x is called the request of this vertex (at the 
given moment). The request of each vertex is at least the sum of requests of its 
sons, and the request of the tree root is at most 1 jd.

Requests are chosen by Client. Server tries to serve these requests by allocating 
space in Cl. At each moment of the game Server allocates some subset of Cl for each 
vertex. This subset should be a union of finitely many intervals (=sets Г2Х). A set 
allocated for each vertex x should contain the sets allocated to the sons of x , and 
the sets allocated to brothers should be disjoint. This implies that sets allocated 
to incomparable vertices (one is not a descendant of the other) are disjoint.

The players alternate. Initially the requests of all vertices are zeros and all 
the allocated subsets are empty. At every move, Client may increase requests for 
some (or all) vertices but should not violate the restrictions stated above (otherwise
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she loses the game). In response, Server may increase the sets allocated to vertices 
(also obeying the restrictions). Her goal is to satisfy all the requests in the following 
sense: the set allocated to each vertex i should contain an interval whose length is 
at least the request of i. (The length of Q,x is 2~n for an n-bit string x. As we have 
already explained, we care about the contiguous intervals in the allocated space 
and not about its total size.)

If at some moment Server is unable to satisfy the requests made by Client, she 
loses. If the game is infinite (and both players follow the restrictions), we say that 
Server wins.

One can imagine that Client is the CEO of a big hierarchical organization 
which needs some space for its divisions, subdivisions, subsubdivisions, etc. At 
every moment it is known how much space each group requires, and the space 
allocated to each subgroup should be inside the space for the parent group. The 
space cannot be reused, it can only increase, and only the contiguous space counts 
(the size of the maximal interval, not the sum of the sizes of intervals).

Increasing the height of the tree and adding branches, we make the task of 
Server harder. The following statement says that it is enough to use trees of depth 
0(d) and with (constant) branching factor 2 ° ^ ° {d) to let Client win:

T h e o r e m  88 (Gacs-Day). For each d ^  1 and for a tree T  of depth 0(d) and 
branching factor 2°0)O(d) at every vertex, Client has a computable winning strategy 
in the corresponding game. (Computability means that there is an algorithm that, 
given d, implements this strategy.)

Gâcs has proven a similar result for trees with an infinite (or very large finite) 
branching factor. Day improved his construction and made it work for much smaller 
branching factors.

Before constructing the winning strategy, let us explain how its existence im­
plies Theorem 87. Note the branching factor can be decreased if we allow an 
increase in the depth: for example, the tree with a root and 2n sons of the root 
can be embedded into a binary tree of height n (the requests for the intermediate 
vertices are reconstructed as the sums of the requests of the leaves above them). 
In a similar way the tree from Theorem 88 can be embedded into a binary tree of 
height 0(d)o('d\  so Client wins for this binary tree.

Let d = 2C, where c is some natural number. Theorem 88 guarantees that Client 
has a computable winning strategy on the binary tree of height 2°^c2<:\  Let us use 
this strategy against Server who follows the optimal computable mapping /  : E —> E 
used to define the monotone complexity. This means that Server enumerates all 
pairs (y ,x ) such that x f(y)  (i.e., y is a description of x). When a pair (y , x) 
appears, the interval Cty is allocated to vertex x (if x is inside our tree—if the length 
of x exceeds 2° (c2 \  then x is ignored). When (and if) all the requests of Client 
are satisfied, Server informs Client that she made her move. After the next move of 
Client, Server resumes the process and continues until the new requests are satisfied 
(if it never happens, Server loses the game by not making a move).1

Theorem 88 guarantees that at some moment Server loses (she never satisfies 
Client’s request). This means that there exists a string x of length at most 2°(c2C)

1 Readers from the former USSR and similar countries should be familiar with planned 
economies when supply does not follow demand: the factories just produce what is planned until 
the customers become satisfied (if they are lucky enough to make modest requests).
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such that the request for x at some moment exceeds 2” KM(X). On the other hand, 
during the game, Client (using her computable strategy against the computable 
Server) enumerates from below some semimeasure jic on the tree: its value at 
vertex x is equal to the limit (=supremum) of all requests for x. Since Client wins, 
for some x we have KM(x) > — logßc(x). The weighted sum of semimeasures /ic 
with weights 2c/c2 is a lower semicomputable semimeasure on the infinite binary 
tree and is bounded by the continuous a priori probability (up to an O(l)-factor). 
So the a priori probability is at least £цс(х)2с/с2 for some fixed e > 0 and for all 
c, x. We conclude that for every c there exists a string x of length at most 2°^c2 ) 
such that

KM(x) > KA (x) + c — 2 loge — 0(1).
Let n be the length of x; then c is at least log log n — O(logloglogn) and therefore 

KM(x) > К A (x) + log log n — О (log log log n).

Note that our argument constructs a string x of length n with this property for 
infinitely many n, but not for all (sufficiently large) n.

138 Prove that for infinitely many n the following is true: for all strings 
of length n the difference KM(x ) — К A (x) is bounded by log log log n. Here the 
iterated logarithm can be replaced by an arbitrary non-decreasing unbounded com­
putable function.

(Hint: If some rare lengths are declared as very important, we can allocate the 
space for strings of each rare length in a special area reserved for this length, thus 
making the overhead rather small compared to length.)

P r o o f .  Let us start the proof of Theorem 88 with an informal discussion. 
What is the source of difficulties for Server? Imagine that Client requests a very 
small amount of space for some vertex. Server then has a choice: either allocate 
a part of the free zone (neighbor intervals are not allocated for any other vertex) 
keeping in mind the possible increase of the request, or do not think about this 
possible increase and allocate some (maybe) non-extendable space.

The danger in the first case is that this reserved space will never be used, if 
Client will not increase the request or will increase it so much that this reserved 
space cannot be used (as it is too small anyway). In the second case, if Server 
allocates neighbor intervals to other vertices, and then Client increases the request, 
the originally allocated interval is lost, since only contiguous intervals matter.

The winning strategy for Client exploits this dilemma. To keep track of the 
process, we look at ^-neighborhoods of different vertices. Let e < 1 be a negative 
power of 2. By £-neighborhood of some set X  in the Cantor space we mean the 
union of all intervals of length £ that have non-empty intersection with X. The 
interim goals of Client are formulated as follows: the ratio

the size of e-neighborhood of the space allocated for x 
request for x

is at least some k. For large k, if the requested space is more than 1 /к, Server loses.
Following this plan, we construct strategies for Client achieving that at some 

moment
• the request for the root is at most a ;
• the e-neighborhood of the space allocated for the root, is at least ß.
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Here a and ß are some parameters. The e-neighborhood of the space allocated for 
the root is called gray space: these e-intervals can never be allocated for any other 
vertex. More precisely, we use the following parameters:

• the tree for which the game is played;
• e that is used to measure ^-neighborhoods;
• maximal allowed request a for the root;
• the required size ß for the gray area (i.e., the ^-neighborhood of the space 

allocated for the root).
We are interested in the values of these parameters such that there exists a winning 
strategy for Client, i.e., she can achieve that ^-neighborhood of the space that 
Server allocates to the root has size at least ß while the root request is at most a.

E x a m p le  1. Let e be an arbitrary negative power of 2, let ß — e, and let 
a be positive and much smaller than ß. Then the (trivial) strategy “just request 
a for the root” works for every tree: whatever Server allocates for the root, this 
(non-empty) set has an ^-neighborhood of size at least e.

So it is easy to get arbitrarily high amplification (high ß/a)  for small ß. The 
difficult case is when ß e, and in this case we construct the strategy recursively by 
combining strategies for different trees and using inside the strategy some recursive 
calls of other strategies for the subtrees. In this inductive (recursive) construction it 
is convenient to add amplification as a parameter, introducing one more parameter 
к and requiring that the ratio (size of the gray area)/ (request) is at least k. For к = 
ß/a,  this requirement is obviously true, but we will use strategies that guarantee 
given amplification k, while the request size (and the gray area size) may vary in 
some limited way.

E x a m p le  2. Let T  be the tree where the root has m sons, and each of them 
has two sons (=grandsons of the root). Let e be some (negative) power of 2, let 
a — ß = me for some integer m, and let к = 3/2. (We see that к is important here: 
we do not specify the exact size of the request and the exact size of the gray area, 
but the second one should be к times greater than the first one, and me should be 
in between.)

Here is the winning strategy for these values. To make trouble for Server, 
Client selects for each son of the root one of its sons, and requests e/2 for all 
these grandsons of the root. (We specify here the requests for leaves only; for other 
vertices the requests are computed as the sum of requests for the descendants.) Now 
Server should decide which grandsons should be paired with their cousins (getting 
e/2 inside one interval) and who should be “a single occupant of a double room” 
(the neighbor interval of size e/2 is kept free). Looking at Server’s decision, Client 
increases the requests trying to make life harder for Server: for grandsons who do 
not have the reserve (have neighbors), Client requests e/2 for their brothers, thus 
making the father’s request e. Then Server needs to allocate a fresh interval of size 
e for the father (since the old one cannot be used, part of it is already allocated for 
his niece; the reserves in other places are also too small). Therefore, for each of m 
sons of the root one of two things happen: either e was grayed for e /2-request, or 
(3/2)e was allocated for e-request. In both cases the amplification is at least 3/2.2

2In fact, it is easy to achieve amplification 3/2 by asking for each son of the root slightly 
more than e/2: the interval sizes are powers of 2, and Server is forced to allocate an interval of size
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Let us now try to combine two strategies with the same amplification factor 
k. Our goal is to keep this amplification but increase the size of the request and 
of the gray area. Consider a tree where the root has two sons with subtrees T\ 
and T2. Assume that Client has a winning strategy for Ту, aq, ßy, e, and a winning 
strategy for T2, 0:2, /З2, £■ Let Client use these two strategies sequentially: the first 
strategy is used for Tb and when it wins (the gray area is large enough), the 
second strategy is used for T2. (One can assume without loss of generality that 
during Ti-game nothing is allocated for the vertices in T2, since these allocations 
can be postponed.) The total size of requests is then bounded by on + a2. But we 
cannot claim the additivity for gray areas: it is quite possible that the size of the 
e-neighborhood of the union is smaller than the sum of the sizes of ̂ -neighborhoods 
of the parts. For example, in the second game Server can use some space left as 
reserve in the first game.

To avoid this problem, we use different values E\ and £ 2  for the strategies. 
Assume that E\ <C £ 2  and the second strategy uses only requests of size at least 
£\. Then Server cannot use the gray area of the first game for the second one. 
Informally, we accumulate reserves “on different levels”, first on a micro level, then 
on a macro level. However, we cannot say that the gray areas are added. While the 
space allocated for T2 does not intersect the £j -neighborhood for Ту, the opposite 
is possible: space allocated for Ту may well intersect the ^-neighborhood for T2. 
To deal with this problem, we again consider a more general setting and agree that 
some set A C Q is fixed before the game starts; we say that A is unavailable to the 
server, and count only the new gray intervals. Let us explain in detail what all this 
means.

The final version of the game has the following parameters:
• a tree T ;
• a subset A C Q ( “space unavailable to Server” ) ;
• 8 (shows how the neighborhood of the unavailable space is measured);
• £ (shows how the neighborhood of the allocated space is measured);
• the maximal allowed request a for the root;
• the required size of gray area /3;
• the required amplification factor k.

We assume that £ and 8 are both (negative) powers of 2, and £ ^  8.
Here are the rules of the game. Client increases requests for vertices of T  

(the request of a vertex should be at least the sum of requests for its sons). The 
minimal request is 5, and the root request should not exceed a. Server allocates 
space for vertices of T, fulfilling the requests, and should use only intervals that do 
not intersect A. Client wins if the size of the new gray area (e-neighborhood of the 
allocated space minus 8-neighborhood of A) is at least ß and is at least к times the 
request for the root. As before, adding vertices to the tree or increasing e, we make 
Client’s task easier. This happens also if we decrease 5, /3, or k. One may assume 
without loss of generality that A is made of intervals of size at least 8 (since only 
the Æ-neighborhood of A matters).

at least e. But this r o u n d i n g  effect cannot be scaled recursively, so we will ignore it. Also we can 
use the sons only (not the grandsons), first asking e/2  for each of them and then increasing the 
requests for the vertices where Server provides no reserve. However, the version with grandsons 
is closer to the strategy in the general case (see the proof of Composition Lemma, page 138), so 
we have chosen this version.
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When this definition is given, the arguments above prove the following state­
ment.

C o m p o s i t io n  le m m a . Assume that for some tree T\ and for every unavailable 
set A, Client can win the game with parameters £1, Si, ot\,ß\, k\. Assume also that 
for some tree T\ and for every unavailable set she can also win the game with 
parameters E2 ,&2 , a 2 ,02,^2. Finally, let us assume that E\ — Ö2 and k\ = ^2 (we 
denote this value by к). Then for the tree T  that consists of the root with two sons 
having subtrees T\ and T2 and for every unavailable set, Client can win the game 
with parameters e2 , <5i, Qu + »2, ß\ + 0 2 , к.

The composition game starts with some set A, the space unavailable to Server 
during the game. This set is used without changes in the first of two composed 
games; for the second game we add to this set the area grayed during the first game. 
It is easy to see then that the newly grayed areas in both games do not intersect.

In fact, in the sequel we do not use exactly the statement of the lemma, but use 
the same idea in a slightly different situation: the subtrees where games are played 
are not fixed in advance but are chosen during the game (the next subtree depends 
on the game on the previous one). Also we combine many strategies, not just two. 
Because of this, we get a huge gap between the values of e and <5 in the combined 
game: <5 for each game is equal to e in the preceding one and significantly smaller 
than £ in the current game.

This is not enough to finish the proof: the amplification factor for the combined 
game is the same as for each game in the combination, so we need some other trick 
to increase amplification. Before giving an example of amplification increase, let 
us make a simple technical remark about the game definition. We may assume 
without loss of generality that the root request is at least ß /k  at the end of the 
game. Indeed, if it turns out to be less (due to some unexpected luck), we just 
formally increase it at the end on the game, and the winning condition is still 
satisfied. We call this trick final adjustment in the sequel.

E x a m p le  3. Let us show how Client can achieve amplification factor 2. The 
idea is to follow the same scheme as in Example 2, but use (instead of direct e j2- 
requests for grandsons) the recursive calls of the strategy that gives amplification 
3/2 (from the same Example 2).

Let us recall what was achieved there. For a given a and for arbitrarily small 
£ (such that m = a je is an integer), Client has a strategy on a tree of height 2 
that allows her (for 5 — e/2 and for an arbitrary unavailable3 set A) to get at least 
a newly grayed space with a root request at most a and an amplification factor 
at least 3/2. The tree has m  sons of the root, and each has two sons. Note that 
m should be an integer, but this is not a problem, as we will use the strategy of 
Example 2 only when a  is a multiple of e.

To compose strategies of this type, each next strategy should have an £-parame- 
ter twice as big as the preceding one. It is important that we can use the same value 
of a in all the games; the construction of Example 2 makes the choices of a and

3In Example 2 we did not consider the unavailable space, but the same strategy works in 
this case: we say that a grandson of the root has a reserve if the e/2-interval allocated to this 
grandson can be extended to the e-interval in place (the other half of the e-interval is not allocated 
to the other grandson and does not intersect the unavailable space). We use here that 5 =  e/2: 
the newly grayed area is disjoint with unavailable space because of this.
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e independent. Knowing in advance how many strategies we want to compose, we 
decide what should be the initial value of e and 5 (for the first strategy in a row). 
In the sequel we assume that the parameters of the composed games are chosen in 
this way and return to our task: achieve к > 2, if the e-neighbor hood is measured 
at the end of the composed game (for some e), and we are free to choose Ö used to 
measure the ^-neighborhood of the unavailable space in the composed game.

We show how Client can achieve some к > 2 for arbitrary e, for every a = me 
and for small enough 5, with root request at most a and for newly grayed area at 
least a (so ß = a), if a tree is chosen in a suitable way.

Our construction is similar to Example 2. The root has (as before) m  sons, 
but now has more grandsons. Let us agree that each son of the root has 12 sons (it 
will be enough). Instead of making direct requests for the grandsons (as was done 
in Example 2), we recursively call the strategies described above, so each grandson 
has a subtree of height 2 (its width should be big enough for all values of e used in 
the subgames), and the total height of the tree is 4.

At each moment we look at the sons of the root and consider those of them 
who currently do not have a reserved interval; by a reserved interval for vertex x 
we mean an interval of size e that contains some space allocated to x and which 
does not contain any space allocated to vertices that are not descendants of a;, as 
well as any points of the unavailable set (specified at the beginning of the game). 
In other words, an interval is reserved when (1) its part is already allocated for 
x, and (2) this interval may still be used for x if the request for x increases and 
becomes e. (Note that the reserved interval may disappear later if some its part 
is allocated to another vertex.) So we consider some son x that does not have a 
reserved interval, take some son у of x (not used before for the same purpose), and 
run a strategy with amplification factor 1.5 and a = e/8 on у . The request for у 
made by this strategy is at most a = e/ 8 and (because of final adjustment, see the 
paragraph before Example 3 on p. 138) at least a/1.5 = e/12. After that (when 
the strategy wins its game) look at x again: maybe now x has a reserved interval, 
and maybe not. In the latter case, we can apply the same trick to some other 
son of x—or, if we wish, we can select some other root’s son that does not have 
a reserved interval—both options are OK. In any case, we repeat this procedure 
until all sons of the root have their reserves. One additional precaution is needed: 
if the request for some root’s son exceeds (7/8)e, we just increase its request up to 
e (which creates a reserved interval automatically) to avoid the possibility that the 
request increases by e/8 and becomes greater than e. Each call of the 1.5-strategy 
increases the request of the corresponding son of the root by at least e /12, so we 
never need more than 12 sons for each son of the root. For the same reason, the 
total number of these calls is bounded by 12m.

What do we achieve by all these tricks? For each son of the root look at the 
last moment when we considered this son and finally got a reserved interval for it. 
This reserved interval has size £ and it was not a reserved interval before the last 
step. Since it became a reserved interval (and continued to be a reserved interval), 
it contains no points of the unavailable set and no space allocated to other vertices 
(except for the descendants of x). Since it was not a reserved interval before, it had 
no space allocated for x, and therefore it was completely empty. The conclusion: 
the space that was grayed during previous calls of the 1.5-strategies is not part 
of the reserved intervals. This space already gives us 1.5-amplification, and by
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adding (rather big and almost empty) reserved intervals, we get amplification for 
к = 20/9 > 2, as one can check.

Let us make a detailed accounting. Let 7  be the sum of the requests made 
during all not-the-last calls for all sons of the root. These calls provide a grayed 
area of size at least (3/ 2)7 that does not intersect with the reserved intervals. In 
total, we get a grayed area of size at least (3/ 2)7 + me, and all our requests in total 
are bounded by 'y + m,(e/8). So there are two parts: for one part, amplification is at 
least 3/2, for the other part, the amplification is 8, and the second part is not too 
small compared to the first, so in total we get a significant increase. Technically, 
7  ^  me implies

r3 20 e'
- 7  + me > — 

9
7 + m -

(a simple computation). So we get a desired strategy for a = ß = me and к = 20/9 
(so к > 2).

Now the big picture should be more or less clear. Having the strategy for к = 
20/9, we can call it recursively for the grandsons of the root (therefore considering 
the tree of height 6 with large branching factor; one can get an explicit upper bound 
for this factor). With some tuning of the parameters, such a step can increase the 
amplification factor к almost by 1. Indeed, if we take a very small fraction of e 
instead of e/8 (used in our last example), the overhead that happens during the 
last step (when the final reserved intervals appear) is negligible, and we get reserve 
me in addition to a fc-times increase achieved during recursive calls. If the total 
request 7 is close to its maximal value me, we increase amplification almost by 1, 
and if 7 turns out to be smaller, the amplification is even better. To get the upper 
bound for the width of the tree, we recall that we may assume without loss of 
generality that each recursive call increases our request by some guaranteed value. 
This shows that for a tree of height O(k) and large enough branching factor, Client 
can guarantee ^-amplification, and this is enough for Gåcs (but not for Day).4

Let us now go through the details of this argument. We consider values of 
к > 1 that are multiples of 1/2. By induction we prove that for every e < a < 1 
that is a power of 2 there exists some 8 ^  e (also a power of 2) such that Client 
has a winning strategy in the game with parameters £, 8, a, a, к and an arbitrary 
unavailable set A on the tree that has height 4(к — 1) and an infinite (or large 
enough) branching factor.

The induction base (k = 1) is obvious. For the induction step, we assume that 
the statement is true for some k, and prove it for k + 1/2. We use the strategy from 
Example 3 on the tree of height 4(k + 1/2 — 1), now applying the ^-amplification 
strategy (induction assumption) for the grandsons of the root (the subtree height 
is exactly 4(к — 1) there). The value of a for these games is chosen as a power of 2 
in the interval (e/(6k),e/(3k)]. (Since the upper bound in this interval is twice as 
big as the lower bound, it contains some power of 2.) Each recursive call increases 
the root request at least by e/(6k2), so the number of recursive calls is bounded

4In fact we need some additional steps to finish the proof of Gåcs’ result. We have a strategy 
for an arbitrarily large amplification k,  but what we need is a strategy with an arbitrarily large 
ratio ß / a :  we need the grayed area to be more than 1 and the request at most l / d .  Such a 
strategy can be easily constructed as a composition. For example, let us apply the strategies with 
amplification к — 2 d  and a  =  1/(4d)  for the sons of the root until the total request becomes greater 
than l / d  — l/(4d ). We get a strategy with parameters a  =  l / d  and ß  =  2 d ( l / d  — l/(4d )) =  3/2  
for the tree of size O ( d ) ,  which is enough.
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by 6mk2. So we are able to choose in advance the parameters e and Ö for all the 
recursive calls. Also we can bound the number of grandsons of the root used in this 
process: it is enough to have Qk2 sons for each son of the root.

When all the sons of the root have their reserved intervals, we achieve our goal. 
Indeed, let 7 be the sum of requests made during non-last recursive calls. This 
gives us a grayed area of size k j  outside the reserved intervals, so in total we get at 
least k j  + me for the grayed area while making requests for at most j  + m(e/(3k)). 
Since 7 ^  me, we get к + 1/2 amplification factor

k j  + me ^  (k + 1/ 2) (7 + me/Зк)
(a simple computation).

This strategy works for infinite branching and for large enough finite branch­
ing (depending on e, a, k)—but the required branching factor is much larger than 
needed for Theorem 88. Let us explain why this happens. The tree for given e, a, к 
has branching factor a/e  at the root. In the sons of the root the branching factor 
is small enough not to be a problem, but we should look at the grandsons. To 
estimate the branching factor there, we need to bound the ratio a!/e' for the pa­
rameters of the recursive calls made for the grandsons. The parameter a' is about 
ej(3k) and is the same for all the calls, but the parameter e' is different for different 
calls. The minimal e' corresponds to the chain of (a/e)6k2 application of the e Ö 
transformation from the induction assumption, and it is much smaller than the 
original e. It means that the branching factor for the grandson that is processed 
first should be very large (in fact, we do not know which of the grandsons will be 
processed first, so we need this large branching for the “oldest” son of every son).5

So the problem with our strategy is that it makes too many recursive calls. It 
turns out that 0( k2) recursive calls (instead of 0(k2a/e)) are enough if we use a 
more clever strategy. It is important that for this strategy the number of calls does 
not depend on a/e.

Here we discuss the modification of the induction step. Now the (к + 1/2)- 
strategy processes all the sons of the root that do not have reserved intervals yet, in 
parallel (and not sequentially, as we did before). More precisely, at each iteration we 
consider all the sons that do not have reserved intervals, we choose one unprocessed 
son for each of them, and we process these sons (who are grandsons of the root) 
together, making a recursive call. This means that the format of the game is now 
changed: it is played not for one tree, but for a family of identical disjoint trees. 
(Server should provide disjoint intervals for vertices that are in different trees.) 
This modification alone is still not enough: it may happen that for each iteration 
only one son of the root does not have a reserved interval. In this case there is no

5To get a bound for the branching factor for grandsons, we need to bound the ratio e / 8  in 
the strategy by some function f k ( a / e ) .  The value f k + i / 2 (a / e ) is a product of (a / e ) 6 k 2 values of 
the form f k { a ' / e ' ) .  Here a ! f e '  are different: the first e' can be a ! , but the following ones should 
be much smaller: the second e'  should be /*.( 1) times smaller than the first one, the third should 
be f k ( f k (  1)) times smaller than the second, etc. The last term in the product is obtained by 
(a /e )6 k 2 iterations of f k  starting with 1. Therefore,

f k + i M < * / e )  «  ЗА: ■ /*,(1) ■ / fc(/fc(l)) • f k ( f k ( f k ( m  

the product has (a / e ) 6 k 2 factors, and the equation is only approximate since the first e' is only 
close to e /( 3k ) .  And we can start, say, with / 3 / 2  (<*/£) — 2 (see Example 2). Then / 2  (а /e ) grows 
exponentially as а /e  increases: / 2  (а /e ) ^ 2a / £. And / 2 , 5  (a /e ) is a tower of exponents with base 
2 and height а /e . (One could use the strategy from Example 3 and increase к  by (almost) 1 
during the induction step, but this would only slightly postpone the problem.)
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real parallelism. To avoid this problem, we should not wait until all the sons (of 
all the roots—now we have several trees) have reserved intervals; it is enough for 
us if sons with reserved intervals form a large enough fraction. The threshold for 
“large enough” should be greater than 1/2 (if we want a 1/ 2-increase in к); let us 
use, say, 3/4 as the threshold. This implies some loss: the value of ß is now only 
(3/4)a; in its turn, this makes the lower bound for the sum of requests for all the 
roots smaller, only 3/4 of the old one, and we need slightly more iterations to get 
the reserved intervals. The final adjustment is now done as follows: If the average 
request for the tree roots is less than (3/4)ot/k, we increase some of the requests 
that are less than a, to get the average (3/4) a/A:.

As before, if the request of some son и of the root is so close to e that we may 
cross threshold e while processing one more of its sons, we just increase the request 
of и up to e. It should be done in the same way, before the next recursive call.

In this way the grayed area will be of size Ary + (3/4)me instead of k j  + me, 
as it was earlier (here 7 is a grayed area that is due to grandsons who are not the 
last processed among their siblings, and m  is the total number of sons of the roots 
of all trees), and the sum of requests is the same as before, j  + me/Зк. Recall that 
e/(3k) has appeared here as the a parameter for recursive calls. To get the ratio 
(grayed)/(requested) at least к + 1/ 2, we need to decrease slightly this parameter, 
and e/( 6 k) will be enough. This makes the number of iterations twice as big, but 
this is not a problem. There are more details: At each step the sum of the requests 
of all sons will increase by a quantity that is proportional to me/к 2. The sum of 
the requests of all sons cannot exceed me, therefore the number of recursive calls 
is bounded by 0 (k2).

Now let us provide the details. First we should explain what changes are needed 
in the definition of the game and the construction of a winning strategy. Now the 
game, in addition to k, e, ö, a, ß , the tree T, and the unavailable set A, has an 
integer parameter I, the number of trees. The meaning of e, ö, A remains the same 
as before, a is the upper bound for the request of each root, and ß is the lower 
bound for the average newly grayed area (per tree): the total size of the grayed 
area should be at least Iß. Finally, the parameter к is the lower bound for the ratio 
(total grayed area)/(sum of the root requests for all trees).

As before, we may compose the strategies; however, now the composed strate­
gies should have the same values of к, T, a. We can apply first the strategy with 
parameters e\,5\,a,  ß\ , k  and some unavailable set A to some family of trees (each 
tree is isomorphic to T). Then we apply the strategy again with new parameters 
£2 , Ö2 , a, /02; к and a*new unavailable set (the union of A and the £1-neighborhood of 
the allocated area) for the second (disjoint) family of trees isomorphic to T. We as­
sume that £1 = 6 2 . In this way we win the game with parameters £2, 5i, a, ß\ +ß 2 , к 
and unavailable set A.

As before, we assume that к ^  1 is a multiple of 1/2 and use induction over 
к to construct a winning strategy for Client for every e ^  a ^  1, ß = (3/4)a and 
for some 5 ^  e and some finite tree of height 4(A: — 1); its branching factor will be 
specified later. The numbers e, a, 5 are all negative powers of 2. The strategy wins 
the game for every I and A.

The induction base (к — 1) is obvious. Let us consider the induction step from 
к to к + 1/2. The tree, as before, has aje sons of the root and each of them has 
0(k2) sons (the exact value will be specified later); recall that now we have a family
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of isomorphic trees. The strategy at each iteration does the following. First of all, 
we increase up to e the requests for those sons of the roots whose request already 
exceeds e — e/6k. After Server’s move we check how many sons of the roots do 
not have a reserved interval yet. If more that 25% of them do not have a reserved 
interval, for each son that does not have a reserved interval we select an unprocessed 
son (who is a grandson of one of the roots). For this family of grandsons we perform 
a recursive call of the strategy with parameter k, and a is chosen as a power of 2 in 
the interval (e/(12k),e/(6k)]. We repeat this procedure until the fraction of sons 
that do not have a reserved interval becomes less than 25%.

For every recursive call the sum of all requests increases by (3/4)m(e/(12fc2)) 
or more, where m  is a total number of sons of all roots. And the sum of the 
requests for all roots cannot exceed me: we guarantee that every son of every root 
has request at most e (after that the reserved interval is guaranteed). So the total 
number of recursive calls is at most 0(k2). Moreover, each root has request at most 
a, since each root has a/e  sons. The total size of the newly grayed area is at least 
the total length of all the reserved intervals, and it is at least (3/4)me, as required. 
It remains to estimate the ratio (newly grayed area)/(total sum of requests).

Let 7 be the sum of increases for root requests, if we do not count the last 
increases that created reserved intervals. This increase creates a k'y increase in the 
grayed area, if we do not count the reserved intervals. In total we obtain a grayed 
area of size к7 + (3/4)me by making requests at most for 7 + m(e/6k). Since 
7 ^  me, the first number is at least к + 1/2 times greater than the second one:

k'y + (3/4)me ^  (к + l / 2)(7 + me/6k)

(a simple computation).
It remains to bound the branching factor of the tree T  needed for this construc­

tion by a function of к and the ratio a/e  (it is easy to see that only the ratio of these 
numbers is important). As we have discussed (after constructing of a strategy for 
infinite trees), we should first compare <5 and e and prove that one can use Ö — e/c^ 
for some sequence Ck that does not grow too fast.

For к — 1 we had <5 = e, so C\ = 1. The strategy for к + 1/2 makes at most 
0(k2) recursive calls of ^-strategy, and its e/<5-ratio is the product of the same 
ratios for recursive calls, multiplied by the ratio e/e' , where e is the parameter of 
the game and s' is the similar parameter for the last recursive call. The latter ratio 
does not exceed 12A:, because the last call is made with parameter a' that is at least 
e/(12k), and we can use the same value of e1. So we get a recurrent formula

Cfc+1/2 = 0{kc°(k }),

which gives Cfc = 2°(fê4(A 1}.
Now it is easy to bound the branching factor for the tree T  by a function of к 

and a/e.  Recall that in the construction of (k + l/2)-strategy we used a tree with 
branching factor a/e  in the root and 0(k2) in the sons of the root. So at all odd 
levels (the root level is 0) the branching factor is 0(k2)\ it remains to bound the 
branching on levels 2,4, . . . .  At level 2 the branching factor is again equal to the 
ratio a!/s' of the parameters of the strategies used. It is easy to see that this ratio 
does not depend on the original a and e. Indeed, calling the strategy recursively 
for the grandsons, we use the value of a' that does not exceed e/ (6k) and the value 
of e' that is at least e/c*.+1/2- Therefore, the branching factors for the grandsons
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are bounded by 6 kck+i/2 ■ The same is true for all other even levels (with a smaller 
value of k).

Therefore, the ^-strategy wins on the tree with branching factor

max{a/£. 0 (k2), 6 (k — 1/ 2)с&} = тах{а/г, 0 (k2), 2 ° ^  ( }};
here the second term (for large к) is dominated by the third one, and we can ignore 
it.

Now we can finish the proof of the Gacs-Day result. Let d be a power of 2. 
We need to construct a strategy with parameters a = 1 fd and some ß > 1 that 
wins on some tree T  with a bounded depth and branching factor. For that, we 
call the strategy constructed above (sequentially for each of the sons of the root) 
with parameters к — 2d and a = l/(4d) until the request for the root reaches the 
dangerous level I fd — l/(4d). In this way we request at most 1 fd, and the grayed 
area is at least 2 d(l/d — 1/(4d)) > 1. After each call the root request increases 
at least by (3/4)(l/4d)(l/к), so the number of requests is bounded by 0(d3), and 
0(d3) sons of the root are enough. The subtree rooted there should be suitable for
a 2d-strategy with parameters a = l/(4d) and £ = (1/(4d ))/c^ d К This requires 
trees of height 0 (d) and the branching factor

m a x { Ĉ 3\ 2 ° W 4(fc- 1,} =  2 ° ( d)0(d\

This finishes the proof of the Gåcs-Day result. □

139 Prove that the height of the tree in the Gacs-Day theorem cannot be 
less that df4: if it is smaller, Server has a winning strategy (instead of Client).

Returning to the gap between KM and K A , we observe that the upper and 
lower bounds are still significantly different: the only upper bound known says that 
the gap is at most O(logn) for n-bit strings (and this is true even for К  instead of 
KM).  One small improvement is that we can replace n by К A (x ), as the following 
problem shows.

Prove that KM(x)  < KA (x ) + 0(log KA (x )).140
(Hint: In fact KM(x  | KA (x)) < KA (x) + 0(1). Indeed, if KA (x) = к , then x 

at some point appears in the growing subtree of strings whose a priori complexity 
is less than к + 1. This tree at all times has width (the cardinality of maximal 
antichain) at most 2k+1, so looking at the maximal elements of this tree, we cover 
it by 2k + 1  growing branches. For details see Theorem 127, p. 194.)

5.6. Levin—Schnorr theorem

The definition of the a priori complexity guarantees that for any lower semi- 
computable semimeasure p the inequality К A (x) < — logp(x) + c holds for some c 
and for every x. It turns out that if p is a (computable) measure, then this inequal­
ity is true not only for a priori complexity KA but also for a (larger) monotone 
complexity KM.

T h e o r e m  89. Let p be a computable probability distribution on O, and let p 
be the corresponding function on binary strings: p(x) = p(Q.x). Then there exists a 
constant c such that

KM(x)  < — logp(:r) + c
for every string x.
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p( o) P( 1)

P( oo) p ( 0 1 ) p(10) p( 11)

F igure 12. The construction of ^

P ro o f . The idea of the proof can be explained as follows. The difference 
between KM and KA appears because we are unable to allocate contiguous space 
to hierarchical users’ requests, since we do not know which of the current requests 
will increase in the future. However, if we have a measure (and not a semimeasure), 
we can solve this problem and allocate contiguous intervals. (Feel free to ignore 
this metaphor if it is confusing: we provide a formal proof in the next paragraphs.)

For each string x we define an interval ttx inside [0,1]. The interval ttx is defined 
in such a way that:

• the length of тгх equals p(x);
• 7Гд = [0,1] (here A is the empty string);
• for each string x the interval nx is split by some its point into intervals 

ttxq (left part) and irx\ (right part)
(see Figure 12).

We consider also another family of intervals that corresponds to the uniform 
measure. Let Ix be the interval of reals whose binary representation starts with x. 
We call the intervals Ix binary intervals.

Now consider the set G of all pairs (x, y) of strings such that (binary) interval 
Ix is located inside the interior of 7ry. The set G is enumerable. Indeed, since the 
function p is computable, we can find the endpoints of intervals iry with arbitrary 
precision, and if they are strictly greater (or less) than some rational number, this 
fact will be discovered eventually.

Note also that the property (x ,y ) G G remains true if we replace x by some 
extension (since Ix becomes smaller) or replace y by any prefix (since iry becomes 
larger). If (x ,y \ ) G G and (x ,y 2 ) G G, the segments iryi and тгУ2 have a common 
interior point (they both contain Ix), therefore the strings y\ and У2 are compatible. 
So Theorem 81 (p. 127) guarantees that there exists a computable mapping of E 
into itself whose lower graph is G. We use this mapping as the decompressor 
in the definition of monotone complexity. Then KMo(y)  equals the minus binary 
logarithm of the biggest binary interval that is located strictly inside iry. It remains 
for us to note that any open interval of length h contains a closed binary interval 
of length h/ 4 and to compare D with the optimal decompressor. □

1141 Prove the claim about binary intervals (see above).
(Hint: Let и be a power of 2 such that h/ 4 < и < h/2. Then any interval

of length h intersects at least three consecutive binary intervals of length и and 
contains the middle one.)

Theorem 89 provides a theoretical justification for the following approach used 
by Kolmogorov and his students to get upper bounds for the complexity of Russian 
texts. While reading the text (one letter at a time), the reader tries to guess the 
next letter. The guess is formulated as a probability distribution over the alphabet.
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Then the next letter is read and we add — logp to the complexity, where p is the 
declared probability of that letter (i.e., its probability with respect to the guessed 
distribution).

If we believe that the behavior of the reader is computable, the result is an 
upper bound for the complexity. Indeed, the reader provides (some part of) a 
computable probability distribution on the set of strings telling the conditional 
probabilities along some path, and the complexity of text does not exceed the sum 
of negative logarithms of these probabilities (Theorem 89).

Of course, it is not practical to require that the reader provides at each step 
the list of probabilities for all the letters; one can suggest some standard types 
of answers such as “the next letter is A with probability 0.5, all other vowels are 
équiprobable and have total probability 0.3, all other letters are équiprobable”. 
Note also that we get an upper bound for the conditional complexity of the text 
where the condition is the background of the reader. (For example, if the reader 
knows the text by heart or is just familiar with the author’s writings, the bound 
can be very small.)

The same trick used in compression algorithms is called arithmetic coding and 
was even patented (many years after Kolmogorov’s experiments in the 1970s).

Now we are ready to formulate the criterion of Martin-Löf randomness that 
uses monotone complexity: a sequence is ML-random if and only if the inequality 
of Theorem 89 becomes an equality for its prefixes.

Let us formulate this statement precisely. Let /i be a computable probability 
distribution on the set Q of all infinite bit sequences, and let p(x) be the measure 
of the interval Q,x: p(x) — p>(Q,x).

T heorem  90 (Levin-Schnorr). A sequence со e Q, is ML-random with respect 
to a computable probability distribution /i if and only if

— log p(x) — KM(x)  ^  c 

for some c and for every prefix x of со.

P ro o f . We have to prove this theorem in both directions. Let us show first 
that if (for a given sequence со) the difference — logp(x) — KM(x)  is unbounded, 
then this sequence is not ML-random (i.e., the set {cu} is an effectively null set).

Fix some constant c and consider all strings x such that — logp(x) — KM(x) > c. 
(This difference is sometimes called randomness deficiency, but this term has differ­
ent meanings. We have already used it in the previous chapter, and in Chapter 14 
it is used in a different way.) This set is denoted by Dc.

The set Dc is enumerable (since p is computable and KM is upper semicom- 
putable, the difference is lower semicomputable).

Lemma 1. The set of all infinite sequences that have a prefix in Dc has /i- 
measure at most 2~c.

Informally speaking, this is true because on this set the measure /i is 2C times 
smaller than the a priori probability (and the latter does not exceed 1). More 
formally this argument can be explained as follows.

We are interested in the measure of the union of intervals flx for all x  G Dc. 
Without changing this union, we may keep only minimal x  G Dc (i.e., strings x e Dc 
such that no prefix of x  belongs to Dc). Let xq, x \, ... be these minimal elements
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of Dc. (We do not claim the the set of minimal elements is enumerable, so this 
sequence may be non-computable.)

For each X{  consider the minimal description pi (according to the definition of 
the monotone complexity: Xi ^  D(pi) where D\ £ —> £  is the optimal monotone 
decompressor). Then l(pi) — KM(xi) < — logp{xf) — c. Moreover, no pi is a prefix 
of another one (otherwise, the corresponding X i  would be compatible). Therefore 
Z i 2 ~ liPi) < 1 (being the sum of uniform measures of disjoint sets f2Pi). The 
corresponding p(xi) are 2C times smaller, so we get the statement of Lemma 1.

Our assumption guarantees that the sequence со has prefixes from Dc for every c. 
To prove that {ca} is an effectively null set, we need to cover со by an enumerable 
family of intervals with total measure not exceeding 2~c, and we can use intervals 
from Dc.

However, there is a small technical problem here (that we already encountered 
while speaking about randomness tests). We know that for intervals from Dc the 
total measure (i.e., the measure of their union) does not exceed 2~c (as Lemma 
1 says), but the definition needs that the sum of measures of all intervals does 
not exceed 2~c. We cannot solve this problem by considering only minimal points 
(maximal intervals), since the set of minimal points is not always enumerable. 
Instead we can use the following statement:

Lemma 2. Every enumerable set of strings xo,Xi , ... can be transformed into 
an enumerable set of incompatible strings with the same union (Ĵ  QXi. This trans­
formation is effective (an algorithm that enumerates the first set can be transformed 
into an algorithm that enumerates the second one).

Indeed, if during the enumeration we get a string that is an extension of the 
previously enumerated one, this string can be omitted (since the corresponding 
interval is already covered). If we get a string у that is a (proper) prefix of a string 
X enumerated earlier, we have to split the difference fly \  Qx into a finite number 
of disjoint intervals and replace у by strings that define those intervals. Lemma 2 
is proven.

Applying Lemma 2, we get an enumerable set of incompatible strings; these 
strings may be not in Dc, but this is not important. It is enough to know that they 
correspond to disjoint intervals that cover со, and the union of these intervals has 
/r-measure at most 2~c, according to Lemma 1.

Proving the converse implication, we need to show that if a sequence со belongs 
to an effectively null set, then the differences between the negative logarithms of 
the measure and the monotone complexity of ca-prefixes are unbounded. The idea 
of this construction may be explained as follows: given a set of small measure, we 
construct a monotone decompressor that treats favorably the elements of this set 
(i.e., provides short descriptions for their prefixes).

Let us provide details now. Assume that со belongs to a set U which is an 
effectively null set (with respect to measure p). For each c we can effectively find 
a family of intervals f2Xo, QXl, . . .  that cover U (and therefore со) and have total 
measure less than 2~c. If we multiply the measures of all these intervals by 2C, 
the sum is still less than 1. Consider the computable sequence pi — 2cp(flXi). 
Applying Theorem 59 (p. 96), we get a prefix-free decompressor for which the 
prefix complexity of i does not exceed — logyu(S7Xi) — c + 2. A composition of this 
decompressor and the computable mapping i (->• Xi is a prefix-free decompressor Dc
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such that
k 'dc (xi) ^  -  log fj.(üxi ) -  c +  2.

(The subscript c in Dc is used to stress that the construction depends on c; we 
use prefix-free decompressors since it will be useful later.) Monotone complexity 
does not exceed the prefix one, so if the difference between the negative logarithm 
of the measure and the prefix complexity is large, the same is true for monotone 
complexity. It remains to combine the decompressors Dc into one decompressor 
(not depending on c).

We use the same trick that was was used in the construction of an optimal 
decompressor. We want the string cu to be the description of the string v if и is a 
description of v with respect to Dc. Here c is a self-delimited encoding of length 
O(logc) for a natural number c. If the decompressor D is constructed in this way, 
the following inequality holds (for all c):

K'D{xi) < - \ogp( t tx .) -  c + O(logc).
Since the monotone complexity does not exceed the prefix one, we replace K'D(xi) 
by KM (xi) and conclude that all the strings Xi (for a given c) have the difference 
between — logp{xi) and KM(xi) at least c—O(logc). If an infinite sequence belongs 
to С/, it has a prefix of this type for any c, therefore the difference is unbounded for 
its prefixes.

The Levin-Schnorr theorem is proven. □

142 Show that in the first part of the proof (if a difference is unbounded, the 
sequence belongs to an effectively null set) it is enough to have P  upper semicom- 
putable, while in the second part it is enough to have P lower semicomputable.

In fact the proof gives us a bit more than we claimed. Here are several modifi­
cations of the Levin-Schnorr theorem that can be extracted from it:

T h e o r e m  91. We may replace the monotone complexity KM (x) by the a priori 
complexity К A (x) in the statement of the previous theorem.

P r o o f .  The a priori complexity does not exceed the monotone one, so the 
difference may only increase. So we need to change only the first part of the proof. 
It is easy: in the proof of Lemma 1 we should note that 2 KA( xi )  ^  -ц since
this sum is the sum of the a priori measures of disjoint intervals QXi. □

T h e o r e m  92. We can also replace the monotone complexity KM(x) by the 
prefix complexity K(x).

PROOF. Here we go in the other direction and increase complexity, so only the 
second part of the proof needs to be redone. And this is trivial—recall that in fact 
we got just an upper bound for prefix complexity. □

Theorem 92 is nowadays the most popular version of the Levin-Schnorr ran­
domness criterion (see, e.g., [103] ; see [18] about the history of these results).

The use of monotone or a priori complexity seems (at least to the authors) 
more natural (though the prefix version has its own advantages; see below the 
formula for the randomness deficiency in terms of prefix complexity). Note that if 
we use prefix complexity, the difference in the Levin-Schnorr theorem can become 
negative. For example, in the case of the uniform measure — log/^flz) is just the 
length of string x, and the prefix complexity may be greater than the length (the 
difference can be of order logn; see Theorem 63, p. 100).
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Moreover, the use of the monotone complexity allows us to strengthen the 
Levin-Schnorr theorem as follows:

T h e o r e m  93. If a sequence со is not random with respect to measure p, then 
the difference — logp(x) — KM(x) for prefixes x (of со) is not only unbounded but 
also tends to infinity.

P r o o f .  In the proof of Theorem 90 we constructed a prefix-free decompressor 
that provides short descriptions pi for strings X{ and guarantees that the prefix 
complexity of Xi (with respect to this decompressor) does not exceed — log p(Qx.) — 
c. To get the required bound for monotone complexity, we may use (for each i) the 
extensions of pi as descriptions of the extensions of Xi in such a way that the length 
of the descriptions corresponds to the measure of described strings, as was done in 
the proof of Theorem 89 (p. 144).

More formally, we can use the inequality KM(xy) ^  K(x) + KM (y\x) (Prob­
lem 135) and the relativized version of Theorem 89: KM (y\x) ^  — logpx(fly) for 
any computable family of measures that (computably) depends on parameter x. 
Here px is the measure that is concentrated on the set ftx and is defined as follows:
px(^ly) -- ^(S^xy) /  piff^x)'

For the case of uniform measure (where — logp(Qx) = l(x)), we can use a 
simpler argument and say that piz is a description of xiz for any string z. □

This result can be reformulated as follows: if the difference logp(x) — KM(x) 
is uniformly bounded for infinitely many prefixes x of some sequence со, then со is 
random. For the prefix version, our argument does not work, but we still can prove 
a weaker statement for computable sequences of lengths.

Let A be a decidable infinite set of natural numbers (lengths), and let со 
be some sequence. If K(x) ^  — logp(Qx) — c for some c and for every prefix x of 
со with length in A, then со is random.

(Hint: In the proofs of Theorems 90 and 92, we can split the intervals into 
parts to get the desired length.)

143

We provided some arguments in favor of using monotone complexity in the 
randomness criterion. However, a version that uses prefix complexity has its own 
advantages. Note that the notion of an ML-random sequence is invariant under 
computable permutations of indices (if the measure is invariant or is changed ac­
cording to the permutation), but the notion of a prefix (and therefore the criterion 
of randomness in terms of prefixes) is not. As it was noted by A. Rumyantsev, 
using К  one can get an invariant criterion of ML-randomness.

Let F  be a finite set of indices (natural numbers), and let w be a binary se­
quence. By co(F) we denote the restriction of со onto F, i.e., the binary string 
formed by bits coi such that г G F  (in the same order as inw).

Let p be a computable measure on Q. For every finite set F  C N and string 
Z  whose length equals the cardinality of F, we consider the event co(F) = Z. Its 
/^-probability is denoted by pf,z-

144 Let a; be an ML-random sequence with respect to p. Prove that

K(F,w(F)) > -  logPf m f ) ~ c

for some c and for all finite F.
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(Hint: The measure of the set of all sequences for which this inequality does 
not hold for some fixed c, does not exceed 2~c multiplied by the sum of the a priori 
probabilities of all pairs F, Z , and therefore does not exceed 2~c.)

(Note that if F  is an initial segment of N, then F is determined by w(F) and 
can be eliminated, so we return to the previous statement.)

In fact, the condition given by the last problem is also sufficient. Moreover, it 
is enough to require this inequality for any increasing computable sequence of finite 
sets whose union is N.

145 Let Fo C Fi C F2 C • • • be a computable sequence of finite sets and
(J{F{ — N. Assume that for some sequence u> we have

K{Fi,uj(Fi)) ^  logßFi,u>(Fi) -  c

for some c and for all i. Then oj is ML-random with respect to p.
(Hint : Using permutation of indices, we may assume that F* are initial segments 

of N. Then we refer to Problem 143: it is enough to repeat the proof of the 
Levin-Schnorr theorem using only strings of appropriate lengths and splitting other 
intervals into unions of appropriate intervals.)

This statement implies, for example, that a two-dimensional bit sequence (i.e., 
a mapping Z2 —> {0,1}) is ML-random with respect to the uniform measure (all 
bits are independent; 0 and 1 are équiprobable) if and only if an N  x N  square 
centered at the origin has prefix complexity at least N 2 — 0(1) (for all odd N).

Let us note one more reason that makes the appearance of prefix complexity in 
the randomness criterion natural. It turns out that one can prove a quantitative ver­
sion of the Levin-Schnorr theorem and get a formula for the expectation-bounded 
randomness deficiency (see Section 3.5):

Let p(x) = ß{£lx) correspond to a computable measure p on the Cantor 
space. Prove that the function

146

X=4U!

m{x) 
p{x) ’

where the sum is taken over all finite prefixes x of oj and m{x) is the discrete 
a priori probability of x, is a universal expectation-bounded randomness test.

{Hint-. A lower semicomputable function on the Cantor space is a sum of char­
acteristic functions of intervals with non-negative coefficients. When a new term 
is added to this sum (for interval Q.x with coefficient r), we may imagine that the 
“weight” of the vertex x of the binary tree increases by r. The weights of all vertices 
form a lower semicomputable function и on strings, and the expectation condition 
for a test corresponds to the inequality ^ZXP(X)U(X) ^  L The maximal function 
with this property is m(x)/p(x) up to a ©(l)-factor. One should also agree that 
m(x)/p(x) is infinite if p(x) = 0 for some string x.)

147 I Prove that the sum in the preceding problem can be replaced by the 
supremum, and thus we obtain a quantitative version of the Levin-Schnorr theorem 
with prefix complexity. For example, for the case of uniform measure, the expecta­
tion-bounded randomness deficiency is equal to supn[n — K ( ojq ■ ■ -uon - 1 )].

{Hint: A lower semicomputable function that is equal to a inside some effec­
tively open set and is equal to zero outside it can be represented by means of weights
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that are equal to a and are placed in incompatible vertices. Every lower semicom- 
putable function can be represented up to a 0 (l)-factor as the sum t(oj) — tk{u>),
where tj.c(w) = 2k if t(ui) > 2k and tk(oo) = 0 otherwise. If all tk are represented as 
explained above, all the summands in the formula for the deficiency are powers of 
two. Then the sum equals the supremum up to a 0(l)-factor. See [13] for details.)

The statement of the last problem was proved in an old paper by Gåcs [56]. The 
proof gives as a byproduct the statement of Problem 146 rediscovered independently 
in a more recent paper by J. Miller and L. Yu [123] under the name of “ample excess 
lemma”.

148 (a) Let w be an ML-random sequence with respect to a computable 
measure p,, and let p(x) = p(£lx). Prove that the difference — logp(x) — K (x) is 
not only bounded from above for prefixes of ш but also tends to —oo as the length 
of the prefix increases. In other words, if K(x) ^  — logp(æ) + c for some c and for 
infinitely many prefixes x of cu, the cu is not ML-random.

(b) Prove that if K(x) < — logp(æ) + log/(x) + c for some c and for all prefixes 
X of oj, then w is not ML-random.

(Hint: In both cases use the ample excess lemma, Problem 146.)

The case of uniform measure is rather important; let us write down all that we 
have proven for this case:

T h e o r e m  94. (a) Upper bound:

KA (x) < KM(x) + 0(1) ^  l(x) + 0(1)
for any string x.

(b) Randomness criterion: the sequence ш is ML-random with respect to the 
uniform measure if and only if these inequalities become equalities for prefixes ofuj,

KA ((w)n) = KM ((w)n) + 0(1) = n + 0(1).

(c) If и is not ML-random with respect to uniform measure, then the difference 
n — КМ((ш)п) (and therefore n — KA ((w)n) tends to infinity as n —>■ oo.

(d) The sequence oo is ML-random with respect to the uniform measure if and 
only if К((ш)п) ^  n — c for some c and for all n.

(e) The sequence oo is ML-random with respect to the uniform measure if and 
only if К  (F,uj(F)) ^  IF I — c for some c and for all finite sets F.

Another version of the statement (d) is that a sequence ш is ML-random if and 
only if the sum 2n_A'((a;)0 is finite (Problem 146).

For the case of uniform measure there exists one more criterion of Martin-Löf 
randomness. It is interesting since it uses only plain complexity (and not the prefix 
or monotone versions). It is a bit strange that this criterion was discovered only 
recently (see [123]) since similar suggestions were considered at the end of the 1960s 
(see [225, 117]), and the proof of this criterion uses only ideas and methods that 
were well known at that time.

T h e o r e m  95. Assume that f:  N —> N is a computable total function and the 
series converges. Let ш be an ML-random sequence with respect to the
uniform measure. Then

C((w)n \n) ^  n -  f(n) -  0(1)
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{i.e., there exists c such that for every n the inequality C((uj)n \ ri) ^  n — f (n ) — c 
holds).

P r o o f .  Assume that the claim is false. This means that for every c  there 
exists an n such that

C((uj)n \n) < n -  f (n ) -  c.
In other words, for every c  the sequence uj is covered by some interval Qx such that

C(x I n) < n — f(n ) — c,
where n is the length of x. For each n there are at most 2n~ ^ n^~c intervals with 
this property and their total measure is at most 2~ ^n^2~c (for a given n). The 
total measure of all such intervals (for all n) is

and the sequence uj forms an effectively null set: choosing an appropriate c, we get 
a cover for uj that has small measure. Therefore, uj is not ML-random. (Note that 
the sum of the series 2" ^ n) may be a non-computable real number; this does 
not matter since we may use any upper bound for it.) □

R e m a r k . In the proof we used only that /  is upper semicomputable, so the 
statement remains true for f (n ) = K (n ): for every ML-random sequence uj (with 
respect to the uniform measure) we have

C((cj)n \n) ^  n -  K{n) -  0(1).
As we will see in Theorem 98, this is a necessary and sufficient condition.

Theorem 95 implies, for example, that for any ML-random sequence (with 
respect to the uniform measure) the plain complexity of its prefix of length n is at 
least n — 2 log n — О ( 1 ) and even n — log n — 2 log log n — О ( 1 ), since the corresponding 
series converge.

Making function /  smaller, we make the claim of the theorem stronger. It turns 
out that for some /  we get a randomness criterion in this way:

T h e o r e m  96. There exists a total computable function f :  N —» N such that 
^2n < oo and having the following property: if for some sequence uj and for
some c the inequality

C((uj)n \n) ^  n -  f{n)  -  c 
holds for all n, then uj is ML-random with respect to the uniform measure.

PROOF. We need to prove that every non-random sequence (i.e., every sequence 
that belongs to the largest effectively null set) has simple prefixes. Note that we 
also need to choose the function / .

To explain how to do this, let us assume that we are given a family of intervals 
with total measure at most e. Let F be the set of strings that define these intervals 
(i.e., the family consists of intervals flx for all x £ F). Let us sort strings in 
F according to their length and for each length n consider the total measure of 
intervals that correspond to n-bit strings in F . Let it be approximately equal to 

(we assume that /  has integer values, so this cannot be done exactly, but 
can be done up to factor 2 in both directions; for simplicity we ignore this bounded 
factor in the sequel). Then we have ^  £■ On the other hand, the set
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F contains strings of length n, and each of these strings can be described
(when n and other parameters of the construction are given) by n — f ( n ) bits. This 
gives an upper bound for the complexity of all the strings in F. Note also that 
every infinite sequence that is covered by our intervals has a prefix in F.

Now we return to the proof. Consider the largest effectively null set. For each 
£ > 0 there exists its cover by intervals of total length at most e, and we can use the 
construction above to get the corresponding function /  with Ŷ ,n 2“^ n* ^  £• We 
need to combine those functions for different e into one function /  as the theorem 
requires. This is done as follows.

For each c = 0 ,1 ,2 ,..., consider the covering by a family of intervals with 
total measure not exceeding 2~3c, the corresponding set Fc of strings, and the 
corresponding function / .  Then we decrease /  by 2c and obtain a function f c such 
that

^ 2 " /c(n) < 2~c
П

(we get 2~c instead of 2"3c since we have decreased /  by 2c). The set Fc contains 
2 n - f c ( n ) - 2 c  b r i n g s  of length n, and every non-random sequence has a prefix in Fc.

Then f{n) is defined by the equation

2  ~ f ( n ) —  2 ~ f c (n K

C

This guarantees that

E* ■f(n) J2 J2 2~fc(n) <  ̂L
On the other hand, the set Fc is enumerable given c (according to the definition of 
an effectively null set), so any element x of length n is determined (when n and c 
are known) by its ordinal number (in the enumeration of strings of length n in Fc), 
i.e., by n — f c{n) — 2c bits,

C(x I n, c) < n -  f c(n) -  2c + 0(1),

which implies

C{x\n) < n — fein) — 2c + O(logc) < n — f(n) — c

for any x G Fc of length n (for large enough c).
Now let Ш be any non-random sequence. As we have seen, for each c the 

sequence и  has a prefix in Fc. Let n be the length of this prefix. Then

C((w)n |n) < n -  f[n ) -  c

(assuming that c is large enough), which contradicts our assumption.
However, this does not complete the proof, since we need a computable function 

/ ,  and the set Fc is only enumerable, so we do not know when all strings of length n 
have been appeared, and therefore cannot compute / .  To overcome this difficulty, 
recall that we started with a family of intervals (that cover the largest effectively null 
set). In this covering we may split a large interval flz into many small intervals Qzt 
(for all strings t of some length). This allows us to make f c computable if we require 
(without loss of generality) that the length of the intervals in the enumeration of 
Fc can only increase. The same argument can be applied to all f c in parallel and 
makes /  computable.
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Finally, there is a (trivial) technical problem: the statement requires /  to be 
integer valued, so some rounding is needed. □

The two last theorems together provide a randomness criterion that uses plain 
complexity (and not monotone or prefix complexity). This criterion is robust: 
one can replace the conditional complexity C((oo)n \n) by the unconditional one, 
C((co)n), or by a conditional prefix complexity, K((co)n \n).

Indeed, each of these replacements only increases complexity, therefore only 
Theorem 96 needs to be verified. For the prefix complexity version, we use that for 
each element x G A the inequality K (x \A ) ^  log |>4| + 0(1) holds (we consider a 
prefix-free encoding by strings of length log |A|).

The case of unconditional plain complexity is a bit more difficult. As we do 
not know n, we need to describe a string x € Fc,n (here FCyTl is the set of all strings 
x E Fc that have length n) by its ordinal number in the entire set Fc (and not by 
its ordinal number in FCjTl as before). Enumerating Fc in increasing length order, 
we need

log(|FC)o| + |-Fc,i| + • • • + |Fc,n|) 
bits for that, and this bound is enough if the last term |FCjTl| is greater than the 
sum of all preceding terms (in this case the increase is at most twofold). We can 
achieve this using the same trick as before: we replace a string by all its extensions 
of some bigger length. Note that this is done separately for each c, so the condition 
c remains, but this does not matter since it gives only O (loge) additional bits.

So we get the following result:

Theorem 97. A sequence u) is ML-random if and only if for any computable 
total function f:  N —>■ N such that ^ 2~ ^ n) < oo the inequality

0 ((w)n) ^  n -  f(n )  -  0 (1)
holds.

This criterion uses only plain unconditional complexity and is the most popular 
version of the Miller-Yu theorem.

This criterion has a drawback: there is a quantifier over / .  It can be placed 
differently (there exists some /  that rejects all the non-random sequences, as The­
orem 96 says), but still it would be nice to get rid of /  completely. It is indeed 
possible, but the price is that we have to reinsert prefix complexity into the state­
ment:

T heorem 98. A sequence cj is ML-random with respect to the uniform measure 
if and only if

C({cv)n) ^  n -  K(n) -  0(1).

Proof. If J2n 2“ ^ n) converges for a computable / ,  then K(n) ^  f(n) + 0(1). 
Therefore the condition with prefix complexity is stronger than that in Theorem 97, 
and thus we need to prove only the converse implication: if for every c there exists 
an n such that

C((w)n) < n -  K(n) -  c,
then u) is not ML-random. This can be done in the same way as in Theorem 95. 
We need only note that the set of all strings x such that

C{x) < l(x) -  K{l{x)) -  c
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(here l(x) stands for the length of x) is enumerable; see the remark after the proof 
of this theorem on p. 152. □

In this theorem we can also replace C((w)n) by C((uj)n \n).
Verify that this is indeed possible, 
esult was proven in P. Gàcs paper [56, p. 391].
Show that we cannot let f(n) = 2 log n in Theorem 96.

(Hint: Theorem 95 says that for an ML-random ui we have a stronger inequality 
C((u )n) ^  n — logn — 2 log logn — 0(1). Therefore, if we computably interleave a 
random sequence with the zero sequence (and zeros are sparse enough), we get a 
non-random sequence such that C((uj)n) > n — 2 logn — 0(1). A similar argument 
shows that we cannot get a computably convergent series 2“ ^ n* for a function /  
that makes Theorem 96 true.)

All the results above still do not answer a very natural question: Can one 
eliminate /  completely and require that C((uj)n) ^  n — 0(1) (similar to monotone 
complexity criterion)?

Of course, this would be the most natural version of the randomness criterion, 
so it was tried in the very beginning. Martin-Löf noticed that this approach does 
not work: any binary string is a substring of a random sequence, so any random 
sequence contains arbitrarily large groups of zeros. And if a string of length n ends 
with к zeros, then its complexity is at most n — к + 2 log к + 0 (1) (21ogfc bits are 
needed for a prefix-free encoding of к and n — k bits for the rest), and the difference 
between length and (plain) complexity is at least к — 2 log к — 0 (1).

The following theorem (see [225, 117]) gives a more precise bound for the 
unavoidable difference between length and complexity (we mentioned this result 
earlier in Problem 54):

T heorem 99. There exists some c such that for any ui G Q the inequality
C((u)n) ^  n -  logn + c

holds for infinitely many n.

Proof. For each n let us select (l/n)-th fraction of all strings of length n, i.e., 
|_2n/nJ strings of length n. We want to do this in such a way that each infinite 
sequence has infinitely many selected prefixes (and the set of selected strings is 
decidable).

Why is this possible? The series ^  1 /n  diverges so we can split its terms into 
infinitely many groups, and each group has sum greater than 1. Using one group, 
we get one layer of О-covering (this means that each sequence w £ 0  has a prefix 
among the strings that correspond to that layer). To do this, we consider the strings 
in order of increasing length and select strings whose prefixes are not yet selected. 
(There is a rounding problem since 2n/n  is not an integer, but it can be easily 
fixed.)

Every selected string of length n can be described (if n is known) by its ordinal 
number, and this requires n — logn bits. Therefore, the conditional complexity of 
this string (with condition n) is at most n — logn + 0(1). Moreover, if we make a 
combined list of all selected strings (in the order of increasing length), the ordinal 
number increases by an 0(l)-factor. Indeed, the number of selected strings of 
given length grows almost as a geometric sequence, and adding all selected strings

149
This
150
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of smaller lengths increases cardinality only by an 0(l)-factor. This implies the 
statement of Theorem 99. □

151 Give another proof of this result using the following simple observation:
the A;-bit prefix of a given sequence can be considered as a binary notation of some 
integer N  (we add 1 at the beginning of the prefix not to lose leading zeros), and 
N  bits following this prefix are enough to reconstruct all к + N  bits.

152 Prove that the statement of Theorem 99 is true not only for some c but
for every c (including the negative ones).

(Hint: If the series diverges, we can increase a bit the function /
keeping this property: there exists a function g such that g(n) — f (n ) —> oo and 
£ 2~s(n) = oo.)

153 Show that the statement of Theorem 99 (the conditional complexity ver­
sion) remains true if we replace the logarithm by an arbitrary computable function 
/  such that the series diverges.

Martin-Löf claims in [117] that the same generalization is possible for uncon­
ditional complexity (and refers to an unpublished paper for the proof). The same 
statement (attributed to Martin-Löf) can be found also in [225]. (We do not know 
how to prove it.)

Let us mention also that the statement of Theorem 95 has a slightly different 
form in [117]:

154 Prove that if a sequence ш is ML-random with respect to the uniform
measure and /  : N —> N is a computable total function such that the series ^  2“ ^ n* 
computably converges, then С((ш)п \ n) ^  n — f(n )  for all sufficiently large n.

(Hint: If a series computably converges, and the inequality is false infinitely 
many times, the tails of the series can be used to get covers that have small mea­
sure.)

Another natural question follows: What happens if we require high complexity 
not for all (sufficiently long) prefixes but for infinitely many of them? In the same 
Martin-Löf paper [117] the following results are stated:

155 Prove that for almost all (with respect to the uniform measure) se­
quences и; € Cl there exists c such that C((cv)n \ n) ^  n — c for infinitely many n.

(Hint: If it is not the case, then for every c there exists N  such that an n-bit 
prefix of u> has complexity less than n — c for every n > N. For given c and N  the 
set of all u) with this property has measure at most 2~c. As N  increases, this set 
increases, and the union over all N  has measure at most 2~c by continuity.)

156 If for a given sequence u> there exists c such that С((ш)п \ n) ^  n — c for 
infinitely many n, then u> is ML-random with respect to the uniform measure.

(Hint: If u) is covered by some interval in a family of total measure less than 
2~c, then every sufficiently long prefix of ш can be described (when length is given) 
by its ordinal number in the set of all strings of this length covered by some interval, 
and this requires 2 log c + n — c bits.)

1157 I Prove that the statement of the previous problem remains true if we 
replace conditional complexity С((ш)п \п) by unconditional complexity С((ш)п). 

(Hint: Use Problem 6 or, better, Problem 55.)
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The last two problems refer to a set of measure 1 that is a subset of the set of all 
ML-random sequences. Its complement is a null set; if it were an effectively null set, 
we would get another criterion for ML-randomness. However, this is not the case. 
Recently in [121, 148] it was shown that this set has a natural description: it is the 
set of ML-random sequences relativized to oracle O'; these sequences are sometimes 
called 2-random (while ML-random sequences are called 1-random). See [16] for a 
simple proof. There is a similar criterion with prefix complexity: a sequence u> is 
2-random if and only if K((oj)n) < n + К (n) — c for some c and for infinitely many 
n [124] (see also [5] for a simple proof).

5.7. The random  num ber Q,

The following theorem provides an interesting application of the randomness 
criterion given in the previous section. Let m  be a maximal lower semicomputable 
semimeasure on the set of natural numbers (e.g, let m(x) be equal to 2~K X̂')\ we 
can use also the distribution on the outputs of the universal probabilistic machine, 
see Chapter 4). Chaitin suggested considering the number

Q, = y^m (n)
П

(the halting probability for the universal probabilistic machine; the sum of the max­
imal lower semicomputable series) and made the following interesting observation:

T heorem 100. The binary representation of Г2 is ML-random with respect to 
the uniform distribution.

Note that the value of П depends of the choice of a maximal lower semicom­
putable semimeasure, but the statement remains true for every choice.

P roof. Assume that the first n binary digits of Q, are given. They form the 
binary representation of a number Qn which is a lower bound for Q, with approxima­
tion error at most 2~n. Generate lower bounds for m(0), m(l), m(2),...  in parallel 
until the sum of these lower bounds becomes greater than Q,n — 2~n. This does 
happen at some point since the sum of the series is Q, and hence is greater than our 
threshold. Then make a list of all i that appear in this sum (with a non-zero lower 
bound for m(i)).

Note that this list includes all i such that m(i) ^  2 • 2~n (if some i with this 
property were omitted, the approximation error would exceed 2~n). Therefore, all i 
such that K(i) < n — c (for some c that depends on the choice of the function m  but 
not on n) appear in this list. Thus, the minimal integer that is not in the list has 
complexity at least n — c. This implies that both the list itself (which determines 
this minimal integer) and the n-bit prefix of Q, (which allows us to construct the 
list; note that n is determined by this prefix) have complexity at least n — c' for 
some other c' and for all n. It remains to use the randomness criterion in its prefix 
complexity version (Theorems 92 and 94). □

One can define the notion of a (Martin-Löf) random real number directly. A 
set X  of reals is an effectively null set if there is an algorithm that for any rational 
£ > 0 enumerates a cover of X  by intervals with rational endpoints and total 
measure (length) at most e. A real number is ML-random (with respect to the 
standard measure on R) if it does not belong to any effectively null set (=does not 
belong to the largest effectively null set).
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158 Prove that a real number is random (according to this definition) if and
only if its binary representation is a random sequence (with respect to the uniform 
measure on Cl).

Prove that a square (sine, exponent) of a random real is a random real.159
(Hint: A preimage of a null set is a null set, and this argument can be effec- 

tivized.)
160 Can the sum of two random real numbers be a non-random real?

(Hint: the numbers may be dependent.)
The random number Cl (or, better to say, any П-number, since different max­

imal lower semicomputable semimeasures lead to different numbers) is not just an 
interesting example. The class of these numbers has several interesting characteri­
zations [26, 87]. Our presentation follows [19], a survey that can be considered as 
an extended version of a footnote in [102].

5.7.1. Solovay reductions and completeness. Recall that a real number 
a is lower semicomputable if a is the limit of some computable non-decreasing 
sequence of rational numbers. (An equivalent definition is ... if the set of rational 
numbers less than a is enumerable.) We want to classify computable non-decreasing 
sequences according to their convergence speed and formalize the intuitive idea “one 
sequence converges better (i.e., not worse) than the other one”.

Let cq —>■ oc and bj —>• /3 be two computable strictly increasing sequences con­
verging to lower semicomputable reals a and ß (approximations of a and ß from 
below). We say that an —> a converges better (not worse) than bn —> ß if there 
exists a total computable function h such that

Q ^h(i) 5̂ ß
for every i.

In other words, we require that for each term of the second sequence one may 
algorithmically find a term of the first one that approaches the limit as close as the 
given term of the second sequence. Note that this relation is reflexive and transitive 
(take the composition of two reducing functions).

In fact, the choice of specific sequences that approximate a and ß is irrelevant: 
any two increasing computable sequences of rational numbers that have the same 
limit are equivalent with respect to this quasi-ordering. Indeed, we can just wait 
to get a term of a second sequence that exceeds a given term of the first one.

We can thus set the following definition. Let a and ß be two lower semicom­
putable reals, and let (an), (bn) be approximations of a and ß, respectively. If (an) 
converges better than (bn), we write a ß (by the above paragraph, this does not 
depend on the particular approximations we chose).

This definition can be reformulated in different ways. First, we can eliminate 
sequences from the definition and say that a ß if there exists a partial com­
putable function p defined on all rational numbers r < ß such that

p(r) < a and a — p(r) < ß — r 

for all of them. Below, we refer to p as the reduction function.
I 1611 Prove that a lower semicomputable number a is computable if and only 

if a ß for every lower semicomputable ß.
Here is one more useful reformulation:
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Theorem 101. a =̂ i ß if and only if ß — a is lower semicomputable (or, said 
otherwise, if and only if ß = a + p for some lower semicomputable real p).

P roof. To show the equivalence, note first that for every two lower semicom­
putable reals a and p we have a =<h a + p. Indeed, consider approximations (an) 
to a , (rn) to p. Now, given a rational s < a + p, we wait for a stage n such that 
an + rn > s. Setting cp(s) = an, it is easy to check that ip is a suitable reduction 
function witnessing a =̂i a + p.

It remains to prove the reverse implication: if a =<h ß, then p = ß — a is lower 
semicomputable. Indeed, let (bn) be a computable approximation (from below) for 
ß , and let ip be the reduction function that witnesses a =<h ß. Then all terms 
bn — ip(bn) are less than or equal to ß — a and converge to ß — a. (The sequence 
bn — ip(bn) may not be increasing, but still its limit is lower semicomputable, since 
all its terms do not exceed the limit, and we may replace the nth term by the 
maximum of the first n terms.) □

Here is a special case: Let Y lui and Y lvi be computable series with non­
negative rational terms (for i > 0; terms no and no are starting points and may be 
negative) that converge to (lower semicomputable) a and ß. If щ ^  n* for all i > 0, 
then a =<h ß , since ß — a = £Т(п* — щ) is lower semicomputable.

The reverse statement is also true: if a ß , one can find computable series
J2ui = a and Yhvi = ß with these properties (0 ^  щ ^  Vi for i > 0). Indeed, 
ß = a + p for lower semicomputable p\ take a = Y lui and p = and let
Vi = Щ + r».

Show that a stronger statement is also true: not only can the series щ be162
chosen arbitrarily (see the argument above), but the same is true for n*. Namely, 
if a =4i ß = ^2 Vi, where V{ ^  0, then there exists a representation a = Y lui such 
that 0 ^  щ ^  Vi for every i > 0. (All series are computable.)

(Hint: Construct щ sequentially maintaining the following invariant relation: 
the current approximation A = )Cj<z из a below a and at least as close (to a) 
as the current approximation В = Y lj^V j (to ß). Initially, we choose щ  applying 
the reduction function to Vo. When the current approximation becomes B' — B+Vi, 
we apply the reduction function to get A ' , which is at least as close to a as B' is 
to ß. Then there are several cases:

(1) If A' < A, we let щ = 0, and the next approximation is A (it is close enough 
by assumption).

(2) If A ^  A' ^  A + Vi, we let щ = A! — A; the condition guarantees that
Щ ^  Vi.

(3) Finally, if A' > A + Vi, we let щ = v% (the invariant remains valid since the 
distances to a and ß are decreased by the same amount).)

Let a  be a lower semicomputable but not computable real. By the results of 
the previous section, one has

Q. 2o: 3<У • • •

because for all к the difference (к + 1 )a — ka = a is lower semicomputable. The 
reverse relations are not true, because ka — (k + 1 )a — —a is not lower semicom­
putable (if it were, then a would be computable).

One may argue that this relation is therefore a bit too sharp. For example, a 
and 2a have essentially the same binary expansion (just shifted by one position),
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so one may want a and 2a to be equivalent. In other words, one may look for a 
less fine-grained relation. A natural candidate for this is called Solovay reducibility 
(see [188]).

We say that a is Solovay reducible to ß (a =4 ß) if & cß for some positive 
integer c > 0. (A convenient notation: We say, for some positive rational c, that 
a =̂ c ß if a cß. Then a =<I ß if a =<IC ß for some c.) This relation is also reflexive 
and transitive (obviously).

Theorem 102. There exists a biggest lower semicomputable real with respect 
to Solovay reducibility.

P r o o f .  We can enumerate all lower semicomputable reals a.i in [0,1] and then 
take their sum a — Y2wiai with computable positive weights Wi such that 
converges. This a can be represented as WiCti plus some lower semicomputable real, 
so ai (1 /wi)a. □

The biggest elements for the =<I-preorder are also called Solovay complete lower 
semicomputable reals. One can even define some qualitative notion of completeness 
deficiency: for a lower semicomputable real ß the completeness deficiency is defined 
as minimal c such that a =<h cß. Here a is some fixed Solovay complete real; the 
deficiency function depends on the choice of a, but is still defined up to the 0 (1)- 
factor. The deficiency of ß is finite if and only if ß is Solovay complete.

It turns out that Solovay complete reals can be equivalently described as fl- 
numbers defined above [188, 26].

Theorem 103. Complete semicomputable reals in (0,1) are sums of universal 
(maximal) semimeasures on N and vice versa.

Proof. Any lower semicomputable real a  is a sum of a computable series 
of rationale; this series (up to a constant factor that does not matter due to the 
definition of the Solovay reducibility) is bounded by a universal semimeasure. The 
difference between the upper bound and the series itself is a lower semicomputable, 
and therefore a is reducible to the sum of the universal semimeasure.

On the other hand, let a  be a Solovay complete real in (0,1). We need to show 
that a is a sum of some universal semimeasure. Let us start with the arbitrary 
universal semimeasure . The sum ^  is lower semicomputable and therefore 
J2mi =̂ i ca, so a — X^mi /C + r  f°r some integer c > 0 and some lower semi­
computable t . Dividing m by c and then adding т to one of the values, we get a 
universal semimeasure with sum a. □

It turns out that these reals (Solovay complete lower semicomputable reals, 
or Q-numbers) have one more description: they are exactly lower semicomputable 
ML-random real numbers in (0,1). The equivalence proof consists of several parts; 
let us consider them one by one.

5.7.2. Solovay complete reals are random. We already have shown that 
Solovay complete reals are random: each of them is an Q-number, i.e., a sum of the 
values of universal semimeasure, and this sum is random (Theorem 100). Formally 
speaking, this argument applies only to numbers between 0 and 1, but the general 
case can be reduced to this special one by adding a rational number. Still there 
is an interesting direct argument that does not involve complexity and the Levin- 
Schnorr criterion of randomness (it is in the footnote in Levin’s paper [102]; this
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footnote compresses the most important facts about lower semicomputable random 
reals into few lines).

First, recall that one can prove the existence of a lower semicomputable random 
real without references to Q (Problem 86). So it is enough to prove that randomness 
is upward-closed: if a =<( ß and a is random, then ß is random.

We may assume without loss of generality that a =4,\ ß (randomness does not 
change if we multiply a real by a rational factor). Let b{ —,► ß be a computable in­
creasing sequence of rational numbers that converges to ß. Assume that somebody 
gives us (in parallel with hi) a sequence of rational intervals and guarantees that one 
of them covers ß. How do we transform it into a sequence of intervals that covers 
a (i.e., one of the intervals covers a) and has the same (or smaller) total length? If 
an interval appears that is entirely on the left of the current approximation bi, it 
can be ignored (since it cannot cover ß anyway). If the interval is entirely on the 
right of bi, it can be postponed until the current approximation bj enters it (this 
may happen or not, in the latter case the interval does not cover ß). If the interval 
contains bi, we can convert it into the interval of the same length that starts at aj, 
where aj is a rational approximation to a that has the same or better precision as 
bi (as an approximation to ß): if /3 is in the original interval, a is in the converted 
interval.

So randomness is upward closed, and therefore complete lower semicomputable 
reals are random.

R e m a r k . The second part can be reformulated: if a and ß are lower semicom­
putable reals and at least one of them is random, then the sum a + ß is random 
too. The reverse is also true: if both a and ß are non-random, then a + ß is not 
random. (Later we will see different proofs of this statement.)

5.7.3. Random ness and prediction game. Before proving the reverse im­
plication (random lower semicomputable reals are Solovay complete), let us make 
a digression and look more closely at the last argument. Consider the following 
game. An observer watches an increasing sequence of rationals (given one by one) 
and from time to time makes predictions of the following type: “the sequence will 
never increase by more than Ö” (compared to its current value). Here Ö is some 
non-negative rational. The observer wins this game if

(1) one of the predictions remains true forever;
(2) the sum of all numbers 5 used in the predictions is small (less that some 

rational e > 0 which is given to the observer in advance).
It is not required that at any moment a valid prediction exists, though one 

could guarantee this by making predictions with Ô that are small and decrease fast 
at each step. Note also that every prediction can be safely postponed, so we may 
assume that the next prediction is made only if the previous one becomes invalid. 
Then at any moment there is only one valid prediction.

One can give a criterion of randomness in terms of this game.

T h e o r e m  104. Let ai be a computable increasing sequence of rational num­
bers that converges to some (lower semicomputable) real a. The observer has a 
computable winning strategy in the game if and only if a is not random.

P r o o f .  A computable winning strategy gives us a computable sequence of 
prediction intervals of small total measure and guarantees that one of these (closed) 
intervals contains a. We can convert them to slightly bigger open intervals.
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On the other hand, having a sequence of intervals that cover a and have small 
total measure, we may use it for predictions. To make the prediction, we wait until 
the current approximation a* gets into some of the covering intervals, and we then 
predict that it will never go out of this interval. When and if this turns out to 
be false, we wait until the current approximation is covered again, etc. If there 
are several intervals covering the current approximation, we choose the first one in 
the enumeration order. Starting from some moment, we always have the interval 
that covers a as one of the options, so this rule guarantees the predictions will 
stabilize. □

The following is a reformulation of the same observation that does not use game 
terminology:

T heorem  105. Let ai be a computable increasing sequence of rational numbers 
that converges to a. The number a is non-random if and only if for every rational 
£ > 0 one can effectively find a computable sequence ho ,h \,... of non-negative 
rational numbers such that ]>T hi < e and a ^  a* + hi for some i.

P ro o f . This corresponds to the game where predictions hi are made on every 
step. As we have said, this does not matter since we may use zeros. □

Recall also the Solovay criterion of ML-randomness (a constructive version of 
the Borel-Cantelli lemma, Theorem 31 on p. 64): A real number a is non-random 
if and only if there exists a computable sequence of intervals that have finite total 
measure and cover a infinitely many times. The same modification can be applied 
to the previous theorem, and we get the following result.

T heorem  106. Let ai be a computable increasing sequence of rational numbers 
that converges to a. The number a is non-random if and only if there exists a 
computable sequence ho, h i , ... of non-negative rational numbers such that hi < 
oo and a ^  ai + hi for infinitely many i.

PROOF. If a is non-random, we apply the preceding result for e — 1,1/2,1/4,... 
and then add the resulting sequences (with shifts 0,1, 2 ,... to the right). Each of 
them provides one value of i such that a ^  + and these values are still suitable
after shifts and cannot be bounded due to shifts. On the other hand, if a ^  ai + hi 
for infinitely many i, we get a sequence of intervals with finite sum of measures 
that covers a infinitely many times (technically, we should replace closed intervals 
by slightly bigger open intervals). It remains to use Solovay’s criterion (or recall its 
proof: The effectively open set of points that are covered with multiplicity m  has 
measure at most 0 (l/m)). □

The randomness criterion given in this section implies the following observation 
(which may look strange at first). Consider a sum of a computable series of positive 
rational numbers. The randomness of the sum cannot change if all summands are 
changed by some 0(1)-factor. Indeed, all hi can be multiplied by a constant.

Now let us prove the result mentioned above:

T heorem  107. If a and ß are non-random lower semicomputable reals, their 
sum a + ß is non-random too.

PROOF. It now seems very easy at first: Make predictions in the games for a 
and ß, and then take their sum as prediction for a + ß. (If for a we expect increase
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h and for ß we expect increase k, then for a + ß we predict increase h + к .) But 
this simple argument does not work. The problem is that the same prediction for a 
can be combined with many predictions for ß and therefore will be counted many 
times in the sum.

The solution is to make predictions for a and ß of the same size. Let ai and 
bi be computable increasing sequences that converge to a and ß. Since a and ß 
are non-random, they are covered by sequences of intervals that have small total 
measure. To make a prediction for the sequence ai + bi (after the previous prediction 
became invalid), we wait until the current approximations cq and bi become covered 
by the intervals of those sequences. We take then the maximal h and к such that 
(ai, ai + h) and (bi,bi + к) are entirely covered (by the unions of already known 
intervals). The prediction interval is declared to be (a* + bi, ai + bi + 28) where 
8 = min(h, k).

Let us show that one of the predictions will remain valid forever. Indeed, the 
limit values a and ß are covered by some intervals. These intervals appear in 
the sequences at some point and cover a and ß with some neighborhoods, say, o- 
neighborhoods. If the prediction is made after a* and bi enter these neighborhoods, 
8 is greater than a and the prediction is final: a* + bi never increases more than 
by 28.

It remains to bound the sum of all 8 used during the prediction. It can be done 
using the following observation. When a prediction interval (a* + £>*, a* + Ь* + 28) 
becomes invalid, this means that either ai or bi has increased by 8 or more, so the 
total measure of the covers on the right of a* and bi has decreased at least by 8. 
Here we use that (a*, a* + 8) and (bi, bi + 8) are covered completely because 8 does 
not exceed both h and k. It is important here that we take the minimum. □

Let us return to the criterion for randomness provided by Theorem 105. The 
condition for non-randomness given there can be weakened in two aspects. First, we 
can replace computable sequence by a lower semicomputable sequence, and second, 
we can replace hi by the entire tail hi + hi+i + • • • of the corresponding series, as 
follows.

T heorem  108. Let ai be an increasing computable sequence of rational numbers 
that converges to a. Assume that for every rational £ > 0 one can effectively find 
a lower semicomputable sequence hi of non-negative reals such that hi < e and 
a ^  ai + hi + hi+i + • • • for some i. Then a is not random.

P ro o f . Assume that for every i there is a painter who gets hi units of paint 
and instructions to paint the real line starting at ai, going to the right, and skipping 
the parts already painted by other painters (but making no other gaps). (Since hi is 
only semicomputable, the paint is provided incrementally and is used as soon as it 
becomes available.) The painted zone is a union of an enumerable family of intervals 
of total measure hi (the total amount of paints). If a < ai + hi + hi+1 + • ■ •, then 
a is painted since we cannot use hi + hi+1 + • • • units of paint, starting between 
ai and a (recall that all aк are less than a:) and not crossing a: by construction, 
we never cover the same point by several layers of paint. (In the condition of the 
theorem we have ^  instead of <, but this does not matter since we can increase all 
hi to, say, twice their original value. For the same reason it is not important that 
we covered a by closed intervals instead of open ones.) □
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This result implies one more criterion of randomness for lower semicomputable 
reals:

T heorem  109. Let a =  be a computable series of non-negative rational 
numbers. The (lower semicomputable) real a is non-random if and only if for every 
£ > 0 one can effectively produce an enumerable set W  C N of indices such that
(1) J2iewri < £ and (2) ^  со-finite, i.e., contains all sufficiently large integers.

PROOF. If a is not random, it can be covered by intervals with arbitrarily small 
total measure. It remains to consider the set W  of all i such that

[fO +  • • • +  T4_i, Го +  • • • +  +  Г{\

is entirely covered by one of those intervals. In the other direction the statement is
a direct consequence of Theorem 108, just let a* = ro + • • • + r*_i and hi = r* for
i € W  (and f f  = 0 for i ф W). □

This result shows again that the sum of two non-random lower semicomputable 
reals is not random (take the intersection of two sets W\ and W2 provided by this 
criterion for each of the reals), so we get a new proof of Theorem 107.

The trick we used to prove Theorem 108 can be reused for the following problem 
(this argument was communicated to us by L. Bienvenu; the original proof in [87] 
is much more complicated).

Let U be an effectively open subset of [0,1] that has measure less than 
1. Assume that U contains all non-ML-random reals. (For example, U can be one 
of the open sets that form a universal Martin-Löf test.) Prove that the measure of 
U is a lower semicomputable random real.

(Hint: Let a be the measure of U. If the cover of a with intervals of small 
measure is given, we can construct the cover of the minimal real outside U that has 
the same measure. How can we do that? As soon as the current approximation to a 
gets into some interval, we imagine that it will not get out of this interval, i.e., only 
a small set will be added to the current part of U and will paint an equally small 
part of the current complement of U going from left to right. If our assumption 
is in fact true (and this will happen at some point), then we indeed will paint the 
minimal element outside U. (The painted part is a union of closed intervals, not 
the open ones, but this does not matter.))

5.7.4. Random lower semicomputable reals are complete. Now it is
easy to prove the reverse implication [87]: Every lower semicomputable random 
real is Solovay complete.

Let us start with the following remark. Consider two lower semicomputable 
reals a and ß presented as limits of increasing computable sequences ai a and 
bi —У ß. Let f f  = ai+i — ai be the sequence of increases in the first sequence. We 
may use the sequence hi to construct a strategy for the prediction game against 
the second sequence in the following way. We shift the interval [ao,^] to get the 
(closed) interval of the same length that starts at bo (Figure 13). Then we wait 
until bi at the right of this interval appears; let 6̂  be the first term outside it. 
Then we shift the interval [ai, 02] to get the interval of the same length that starts 
at bij ; let bi2 be the first bi on the right of it, etc.

There are two possibilities: either
(1) the observer wins in the prediction game, i.e., one of the shifted intervals 

covers the rest of bi and the next bik is undefined; or

163
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Cl o Cl 1 a2

F igure 13. Increases of ai are used in the prediction game for ß.

(2) this process continues indefinitely.
In the second case a =<h ß since the difference ß — a is represented as a sum of 

a computable series (“holes” between neighbor intervals; note that the endpoints 
of the shifted intervals also converge to ß).

After this remark it is easy to show that every incomplete ß is not random. 
Indeed, assume that ß is not Solovay complete; we need to prove that ß is not 
random. Since ß is not complete, there exists some a such that a ^  ß. In particular, 
a ß. Therefore, for these a and ß the second alternative is impossible, and the 
observer wins. In other words, we get a computable sequence of (closed) intervals 
of total size at most ^  hi that covers ß. Repeating the same argument for a /2, 
a /4,... (we know that a/c ß for every c, since a ^  ß), we effectively get a cover 
of ß with arbitrarily small measure (since the sum of all hi is bounded by a integer 
constant even being non-computable); therefore ß is not random.

This finishes the proof of the result we mentioned:

T heorem  110. A lower semicomputable real is Solovay complete if and only if 
it is ML-random.

5.7.5. Slow convergence: Solovay functions. We have seen several results 
of the following type: the limit of an increasing computable sequence of rationale 
is random if and only if the convergence is slow. In this section we provide some 
other results of this type [12, 67].

Consider a computable converging series ^  of non-negative rational numbers. 
Note that г* is bounded by 0(m(i)) where m(i) is the (discrete) a priori proba­
bility of integer i, and therefore prefix complexity K(i) — — logm(i) is bounded 
by —logTj + 0(1). We say that the series J2ri converges slowly in the Solovay 
sense (has the Solovay property) if this bound is 0(l)-tight infinitely often, i.e., if 
rj ^  em(i) for some e > 0 and for infinitely many i. In other words, the series does 
not converge slowly if Гг/Шг —> 0.

Historically the name Solovay function was used for a computable bound S(i) 
for prefix complexity K(i) that is tight infinitely often, i.e., K(i) ^  S(i) + 0(1) for 
every i and K (i) ^  S(i) — c for some c and for infinitely many values of i. Thus, a 
computable series ^2 ri of non-negative rational numbers has the Solovay property 
if and only if i i-» — log2 r* is a Solovay function. (Usually integer-valued Solovay 
functions are considered, so some rounding is needed.) We provide several results 
that relate randomness to slow convergence, mainly following [12, 67].

T heorem  111. Let a — Y liri be a computable converging series of non-nega­
tive rational numbers. The number a is random if and only if this series converges 
slowly in the Solovay sense.

In other words, the sum is non-random if and only if the ratio ri/m (i) tends 
to 0.
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PROOF. Assume that Tijm{i) —» 0. Then for every e we can let hi =  em{i) and 
get a lower semicomputable sequence that satisfies the conditions of Theorem 108. 
Therefore a is not random.

We can also prove that a is not complete (thus providing an alternative proof 
of its non-randomness). Recall the argument used in the proof of Theorem 103: 
if n  ^  m (i), then Y2ri =$i And if ri ^  cm{i), then Yhri ==*c
This remains true if the inequality r* ^  cm{i) is true for all sufficiently large i. So 
for a fast (non-Solovay) converging series and its sum a we have a =<IC rn(i) for 
arbitrarily small c. If a were complete, we would have also ^  m{i) =4.d ot for some 
d and therefore a =$cd a for some d and all c > 0. For small enough c we have 
cd < 1/2 and therefore a =<h/ 2 a, he., 2a: er, so the difference a — 2a = —a
is lower semicomputable and a is computable. (One could note also that for each 
approximation to a from below we can find a twice better one, and we can iterate 
this procedure.)

It remains to show the reverse implication. Assuming that a = is not 
random, we need to prove that i'i/m(i) —» 0. Consider the interval [0, a] split into 
intervals of length ro,r\ , ... (from left to right). Given an open cover of a with 
small measure, we consider those intervals (of length ro, r\ , ..., see above) that are 
completely covered (endpoints included). They form an enumerable set and the 
sum of their lengths does not exceed the measure of the cover. If the cover has 
measure 2~2n for some n, we may multiply the corresponding ri by 2n and their 
sum remains at most 2~n. Note also that for large enough i the ith interval is 
covered (since it is close to a and a is covered). So for each n we get a semimeasure 
M n such that M n(i)fri ^  2n for all sufficiently large i and J2iM n(i) ^  2~n. 
Taking the sum of all M n, we get a lower semicomputable semimeasure M  such 
that ri/M (i) —>■ 0. Then ri/m(i) —> 0 also for the universal semimeasure m. □

This result provides a (third) proof that a sum of two non-random lower semi­
computable reals is non-random (since the sum of two sequences that converge to 0 
also converges to 0).

It shows also that Solovay functions exist (which is not immediately obvious 
from the definition). Moreover, it shows that there exist computable non-decreasing 
Solovay functions: take a computable series of rational numbers with random sum 
and make this series non-increasing not changing the sum (by splitting too big 
terms into small pieces).

164 Let U be an optimal prefix-free decompressor. Consider the function 
/(p, X,  n) that is equal to l(p) if U produces output x on input p making exactly n 
steps, and (say) 2Z(p) + 2l{x) + 21ogn otherwise. Prove that /(р ,т ,п ) is an upper 
bound for K (p ,x ,n ) and this bound is tight when p is the shortest description of 
x that needs n steps to process, and give an alternative proof of the existence of 
Solovay functions.

It also implies that slow convergence (in the Solovay sense) is not a property of 
a series itself, but only of its sum. It looks strange: some property of a computable 
series (of non-negative rational numbers), saying that infinitely many terms come 
close to the upper bound provided by the a priori probability, depends only on the 
sum of this series. At first, it seems that by splitting the terms into small parts 
we can destroy the property not changing the sum, but it is not so. In the next
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section we try to understand this phenomenon providing a direct proof for it (and 
as a byproduct we improve the results of this section).

5.7.6. The Solovay property  as a property  of the sum. First, let us note 
that the Solovay property is invariant under computable permutations. Indeed, 
consider some computable permutation 7r. It changes the a priori probability only 
by a constant factor: m (r(i)) = 0(т(г)). Then let us consider grouping. Since 
we want to allow infinite groups, let us consider a computable series j aij °f 
non-negative rational numbers. Then

a  =  aij =  (aoo +  ctoi +  •••) +  (a io +  сщ +  -- -) +  ' '' =  ^ г ,
i,j i

where Ai = a^.
We want to show that Ai and are slowly converging series (in the Solovay 

sense) at the same time. Note that slow convergence is permutation-invariant, so 
it is well defined for two-dimensional series.

However, some clarifications and restrictions are needed. First, J^Ai is not 
in general a computable series, it is only a lower semicomputable one. We extend 
the definition of the Solovay property to lower semicomputable series: for such 
a series we still have Ai = 0(m(i)), and we require this bound to be 0(l)-tight 
infinitely often. Second, such a general statement is not true: imagine that all 
non-negative terms are in the first group Ao and all A i,A 2 , . . .  are zeros. Then 

Ai does not have the Solovay property while ^  aij could have it. The following 
result (essentially from [67]) provides the needed restrictions:

T h e o r e m  112. Assume that each group Ai contains only finitely many non­
zero terms. Then the properties A i/m (i) —> 0 and a ij/m (i,j) —>• 0 are equivalent.

Here m (i,j) is the a priori probability of pair (i,j) (its number in some com­
putable numbering; the probability does not depend on the coding up to an 0(1)- 
factor). The convergence means that for every e > 0, the inequality а^ /т (г , j) > e 
is true only for finitely many pairs (г, j).

P r o o f . Let us recall first that m(i) = J2j m (h j)  up to a 0(l)-factor. (Indeed, 
the sum in the right-hand side is lower semicomputable, so it is 0(m(i)) due to 
maximality; on the other hand, already the first term т(г,0) is £l(m(i)).) So 
if aij/m (i,j) tends to zero, the ratio A i/J 2 jm (i,j) does the same (only finitely 
many pairs have aij > em (i,j) and they appear only in finitely many groups).

It is more difficult to show that Ail mi —>• 0 implies aij/m (i,j) —> 0. (Here we 
need to use that only finitely many terms in each group are non-zero.) For this it is 
enough to construct some lower semicomputable rh(i,j) such that a ij/ih (i,j) —> 0, 
somehow using the fact that Ai/m(i) —> 0. The natural idea would be to split m(i) 
between m (i,j) in the same proportion as Ai is split between a^. However, for this 
we need to compute Ai (and not only to lower semicompute it). It would be easy if 
we knew how many terms among ецо, a n ,... are non-zero, but in general this is a 
non-computable information. (For the special case of finite grouping this argument 
indeed works.)

So we use another approach. For some constant c we may let m (i,j) be câ - 
while this does not violate the property J^j ^ i h j )  ^  m{i). (As m(i) increases, we 
let m (i,j) increase when possible.) If indeed Ai/m(i) —>• 0, for every constant c we
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F ig u r e  14. T w o series w ith  th e  sam e sum  can  b e o b ta in ed  by a  
different group ing  from  th e  sam e th ird  series.

have cAi ^  m{i) for all sufficiently large i, so a,ij/rh(i, j)  ^  1 jc  for all sufficiently 
large i (and only finitely many pairs (i,j) violate this requirement, because each 
Ai has only finitely many non-zero terms). So for each c we have constructed some 
semimeasure m c such that aij/m c{i,j) ^  1/c for almost all pairs (i,j), and the sum 
Y lij^ c ih j)  is at most ^2m(i) ^  1. It remains to perform this construction for all 
c = 22n and combine the resulting m22n with coefficients 2~n. □

As a corollary of Theorem 112 we see (in an alternative way) that the Solovay 
property depends only on the sum of the series. Indeed, if bj, these
two series could be obtained by a different grouping of terms in some third series

Cfc. To construct Cfc, we draw intervals of lengths a\, a,2 , ■ ■ ■ starting from zero 
point, as well as the intervals of lengths bi, 62, ...;  combined endpoints split the line 
into intervals of lengths ci, C2, ... (see Figure 14).

In this way we get not only the alternative invariance proof, but also can 
strengthen Theorem 111, which dealt with computable series of rational numbers. 
Now we still consider series of rational numbers, but the summands are presented 
as lower semicomputable numbers and each has only finitely many different ap­
proximations. (So ri — \imn r(i,n), where r is a computable function of i and 
n with rational values which is non-decreasing as a function of n and for every i 
there are only finitely many different values r(i,n).) Then the number *s n°t
ML-random if and only if Ti/m(i) —> 0. Indeed, each is a sum of a computable 
series of non-negative rational numbers with only finitely many non-zero terms. So 
we can split into a double series not changing the sum (evidently) and the 
Solovay property (due to Theorem 112).

Recall that an upper semicomputable function n 1—> f(n) with integer values is 
an upper bound for K(n) (up to an 0 (1) additive term) if and only if 2“ -^n) 
is finite (Theorem 62, p. 100). Now we can extend this statement:

T h e o r e m  113. This bound is tight for infinitely many n (i . e K ( n )  ^  f(n) — c 
for some c and for infinitely many n) if and only if the sum random.

P r o o f . Indeed, decreasing integer upper bounds for f(n) provide increasing 
lower bounds for 2“ ^"^ (with finitely many changes), so we use the preceding 
result. □

We end this section with an alternative proof that all complete reals have the 
Solovay property. First we observe that the Solovay property is upward closed with 
respect to Solovay reducibility. Indeed, if ai and bi are computable series of 
non-negative rational numbers and ai converges slowly, then Yl(ai + ^) converges 
slowly also (its terms are bigger). So it remains to prove directly that at least one 
slowly converging series (or, in other words, a computable Solovay function) exists. 
It can be done as shown in Problem 164. Another way to explain this construction 
is that we watch how the values of a priori probability increase (it is convenient
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again to consider the a priori probability of pairs):
m(0,0) m(0,1) m( 0,2)
m(l,0) m (l.l)  m( 1,2) 
m(2,0) m(2,l) m( 2,2)

m(0, 3) 
m( 1, 3) 
m(2,3)

and we fill a similar table with rational numbers ац in such a way that aij/m(i, j) -f> 
0. How do we fill this table? For each row we compute the sum of current val­
ues m(i, •); if it crosses one of the thresholds 1/2,1/4,1/8 • • •, we put the crossed 
threshold value into the а-table (filling it with zeros from left to right while waiting 
for the next threshold crossed). In this way we guarantee that aij is a computable 
function of i and j\ the sum of a-values in every row differs from the sum of r e ­

values in the same row at most by factor 2 (in both directions); this implies that 
the new series is convergent and that in every row there exists some а-value that is 
at least half of the corresponding m-value. Logarithms of а-values form a Solovay 
function (and atj itself form a slowly convergent series).

Note that this construction does not give a non-decreasing Solovay function di­
rectly (it seems that we still need to use the arguments from the preceding section).

5.7.7. Busy beavers and convergence moduli. We had several definitions 
that formalize the intuitive idea of a “slowly converging series”. However, the 
following one (probably the most straightforward) was not considered yet. If an —> 
a , for every e > 0 there exists some N  such that | a - a n | < e for all n > N. The 
minimal N  with this property (considered as a function of e, denoted by e h-> N(e)) 
is called a modulus of convergence. A sequence (or a series) should be considered 
“slowly converging” if this function grows fast (as e —> 0). Let us show how the the 
Solovay property could be equivalently characterized in these terms.

In Section 1.2 (p. 21) we defined B(n) as a maximal integer whose complexity 
does not exceed n. We used plain complexity there (since at that time no other 
versions were defined), but a similar definition can be given for prefix complexity. 
Let BP(n) be the maximal integer whose prefix complexity does not exceed n.

165 Fix an optimal prefix-free universal machine M. Let T(m ) be the maxi­
mal time needed for termination of all terminating computations on inputs of length 
at most m. Then

BP(m  — c) ^  T(m) < BP(m, + c)
for some c and all m.

(Hint: One can use the same argument as for plain complexity (see Sec­
tion 1.2).)

Now we can prove the equivalence of different notions of “slow convergence” :

T h e o r e m  114. The computable series of non-negative rational numbers Yhri 
has the Solovay property ( ^  has a random sum) if and only if its modulus of con­
vergence grows fast: N (2“m) > BP(m  — c) for some c and for all m.

P r o o f . Let a = J2ri — where = ro + • • • + i. Assume that a is
random. We have to show that \a — a;| < 2“m implies K(i) > m — 0(1); this shows 
that N(2~m) ^  BP(m — 0(1)). Since K (i) = K(ai) + 0(1), it is enough to show 
that every rational 2“ '^approximation to a has complexity at least m — 0(1). This 
is a bit stronger condition than the condition K(ao ■ ■ ■ cc,n_i) > m — 0(1) (used in 
the prefix complexity version of the Levin-Schnorr theorem) since now we consider
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all approximations, not only the prefix of the binary expansion. However, it can 
be proven in a similar way.

Let c be some integer. Consider an effectively open set Uc constructed as 
follows. For every rational r we consider the neighborhood around r of radius 
2-K(r)-c.^ ^he se£ jjc is thg union 0f these neighborhoods. (Since K (r) is upper 
semicomputable, it is indeed an effectively open set.) The total length of all intervals 
is 2 • 2~c ^  2“ (C_I). Therefore, the sequence Uc forms a Martin-Löf test,
and random a does not belong to Uc for some c. This means that complexity of 
2“m-approximations of a is at least m — 0(1).

In the other direction we can use the Levin-Schnorr theorem without any 
changes: if N(2~m) ^  BP(m  — c), then K (i) ^  m — 0(1) for every i such that 
ai is a 2-m-approximation to a. Therefore, the m-bit prefix of a has complexity 
at least m — 0(1), since by knowing this prefix, we can effectively find an that 
exceeds it (and the corresponding г). □

R e m a r k . Note that this theorem shows equivalence between two formaliza­
tions of an intuitive idea of “slowly converging series” (or three, if we consider the 
Solovay reducibility as a way to compare the rate of convergence). However, the 
proof goes through Martin-Löf randomness of the sum (where the series itself dis­
appears) . It would be nice to find a more direct proof and (maybe) to connect the 
Solovay reducibility (not only completeness) to the properties of the convergence 
moduli.

Reformulating the definition of BP (m) in terms of a priori probability, we may 
define BP(m) as the minimal N  such that all n > N  have a priori probability less 
than 2~m. However, in terms of a priori probability the other definition looks more 
natural: let BP'(m) be the minimal N  such that the total a priori probability of all 
n > N  is less than 2~m. Generally speaking, BP'(m) can be greater than BP(m) 
(see [4]), but it turns out that it still can be used to characterize randomness in 
the same way:

T h e o r e m  115. Let ai be a computable increasing sequence of rational numbers 
that converges to a random number a. Then N(2~m) ^  BP'(m — c) for some c 
and for all m.

P r o o f .  Since all г > N(2~m) have the same a priori probability as the cor­
responding ai (up to an O(l)-factor), it is enough to show that for every m the 
sum of a priori probabilities of all rational numbers in the 2“m-neighborhood of a 
random a is 0(2~m) (recall that for each i > N(2~m) the corresponding a* belongs 
to this neighborhood).

As usual, we go in the other direction and cover all “bad” a that do not have 
this property by a set of small measure. Not having this property means that for 
every c there exists an m  such that the sum of a priori probabilities of rational 
numbers in the 2~m-neighborhood of a exceeds c2~m. For a given c, we consider 
all intervals with rational endpoints that have the following property: the sum of a 
priori probabilities of all rational numbers in this interval is more than c/2 times 
bigger than the interval’s length. Every bad a is covered by an interval with this 
property (the endpoints of the interval (a — 2~m, a + 2~m) can be changed slightly 
to make them rational), and the set of intervals having this property is enumerable. 
It is enough to show that the union of all such intervals has measure 0 (l/c), in 
fact, at most 4/c.



5.7. THE RANDOM NUMBER П 171

It is also enough to consider a finite union of intervals with this property. 
Moreover, we may assume that this union does not contain redundant intervals 
(that can be deleted without changing the union). Let us order all the intervals 
according to their left endpoints:

{lo,r0), (ii,ri), (h ,r2),
where /о ^  h ^  h  ^  • • •. It is easy to see that right endpoints go in the same 
order (otherwise, one of the intervals would be redundant). So ro ^  rq < r2 < • • • • 
Now note that rq ^  h+2 \ otherwise, the interval (Zj+i,?q+i ) would be redundant. 
Therefore, intervals with even numbers (lo,ro), (l2 ,r2), (/4^ 4), • • ■ are disjoint, and 
for each of them the length is c/2 times less than the sum of a priori probabilities 
of rational numbers inside it. Therefore, the total length of these intervals does not 
exceed 2/c, since the sum of all priori probabilities is at most 1. The same is true 
for intervals with odd numbers, so in total we get the bound 4/c. □

This statement raises some natural questions. How much could BP(m ) and 
B P '(m) differ? This question was answered in [4] (the maximal difference corre­
sponds to a logarithmic change in the argument), but there are many others for 
which we do not know the answers. Can we use prefix-stable machines (instead of 
the prefix-free ones) in the definition of BP in) as the computation time? Can we 
derive the last theorem from the version of the Levin-Schnorr theorem with a priori 
complexity? Can we use the methods of this section to prove that the real number 
Ylxzx  is random for every prefix-free set X  that contains the domain of an
optimal prefix-free decompressor?

Returning to the “philosophical meaning” of the number Ll, let us note that it 
can be considered as an “infinite version” of special objects of complexity n that are 
considered in Theorem 15 (p. 25). Moreover, there is a direct connection between 
these notions.

T h e o r e m  116. Let fln be the binary string formed by first n bits of the binary 
representation of Ll. Then has the properties described in Theorem 15 with 
О (log n) -precision: each of the objects listed there (say, B(n)) can be algorithmically 
obtained from f2n+o(iogn) and vice versa (Q,n can be obtained from B(n + 0(\ogn)).

PROOF. W e already have seen  th a t g iven  one can con stru ct an in teger
t > BP(n) (th e  num ber o f step s  needed  to  exceed  f l n ). T h e  d ifference b etw een  
plain  and prefix co m p lex ity  (th a t cou ld  m ake B(n) greater th an  BP(n)) can  be  
com p en sa ted  by an 0 ( lo g n ) -c h a n g e  in n.

In the reverse direction, assume that B (n) and n are known. How do we find 
^71-0(l0gn)? We claim that in the current approximation for fl found after B(n) 
steps the first n — O(logn) bits are final (i.e., they coincide with the corresponding 
bits in fl). If this is not the case, there exists a threshold ß that is a finite binary 
fraction of length n — O(logn) bits that separates the current approximation and 
fh The complexity of ß is at most n — O(logn). Knowing /3, we can construct a 
number greater than B(n): just count the steps needed to get an approximation 
greater than ß. For a large enough constant in O(logn), we get a contradiction. □

Therefore we see that knowing n + O(logn) bits in fl allows us to answer 
any question about the termination of a program of size at most n. Since the 
question about the membership in any enumerable set (e.g., questions whether a
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given statement of size n is provable in some fixed formal theory) has this form, we 
can follow Chaitin and call Q “the number of wisdom” that contains information 
about many important things. (Sounds rather romantic, indeed.)

Returning to more meaningful statements, we have proven that Q, is Turing- 
equivalent to O' (we can compute ft having an oracle for halting problem, and vice 
versa).

5.8. Effective Hausdorff dimension

The notion of Hausdorff dimension is well known in measure theory (and it 
became popular in connection with fractals). Here is the definition. Let a > 0 be 
some real number. We say that a set A is an а -null set if for any e > 0 there exists 
a sequence of intervals A that cover A such that

< £■

This definition assumes that A is a subset of a space where a class of subsets called 
“intervals” is chosen and the measure of intervals is defined. We restrict ourselves 
to the case of the set fl. Here intervals are the sets £lx (where Q,x is the set of 
all infinite extensions of a binary string x). The measure of the interval Q,x equals 
2-i(x)%

Let us start with a few simple remarks:
(1) Any subset of an a-null set is an a-null set.
(2) For a = 1 we get the standard definition of a null set (set of measure zero).
(3) For a > 1 any subset А С П is an a-null set. Indeed, one can cover A by 2n 

intervals that correspond to 2n strings of length n, and the sum of their a-measures 
tends to 0 as n —> oo.

(4) Assume that 0 < a < a'. Any a-null set is then an a'-null set (note that 
measure /i(I) of each interval /  does not exceed 1 and therefore ß(I)a ^  ß(I)a).

166 Give a natural definition for an а -null set of reals, and show that a set 
A C [0,1] is an a-null set if and only if the set of binary representations of all 
numbers in A is an а -null set according to the definition above.

(Hint: We need to verify that the more liberal notion of an interval in M where 
we do not require any alignment, does not change the class of null sets.)

Our remarks imply that for any set А С П there exists some threshold d £ [0,1] 
with the following property: if a > d, the set A is an a-null set; if a < d, it is 
not. (For a — d the set may be an a-null set or not.) This threshold is called the 
Hausdorff dimension of the set A.

167 The Cantor set is the subset of [0,1] that remains if we take out the 
middle third (1/3, 2/3), then take out the middle thirds of two remaining segments 
(i.e., (1/9, 2/9) out of [0,1/3] and (7/9,8/9) out of [2/3,1], etc.). Prove that the 
Cantor set is a compact set homeomorphic to ft and has Hausdorff dimension log3 2.

(Hint: To get an upper bound for the Hausdorff dimension, one may consider 
the standard intervals, i.e., the intervals that remain after several steps of the Cantor 
set construction. To get a lower bound, note that (1) we may consider only finite 
covers due to compactness; (2) if a cover for the Cantor set is given, we can look 
at its parts that cover the left third and the right third; each of these parts can be 
scaled to the cover of the entire set due to the self-similarity of the Cantor set. If
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a is smaller than the threshold, one of these covers is better than the original one, 
so we may increase the sizes of intervals, and finally get a contradiction.)

168 Give a natural definition of the Hausdorff dimension for the subsets of 
M3. Explain why the dimension equals 3 for solids, 2 for surfaces, 1 for curves, and 
0 for isolated points. Show that for any d G [0,3], there is a subset of M3 that has 
dimension d.

The effective version of Hausdorff dimension is defined in a natural way [190, 
152]. A set A C S7 is an effective а -null set (for a given a > 0) if there exists an 
algorithm that, for any given e > 0, enumerates a set /о, ii, / 2, ... of intervals that 
cover A such that ^2(ß(Ik))a < £• (Here /r is the uniform measure on fl).

As in the classical case, the property is monotone (it remains true if cc increases 
or A decreases). The main difference between the classical and effective case is 
shown by the following theorem:

Theorem 117. For every rational a > 0, there exists the largest (with respect 
to inclusion) effectively а -null set.

PROOF. The proof goes in the same way as for effectively null (=l-null) sets 
(Chapter 3). The countable union of cc-null sets (in the classical sense) is an cc-null 
set. In the same way the union of an enumerable family of effectively cc-null sets is 
an cc-null set. On the other hand, if cc is a rational number (or even a computable 
real), we can enumerate all effectively cc-null sets (or, better, the algorithms that 
serve these sets) by enumerating all algorithms and changing them when too large 
intervals are generated. □

169 Prove that the largest effectively cc-null set consists of all the sequences 
oj such that the difference an — K(n) has 110 upper bounds.

(Hint: The proof is similar to the proof of the prefix complexity version of the 
Levin-Schnorr theorem.)

The following result (A.Khodyrev) is not used in the sequel (for the definition 
of the Hausdorff dimension, rational cc’s are sufficient), but it is interesting in its 
own right. Let a be an arbitrary real number.

T heorem 118. The largest effectively а -null set exists if and only if a is lower 
semicomputable.

P r o o f .  Assume that cc is lower semicomputable. This means that we can gen­
erate better and better approximations from below to cc, but we do not know their 
precision. If we use these approximations (instead of true cc) in the requirements 
for the cover (in the definition of an effectively cc-null set), we get stronger require­
ments. Consider the algorithm from the previous theorem that generates covers of 
the largest effectively cc-null set, and let it use rational lower approximations of cc 
instead of cc itself, with the following modification. Do not reject permanently the 
intervals that violate these requirements, but postpone them and check again when 
a new approximation to cc arrives. If a cover satisfies the requirement for the true cc, 
all its intervals will be eventually let through.

On the other hand, let us assume that for some cc there exists the largest 
effectively cc-null set. Consider the algorithm that generates covers for it. This 
algorithm can be used to obtain lower bounds for cc. Indeed, if for some rational e 
the algorithm produces a finite family of intervals (at some step) and /З-powers of 
the measures of these intervals exceed e, this means that ß < a.
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It remains to prove that these bounds can be arbitrarily close to a. Assume 
that this is not the case and all of them are less than some of < a. In this case 
every effectively er-null set would be at the same time a'-null set, which is not true 
(there exist sets of any effective Hausdorff dimension; see Problem 170, p. 175). □

The effective Hausdorff dimension of a set A C is now defined as the infimum 
of a such that A is an effective er-null set. This number belongs to [0,1] and is 
obviously greater than or equal to the (classical) Hausdorff dimension. (Initially 
the definition of effective Hausdorff dimension was given in a different way, using 
computable martingales; see [111, 118], where the properties of effective dimension 
were established. See also Section 9.10 about computable martingales.)

We have mentioned a paradox: The property of being an effectively null set 
depends only on the type of its elements (whether they are random or not). It is 
not important “how many” elements are in the set. A similar observation can be 
made for Hausdorff dimension:

Theorem 119. The effective Hausdorff dimension of the set is equal to the 
supremum of the effective Hausdorff dimensions of its elements.

(By effective Hausdorff dimension of a point td € Q, we mean the effective 
Hausdorff dimension of the singleton {td}.)

PROOF. Obviously the (effectively Hausdorff) dimension of a set cannot be 
less than the dimension of its element. It remains to prove the converse: if the 
dimensions of all singletons formed by elements of a set A are less than some 
rational number r, and r' > r is another rational number, then the dimension of 
A does not exceed r'. This is a direct corollary of Theorem 117: all singletons are 
subsets of the largest effectively r'-null set, so A is a subset of the same set and has 
dimension at most r'. □

Therefore we need to understand only what is the (effective Hausdorff) di­
mension of a singleton. It turns out that it has a simple description in terms of 
Kolmogorov complexity.

Theorem 120. The effective Hausdorff dimension of a singleton {td}, where 
td = tdotditd2 • ■ •, is equal to

lim inf C^ oUJl ' 
n—>oо n

(The statement uses plain Kolmogorov complexity of the prefixes of td. How­
ever, one can use other versions of complexity: since the difference between different 
complexity versions is of order O(logn) for strings of length n, and we divide the 
complexity by n, we get a term 0(logn)/n that does not change the limit.)

P roof. This result can be derived from the statement of Problem 169, but we 
provide the direct proof. We have to prove two inequalities: one for each direction.

Assume that the lim inf is less than a rational number r. We have to verify 
that the set {cd} is an effectively r'-null set for each rational r' > r.

For each n we consider all n-bit strings that have complexity less than rn. There 
are at most 0(2rn) such strings. The condition about lim inf guarantees that for 
infinitely many n the n-bit prefix of td is in the corresponding list. Consider all 
intervals Çtz for all z in the list (for some fixed n), and compute the sum required
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in the definition of an effectively r'-null set: there are 0(2rn) terms and each is 
(2~n)r _  2~r n5 so the sum is 0(2(-r~r )n), and we get a converging geometric series

2(r-r')ri'
71

Deleting an initial part of this series (considering only strings of length N  or more) 
we make the sum arbitrarily small (when N  is large enough). At the same time our 
assumption (about liminf) guarantees that remaining intervals still form a cover 
for to. So one inequality is proved.

Going in the other direction, assume that {cj} has effective dimension less than r 
for some rational r. Let us show that the liminf does not exceed r.

By definition, for each rational e > 0 we can generate a sequence of intervals. 
We know that one of them contains и  and the sum of rth powers of the measures 
does not exceed e. Let us do this for e — 1,1/2,1/4,.... In this way we get 
a sequence of intervals that have finite sum of rth powers of their measures, and 
infinitely many of them cover oj. In other words, there exists a computable sequence 
of intervals xo, x\, x2, ... such that:

• J22~rl(Xi) < oo;
• Xi is a prefix of uo for infinitely many i.
The first statement implies that m(i) ^  c2“w^ ^  for some c and for all i (where 

m is the discrete a priori probability of natural numbers considered in Chapter 4). 
Taking the logarithms, we get the bound for prefix complexity,

K(xi) < K(i) + 0(1) rl(xi) + 0(1)
for all i. Note also that the lengths of Xi tend to infinity (since the series is conver­
gent), that X{ is a prefix of uo for infinitely many i and that the plain complexity does 
not exceed the prefix one. (The definition of liminf guarantees that if a sequence 
has infinitely many terms that do not exceed r, its liminf does not exceed r .) □

1170 I Prove the following corollary: for any real a G [0,1] there exists a set 
(and even a singleton) that has effective Hausdorff dimension a.

(Hint: The complexity of an initial segment can be increased by adding random 
bits and decreased by adding zeros.)

171 Prove that for an effectively closed subset of the Cantor space (this means 
that the complement of this set is the union of an enumerable family of intervals) 
the effective Hausdorff dimension coincides with the classical Hausdorff dimension.

(Hint: Due to compactness, one may consider finite covers and search for them 
effectively.)

I 172 I Find the (classical) Hausdorff dimension of the Cantor set (see Prob­
lem 167) using the previous problem and the characterization of effective dimension 
in terms of singletons and Kolmogorov complexity.

Prove that for every real a G [0,1] there exists a set that has (classical) 
Hausdorff dimension a.

(Hint: Consider the set of all sequences that have zeros at specified places.)

173

174 I Prove that the definition of effective Hausdorff dimension of a set A 
remains the same if we require the existence of a computable sequence of intervals 
that has finite sum of rth  powers of the measures and that covers each element of 
A infinitely many times.
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{Hint: If such a cover exists for some a, for a greater o' the same intervals have 
smaller measure, and the decrease is more significant for smaller intervals. Note 
that we can delete all short strings from the cover, due to our assumption (each 
element is covered infinitely many times).)

We return to the notion of effective Hausdorff dimension in Section 9.5 where 
its relation to effective martingales is explained. We show there how to translate 
the proof of Theorem 120 into the martingale language.

5.9. Randomness with respect to diifferent measures

5.9.1. Changing the measure. The notion of randomness evidently depends 
on the underlying measure. For example, the strong law of large numbers guarantees 
that sequences that are ML-random with respect to the Bernoulli measure Bp have 
limit frequency p, so for different p we get disjoint sets of random sequences. Still 
from the viewpoint of computability theory the properties of ML-random sequences 
(with respect to a computable measure P) do not depend on P—except for some 
trivial cases.

The trivial case we have in mind is the following one: if a computable measure 
// has an atom, i.e., if some sequence (a singleton) has positive //-measure, then this 
sequence is random (it cannot be an element of a //-null set). Such a sequence is 
always computable. This is a corollary of Theorem 79(h) (p. 123), but has also the 
following simple proof. Assume that {w} has a positive probability e with respect 
to a computable distribution //. Let us consider //-measures of the sets where 
X is a prefix of w. These measures decrease as x becomes longer, and their limit 
is £. Wait until some of them become less than l.le. If x is such a prefix, only 
one of the strings t0  and x l has //-measure greater than 0.9e, and this prefix can 
be effectively found since // is computable. So the sequence can be computably 
extended starting from this point.

To avoid this special case, we consider only atomless measures where each 
individual sequence has measure 0. If /q and //2 are two computable atomless 
measures, then the sets of ML-random sequences with respect to /q and //2 are 
essentially the same from the computability viewpoint:

T h e o r e m  121. Let /q and //2 be two atomless measures. Then there exists a 
bijection between the sets of ML-random sequences with respect to /q and //2 that 
in both directions is a restriction of a computable mapping of type £ —>•£.

In other words, there exist oracle machines M12, M21 with the following prop­
erties: if an oracle is a sequence ш that is ML-random with respect to /q , then 
is an infinite sequence that is random with respect to //2, and vice versa; these two 
mappings are mutually inverse (on random sequences).

P roof. Following [225], consider first a special case when one of the measures 
(say, //2) is the uniform measure on [0,1]. We want to construct a one-to-one cor­
respondence between sequences that are /q-random and uniformly random points 
in [0,1]. As usual, we split [0,1] into two intervals: the left interval 7To of length 
/q(L>0), and the right interval 7Ti of length /q(f2i). Each of the intervals 7To and 7Ti 
is then split in a similar way, etc. Then for each sequence uj consider a real number 
that is a common point of all 7rx for all prefixes x of cj. Since /q has no atoms, 
such a common point is unique.
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We have constructed a mapping of Q to [0,1] that is an isomorphism in the 
sense of measure theory. It is not a one-to-one mapping since the endpoints of the 
intervals have two preimages, but the endpoints form a (countable) set of measure 0. 
The computability of the measure guarantees that effectively null sets with respect 
to ßi correspond to the effectively null sets with respect to the uniform measure, 
therefore we get a bijection between the sets of ML-random sequences with respect 
to corresponding measures. (Note that the endpoints of the segments, as well as 
corresponding sequences xOOO • • • and rrl 11 • • •, are not random. Note also the ß\- 
measure of some Qx can be zero, and then its image is one point, but this does not 
matter; all the sequences starting with x are then non-random.)

It remains to do the same for ß2 and then take the composition of these two 
bijections (using [0,1] as an intermediate step). The computabity of the corre­
sponding mappings is easy to prove since both measures ßi and ßo are assumed to 
be computable. □

Using the language of computability theory, we can state a corollary of this 
result. Recall that two sequences (or two sets: we identify a set and its character­
istic sequence) are Turing-equivalent (belong to the same Turing degree) if each of 
them is computable by a machine that uses the other sequence as an oracle. The 
equivalence classes are called Turing degrees. Our theorem shows that the class 
of Turing degrees of ML-random sequences does not depend on the choice of an 
atomless computable measure.

175 Prove that every sequence that is random with respect to some com­
putable measure ß (not necessarily atomless) is either computable or Turing-equiv­
alent to a uniformly ML-random sequence.

(Hint: Consider the intervals 7rx. for x that are prefixes of to and their common 
point. If it is not unique, then ui is computable. If the common point 2: is unique, 
then 2 is uniformly random and can be computed given an oracle for to. On the 
other hand, uj is computable if we have approximations to 2 as an oracle: we use 
that 2 is random and therefore different from all the endpoints of the intervals.)

5.9.2. “Absolutely non-random sequences” . Consider some sequence uj. 
We want to find a computable measure ß such that ui is ML-random with respect 
to ß. Is it always possible? The answer turns out to be negative.

T h e o r e m  122. There exists an infinite sequence of zeros and ones that is not 
ML-random with respect to any computable measure on Q,.

Sequences that are random with respect to some computable measure were 
called “proper” in [225] (English translation). The theorem states that not all 
sequences are proper. There are different ways to construct a non-proper sequence. 
We start with the most intuitive one that uses the a priori randomness deficiency. 
Recall that the ML-randomness criterion (for a computable measure P) can be 
reformulated in the following way. For each string x consider the difference

dp(x) = -  log2 P(flx) -  KA (x).
The sequence to is ML-random with respect to P if this difference is bounded (by 
a constant) for the prefixes of u). So we may call this difference the randomness 
deficiency of a string x (with respect to computable measure P): a sequence is 
random if the deficiencies of its prefixes are bounded (by a constant).
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The name “randomness deficiency” is quite general and may be understood in 
different ways in different contexts. We already considered the expectation-bounded 
and probability-bounded deficiencies for infinite sequences, and in Chapter 14 we 
consider the randomness deficiency of an element of a finite set. However, in this 
section by randomness deficiency we mean the function dp defined on finite strings 
as explained above.

The definition above assumes that P(QX) > 0; if P(QX) = 0 for some x, we let 
dp(x) = Too.

The randomness deficiency is always non-negative (up to a constant); see The­
orem 89.

176 Prove that for every string x the deficiency of at least one of the strings 
xO and xl  does not exceed the deficiency of x. (We assume that a computable 
measure P used in the definition of the deficiency is fixed.)

This problem shows that we can start with an arbitrary string with finite defi­
ciency (non-zero measure) and extend it bit by bit not increasing its deficiency. The 
randomness criterion guarantees that in this way we get an ML-random sequence 
with respect to the measure used in the definition of deficiency.

After the notion of deficiency is introduced, we return to the proof of Theo­
rem 122.

P r o o f .  To get a “non-proper” sequence w, we need to ensure that for every 
computable measure P there is a prefix of со that has large randomness deficiency 
with respect to P. So we get a countable family of requirements: for each measure 
P and for each c the corresponding requirement says that some prefix has deficiency 
at least c with respect to P.

Using a diagonal construction, we fulfill these requirements one by one. At 
each step we add to a current prefix some additional bits to ensure that the next 
requirement is fulfilled. So we need to check that for each string x and for each 
computable measure P and constant c there exists an extension у of x that has 
deficiency at least c with respect to P. Indeed, we may extend x by adding a bit 
in such a way that the P-ineasure decreases at least by a factor of 1.5, then do this 
again, etc. This can be done effectively, so the complexity of the prefixes increases 
slowly, while the measure decreases fast, so we get an arbitrary large deficiency. □

Essentially the same argument can be explained using “generic” sequences. 
Recall that a subset A of Q is everywhere dense if it has non-empty intersection with 
every interval. A famous Baire theorem says that the intersections of a countable 
family of open sets Ai (an open set is a union of intervals) that are everywhere 
dense is non-empty and, moreover, everywhere dense.

1177 I Prove the Baire theorem starting with any string and adding suffixes to 
get inside dense open sets (one by one).

Now we consider effectively open sets (unions of enumerable families of inter­
vals) that are everywhere dense. We get a countable family of open sets that are 
dense everywhere. Their intersection is an everywhere dense sets whose elements 
are called generic sequences. (The full technical name is weakly 1-generic sequences; 
see [147, Definition 1.8.47].) Informally speaking, a generic sequence violates ev­
ery law that prohibits an enumerable dense set of prefixes. (Every string has an 
extension that violates the law, and violations can be effectively discovered.)
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178 Prove that every generic sequence violates the Strong Law of Large Num­
bers.

(Hint: The set of binary strings of length greater that N  that have more than 
99% of ones is a dense effectively open set; the same is true for the set of strings 
with more than 99% of zeros.)

179 Prove that no generic sequence is computable.
(.Hint: The set of all sequences that differ from a given computable sequence is 

open and everywhere dense.)

Note that the definition of a generic sequence (unlike randomness) does not 
refer to any measure.

180 Prove that a generic sequence is not ML-random with respect to any 
computable measure.

(Hint: It is enough to construct an effectively open dense set that has small 
measure. This can be done by iteratively choosing a smaller half of an interval or 
almost smaller if the halves have almost equal size.)

Zvonkin and Levin ([225], the remark after Definition 4.4) mentioned another 
way to construct a sequence that is not random with respect to any computable 
measure. They claim that it is easy to show that the characteristic sequence of 
the universal enumerable set is not ML-random with respect to any computable 
measure. They don’t say what kind of universality is needed, but indeed one can 
find an enumerable set with this property:

181 Show that there exists an enumerable set whose characteristic sequence 
is not random with respect to any computable measure.

(Hint: The complexity of the prefixes of every characteristic sequence of an 
enumerable set is logarithmic; it remains to guarantee that any computable measure 
of the prefixes decreases fast. This can be done as follows. We split N into countably 
many arithmetic sequences and devote zth of them to an ith computable measure; 
our goal is that the sequence of bits appearing at these places is not random with 
respect to the projection of the zth measure on the corresponding coordinates. It 
can be done by choosing a direction where measure decreases fast. (Then we use 
Theorem 123.) Since we do not know whether the ith algorithm indeed computes 
a computable measure, we get an enumerable set, not a decidable one.)

It is interesting that not every enumerable set has this property:

182 Construct an enumerable undecidable set whose characteristic function 
is ML-random with respect to some computable measure.

(Hint (L. Bienvenu): Let a* be a computable sequence of rational numbers 
that is dense in [0,1]. Consider a computable mapping of Q, to itself: a sequence 
a is interpreted as a binary fraction in [0,1] and mapped to a sequence uj where 
u>i = 1 if a{ < a and щ  = 0 if > a. (If a  is one of the a*, then u>i is undefined.) 
This mapping is almost everywhere defined (with respect to the uniform measure); 
the image of the uniform measure is therefore a computable measure on fl, and 
the image of a lower semicomputable ML-random real is a sequence that is ML- 
random with respect to the image measure and at the same time is a characteristic 
sequence of an enumerable undecidable set. (To prove undecidability, we use that 
ai are dense in [0,1].) See Sections 5.7 and 5.9.3.)
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We have constructed several examples of sequences that are not random with 
respect to any computable measure. But one may ask a different question: Is there 
a sequence that is not Turing-equivalent to any ML-random sequence? Here we do 
not need to specify a computable measure, since all the measures have the same 
degrees of random sequences (see above). This is possible, too:

183 Prove that there exists a non-computable oracle A such that no A- 
computable sequence is random with respect to a computable measure (unless the 
sequence is computable and the measure has an atom).

(Hint: First, we may consider only the uniform measure. Then we use a 
diagonal construction to get the required set A. First, for every i we can add a 
prefix of A that guarantees that A is not computed by the ith machine. On the 
other hand, for every i we can add a prefix that guarantees that either (1) the 
ith machine with oracle A computes a non-total sequence, or (2) the ith machine 
computes a sequence that has a prefix with large deficiency. Indeed, if there is some 
extension of the current oracle prefix that allows the ith machine to compute a long 
sequence, choose the first such extension, and the corresponding long sequence will 
have small complexity; if there is no such extension, the function computed by the 
ith machine is guaranteed not to be total.)

The statement of the last problem is also a corollary of several more diffi­
cult results that are not included in our book. First, V. Vyugin has shown [215] 
that there exists a probabilistic machine that with positive probability generates se­
quences with this property (sequences that are not Turing-equivalent to any random 
sequence). This sounds like a paradox: The property implies that for a sequence 
a there is no computable measure that “explains” a (makes a random with re­
spect to this measure). On the other hand, there is a machine that generates such 
“unexplainable” sequences with positive probability—so why not take the output 
distribution of this machine as an explanation? The solution of this paradox: The 
output distribution is a semimeasure, not a measure (the machine generates finite 
sequences with positive probability).

There is another, completely different, argument: We can derive the statement 
of the problem from recent (but already classical) results about low sets (see the 
books of A. Nies [147], R. Downey and D. Hirschfeldt [49]; a simplified exposition 
can be found in [20]). These results say that there is an enumerable undecidable set 
A that is low for Martin-Löf randomness: Adding A as an oracle does not change 
the set of ML-random sequences (and it also does not change prefix complexity, 
but this is not needed now). For this A no А-computable sequence can be random 
(since it is not А-random). In this way we get a set A with an additional property 
(A is enumerable).

So for many different reasons there exists a sequence such that no ML-random 
sequence is reducible to it. In the other direction the situation is different: Every 
sequence is Turing-reducible to some ML-random (with respect to the uniform 
distribution) sequence; see below Theorem 126, p. 189. The proof of this theorem 
implies also that every Turing degree above O' (every Turing degree that computes 
the halting problem) contains a random sequence; see Problem 190 (p. 190).

184 Prove that there exist a sequence ш that is Turing-equivalent to a uni­
formly ML-random sequence, but ш itself is not random with respect to any com­
putable measure.
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(Hint: We interleave two sequences: at positions 0 ,2 ,4 ,... we put a generic 
sequence 7 ; and at positions 1 ,3 ,5 ,... we put an ML-random sequence ы that 
computes 7 . The resulting sequence is Turing-equivalent to ui. Note also that if a 
sequence is ML-random with respect to some measure P, that its subsequence with 
even indices is ML-random with respect to the projection of P on these coordinates; 
see Theorem 123.)

The sequences that are not random with respect to any computable measure, 
are similar (in a sense) to non-stochastic objects in the sense of Kolmogorov (see 
Section 14.2). Moreover, one can show that if a sequence a is random with respect 
to a computable measure, then its prefixes are stochastic objects (Problem 349, 
p. 430).

5.9.3. Image randomness. We started this chapter by considering a proba­
bilistic machine that consists of a (fair) random bit generator and an algorithm that 
transforms this sequence of random bits into a finite or infinite output sequence. Let 
us return to this scheme and assume that with probability 1 the output sequence 
is infinite. In this case we get a computable output distribution ß.

A (slightly philosophical) question arises: Which infinite sequences are plausible 
as outcomes of such a machine? There are two possible answers.

First, we have a definition of Martin-Löf randomness that can be applied to the 
computable distribution ß. We can say that plausible sequences are the sequences 
that are ML-random with respect to this distribution. On the other hand, we can 
look inside the machine and ask, Which sequences are plausible as the outputs of a 
random bit generator? The natural answer is ML-random sequences with respect 
to uniform distribution. According to this answer, plausible output sequences are 
images of ML-random sequences (with respect to uniform distribution) under the 
computable transformation performed by the machine.

Which of these two answers is more philosophically convincing? Fortunately, 
we do not need to make a choice here, since these two classes coincide. Here are 
the exact statements and proofs.

Let ß be a computable probability distribution on Q, and let / :  E —> E be a 
continuous computable mapping. Consider the image of the measure ß with respect 
to / ,  i.e., a measure и on the set E such that

v(U) = l i ( r l (U))
for any U С E. In other words, v is the probability distribution of the random 
variable where w is a random variable that has distribution ß. In the general 
case the distribution и is not concentrated on S7 and may assign positive proba­
bilities to finite sequences; in our terminology и may be a semimeasure (and this 
semimeasure is lower semicomputable), not a measure. Let us assume, however, 
that it is not the case and that и is a measure on Q. (It is easy to see that in this 
case v is a computable measure.)

Theorem 123. (a) For any sequence ui E fl that is ML-random with respect to 
measure ß, its image f(ui) is an infinite sequence that is ML-random with respect 
to measure v.

(b) Any sequence r that is ML-random with respect to v can be obtained in this 
way, i.e., there exists a sequence w that is ML-random with respect to ß such that 
f  M  -  T.
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Recently M. Hoyrup found that this statement remains true for the so-called 
layerwise computable mappings. This class contains all computable almost every­
where defined mappings and looks like the right generalization making the proof 
balanced and natural. Still we restrict ourselves to the classical case of computable 
mappings in this book and refer the interested reader to the exposition in [15] for 
the general case.

Proof. First, let us prove that the /-image of a /л-random sequence и  is 
infinite. If this is not the case and /(cu) is a finite string z, consider all infinite 
sequences и  such that f(iv) = z, i.e., the /-preimage of the set Ez \  (Ezo U Ezi).

The preimage of ftz is an effectively open set (the union of an enumerable 
set of intervals), and the preimage of Ezo U Ezi is another effectively open set 
that is a subset of the first one. To get the contradiction, we have to prove that 
the preimage of the difference (=the difference of the preimages) does not contain 
random sequences. This is a special case of the following general statement.

Lemma 1. Let p be a computable measure on ft, and letU  с  V be two effectively 
open sets such that p(V \  U) = 0. Then V \U  is an effectively null set (=does not 
contain random sequences).

P roof. It is enough to consider one interval I  in the set V (and replace U by 
its intersection with I). Enumerating the intervals that form the set U, we cover 
more and more points in I. By continuity the measure of the covered part converges 
to the measure of the interval I  (since V \  U has zero measure). Therefore, we can 
wait until the remaining part of I  has measure less than e for any given e and find 
a cover of I  \  U by a (finite) family of intervals with small total measure.

Lemma 1 is proven (and we did not use that V is effectively open; the same is 
true for every open set V).

To finish the proof of (a) we have to show that the image f(<w) of a /л-random 
sequence w cannot be an infinite but not z/-random sequence. Indeed, assume that 
that f(uj) is infinite but does not form an effectively z/-null set. The preimages 
of the intervals that cover f(<w) cover cj, and we get an effectively open set that 
contains и  and has small measure (recall that the /л-measure of the preimage of an 
effectively open set is equal to the z/-measure of the set itself). The statement (a) 
is proven.

185 Prove a quantitative version of this statement: The expectation-bounded 
deficiency of the sequence f(cv) with respect to measure v is bounded by the 
expectation-bounded deficiency of и  with respect to /л plus a constant that de­
pends on the measures and the mapping but not on u. (In this problem we use the 
randomness deficiency for infinite sequences as defined in Section 3.5.)

Let us now prove the statement (b) using the notion of deficiency (for finite se­
quences, as defined on p. 177 using a priori complexity). Assume that the sequence т 
is ML-random with respect to the measure Q. This means that the deficiencies of 
its prefixes are bounded (by a constant). Then we apply the following lemma that 
can be considered as the finitary version of statement (b).

Lemma 2. Let и be a string such that iy(ftu) > 0. Then there exists a string w 
such that и f(w) (u is a prefix of f(u>)) and dß(w) ^  dv(u) + 0 (1).

(The constant hidden in 0(1) may depend on / ,  /л, and v but not on гл; dß and 
dv denote the corresponding deficiencies.)
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Proof. Consider the preimage Fu — f~ 1(T,u) of Eu. This is an effectively open 
subset of E. By definition, the //-measure of the set Fu (recall that the measure // 
is concentrated on infinite sequences) equals i/(Eu). If the deficiency dv{u) is small, 
i/(Eu) cannot be significantly less than the continuous a priori probability of Eu.

Now consider the continuous a priori probability of the set Fu, i.e., the proba­
bility of the event “the output of an universal probabilistic machine M  belongs to 
Fu". This event can be rephrased as follows: the output of the machine fo M  (that 
applies /  to the output of M ) starts with u. Comparing the machine /  о M  and 
the universal one, we conclude that the (continuous) a priori probability of the set 
Fu can be only a constant times bigger than the (continuous) a priori probability 
of Eu. The latter is 2dv^  times bigger than vÇEu) that is equal to the //-measure 
of the set Fu. Therefore we get an inequality between two measures of Fu (the a 
priori probability a and //):

a(Fu)
K Fu)

<  0 ( 2d" ( u ) ).

Since the set Fu can be represented as the union of a (possibly non-enumerable) 
family of disjoint intervals, we conclude that the similar inequality is true for some 
interval T,w in this family:

< ^ Ли) -0{l).

Since T,w C Fu, we conclude that f(w ) >  u, and the preceding inequality implies 
that dß(w) < dv{u) + 0(1). Lemma 2 is proven.

Now we continue the proof of statement (b). Let tn — (r)n be the prefix of 
a i/-random sequence т that has length n. The randomness criterion guarantees 
that ^-deficiencies of ti are bounded. Then the lemma says that there exists a 
sequence of strings wq,w\, . ..  that have bounded //-deficiencies such that f(w i) is 
an extension of t{. If we knew that all Wi are compatible, this would give us a 
desired result (a random preimage of t). However, there is no reason to expect 
this.

Nevertheless, a standard compactness argument shows that the sequence Wi has 
a subsequence that either consists of identical strings or converges to some infinite 
sequence oj. The latter means that any (finite) prefix of a; is a prefix of all but 
finitely many strings in the sequence.

In the first case the sequence т is the image of the finite string w that appears 
infinitely often in the sequence Wi. This can happen for a i/-random sequence r  if 
this sequence (the corresponding singleton) has a positive measure; т is computable 
in this case. Then we let oj be any //-random continuation of the string w (we know 
that it exists, since the //-deficiency of w is finite and ß(ftw) > 0).

In the second case an infinite subsequence of the sequence W{ converges to oj. 
To prepare ourselves for this case, let us make a digression and prove that the 
randomness deficiency is almost monotone.

Recall the randomness criterion (Theorems 91 and 93). It guarantees that for 
ML-random sequences the deficiency of their prefixes is bounded while for non- 
random sequences the deficiencies tend to infinity. This implies that the interme­
diate situation is not possible: There is no sequence such that deficiencies of its 
prefixes are not bounded but do not tend to infinity. This looks rather strange, and 
one may ask why this happens. The following theorem provides some explanation.
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T heorem 124. Let P be a computable measure on Q. There exists a constant 
c such that, for every string x and for every string y that has x as a prefix, the 
inequality

dp(y) ^  dP(x) -  2 log dp (x) -  c
holds.

Informally speaking, every continuation of a string with high deficiency has 
(almost as) high deficiency; or a prefix of a string that has small deficiency, has 
(almost as) small deficiency. So the deficiency function is almost monotonie.

P roof. For each к consider the enumerable set of all finite sequences that have 
deficiency greater than k. All the infinite continuations of these sequences form an 
open set Sfc, and the P-measure of this set does not exceed 2~k. Now consider the 
measure Pk on fl that is zero outside Sk and is equal to 2kP  inside Sk■ That means 
that for every set U the value Pk(U) is defined as 2kP(U П Sk). Actually, Pk is 
not a measure according to our definition, since Pk(Ll) is not equal to 1. However, 
Pk can be considered as a lower semicomputable semimeasure if we change it a bit 
and let Pk(Ll) = 1 (this means that the difference between 1 and the former value 
of Pk(Ll) is assigned to the empty string).

Now consider the sum

к
It is a lower semicomputable semimeasure (the factor 2 in the denominator is used 
to make the sum ]T l/(2A;2) less than 1); again, we need to increase 5 so that 
S(Q) = 1. Then we have

-  logS(:r) < — logP(x) — к + 2 log к + 0 (1)

for every string x that has a prefix with deficiency greater than k. Since 5 does 
not exceed the continuous a priori probability (up to an O(l)-factor), we get the 
desired inequality.

Here we assume that the deficiency of x is finite, i.e., P(flx) Ф 0; if P(flx) = 
0, then P(Lly) = 0 for any у that has prefix x, and the deficiency of у is also 
infinite. □

Let us return now to the proof of Theorem 123. We have a sequence of strings 
(a subsequence of Ц } )  that converges to some lj € ft. All Wi have small p- 
deficiencies. In this case:

(1) Any prefix of w is a prefix of some Wi, and all Wi have bounded /U-deficiencies. 
Therefore, Theorem 124 guarantees that /г-deficiencies of all prefixes of lj are 
bounded. So the sequence lj is ML-random with respect to p.

(2) As we have proved in Theorem 123(a), the sequence f(cj) is infinite.
(3) The sequence f(cj) cannot have a prefix that is not a prefix of r. Indeed, 

in this case lj would have a prefix и  whose image is incompatible with r ;  then the 
string и  is a prefix of almost all strings in the subsequence that converges to l j , but 
images of Wi have arbitrarily long common prefixes with r .

This contradiction finishes the proof of Theoreml23(b). □

This proof of Theorem 123 illustrates the use of the randomness deficiency 
notion. One can also give a more direct proof (suggested by Muchnik in the 1980s):
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186 Give a direct proof of Theorem 123(b) using the definition of an effectively
null set.

(Hint: For a given e consider the family of intervals Z£ that covers the largest 
effectively //-null set and has total /u-measure less than e\ let F be the (closed) set 
of non-covered sequences. All sequences in F are random, so /  is defined (=has 
infinite sequences as images) and continuous on F. The image of a compact set 
F  is a compact set and therefore is closed. It has measure at least 1 — e, since its 
preimage contains F . Its complement is an open set that has measure at most s 
and covers all the points that do not have preimages in F. The only problem is 
that one should prove an effective version of the theorem that says that the image 
of a compact set under a continuous mapping is compact, and conclude that the 
complement to /-image of F is not only an open set, but a uniformly effectively 
open set.)

A similar argument allows us to prove a quantitative version of the statement 
Theorem 123(b) saying that the bound provided by Problem 185 is tight: the expec­
tation-bounded /'-deficiency of uj equals (up to an 0 (1) additive term) the infimum 
of expectation-bounded //-deficiencies of all /-preimages of uj. See [15] for more 
detail.

I 187 I Prove a statement that can be considered as a finitary version of the 
statement (a) of Theorem 123: if и and w are binary strings such that и ^  f ( w), 
then

dv{u) ^  dß{w) + 21ogdß{w) + 0 (1).
(Hint: The set of sequences having large /'-deficiencies can be covered by a 

set of small /'-measure, therefore their preimages can be covered by a set of small 
//-measure and have large //-deficiency. Note that this statement is a generalization 
of Theorem 124.)

Theorem 123 has some (rather surprising) applications. Here is an example:
188 Let со be an ML-random sequence with respect to the Bernoulli distri­

bution (independent coin tosses) where 1 has probability 1/3. Prove that there 
exists a sequence uj' that is random with respect to the uniform distribution (1 has 
probability 1/ 2) and can be obtained from со by replacing some zeros by ones.

(Hint: Consider an ML-random sequence of independent random reals uni­
formly distributed in [0, 1], or, better to say, the random sequence of bits placed 
in a two-dimensional table where (infinite) rows are considered as infinite binary 
fractions. Then convert this sequence into a bit sequence using threshold 2/3. 
Theorem 123 guarantees that we get an ML-random sequence with respect to the 
1/3-Bernoulli distribution and that any ML-random sequence with respect to this 
distribution can be obtained in this way. Then we can change the threshold to 1/2.)

Another corollary of Theorem 123 and its generalizations are discussed in the 
next section.

5.9.4. Michiel van Lambalgen’s theorem. Consider a probabilistic ma­
chine that tosses a fair coin to get a sequence ujquj\uj2 ■ • ■ and then outputs every 
other bit, i.e., the sequence ujquj2 UĴ • ■ ■ ; the output distribution of this machine is 
uniform. Theorem 123 for this machine therefore implies the following:

(a) if ujquj\uj2 ■ • • is ML-random with respect to the uniform Bernoulli measure, 
then ujquj2 UJ$ • ■ ■ is ML-random with respect to the same measure;
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(b) for every sequence • • • that is ML-random with respect to the uni­
form Bernoulli measure, there exists a sequence 011013015 ■ ■ • such that their mixture 
010011012 • • • is ML-random with respect to the same measure.

The first statement is more or less obvious, but the second is more difficult. It 
can be rephrased in terms of pairs of sequences: If a is ML-random with respect 
to the uniform measure, there exists a sequence ß such that the pair (a, ß) is ML- 
random (in a natural sense, with respect to the product of uniform measures on 
each coordinate).

We can go further and ask, We know that such a ß exists, but what properties 
of ß are needed to make the pair (a , ß) random? It is clear that ß should be 
random (see above), but this is not sufficient. For example, if we let ß = a, we get 
a non-random pair (a, a): it corresponds to the sequence u>q(jJ\ • • • where each bit 
is doubled.

The answer to this question is provided by van Lambalgen’s theorem [90]: the 
sequence ß should be ML-random and remain ML-random even if we allow the use 
of a  as an oracle in the definition of ML-randomness.

Let P and Q be two computable distributions on Cl. Consider the product 
P X Q, which is a computable distribution o n f lx f l  (this space is isomorphic to ft, 
and the definitions of randomness can be easily extended onto it).

Theorem  125. A pair of sequences {£,77) is ML-random with respect to the 
distribution P x Q if and only if the following conditions are both true:

(1) £ is ML-random with respect to P;
(2) 77 is ML-random relative to £ (with oracle £) with respect to Q.

Speaking about relativized randomness, we mean that the algorithm, which 
(for a given e > 0) enumerates the intervals in the cover, now has access to £ as 
an oracle (so we get more enumerable sets, more non-random sequences, and fewer 
random sequences).

Note also that the conditions (1) and (2) are not symmetric with respect to 
£ and 77. Theorem 125 implies that condition (1) can be replaced by a stronger 
requirement: £ is random relative to 77. However, the non-symmetric version looks 
more natural. It can be read as, “to produce a random pair, first choose a random 
£ and then choose a random 77 knowing £ (=random relative to £)”.

P roof. Let us prove first that conditions (1) and (2) are true for a random 
pair ( £ 7 7).

(1) If the sequence £ is not random and can be covered by intervals of small 
measure, then the same intervals multiplied by ft (along the second coordinate) 
become rectangles (products of intervals along both coordinates) that cover (£, 77) 
and have small measure. (We can also refer to Theorem 123.)

(2) Assume that 77 is not random with oracle £. Then for each e we can (using 
£ as an oracle) enumerate intervals that cover 77 and have small Q-measure. This 
enumeration process can be run with any oracle and it will generate some intervals 
using a finite amount of information about the oracle.

Therefore, we get (for a given e > 0) a family of rectangles that is enumerable 
(without oracle) and has the following property: If the first coordinate is fixed to 
be £, the rectangles become a family of intervals with total Q-measure at most e. 
This family can be easily converted into a family of rectangles for which all vertical 
sections (not only the ^-section) have the same property and all the sections where
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this inequality was true before the conversion remain untouched. This contradicts 
the randomness of (£, 77), since we can get a family of rectangles that cover (£, 77) and 
have total measure at most e (since every vertical section has measure at most e).

Now let us prove that if the pair (£, 77) is not random, then one of the conditions 
(1) and (2) is false. Assume {£,77) is not random. Let U be the union of an 
enumerable family of rectangles in Q, x ft of measure at most e that covers (£,77). 
For each fixed value of the first coordinate x, let Ux denote the x-section of U, i.e., 
the set {y\{x,y) € U}. Consider the values of x such that the Q-measure of Ux 
is greater than y/e. We get a set of P-measure at most у/e  that is a union of an 
enumerable family of intervals.

There are two possibilities: Either £ is covered by an enumerable family of 
intervals having total P-measure at most yfe that we have constructed, or (£, 77) 

is covered by a family V of rectangles such that the Q-measure of does not 
exceed yfe. (Other sections may have bigger measure, this does not matter.) In the 
second case rj is covered by a £-enumerable family of intervals of total measure at 
most y/e.

We would like to apply this argument for every e and conclude that either £ is 
not random or rj is not random with oracle £. The first conclusion can be drawn 
if for every e the first possibility happens; the second one, if the second possibility 
happens for every e. But what should we do if both cases happen for different 
values of el

The following simple trick helps. For every к = 1 ,2 ,3 ,... we perform this 
construction for e — 2~2k. Then for each к we get a family V(k) of intervals (along 
the first coordinate) that have total P-measure at most 2~k = y/2~2k. Now the 
two possibilities are as follows:

(a) the family V (к) covers £ for infinitely many k\
(b) for sufficiently large к the family V(k) does not cover £.
If (a) happens, for each К  the union of V (к) for all к ^  К  gives us an enumer­

able cover of £ that has total measure 2 • 2~K , so £ is not random.
If (b) happens, then for each к greater than some К  one can £-enumerate a 

family of intervals that covers rj and has total Q-measure at most 2~k, so rj is not 
£-random. (We do not know the value of K,  but this does not matter.) □

This theorem also has a quantitative version (see [209], or [7] for a detailed 
exposition): one can prove that the expectation-bounded deficiency d of the pair 
(£, 77) with respect to P  x Q is equal to the sum of the expectation-bounded defi­
ciency d\ of £ with respect to P  and the expectation-bounded deficiency cfo of rj 
with respect to Q using the oracle for £ and a condition |_dij (the integer-rounded 
value of the first deficiency). To make this statement precise, one should give the 
definition of expectation-bounded deficiency with oracle and condition (as a func­
tion of a sequence, oracle, and condition), and this can be done. In this way we 
get a formula that resembles the formula for the prefix complexity of a pair (and 
the statement of Problem 56, p. 44). (It would be nice to prove the statement 
about deficiencies using the statement about complexities and the expression for 
the deficiency in terms of complexities, but it is not clear how to achieve this.)

It would be also nice to generalize van Lambalgen’s theorem to the case of 
dependent random variables and to prove that the pair (£, 77) is random with respect 
to a computable distribution on Q, x Q, if and only if £ is random with respect to the 
projection of this distribution on the first coordinate (called marginal distribution)



188 5. M O N O T O N E  C O M P L E X IT Y

and r] is random with respect to the conditional distribution (for the first coordinate 
fixed to £). However, there are several problems here. First, one needs to define 
the conditional distribution (which can be done, as Hayato Takahashi has shown); 
second, the conditional distribution is not necessarily computable, so it is not clear 
what the randomness means here. Some results in this direction are proven in his 
papers [191, 192]; the detailed exposition of these results and a counterexample 
constructed by Bauwens can be found in [7].

5.9.5. Kucera—Gåcs theorem . Let us return to the question that we have 
already discussed. A probabilistic machine is given. Which sequences seem to be 
the plausible outputs of this machine (or, better to say, which sequences do we 
agree to believe are generated by this machine)? This question is meaningful for 
an arbitrary machine, even for the machine that generates finite sequences with 
positive probability.

More formally, consider a computable probability distribution /r on the set Г2 
and computable continuous mapping / :  E —> E. Together they generate some 
output distribution v that is the image of /r under / .  Now we do not assume 
that v is concentrated on infinite sequences, so we get an lower semicomputable 
semimeasure v that is not necessarily a measure.

On the other hand, we consider the images (under /)  of sequences that are ML- 
randoin with respect to fi. The question is, Can we characterize this set in terms 
of vl It would be nice if, say, the Levin-Schnorr type characterization in terms of 
continuous a priori probability a(-) were possible (it would say that a sequence w is 
in the image of /r under /  if and only if the ratio a(x)/u(x) is bounded for prefixes
X oj).

Unfortunately, the arguments we used for the case when /  is almost every­
where defined (and v is a computable measure) do not work anymore (there are 
problems in both directions). Moreover, as was shown in [14], the image cannot be 
characterized in terms of v.

189 Show that there are two computable mappings /1 , /2 : E —> E that gener­
ate the same output semimeasure (as the image of the uniform measure on Г2) but 
the images Д (R ) and /2 (R ) of the set R  of ML-random sequences (with respect to 
the uniform measure) are different.

(Hint: Both machines for Д and /2 generate only zero bits (finitely or infinitely 
many) at their outputs. Such a mapping (restricted on Г2) is determined by a 
decreasing sequence of effectively open sets A\ D A 2 D • • • where A{ is the set 
of inputs where г or more output zeros are generated. The image semimeasure 
is determined by the (uniform) measures of Ai. So it remains to construct two 
sequences of sets with the same measures such that the intersection of one sequence 
contains a random element and the intersection of the other one does not. To 
construct the first one, consider a random number и  that is a limit of a computable 
increasing sequence r* of rational numbers, and consider the intervals (ri,u> + 1 /%). 
For the second one consider the sequence of intervals of the same length with empty 
intersection, say, with left endpoint 0. Or take centered intervals whose intersection 
contains only the non-random number 1/ 2.)
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However, some statement that would be a corollary of this “criterion” if it were 
true (which is not the case),6 is still true [86 , 58]):

T heorem  126. Let a be an arbitrary sequence of zeros and ones. Then there 
exist a sequence иj that is ML-random with respect to the uniform measure and a 
computable mapping f:  E —> E such that f(uj) = a.

Using the terminology of recursion theory, this statement guarantees that every 
sequence of zeros and ones is Turing-reducible to some ML-random sequence with 
respect to the uniform measure. (We have already mentioned this result on p. 180.)

P ro o f . We prove a bit stronger statement and construct a computable con­
tinuous mapping /  (the same for all a) such that the image f (R)  (where R  is the 
set of all ML-random sequences with respect to the uniform measure) equals fl.

Moreover, for any effectively open set U (i.e., the union of an enumerable family 
of intervals) of sufficiently small measure we will construct a computable mapping /  
such that f ( Q \ U ) covers the entire fb Applying this construction to an effectively 
open set of small measure that covers the complement of R, we get the result.

Here is the idea of the construction. First, we split the sequences into blocks 
of length ко, k i , ..., and in this way we represent the Cantor space as the space of 
paths in a tree with branching factors 2k°, 2kl, . . .  (instead of the binary tree). The 
numbers ki grow fast enough as i increases (see below). We choose some binary 
subtree in this tree and declare that /  maps it onto a full binary tree in a natural 
way. In other words, we select two strings so and si of length ко that are mapped 
by /  to 0 and 1, respectively, then select extensions soo, soi (°f so) and sio, sn  (of 
si), mapping them to 00, 01, 10, 11, respectively, etc.

At the same time, we enumerate the intervals of the effectively open set U. If 
none of them covers any path in the chosen binary subtree, we have nothing to 
worry about: f (Q\ U)  will cover Q. If an interval covers some vertex in the chosen 
binary subtree, we replace this vertex by another one (that is not yet covered), 
and extend /  to this vertex (and the entire subtree rooted at this new vertex). To 
prevent this, the adversary needs to make unusable all 2k° sons of the root except 
one; to make each of them unusable one needs to make unusable all of its sons 
except one, etc. We conclude that the set U must be of size at least

/  2 * 0 - 1 4  f  2 kl  — l \  / 2 * 2 - l \
(*'  I 2 fc° ) V 2 fci J V 2*2 ) ' • • • ’
and we can choose ко, k i , . . .  growing fast enough to make this product strictly 
positive (or even close to 1).

Now let us explain the details. For a given (computable) sequence ko,k\,k2 , . . . ,  
we consider strings of length ко (as 2k° sons of the root), then strings of length ко + 
ki, ко + k\ + k2 , etc., as vertices of the tree T  (with branching factors 2k°, 2kl,...) . 
We call them T -vertices (to distinguish from the vertices of the binary tree).

First, we choose (in some computable way) a binary subtree in T  and map its 
vertices to the vertices of the binary tree in a natural way. Then we enumerate 
the intervals that form the effectively open set U. Without loss of generality we 
may assume that all these intervals are formed by T-vertices. When a new interval 
appears, we do the following:

6To derive this statement from the “criterion”, one can take a mapping /  whose output 
distribution is the continuous a priori probability.
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• Declare the corresponding T-vertex as bad.
• Propagate bad T-vertices to the root. A T-vertex that has only one good 

son in T becomes bad, too. In this way we get a chain of bad T-vertices.
• If some T-vertices of the binary subtree of T become bad (the subtree 

intersects the chain of bad T-vertices), take the first bad T-vertex in the 
subtree (closest to the root) and replace its by its good brother. (This is 
possible since its father is good and therefore has at least two good sons.) 
Then grow a replacement binary subtree starting from the new T-vertex 
and using only good T-vertices. (Again this is possible since every good 
vertex has at least two good sons.)

• Extend the mapping /  to the new part of the binary subtree of T.

There is only one case when this construction is impossible: if the root becomes 
a bad vertex. If this happens, then all its T-sons (except maybe one) are bad, all 
the T-sons of these bad T-sons (except maybe one) are bad, etc. In this way we 
get a subtree of bad T-vertices, and its leaves (the T-vertices that became bad not 
because of their sons) are intervals of U. Then backward induction shows that the 
size of U is at least (*), and we get a positive lower bound assuming that the series 

2~ki converges. (The infinite product П(1 — &i) is positive if and only if is 
finite.) So one may take, for example, ki = \2 log г] (for i ^  2), and then for small 
enough sets U the root will never become bad.

To justify this construction, we need to note that:

• the set of bad T-vertices can only increase;
• the current binary subtree of T avoids bad T-vertices;
• the T-vertices excluded from the binary subtree will never be added to it 

again (so the extension of /  will not contradict the old values).

All these properties are direct consequences of the construction. (The last one: 
if a T-vertex was excluded, one of its ancestors was bad at the moment, it remains 
bad, and the binary subtree can never use it again.)

It remains to prove that (for /  constructed in this way) every sequence a € fl 
has an /-preimage outside U. By definition, at any stage t of the construction 
there exists /-preimage ojt that is not covered by the already discovered part of U. 
Moreover, as t increases, the points ojt converge to some limit sequence oj (we prove 
the stabilization property at level i by induction over i\ note that the number of 
possible changes on level i is bounded by 2ki). It remains to verify that oj does not 
belong to U and that f(oj) = a.

By way of contradiction, assume that oj is in U. Then oj belongs to some 
interval that is discovered on some step. After that the sequences ojt do not belong 
to this interval—a contradiction with the convergence.

Finally, let us verify that f(oj) = a. Let 2 be an arbitrary finite prefix of a. 
We have to show that f(oj) starts with z. Let к be the length of 2. At every stage t 
there exists a /г-block string (a level к vertex of T) that is mapped to z. When t 
increases, this string ultimately reaches its final value and therefore oj has a prefix 
that guarantees that f(oj) starts with z. □

190 Prove that the random sequence constructed in the proof is computable 
given both the oracles for a and for O' (the halting problem).

(Hint: The limit position of the embedded binary tree is computable given O'.)
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11911 Using this argument, prove that for any sequence a there exists an ML- 
random sequence ш such that a  is Turing-reducible to uj, and this reduction needs 
only an n + o(n)-bit prefix of uj to generate an n-bit prefix of a.

(Hint : Instead of the binary tree, one may use in the proof the tree of branching 
factor 2mi. Then we need the convergence of the product (1 — 2mi )2ki), i.e., of the 
series 2mi~ki. We may let m* = i and k{ = i + 2 log г.)

One may speculate about the “philosophical meaning” of this theorem as fol­
lows: For any sequence a we can a posteriori explain how it could appear during 
an experiment. Indeed, for a random uj this is the philosophical assumption, and 
the transformation /  is computable and therefore can be implemented.

The Kucera-Gâcs theorem could look strange if we compare it with another 
result: If some sequence a  has a positive probability to be computable with a 
random oracle (the set of sequences that compute a  has a positive measure), then 
a  is computable. To see why this result is true, note that the set of all oracles that 
compute a  is a union of sets of oracles that compute a via some oracle machine M  
(the union is taken over all M). So one of these sets has positive measure, the a 
priori probability of a is positive, and a is computable. So for a non-computable a 
the set of all oracles that compute a is a null set. On the other hand, the Kucera- 
Gâcs theorem says that there exists a random sequence that computes a. There is 
no contradiction here; it just means that the null set in question is not an effectively 
null set.



CHAPTER 6

General scheme for com plexities

6.1. Decision complexity

We started with a plain Kolmogorov complexity C and then considered also 
a prefix complexity К  and a monotone complexity KM. All three complexities 
were defined in terms of shortest descriptions, but the notion of a description was 
different in each case. For plain complexity the description modes (decompressors) 
were just computable functions, for prefix complexity the description modes were 
computable continuous mappings of type E —» Nj_, and for monotone complexity 
the description modes were computable continuous mappings of type E —> E.

To be uniform, we may use computable continuous mappings of type Nx —> Nx 
for plain complexity. Recall that topology on the set Nx (and the set itself) was 
introduced in Section 4.4.3 (p. 89). It is easy to see that there are two possibilities 
for a continuous mapping / :  Nx —> Nx: either /(_L) is some natural number (and 
not _L) and the mapping is a constant one, or /(_L) = _L and the values f(n)  
for natural n can be arbitrary. There is a one-to-one correspondence between the 
mappings of the second type and partial functions of type N —> N if we use _L 
as a replacement for an undefined value. As before, computability is defined in 
the following natural way: the mapping / :  Nx —> Nx is computable if the set 
of pairs (X, y) such that у =4 f(x)  is enumerable. All the constant mappings are 
computable, and for non-constant ones computability means that the corresponding 
partial function is computable. (Recall that a partial function of type N —> N is 
computable if and only if its graph is enumerable.)

So using this “new” definition of a description mode (decompressor) as a com­
putable continuous mapping of type Nx —> Nx, we get the same plain complexity. 
Indeed, we add constant functions that map everything, including the element _L, 
to some constant c, but they do not change complexity more than by 0(1). (A 
meticulous reader will stress that the function that maps everything to c should 
not be identified with the function that corresponds to a total function N —> N that 
maps everything to c, since the latter one still maps _L to _L.)

All this formalism, however, is used only as a motivation for the following 
scheme that explains the origin of the complexities considered (see Figure 15): 
Each of the three complexities is obtained when we consider computable continu­
ous mappings of the description space into the object space as description modes 
(decompressors).

This table has an empty cell; for this cell the description modes are computable 
continuous mappings of type Nx —> E. Let us consider the corresponding definition 
in more detail; we call this complexity decision complexity and denote it by KR (the 
notation KD was used too, but now KD is often used for the so-called distinguishing

193
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objects

Nx E

N± C ?

E К KM

F i g u r e  15. С, К  and К  revisited

compleodty so we use KR for decision compleodty to avoid confusion). This notion 
of complexity was first considered by D. Loveland [108].

Let us give a definition of decision complexity using some class of machines. 
Consider a machine that gets a binary string as input (and some end-marker is 
written on the tape, so the machine knows where the input ends) and prints bits 
on the output tape (one by one). The machine is not obliged to stop, so for any 
input string X  we obtain a finite or infinite bit sequence as machine’s output. (If 
the output sequence is infinite, it obviously is computable.)

Any machine of the type described defines a mapping of the set of all binary 
strings (that can be identified with the natural numbers in Nj_) into a set E of 
all finite and infinite sequences. If M  is a machine of this type, the complexity 
KR m (x) of a string x (with respect to decompressor M)  is defined as the minimal 
length of a string у such that M(y) (the output sequence for input y) starts with x.

192 Check that there exists an optimal decompressor M  in the described 
class of decompressors (i.e., the decompressor M  that leads to smallest K R m up 
to an 0 (l)-additive term).

193 Give the definition of computable continuous mappings Nj_ —> E. What 
is the difference between this definition and the class of the machines described 
above, and why it is not important for the definition of complexity?

(Hint: A continuous mapping can map _L into some non-empty string.)
Therefore we can fill the empty cell in our table (Figure 16).
The following theorem lists the main properties of decision complexity:

T h e o r e m  127. (a) If a string x is a prefix of a string y, then KR (x) <  KR (y).
(b) The complexities of prefixes of a sequence ui € fl form a non-decreasing 

sequence that is bounded if and only if the sequence uj is computable. ( The limit of 
the complexity of prefixes may be called the decision complexity of the sequence uj. 
This complexity is finite for computable sequences and infinite for non-computable 
ones.)

(c) KR (x) < C(x) + 0 ( 1 )  for every string x.
(d) KR (x) < KM(x)  + 0 ( 1 )  for every string x.
(e) KM(x)  ^  KR(x)  + 0 ( l o g KR(x)) for every string x.
(f) C(x\l(x)) < KR(x)  + 0 ( 1 )  for every string x.
(g) / /  /  : S -> E is a computable continuous mapping, then

KR (f{x)) < KR (x) + 0 ( 1 )  (the constant in 0 ( 1 )  may depend on f  but not on x).
(h) If f  : E —> Nx is a computable continuous mapping, then

C ( / ( x )) ^  KR(x)) +  0 ( 1 )  ( the constant in 0 ( 1 )  may depend on f  but not on x).
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objects

N l £

N l C KR

£ К KM

F igure 16. Four complexities

(i) If f  : Nj_ —> £ is a computable continuous mapping, then
KR(f(x))  ^  C(x) + 0(1) (the constant in 0(1) may depend on f  but not on x).

(j) A prefix-free set of strings (none is a prefix of another one) that have deci­
sion complexity less than n, has cardinality less than 2n.

(k) The function KR is upper semicomputable (enumerable from above).
(l) The function KR is the smallest (up to a constant) function satisfying the 

last two conditions: if some function к is upper semicomputable and for every n the 
cardinality of every prefix-free set of strings x such that k(x) < n for all elements 
of this set is 0(2n), then KR (x) ^  k(x) + 0(1).

(m) KR (x) ^  К A (x) + 0(1) for all strings x.

PROOF, (a) This is an immediate corollary of the definition (description of a 
string is at the same time description of any its prefix).

(b) Assume that the sequence uj is computable. Consider the machine that 
ignores its input and prints c j  bit by bit, as a decompressor (description mode). 
All prefixes of uj have zero complexity with respect to this decompressor (since the 
empty string is their description), and therefore they have 0 (l)-complexity (with 
respect to the optimal decompressor), On the other hand, if the complexities of all 
prefixes of c j  are bounded, some string has to be a description of infinitely many 
prefixes, therefore c j  is computable.

(c) Any partial computable function whose arguments and values are binary 
strings can be considered as a K R -decompressor (do not output anything before 
the computation is finished, then print the result bit by bit).

(d) Any continuous computable mapping £ —>• £ can be considered as a KR- 
decompressor (after restriction to finite strings; we may say that we type the input 
string on the keyboard of a robust machine immediately after the computation 
starts, and we do not touch the keyboard anymore).

(e) Let R  : N —>• £ be an optimal decompressor used in the definition of 
decision complexity. Consider a computable mapping R : £  —> £ defined as fol­
lows: R(xu) = R(x), where x is a self-delimiting encoding of x (say, the x itself is 
prepended by the binary encoding of l(x) with duplicated bits and the separator 
01) and и is an arbitrary string (needed to ensure the monotonicity).

(f) Let again R  : N —> £  be an optimal KR -decompressor. Define the condi­
tional decompressor 5 by letting S(y , n) be the first n bits of the sequence R(y) (if 
n exceeds the length of R(y), then S(y , n) is undefined).

(g) Consider a new KR -decompressor that is a composition of the optimal 
KR -decompressor and the mapping / ,  and compare this new decompressor with 
the optimal one.
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(h) Consider the composition of an optimal KR -decompressor and /  as a C- 
decompressor.

(i) Consider the composition of an optimal C-decompressor and f  as a KR -de­
compressor.

(j) Two incompatible strings cannot share a description (since in this case they 
would be prefixes of some sequence, and the shorter string would be a prefix of 
the longer one). If all elements of a prefix-free set of strings have complexity less 
than n, then their descriptions are different strings of length less than n, and there 
exist fewer than 2n such strings.

(k) Applying in parallel the optimal description mode to all strings, we get 
upper bounds for KR (that may decrease when new descriptions are found); they 
converge to K R .

(l) This is the first interesting claim in this theorem (up to now we had only 
simple variations on known themes).

Let A: be a function that satisfies (j) and (k). Adding a constant to k, we may 
assume without loss of generality that there are at most 2n pairwise inconsistent 
strings ж such that k(x) < n.

We construct a description mode that gives every string x such that k(x) < n 
a description of length exactly n. This is done independently (and in parallel) for 
each n. Namely, we watch the decreasing upper bounds for к and write down the 
(increasing) list of strings x such that k(x) < n. Consider a subtree of a full binary 
tree that is formed by the strings in the list and all their prefixes. This is a growing 
subtree that has (all the time) at most 2n leaves. (Indeed, the leaves are pairwise 
incompatible strings x such that k(x) < n .) Let us attach a label to each leaf; this 
label is a string of length n. When the subtree grows by adding some new string, 
this string either extends one of the leaves (so it is not a leaf anymore) or creates a 
new branch (being attached to some internal node). In the first case the new string 
is a leaf, and this leaf keeps the label of the superseded one. In the second case we 
provide a new label for the new leaf (which is possible since we have fewer than 2n 
leaves).

Let us fix a label and look what happens with leaves carrying this label. Initially 
the label is unused. It is possible that the label remains unused forever (we do not 
need that many labels), but if it is not the case, the label is attached to some leaf 
and then moves up the tree (the next position is a son of the previous one). So this 
label marks some branch of the tree (finite or infinite sequence of zeros and ones). 
In this way we get a function that maps strings of length n (i.e., labels) to £  (the 
strings that are not labels are mapped to A, the empty sequence).

Combining these mappings for all n, we get a A72-description mode that guar­
antees complexity at most n for all strings x such that k(x) < n, just as we claimed.

(m) If xi are pairwise inconsistent binary strings, then ^)2~ KA X̂i1 ^  1 (since
2" KA equals the a priori probability of the set £ Xi, and these sets are disjoint). 
Therefore we have at most 2n strings such that K A (ж*) < n and may refer to the 
previous statement. □

194 Prove that KR (ж) can be defined as follows: for any computable function 
S of two arguments (the first is a binary string, the second is a natural number; 
values of f  are zeros and ones), let KRs(x)  for a string ж = жо ■ • ■ xn- i  be the 
minimal length of the string у such that S(y, i) = ж,; for alH = 0 , 1 , — 1. Then
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we choose an optimal function among all functions of this class, and it defines the 
decision complexity.

Show that the decision complexity of a string x equals (up to 0(1)) the 
minimal value of C(p) for all programs p (in a given programming language, say, 
Pascal) that ignore their input and output the string x or some its extension.

195

196 Show that if we replace C by К  in the preceding problem, we get in a 
similar way an upper bound for monotone complexity. Show that this bound is not 
0 (l)-tight.

(Hint: The monotone complexity of all n-bit strings is bounded by n + 0(1). 
The programs for these strings (or their extensions) should be all different, and 
there are not enough strings having prefix complexity n + 0 (1).)

6.2. Comparing com plexities

There are four complexities in our table (two options for the space of objects are 
combined with two options for the space of descriptions). The following diagram 
(Figure 17) shows the inequalities between them (up to an 0(l)-additive term):

KM

KR

F igure 17. Inequalities between complexities

Some people would like to avoid references to topological notions like continu­
ous mappings, though these notions are quite relevant here as the theory of abstract 
data types shows (Dana Scott lattices and related notions of /о-spaces in the sense 
of Ershov); see [176]. Those readers will appreciate the following simplified con­
struction [195] that is still enough to define the four complexities in the table.

Consider the set H = B* of all binary strings and two binary relations: x = у 
means that strings x and у are equal; x x  у means that x and у are compatible 
(one is a prefix of the other one). Let a and ß be one of these two relations (so 
there are four combinations for the pair a,ß).

A set S  C £ x £ is called a-ß-regular if the following condition is true for any 
strings xi, 12,2/1,2/2:

(zi,2/i) € S, (Х2 У2 ) G S, X]_ax2 => yißy2
For example, =-—regular binary relations are just graphs of functions.

(a) Show that every x-=-regular relation determines a continuous map­
ping of type E —> Nx-

(b) Show that every x-x-regular relation determines a continuous mapping of 
type E —> E.

(c) Show that every =-x-regular relation determines a continuous mapping of 
type Nx —»• E.

197
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Now by a-ß -description mode we mean an enumerable a-/9-regular binary re­
lation on E X E. For each description mode S  we define the complexity function 
К  s'- let Ks(x)  be the minimal length of a description of x, i.e., the minimal value 
of l(y) for all у such that (y, x) G S.

T heorem  128. For each of the four combinations a ,ß  G { = ,x }  there exists 
an optimal a-ß-description mode (that provides minimal complexity function up 
to 0 (1)) and the corresponding complexity is one of the four known complexities 
C, K, KM , K R .

P ro o f . In all four cases enumerable a-/?-regular relations correspond to com­
putable continuous mappings of the corresponding sets (see Problem 197) that gives 
the same complexity function, and vice versa. □

So we can provide new labels for rows and columns of our table (Figure 18):

objects
- —

— C KR

X К KM

F igure 18. a-/?-complexities

198 For pairs of strings show how one can define:
(a) monotone complexity (using computable continuous mappings E —> E x E 

as decompressors; such mappings are in one-to-one correspondence with pairs of 
computable mappings

(b) a priori probability (using probabilistic machines that have two output 
tapes where bits are printed sequentially);

(c) decision complexity (using computable continuous mappings Nj_ —> E x E).
Prove that the decision complexity of a pair (x,y) (see the previous199

problem) does not exceed l(x) + l(y) + 0 (1).
(Hint: The string z can describe the pair (z,zR), where zR is z from right to 

left.)
A surprising result: this property remains true for triples [72] and even for 

^-tuples of every fixed к (it is a corollary of the results of [146]). For monotone 
complexity a similar property is not true as was shown by Pavel Karpovich in 
[72]: the value of KM(x,y)  may exceed l(x) + l(y) by a quantity of order logn 
for n-bit strings. (Therefore the monotone complexity of pairs may exceed a priori 
complexity by the same margin, since a priori complexity of a pair is obviously 
bounded by the sum of lengths.)

Another classification scheme for complexities (which goes back to [95]) defines 
each version of complexity as the smallest upper semicomputable function in some 
class (of functions that satisfy some restrictions). We have already considered these 
restrictions, so we just collect the results obtained and give the conditions for each 
complexity version:
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• the number of strings x such that k(x) < n is 0 (2n) (plain complexity C, 
Theorem 8, p. 19);

• the series Ylx 2~k^  converges (prefix complexity AT, Theorem 62, p. 100);
• every prefix-free set of strings x such that k(x) < n has 0 (2") elements 

(decision complexity KR,  Theorem 127, p. 194);
• Y^xex 2~k^  < 1 for every prefix-free set X  of binary strings (a priori 

complexity K A , Theorem 80, p. 126).
This scheme gives the same four complexities with one important exception: 

we get a priori complexity instead of monotone complexity. (There is no problem 
with prefix complexity, since it coincides with the negative logarithm of the discrete 
a priori probability, the largest lower semicomputable semimeasure on N.)

Combining these two quadrilaterals, we get a pentagon (Figure 19).

К

F igure 19. Five complexities

Let us recall the basic results that relate complexities in this pentagon. First, 
all five complexities differ at most by O(logn) for strings of length n. Indeed, 
Theorem 65, p. 102 says that K{x) < C(x) + 0{\ogC{x)). On the other hand,

C(x) < C(x\l(x)) + C(l(x)) < KR (x) + O(logn).

So the two most distant complexities in the pentagon (the upper one and the lower 
one) differ at most by O(logn) for strings of length n.

A more complicated picture arises if we want to bound the difference between 
two complexities in terms of the complexities, not their length (note that a com­
plexity can be much less than length). This is indeed possible for two lines that go 
in the north-east directions:

K(x) ^  C(x) + 0(\ogC(x))

(see Theorem 65) and

KM(x)  < KR (x) + О (log KR (x))

(Theorem 127). (A similar inequality with KA instead of KM follows, as we have 
already mentioned in Problem 140, p. 144.) For “north-west” lines the situation 
is different: KM and KR are bounded for prefixes of a computable sequence (e.g., 
for strings that contain only zeros) while C and К  are not (the string of n zeros 
has the same complexity as the integer n, and this complexity is of order log n for 
some n). We have already discussed this question in Theorem 86 and noted that 
the difference between К  and KM can be of order logn in both directions (for 
infinitely many n and for some x of length n) . Theorem 87 says that the difference
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between KM and К A for n-bit strings can be about log log n (so here we have a 
gap between the known lower and upper bounds).

None of the mentioned results guarantees that the difference between К (x) and 
C(x) tends to infinity as x goes to infinity (here we consider a; as a natural number). 
But this follows from Theorem 73 (p. 112). Some other bounds relating different 
versions of complexity are mentioned in [195].

6.3. Conditional complexities

We have already considered several versions of conditional complexity (of a 
string relative to the other one). In Section 2.2 we have defined the conditional 
complexity C(x \ y) as the minimal length of a string p that describes x when у is 
given, i.e., a string p such that S(p, y) — x. Here S  is the conditional decompressor 
that is optimal in the class of all partial computable binary functions.

In Section 4.7 we defined the conditional prefix complexity K(x\y).  In this 
definition we required S(p, y) to be prefix stable with respect to p for every fixed, y: 
this means that if S(p,y) = x for some p, then S(p',y) = x for all strings p' that 
have prefix p.

Finally, in the proof of Theorem 93 we mentioned the conditional monotone 
complexity KM(x\y).  For its definition a description mode (decompressor) is a 
computable family of computable continuous mappings Dy : E —> E (indexed by 
string y). The computability of this family means that the set of triples (y,u, v) 
such that v 4̂ Dy(u) is enumerable.

The conditional decision complexity can be defined in a similar way.
In these four definitions we consider conditions as terminated bit strings, and 

the behavior of the decompressor is unrelated for different conditions: if we know 
that p is a description of x relative to y, this gives us no information about the 
values of decompressor for other values of y.

In other words, a decompressor (say, for the conditional prefix complexity) can 
be considered as a computable mapping

P : E x  N -» Nj_;

in the pair (p, y) G E x N, the string p is considered as a description (and D is 
monotone with respect to p) and y is a condition, and no monotonicity is required.

If we change this and consider conditions also as vertices of a binary tree re­
quiring monotonicity over conditions, we get four other versions of conditional com­
plexity. These versions are not widely used ([40] is a rare exception).

In this way we get eight versions of conditional complexities (for each of three 
components, i.e., conditions, descriptions, and objects, we have two possibilities). 
The most non-technical definition of these complexities goes as follows. Let a,ß,  7 G 
{=,x} (see Section 6.2). An (a, ß) | 7-decompressor (description mode) is an enu­
merable set S  of triples (p,x,y), such that

{pi,Xx,yi) e S, (Р2,Х2,У2) £ S, piap2, y \ i y2^X\ ßX2  

The we define Ks(x\y)  as the minimal length of a string p such that (p,x,y) G S.

T h e o r e m  129. In all eight cases there exists an optimal decompressor S that 
gives the smallest complexity K$ (up to 0 (1)) among all the decompressors ofthat 
class.
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200 Give a detailed proof of this theorem (it follows the same scheme as in
the case of plain or prefix conditional complexity).

In each of eight classes let us fix some optimal (a, ß) | 7-decompressor and denote 
the corresponding complexity by K(Q,/3)|7. In this notation K(x\y)  (as defined 
earlier) is K ^ =) \ = and C(x\y) is K(=,=) | = -

201 Show that by replacing = by x  in place of 7 we may only increase the 
complexity.

(Hint: This replacement adds more restrictions for a decompressor, so we get 
fewer decompressors. For the same reasons the plain complexity does not exceed 
the prefix one.)

It would be interesting to studj' how large this increase could be (and establish 
other properties of these conditional complexities).

Let us give an example of a statement that involves conditional complexities 
as they are defined above:

202 Prove that

C(x) < K (=.=) i *(* I y) + KR (у) + О (log KR (»)).

Let us now describe one more approach to the definition of the conditional 
complexity that goes back to Kolmogorov’s interpretation of logical connectives as 
operations on problems [76]. The conditional complexity of x when у is known can 
be described as the complexity of the problem “transform у into ж” ; moreover, this 
problem can be considered as a set of all functions that map у into x (each function 
that maps у to ж is a “solution” of this problem).

More formally, let us consider the space F whose elements are all partial func­
tions whose arguments and values are natural numbers. Let us introduce the fol­
lowing partial order on this set: Д ^  /2 if /2 is an extension of /1 (i.e., /i(y) = x 
implies /г(у) = x). By finite elements of F we mean functions with finite domain. 
For each finite element /  G F consider its cone, i.e., the set of all its extensions 
{y I /  ^  I/} (both finite and infinite). We call a continuous mapping T: Nx —> F 
computable if the set of pairs (a, f)  such that a G Nx, /  is a finite element of F 
and /  ^  T(a), is enumerable. Continuous computable mappings Nx —> F are used 
as decompressors for functions. For each function /  G F. we define the complexity 
of /  (with respect to decompressor T) as the minimal length of a string (or the 
logarithm of the number—recall that we identify strings with natural numbers) a 
such that /  ^  T(a).

203 Prove that there exists an optimal decompressor (in this sense) and that 
the complexity of the function y x (whose domain is a singleton {y} and whose 
value is x) is C(x\y) + 0(1).

We can give a similar interpretation of all eight conditional complexities defined 
above: for every two spaces Y, X  G {Nx, £}, we define the space of functions 
(У —> X)  and then consider computable mappings of the space of descriptions 
P G {Nx,£} into the function space (Y —> X).  The definition of the function 
space is given in the spirit of Scott domain theory (or the theory of /о-spaces in 
the sense of Ershov, see [176] for details).

A slightly different interpretation of (plain) conditional complexity as the com­
plexity of the problem “transform y to ж” is considered in Chapter 13; it does not 
use computability notions for function spaces.
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A related notion of complexity for functions was considered by Schnorr [168, 
170]. Recall that a numbering (an important notion in the recursion theory) is a 
mapping v that maps each natural number n into some (partial) function vn whose 
arguments and values are natural numbers. A numbering v is computable, if the 
(partial) function of two arguments

(n,x) ^  un(x)

is computable. A numbering v is called a Gödel numbering if for any other com­
putable numbering p there exists a computable function that reduces p to и in 
the following sense: pn = Vh(n) for every n. (In particular, the range of a Gödel 
numbering is the set of all computable functions.)

Following Schnorr, we make this condition stronger and require additionally 
that h(n) = O(n) (in other words, the length of the string h(n) exceeds the length of 
string n at most by a constant, if we identify natural numbers with binary strings). 
If such a function h exists for every computable numbering p, the numbering v is 
called optimal.

T h eo r e m  130. There exist optimal numberings.

P r o o f . Consider any reasonable programming language for functions of two 
arguments, and let ûv be a p-numb er of the function obtained by fixing first argu­
ment equal to v in the function that has program u. (Here û is some self-delimiting 
encoding of и , e.g., и with doubled bits and 01 appended.) '□

Schnorr [168, 170] defined the complexity of a computable function as the 
logarithm of its minimal number on an optimal numbering. (As before, the minimal 
complexity of a function that maps x to у turns out to be equal to C(y \ x).) Schnorr 
has shown that any two optimal numberings v\ and can be translated into each 
other by a computable permutation 7Г that changes the size at most by 0 (1) (in both 
directions): this means that v\(n) = v-i(тг(п)) for every n and that 7r(n) = O(n) 
and 7r- 1(n) = O(n). The detailed proofs of these results can be found also in [11].

6.4. Complexities and oracles

6.4.1. Relativized complexity. Relativization is a well-known method in 
computability theory. We take a definition or statement that involves the class 
of computable functions and replace computable functions by functions that are 
computable with some oracle (computable relative to this oracle). The oracle is 
usually a total function a whose arguments and values are natural numbers and/or 
binary strings, for example, a characteristic function of some set A. An algorithm 
is allowed to call an external procedure that computes the value a(n) for a given 
value of the parameter n. If ck is a characteristic function of a set A, this means 
that we may ask whether some n belongs to A or not. If the function a is not 
computable, this permission to ask a-oracle increases our capabilities, and we get 
a class of a-computable functions that contains all computable functions but also 
some non-computable ones (including a).

Then we can develop the general theory of algorithms as usual and define, 
say, tt-enumerable sets, or ct-computable real numbers, or (closer to our subject) 
a-lower-semico input able semimeasures, etc. And practically all the theorems of 
general theory of algorithms (and their proofs) remain valid, we just neqfl to add 
“a-” for all the notions. This procedure is called relativization.
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In particular, for a given set A we may define the notion of Л-relativized Kol­
mogorov complexity allowing decompressors to use oracle A. This can be done for 
plain, prefix, and all other versions of complexity that we have considered (uncon­
ditional or conditional). The use of an oracle is shown by a superscript, so, e.g., 
K A(x) denotes prefix complexity relativized by oracle A.

In fact we can do a bit more: instead of defining complexity for a given or­
acle A up to an 0(l)-additive term (by proving the existence of an optimal Л- 
decompressor), we may define (with the same precision) the function of two argu­
ments:

(A, X) i—У kA(x)
(here к is one of the complexity versions, say, К  or KM).

Show that this indeed can be done and that the resulting complexities204
coincide with the limits of conditional complexities defined in Section 6.3: 

K A(x) = K A =(x) = lim K {~,= |Ж)(ж|An),

where An is the prefix of length n of the characteristic sequence of the set A. 
(Similar statements are true for other complexity versions.)

Note that relativized complexity does not exceed the non-relativized one (up 
to 0 (1)), since the algorithm with an oracle is not obliged to use it, so all decom­
pressors are Л-decompressors.

For some oracles Л and some strings x the Л-complexity of x can be much 
smaller than oracle-free complexity. For example, let Л be the universal enumerable 
set: This set is usually denoted by O'. In other words, the O'-oracle is an oracle for 
the halting problem. We may send any program (with its input) to this oracle, and 
the oracle will tell us whether this program terminates for this input.

Using this oracle, we can find for every string x its shortest description (in 
the standard sense, without oracle) since the oracle tells us which computations 
terminate. Therefore, the function C is O'-computable (the same is true for K,  
conditional complexities, etc.), and the list of all strings of complexity less than n 
(that has n + 0 (l)-complexity without the oracle), as well as the numbers B(n) 
and BB(n ) (see Section 1.2) now have O'-complexity only 0 (log?2).

On the other hand, most strings of length n have O'-complexity n — 0(1), and 
therefore their O'-complexity is close to their non-relativized complexity (and to 
their length).

205 Assume that for some set Л its use (as an oracle) does not change the 
plain complexity function, i.e., C(x) = CA(x) + 0(1). Show that Л is decidable. 
Show that the same is true also for KM , K R , К A instead of C.

(Hint: One can characterize the computability of a binary sequence in terms 
of complexities of its prefixes, see Problem 49, p. 42.)

It is not the case for prefix complexity: there exist К -low sets that do not 
change prefix complexity being used as oracles. This is a very important recent 
result (see [147, 49], or the popular exposition in [20]).

This result implies that there is no formula that can express the value of 
plain (monotone, decision, a priori) complexities in terms of prefix complexity with 
0(Imprecision. Note that the same is true for conditional prefix complexity: it 
cannot be expressed in terms of the unconditional one, since it determines the 
class of computable functions. Indeed, a sequence a is computable if and only if
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K(a0 ■ ■ • а,г-1 I n) ~  0(1). Note that Theorem 72 characterizes plain complexity in 
terms of conditional prefix complexity.

6.4.2. Complexity w ith large numbers as conditions. Let us define a 
new type of conditional complexity, i.e., the complexity of a string x relative to the 
set A. Informally speaking, we want to measure the complexity of the task, “obtain 
x given an arbitrary element of A”. This complexity has several equivalent (up to 
0 (1)) definitions.

Here is one of them. Fix some reasonable programming language. (Formally 
speaking, “reasonable” means that the numbering corresponding to this language 
is a Gödel numbering, i.e., there exists a translation algorithm from any other 
programming language, see [184] for details.) Now let us define the conditional 
complexity of an object x with condition A as the minimal (plain) Kolmogorov 
complexity of a program that maps every element of A into x. (A generalization 
of this definition is considered in Chapter 13.)

The existence of a translation algorithm guarantees that this notion is well 
defined, i.e., that the complexity defined in this way does not depend on the choice 
of a programming language (Gödel numbering).

One should not mix this complexity with a completely different notion: a con­
ditional complexity of x with condition A, where the finite set A is given as a finite 
object (say, as the list of its elements). In our case we do not get the list of all ele­
ments of A, but only one of them, and we should be prepared to deal with arbitrary 
elements of A. To stress this distinction, we use the notation C(x || A) for the new 
complexity (while C(x \ A) denotes the condition complexity of x if a finite set A is 
given as a list of its elements).

A different (but equivalent) definition of C(x || A) can be given as follows. Let 
D (decompressor) be a computable partial function of two arguments. Let x be 
a binary string, and let A be a set of binary strings. We define Cd{x\\ A) as the 
minimal length of a string p such that D(p,y) = x for every y G A.

206 Prove that there exists an optimal decompressor in this class (that gives 
the minimal function Cd(-||-) up to an 0(l)-additive term). Prove that Cd for 
optimal D coincides (up to an O(l)-tenn) with the complexity defined above.

For a singleton A = {a}, both the complexities C(x\ A) and C(x\\A) coincide 
with the standard conditional complexity C(x\a) up to an 0(l)-term (see Prob­
lem 28).

Now let A be the set of all integers greater than some (presumably) large 
number n. (As usual, we identify natural numbers with binary strings.) The com­
plexity of a string x with respect to this set is denoted by C(x\\ ^  n ). Obviously, 
this complexity does not exceed C(x) and is a non-increasing function of n (and, 
more generally, C(x\\ A) can only decrease if A becomes smaller; it becomes 0(1) 
for the empty set A). So there exists some limit as n oo.

T h eo r e m  131.
lim C(x II ^  n) — C° (x) + 0(1).

n —>oо

P r o o f . Assume that the limit equals k. Then there exists a program p of 
complexity к that maps all sufficiently large numbers to i .  If an oracle O' is avail­
able, this program can be considered as a O'-description of x. Indeed, given this 
program, we search for N  and у such that p does not map any n ^  N  into an object
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that differs from y. The emphasized property can be checked using a O'-oracle since 
it has an enumerable negation. And our assumption guarantees that y equals x. 
Therefore,

C° (ж) < lim C(x К ^  n) + 0(1).
n —> oo

On the other hand, let у be a description of x with respect to a O'-optimal 
decompressor, and let к be the length of y. Consider a following program that 
has additional input N: make N  steps of the enumeration of the universal set O' 
and then use the set of enumerated elements as an oracle for decompression of 
y. This program can be constructed effectively given у , therefore its complexity 
does not exceed C{y) + 0(1) ^  l(y) + 0(1) — к + 0(1). On the other hand, if N  is 
large enough, this program generates x (since only a finite number of oracle calls are 
performed during the decompression of y, for all sufficiently large N  these questions 
get correct answers even if the oracle is replaced by its iV-approximation). □

It turns out that a similar result is true where we replace C(x\\ ^  n) by 
supm^n C(x\m).  Note that

sup C(x\m)  < C(x II ^  n),
m ^ n

since the optimal program in the right-hand side can be used for any m  in the 
left-hand side. This is easy; the surprising result is that both sides have the same 
limit as n —> oo (up to an O(l)-term):

T heorem 132.
limsupС(жIn) — О0 (ж) + 0(1).

n —>oo

P r o o f . We have to prove that if (for some string x and integer к)

C(x I n) < к for any sufficiently large n,

then O'-complexity of x does not exceed k + 0(  1). The difficulty here is that (unlike 
in the previous theorem) the program of length less than к that maps n to x may 
depend on n, and none of these programs is guaranteed to work for all sufficiently 
large n.

Note that there is less than 2k strings x with this property (for a given k). 
Indeed, if we have more of them, then for sufficiently large n we run out of programs 
of length less than k.

It would be enough to prove that the set of strings x that have this property is 
a O'-enumerable set whose enumeration effectively depends on к (in other words, it 
would be enough to prove that the function x i-> lim sup C(x \ n) is O'-enumerable 
from above). However, the natural description of this set,

3N (Vn ^  N) [C(x\n) < k],
shows only that it is a Ез-set (the condition in brackets is enumerable and two 
quantifiers precede it), so we choose an another approach.

Note that we do not really need this set to be O'-enumerable. It is enough to 
show that it is a subset of a O'-enumerable set that contains less than 2k elements 
for a given k. This can be done as follows.

Consider two-dimensional enumerable set of pairs (n, x) such that C(x | n) < k. 
This set (for each k) is thin in the following sense: all vertical sections of this set 
(for fixed n) contain fewer than 2k elements.
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Consider some point (n, x ). Let us try to add a horizontal ray that goes on the 
right from this point to our set (i.e., add all pairs (m,x) for all m  ^  n). The set 
may remain thin or not, and these two cases can be distinguished by a (У-oracle. 
Indeed, the negation of being thin is an enumerable property (there exists a section 
that has at least 2k different elements including the added one).

Let us perform these attempts (to add the horizontal ray starting from some 
pair (n,x)) sequentially for all pairs in some order. (If some ray is added suc­
cessfully, then its elements are taken into account for all subsequent attempts.) 
This process is (У-computable and therefore the ordinates of all added rays form a 
(У-enumerable set.

This set has fewer than 2k elements (since we add rays only if the resulting set 
is still thin) and contains every x such that lim sup C(x \ n) < k. Indeed, for such 
an x there is some ray that lies entirely in the initial set, and this ray can be added 
at any time. □

(This proof is a simplified version of the proof given in [196]. See also similar 
arguments in [16].)

We can also obtain the results for prefix complexity that are similar to The­
orems 131 and 132. However, the definition of conditional prefix complexity with 
respect to a set is quite subtle, so we postpone its discussion and start with the 
second theorem.

T h eo r e m  133.

limsupK(x\n)  = K°  (x ) + 0(1).
n —J-OO

P r o o f . Using a priori probabilities (conditional and unconditional), we rewrite 
the statement as follows:

lim inf m(x \ n) = m° (x )
n —» o o

(the equality is understood up to a bounded factor in both directions).
Let us show first that the left-hand side is greater than the right-hand side 

(up to an O(l)-factor). Indeed, consider a (У-oracle probabilistic machine whose 
output has distribution m° . Then for any integer n we may run this machine with 
a changed oracle: instead of the entire oracle we use its approximation obtained 
after n steps. This, of course, changes the output distribution, however, the lim inf 
of the probabilities to get some x using n-approximation to the oracle (as n —> oo) 
is greater than or equal to the probability of getting x with the entire oracle. 
Indeed, the latter probability is the measure of an open set of all bit sequences that 
are mapped to x using a (У-oracle. This open set is a union of intervals, and for 
each interval the computation depends only on some finite part of the oracle, and 
therefore the same random bits will give the same output x if the approximation 
to the oracle is good enough (i.e., n is sufficiently large). (Note that lim inf can 
be bigger than the probability of getting x with the final oracle, since approximate 
oracles can force output x for combinations of random bits that do not generate x 
with the final oracle.)

Now let us prove the reverse inequality. This proof resembles the proof of 
Theorem 132. We have a lower semicomputable family of semimeasures: for each n 
the function x h-> m(x\n)  is a semimeasure (i.e., J2x m (x \ n ) ^  1 for each n). It
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77?/ (x) — lim inf m(x \ n)
П — ^ O O

is also a semimeasure, i.e., the sum ^ Xm'{x) does not exceed 1. If this function 
were O'-lower-semicomputable, this would finish the proof; however, we have the 
equivalence

r < lim inf m(x | n ) ^  (3q > r) 3N (Vn > N) [q < m{x | n)],
n —too

where the right-hand side has too many quantifiers (note that the property in the 
brackets is enumerable, not decidable). But again we may replace the function m'  
by any larger function, so it remains to construct a OMower-semicomputable upper 
bound for m!.

To achieve this goal, let us consider triples (N , x, e) (where e is a positive 
rational number). For a given triple we try to increase the values m(-1 •) up to e 
on a ray that consists of pairs (n, x) for fixed x and for all n ^  N.  This change is 
performed only if we get semimeasures (i.e., for every n the sum over all x does not 
exceed 1).

As before, we can check whether such an increase is possible using a O'-oracle. 
(Indeed, the violation is an enumerable event.) Let us consider sequentially all 
triples and perform the increase when possible (the increased values are taken into 
account on the subsequent steps). Then for each possible increase we keep the 
values of x and e. In other words, we consider a function that on every x is equal 
to the upper bound of all e that are used for increase together with that x. In this 
way we get a O'-enumerable family of semimeasures that is an upper bound for m!. 
Indeed, if m! is greater than e for some x , the function m is greater than e on some 
ray, an increase does not really change anything and therefore is permitted. □

To formulate a similar statement for K (x || ^  n), we should first of all define 
this prefix complexity relative to a set. Here we have several possibilities, and it is 
unclear which of them is “the right thing”.

We may try to define K(x\\A)  and the minimal prefix complexity of a pro­
gram that outputs x when applied to every element of A. However, Problem 109 
(p. 104) shows that this definition does not match K(x\a)  for singleton conditions, 
so probably this definition is not a good one.

Another definition is similar to the approach used in Problem 206. Consider 
an arbitrary computable function (p, x) H>- D(p, x) that is prefix stable with respect 
to its first argument (if the second one is fixed). For any x and for any set A we 
then define Кв{к\\А)  as the minimal length of a string p such that f (p ,n ) = k 
for all n € A. The difference (compared to plain complexity) is that we require 
the conditional decompressor to be prefix stable with respect to the first argument. 
There exists an optimal decompressor in this class that gives the least function 
K d (up to an 0(l)-additive term). This function can be called prefix complexity 
K{x\\A).

207 Show that the same complexity (up to 0(1)) is obtained if decompressors 
are computable continuous mappings E —> F (here E is the space of finite and 
infinite sequences of zeros and ones, and F is the space of partial functions from 
N to N) and complexity is the length of a shortest string that is mapped to some 
partial function that is equal to x on all elements of A.
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We can also define the prefix complexity with set condition using prefix-free 
functions instead of prefix-stable ones. Again, in the class of computable prefix-free 
functions there exists an optimal one (that gives the smallest complexity function 
Kf(x\\A)).  In this way we get the definition of some function K'(x\\A) that re­
sembles the conditional complexity K' (k\n ) and coincides with it (up to 0(1)) if 
A = {n).

Finally one can define a priori probability m(x\\A).  For that we consider 
some probabilistic machine that has input y and the measure of the set of all 
sequences uj G 0  that (being used as random bits) makes the machine transform 
every input y G A into x. Again, there exists an optimal machine that maximizes 
this probability (up to an 0(l)-constant factor), and for singletons this definition 
coincides with our definition of the conditional a priori probability.

The inequalities

-  log m(k K A) < K(k  II A) + 0(1) < K'(k  || A) + 0(1),
can be proved in the same way as for conditional prefix complexity, but the argu­
ment that showed that all three expressions coincide does not work as before. As 
Elena Kalinina [71] has shown, the second inequality is not an equality; we do now 
know what happens with the first inequality. But it is easy to see that all three 
expressions are not less than

— log inf m(k I x) — sup K{x  | a),
x E A  x E A

so each of them can be used in the theorem similar to Theorem 131. In particular, 
for K(x  II A) (which seems to be most natural among all three) we get the following 
result:

T h e o r e m  134.

lim K(x  II ^  n) = K°  (x ) + 0(1).

Prove that all three quantities K(k  || A), K'(k  || A), and C(k || A) differ at 
most by 0(the logarithm of the smallest one), i.e., by 0(\ogC(k || A)).

We do not know whether 0(x || A) can be bounded by a linear (or even com­
putable) function of — log m(k || A) (at least for finite A, or even for A that contains 
only two elements).

Let us mention here that there is another type of problem in which the natural 
notions of complexity and a priori probability differ significantly: the enumeration 
problems considered by R. Solovay [189]. Let us consider non-terminating algo­
rithms whose input is a binary string. Such an algorithm enumerates some (finite 
or infinite) set by printing its elements one by one. (If an algorithm starts to print 
some output element, it is obliged to print it completely, and then it may resume 
the computation.) If A is an algorithm of this type and S  is some enumerable set, 
we define the complexity of S  with respect to A as the minimal length of the input 
for which A enumerates S:

CEa (S) = min{l(p) I M(p) enumerates S'}.
As usual, it is easy to see that there exists an optimal algorithm A that makes 
CE a minimal up to 0(1). We fix an optimal A and call CEa (S) an enumeration 
compleodty of S. It is denoted by CE(S ) and is finite if and only if S is enumerable.

208
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On the other hand, we may consider probabilistic enumeration algorithms, i.e., 
the non-terminating algorithms without input equipped with a fair random bits 
generator and producing output elements as explained above. The output set of 
a probabilistic enumeration algorithm A is a random variable, and for a given set 
S  we consider the probability of the event “A enumerates 5”. This probability is 
denoted by rriA(S). Again it is easy to see that there exists an optimal A that 
makes тд maximal up to an 0(l)-factor; we fix some A and omit the subscript 
A, calling m (S ) the enumeration a priori probability of S. It was shown by de 
Leeuw, Moore, Shannon, and Shapiro [91] that m(S)  is positive if and only if S  is 
enumerable.

209 Prove the statement above.
(Hint: If a subset of Г2 has positive probability, there is an interval where the 

fraction of this subset exceeds 1/2.)
It is easy to see that CE(S)  ^  — logm(5) + 0(1). The reverse inequality, even 

with logarithmic precision, i.e., the inequality — logm(5) ^CE(S)  + 0(\ogCE(S)),  
is unknown. There are some partial results. It is true with factor 3:

-logm (S) ^  3-CE(S)  + 0(\ogCE(S)),  

as shown in [189], and for finite sets the constant 3 can be replaced by 2 (see [197]).

6.4.3. Limit frequencies and O'-relativized a priori probability. We
conclude this section by a result from [133]; it relates the frequencies in computable 
sequences to the O'-relativized prefix complexity. (See also the simplified exposition 
in [16].)

Let /(0), /(1 ) ,... be a computable sequence of natural numbers. For a given n 
and let us count the appearances of к among /(0 ) ,. . . ,  /(n  — 1) and divide the 
result by n. The ratio can be called the frequency of к among the first n terms of 
the sequence.

Now for a fixed к consider the liminf of this frequency as n —)■ oo; we call it 
the lower frequency of element к in the sequence / .

Let pk be a lower frequency of к in a given sequence. It is easy to check that 
YlkPk ^  1- Indeed, if some partial sum of this series exceeds 1, then a finite sum 
of lim inf’s exceeds 1, and for sufficiently large n the sum of the frequencies among 
the first n terms of the sequence exceeds 1, which is impossible.

The following statement is true for any computable sequence /:

T h e o r e m  135. The function к i-+ pk is 0 '-lower-semicomputable.

(Here pk is the lower frequency of к; the definition of the lower semicomputable 
function is given in Section 4.1; now we consider a O'-relativized version of this 
definition.)

PROOF. Indeed, the statement r <  pk (where r is some rational number) is 
equivalent to the following one:

there exist a rational number p > r and an integer N  such that 
the frequency of к among the first n terms of f  exceeds p for all 
n > N.

The property printed in italics is со-enumerable (has an enumerable negation): 
if it is not true, we can establish it by showing a number n that violates it. Therefore
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this property is O'-decidable (we apply the oracle to the algorithm that searches for 
that n). So the property r < pk is O'-enumerable. □

In fact we use the following general observation:
Let rn be a computable sequence of rational numbers. Show that 

is a O'-lower-semicomputable real number and the corresponding 0'-
210

lim inf r
algorithm can be effectively found given an algorithm for r

By the way, the reverse statement is also true:
Any O'-lower-semicomputable real number is a lim inf of a computable211

sequence of rational numbers.
{Hint-. This number is a supremum of a O'-computable sequence of rational 

numbers rn. Each rn is an ultimate value of a stabilizing sequence rn Let 
sk be the maximum of ro,fc, ■ ■ •, rt-i,k where t is the minimal number such that
rt,k + n ,k - !•)

It turns out that for an appropriate computable sequence /  the function к pk 
is a maximal O'-lower-semicomputable semimeasure. This is a corollary of the 
following result:

T h e o r e m  136. For any O'-lower-semicomputable sequence qo,qi,... of non­
negative reals such that JT  qi < 1, there exists a computable sequence /(0), /  (1),... 
such that for all к the lower frequency of к in the sequence f  is at least qk-

This allows us to give an equivalent definition of O'-relativized prefix complexity 
of A:: it is the negative logarithm of the lower frequency of к in the optimal sequence 
/  (that gives maximal lower frequencies up to O(l)-factor).

P r o o f .  Since q k is lower semicomputable, the set of pairs (г, к) where r is 
a rational number smaller than qk is O'-enumerable. As we know from general 
computability theory (see, e.g., [184]), 0' -enumerable sets are E2-sets, i.e., there 
exists a decidable property R such that

r < qk Эи R(r, к, u, v).

We use a slightly different representation of E2-predicates: there exists a com­
putable total function (г, к, n) i-» S(r,k,n)  with 0/1-values such that r < qk if and 
only if the sequence S(r, к , 0), S(r, к, 1) • • ■ has finitely many zeros. The sequence 
S(r, к, 0), S(r, к, 1) • • • can be constructed as follows. We consider (sequentially) 
the values и — 0,1, 2,..., and for each и we search for v such that R(r , k,u,v)  is 
false. While searching, we extend the sequence adding zeros. When v is found, we 
add 1 to the sequence and switch to the next value of u. The number of zeros in the 
constructed sequence is finite if and only if the search was unsuccessful for some -u, 
i.e., if r < qk.

It is convenient to visualize this process as follows. From time to time the 
request “please make qk greater than r” appears for some к and r (and the previous 
request with the same к and r is canceled). Then we consider the requests that 
appear and are never canceled later; they correspond to pairs (r, k) such that r < Qk- 
(The moments when requests appear correspond to zeros in the sequence S .) This 
process is computable. We may also assume without loss of generality that at each 
given moment there is only finitely many requests. (This does not matter since 
only the limit behavior of the sequence is important.)
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Recall that we need a computable sequence /(0), / (1) , ... for which the lower 
frequency of к is at least q̂ . To achieve this goal, it is enough to represent the given 
O'-lower-semicomputable semirneasure as the liminf of a computable sequence of 
measures with rational values, i.e., to construct a two-dimensional table of rational 
numbers

Po Pi P°2
Po p\ P\
Po PÏ Pi

such that each row has only a finite number of non-zero elements, these elements 
have sum 1, and the liminf in the kth column is at least q̂ . Indeed, let us assume 
that such a table is constructed. Without loss of generality we may suppose that in 
the ith row all the numbers are multiples of 1 /i (we may take approximation with 
precision 1 /г not changing the limit). Then the sequence /  can be constructed as 
follows: first we use the first row as the table of frequencies, then switch to the 
second row and use it for a much longer time (to make the influence of the first 
row negligible), then we use the third row even longer (to make the influence of the 
first and second rows negligible), etc.

So it remains to construct a table pj with the following property: if some request 
“please make qk greater than r ” appears at some moment and is not canceled later, 
then the &th column has lim inf at least q^. This is done as follows: in constructing 
the nth row (at time n), we try to satisfy all current requests (that have appeared 
and are not canceled) according to their age (the oldest request is treated first). 
For each request we increase the corresponding pi- up to a given r if this is possible 
(if it does not make the sum greater than 1). We may assume that there are many 
requests, and at some point the sum becomes greater than 1. At that moment we 
cut the last request (so the sum is 1), and this finishes the construction of nth row.

Why does this help? Imagine that r < qь is true. Then the request “please 
make q̂  greater than r" appears at some moment and is never canceled later. (It 
need not to be the first appearance of this request.) Let us look at all requests that 
appear before this one. Some of them are canceled later (while others are “final”). 
Let us wait until all these cancellations happen. After that, only “true” requests 
(ones that are never canceled later) are older than our request, and for these true 
requests we have r' < q ^ . Their sum therefore does not exceed 1 together with our 
request, so the requests with high priority at that time will not interfere with our 
request. □

212 Prove that there exists a computable sequence where the lower frequen­
cies coincide with

(Hint: Combine the proof of this theorem with the solution of Problem 211.) 
One more result from the same paper [133]:

213 Prove that Theorem 136 remains true if we consider partial computable 
functions /  from N to N instead of sequences: for any partial computable function /  
from N to N there exists a (total) computable sequence g(0), g( l) , ... that has the 
same (or bigger) lower frequencies: for any к the lower frequency of к in g is at 
least its lower frequency in /(0), / (1) , . .. (which is defined as the limit inferior of 
the number of appearances of к among /(0) , . . . ,  f (N  — 1) divided by N).
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(Hint [16]: For every N  the frequencies in the initial segment of length N  form 
a lower semicomputable semimeasure (it was a measure for total sequences); the 
construction used in the proof of Theorem 133 allows us to find an upper bound 
for the limit frequencies that is a O'-lower-semicomputable semimeasure. Then we 
apply Theorem 136.)



CHAPTER 7

Shannon entropy and Kolmogorov com plexity

7.1. Shannon entropy

Consider an alphabet A that contains к letters a\ , . . . ,  a^. We want to encode 
each letter a* by a binary string ĉ . Of course, we want all c* to be different to avoid 
confusion. But this is not enough if we write codewords without any separator. For 
example, imagine that letters A, B, and C are encoded by strings 0, 1, and 01. 
All three codes are different, but two strings AB AB and ABC have identical codes 
0101. So additional precautions are needed to guarantee unique decoding.

We want the code to allow unique decoding. At the same time we want it to 
be space efficient. It is good to have the strings c* as short as possible (without 
violating the unique decoding property). And if we cannot make all codewords 
short, the priority should be given to the frequent letters. (Similar considerations 
were taken into account when Morse code was designed.)

7.1.1. Codes. Let us give formal definitions. A code for a ^-letter alphabet 
A  =  { a i , . . . ,  afc} consists of к binary strings Ci,. . . ,  c*,. These strings are called 
codewords (for the code considered); letter ai has encoding Ci. Any А-string (a 
finite sequence of letters taken from A) has an encoding; to get it, we encode each 
letter and concatenate their codes (without separators).

A code is injective if different letters have different codes. A code is uniquely 
decodable if every two different А-strings have different codes. A prefix code is a 
code where no codeword is a prefix of another codeword. (This is a traditional 
terminology; however, the more logical name prefix-free code is also used.)

Theorem 137. Every prefix code is uniquely decodable.

PROOF. The first codeword (the encoding of the first letter) is determined 
uniquely (due to the prefix property), so we can separate it from the rest. Then 
the second codeword is determined, etc. □

214 Show that there exist uniquely decodable codes which are not prefix 
codes.

(Hint: Consider a suffix code.)
Construct an explicit bijection between the set of all infinite sequences215

of digits 0,1, 2 and the set of all infinite sequences of digits 0,1.
(Hint: Use the prefix code 0 (->• 00, 1 (->• 01, 2 (->• 1.)

Consider prefix codes ci , . . . ,  Ck (for a ^-letter alphabet) and d\, . . . ,  di216
(for an /-letter alphabet). Show that strings Cidj (concatenations of codewords from 
these two codes) form a prefix code for a ^/-letter alphabet.

Before asking which of two codes is more space efficient, we should fix frequen­
cies of the letters. Let p i , ...  ,pk be non-negative reals such that pi + • • • +pn — 1-

213
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The number p* will be called the frequency or probability of letter â . For each code 
ci , . . . ,  Ck (for alphabet a i , . . . ,  ak) its average length is defined as

^P iK ci)-

Now we can formulate our goal: for a given p i , ... ,Pk we want to find a code of 
minimal average length inside some class of codes, e.g., a uniquely decodable code 
of minimal average length.

217 Which injective code has minimal average length (among injective codes)
for given p i , ... ,pn?

(.Hint: Put all letters in order of decreasing frequency and all binary strings in 
order of increasing length.)

7.1.2. The definition of Shannon entropy. Shannon entropy provides a 
lower bound for the average length of a uniquely decodable code. It is defined (for 
given non-negative pi such that YliPi = 1) as

H — p\{— logpi) + p2(— logp2) H---- +Pfc(-bgPfc).
(We assume that plogp = 0 for p = 0, making the function plogp continuous at 
the point p = 0.)

There is some motivation for this definition. Letter a* appears with frequency 
P i , and each occurrence of carries — logp* “bits of information”, so the average 
number of bits per letter is H. But then we should also explain why we believe 
that each occurrence of the letter that has frequency pi carries — logpj bits of 
information. Imagine that somebody has in mind one of 2n possible numbers, and 
you want to guess this number by asking yes-or-no questions. Then you need n 
questions, and each answer gives you one bit of information; so when an event 
having probability l/2 n happens, it brings us n bits of information.

Of course, the previous paragraph is just a mnemonic rule for the definition 
of entropy. The formal reason to introduce this notion is given by the following 
theorem:

T heorem 138. Let p i , ... ,pn be non-negative reals such that pi + - • -+pn — 1-
(a) The average length of every prefix code cq,. . . ,  c  ̂ is at least H  ( the entropy ):

^ 2 р А с ъ )  >  H .

i

(b) There exists a prefix code such that

' Е р и * )  < H  + 1.
i

P roof. Note that this theorem deals only with the lengths of codewords (but 
not the codewords itself). So it is important to know when given integers n i , . . . ,  nk 
could be lengths of codewords in a prefix code. Here is the criterion:

Lemma (Kraft inequality). Assume that non-negative integers are
fixed and we want to find binary strings c\ , . . . ,  Ck of these lengths (/(q) = щ) that 
form a prefix code (i .e C i is not a prefix of Cj for i ф fi). This is possible if and 
only if

^ 2 " ni ^  1.
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We have already seen this statement, see the lemmas used to prove Theorems 
56 (p. 92) and 58 (p. 93). In one direction, if c* is never a prefix of the other string 
Cj, then the corresponding intervals of lengths 2~Ui are disjoint and the sum of 
their lengths does not exceed 1. (Using probabilistic language, a random string of 
zeros and ones has prefix cb with probability 2“"1 ; these к events are disjoint, so 
the sum of probabilities does not exceed 1.)

Going in the opposite direction, we can use a simpler argument that was used 
before (in the proof of Theorem 58). Simplification is possible since we have only 
a finite number (к) of integers and they are given in advance. We can simply place 
the corresponding intervals of lengths 2~Uj inside [0,1] from left to right going in 
decreasing order of length. Then each interval is properly aligned and corresponds 
to a binary string of length щ. The lemma is proven.

Let us prove the theorem now. Without loss of generality we may assume that 
all Pi are strictly positive (since null values do not change Shannon entropy and 
average code length). Theorem 138(a) says that if щ are non-negative integers and 
£ * 2 -”' < 1, then Т,РгПг ^  L It is true for any non-negative reals щ (even if 
they are not integers). Indeed, let qi be equal to 2“n\  In these coordinates the 
statement reads as follows: if qi > 0 and ^  1, then

^ 2  pi(-log qi) ^  ^ 2  Pi (“ log Pi)-
This inequality is sometimes called the Gibbs inequality. To prove it, we rewrite 
the difference between right-hand side and left-hand side as

(*) J2Pi l0S

Then we use the convexity argument: the weighted sum of logarithms does not 
exceed the logarithm of the weighted sum ^pilogU i ^  log(52iPiui) (if all щ are 
positive). In our case we see that (*) does not exceed

log Ç22 qi) ^  loS 1 = 0.

Item (a) is proven.
Let us mention also that the non-negative number

J2 p i log — 
i qi

is called the Kullback-Leibler distance between two probability distributions pi and 
qi (so we assume that ^2 qi = 1) or the Kullback-Leibler divergence; the latter name 
is better since this “distance” is not symmetric. The convexity of the logarithm (its 
second derivative is negative everywhere) guarantees that this distance is always 
non-negative and equals zero only if Pi = qi for all i.

To prove item (b), consider the integers щ — [— \og2 pi] (where |"u] is a minimal 
integer greater than or equal to u). Then

Pi ^  q—rii ^2 < 2 ^ Pi-

The inequality 2~Tli ^  pi allows us to use the lemma, so there exist codewords 
of corresponding lengths. The inequality p ij2 < 2~Ui implies that ni exceeds 
(—logPi) by less than 1, and this remains true after averaging: the average code 
length {J2Pini) exceeds H  = J2Pi(~ l°gP;) by less than 1. □
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This proof is a kind of a “relaxation argument” : if we forget that code-lengths 
should be integers and allow any щ such that 2~Ui < 1, the optimal choice is 
Ш — — log pi (convexity of the logarithm function); making щ integers, we lose less 
than 1.

Theorem 139. The entropy of the distribution p i , ... ,pn (with n possible val­
ues) does not exceed logn. It equals logn only if all pi are equal.

Proof. If n is a power of 2, the inequality H  ^  log n follows from Theorem 138 
(consider a prefix code where n codewords all have length logn. In the general case 
we use Gibbs inequality for g* = 1/n (for all г) and recall that this inequality 
becomes an equality only if pi = g*. □

7.1.3. Huffman code. We have shown that the average length of an optimal 
prefix code (for given P i , . . .  ,Pk) is somewhere between H  and H  + 1. But how can 
we find this optimal code?

Let n \ , . . . ,  nk be the lengths of codewords for an optimal code (for given fre­
quencies p i , ... ,pk). Rearranging the letters, we may assume that

Pi ^ P2 < • • • < Pk-

in this case we may assume that

ni ^  n2 ^  > nk.

Indeed, if one letter has a longer code than another letter that is less frequent, the 
exchange of codewords (between these two letters) decreases the average length of 
the code.

One can note also that щ — n2 for an optimal code (the two less frequent letters 
have the same code length). Indeed, if щ > n2, then n\ is greater than all n*. So 
the first term in the sum 2~Ui is smaller than all other terms, the inequality 
Xa 2“ni < 1 cannot be an equality (all terms except the first one are multiples of the 
second term), and the difference between its two sides is at least 2~ni. Therefore, 
we can decrease щ  by 1 and still not violate the inequality 2~ni < 1. This 
means that the code is not optimal (contrary to our assumption).

We can look for an optimal code among codes that have n\ = n2; this optimal 
code minimizes the sum

Pini + p2n2 +  p3n3 H-----+ pknk = (pi + p2)n +  p3n3 + ■ • • + pkn k

(here n is the common value of щ  and n2). In the last expression the minimum 
should be taken over all sequences n, n3, ... ,n k such that

2~n + 2~n + 2~Пз + • ■ • + 2~Пк ^  1.

This inequality can be rewritten as
2- ( n - l )  +  2- n 3 +  . . . +  2~ n k ^

and the expression that is minimized can be rewritten as

(pi + P 2) + (pi + p 2) ( n -  1) + p 3n3 + • • • + pknk.

The term (pi + p2) is a constant that does not influence the minimal point, so 
the problem reduces to finding an optimal prefix code for к — 1 letters that have 
probabilities Pi + Р2,Рз, ■ • • ,Pk-
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We obtain the recursive algorithm that finds the optimal prefix code as follows:
• combine the two rarest letters into one (adding their probabilities);
• find the optimal prefix code for the resulting probabilities (a recursive call);
• replace the codeword x for a “virtual” combined letter by two codewords 

xO and .xl which are one bit longer (note that this replacement keeps the prefix 
property).

The optimal code constructed by this algorithm is called the Huffman code for 
a given distribution p i , ... ,pn-

7.1.4. Kraft—M cMillan inequality. So far we have studied prefix codes. It 
turns out that they are as efficient as general uniquely decodable codes, as shown 
in the following theorem.

T h e o r e m  140 (McMillan inequality). Assum,e that c i , ... ,ck are codewords of 
a uniquely decodable code, and let щ = /(c,;) be their lengths. Then

E 2'"'<L
i

Therefore (recall the lemma above) for any uniquely decodable code there is a 
prefix code with the same lengths of codewords.

PROOF. Let us use letters и and v instead of digits 0 and 1 when constructing 
codewords (e.g., the codes 0, 01, and 11 are now written as u, uv, vv). Now take a 
formal sum (c\ + ■ ■ ■ + ck) of all codewords and consider its Nth  power (for some N  
that we choose later). Then we open the parentheses without changing the order 
of factors и and v (as if и and v were two non-commuting variables). For example, 
the code above gives (for N = 2) the expression

(и + uv + vv)(u + uv + vv)
= uu + uuv + uvv + uvu + uvuv + uvvv + vvu + vvuv + vvvv.

Each term in the right-hand side is a concatenation of some codewords. The unique 
decoding property guarantees that all the terms are different. Now we let и = v = 
1/2. The left-hand side (ci + ■ ■ • + ck)N becomes (2~711 + • • • + 2~nk)N. For the 
right-hand side we have an upper bound: if it consisted of all strings of length t, 
it would contain 2* terms equal to 2~b (each), so the sum would be equal to 1 (for 
each length t). Therefore, the right-hand side does not exceed the maximal length 
of strings in the right-hand side, which equals N тах.(щ).

if £ 2 -  'n' > 1, we immediately get a contradiction, since for large enough N  the 
left-hand side grows exponentially in N  while the right-hand side is linear in N. □

This proof looks like an extremely artificial trick (though a nice one). A more 
natural proof (or, better to say, a more natural version of the same proof) is given 
below; see p. 222.

7.2. Pairs and conditional entropy

7.2.1. Pairs of random variables. Dealing with Shannon entropies, we use 
the terminology which is standard for probability theory. Let £ be a random variable 
which takes finitely many values £i , ... ,£& with probabilities p i , ... ,Pk■ Then the 
Shannon entropy of a random variable £ is defined as

H(£) =Pi ( - logPi )  + •• • + pk(-lo g p k).
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T h i s  d e f i n i t i o n  a l lo w s  u s  t o  c o n s i d e r  t h e  e n t r o p y  o f  a  p a i r  o f  r a n d o m  v a r i a b l e s  £  

a n d  77 ( t h a t  h a v e  a  c o m m o n  d i s t r i b u t i o n ,  i . e . , a r e  d e f in e d  o n  t h e  s a m e  p r o b a b i l i t y  

s p a c e ) .  I n d e e d ,  t h i s  p a i r  is  a l s o  a  r a n d o m  v a r i a b l e  w i t h  a  f i n i t e  r a n g e .  T h e  f o l lo w in g  

t h e o r e m  s a y s  t h a t  t h e  e n t r o p y  o f  a  p a i r  d o e s  n o t  e x c e e d  t h e  s u m  o f  e n t r o p i e s  o f  i t s  

c o m p o n e n t s .

T heorem  1 4 1 .

W e  c o n s i d e r  r a n d o m  v a r i a b l e s  w i t h  f i n i t e  r a n g e s ,  s o  t h i s  is  j u s t  a n  i n e q u a l i t y  

i n v o l v i n g  l o g a r i t h m s .  L e t  is  w r i t e  t h i s  i n e q u a l i t y .  A s s u m e  t h a t  £  h a s  к v a lu e s  

£ 1 . . . . ,  a n d  77 h a s  I v a l u e s  7/1, . . . ,  77/. T h e n  t h e  m a x i m a l  p o s s i b l e  n u m b e r  o f

v a l u e s  f o r  t h e  p a i r  (£ , 77) is  kl , a n d  t h e s e  v a l u e s  a r e  (& , 77j )  ( s o m e  o f  t h e m  m a y  n e v e r  

a p p e a r  o r  h a v e  p r o b a b i l i t y  0 ) .  T h e  d i s t r i b u t i o n  f o r  (£,77) is  t h e r e f o r e  a  t a b l e  t h a t  

h a s  к r o w s  a n d  I c o l u m n s .  T h e  n u m b e r  ptj ( z t h  r o w ,  j th  c o l u m n )  is  t h e  p r o b a b i l i t y  

o f  t h e  e v e n t  “ (£  =  £*) a n d  (77 =  77̂  ) ” ( h e r e  i =  1 , . . .  ,k a n d  j  — 1 , . . . , / ) .  A l l  pij a r e  

n o n - n e g a t i v e  a n d  t h e i r  s u m  e q u a l s  1 . ( S o m e  o f  t h e  prJ c a n  b e  e q u a l  t o  0 .)

A d d i n g  t h e  n u m b e r s  i n  e a c h  r o w , w e  g e t  t h e  p r o b a b i l i t y  d i s t r i b u t i o n  f o r  £ : t h e  

p r o b a b i l i t y  o f  t h e  e v e n t  £  =  £* e q u a l s  Pij • W e  d e n o t e  t h i s  s u m  b y  Pi*. S im i la r ly ,  

77 t a k e s  v a l u e  77j w i t h  p r o b a b i l i t y  p*j w h ic h  e q u a l s  t h e  s u m  o f  a l l  n u m b e r s  in  t h e  

j th  c o l u m n .

T h e r e f o r e ,  t h e  t h e o r e m  i n  q u e s t i o n  is  a n  i n e q u a l i t y  t h a t  is  a p p l i c a b l e  t o  a n y  

m a t r i x  w i t h  n o n - n e g a t i v e  e l e m e n t s  a n d  s u m  1:

^>2 pij { - log pij) ^  ( - l o g  p i* )  +  ^ 7 V / ( - l o g p * j )

i,j г j

( h e r e  pi* a n d  p * j  a r e  t h e  s u m s  o f  t h e  r o w s  a n d  c o l u m n s ) .

T h i s  i n e q u a l i t y  a g a i n  is  a  c o n s e q u e n c e  o f  t h e  c o n v e x i t y  o f  l o g a r i t h m ,  b u t  i t  is  

u s e f u l  t o  u n d e r s t a n d  i t s  i n t u i t i v e  m e a n i n g .  L e t  u s  f o r g e t  f o r  a  w h i l e  t h a t  e n t r o p y  is  

n o t  e x a c t l y  e q u a l  t o  t h e  l e n g t h  o f  t h e  s h o r t e s t  p r e f ix  c o d e  ( a n d  i g n o r e  t h e  d i f f e r e n c e  

t h a t  d o e s  n o t  e x c e e d  1 ) . T h e n  t h i s  i n e q u a l i t y  c a n  b e  p r o v e n  a s  fo l lo w s .  A s s u m e  t h a t  

s p a c e - e f f i c i e n t  p r e f i x  c o d e s  f o r  £  a n d  77 a r e  g iv e n ,  a n d  t h e y  h a v e  c o d e w o r d s  c i , . . . ,  

a n d  c f i , . . .  ,di, r e s p e c t i v e l y .  T h e n  c o n s i d e r  a  c o d e  f o r  (£ , 77) t h a t  a s s i g n s  t o  t h e  v a lu e  

(£*, Vj) t h e  s t r i n g  ctdj ( t h e  c o n c a t e n a t i o n  o f  c* a n d  dj w i t h o u t  a  s e p a r a t o r ) .  W e  g e t  

a  p r e f i x  c o d e  ( i n d e e d ,  t o  s e p a r a t e  a  c o d e w o r d  t h a t  s t a r t s  a n  i n f in i t e  s e q u e n c e ,  w e  

f i r s t  f in d  t h e  p r e f i x  c* a n d  t h e n  t h e  p r e f i x  dj in  t h e  r e m a i n i n g  p a r t ;  b o t h  o p e r a t i o n s  

c a n  b e  p e r f o r m e d  u n i q u e l y ) .  T h e  a v e r a g e  l e n g t h  o f  t h i s  c o d e  e q u a l s  t h e  s u m  o f  

t h e  a v e r a g e  l e n g t h s  o f  i t s  c o m p o n e n t s .  T h i s  c o d e  m a y  b e  n o n - o p t i m a l  ( w h ic h  is  

n a t u r a l ,  s i n c e  t h e  i n e q u a l i t y  c o u l d  b e  s t r i c t ) ,  b u t  i t  p r o v i d e s  a n  u p p e r  b o u n d  f o r  

t h e  l e n g t h  o f  t h e  o p t i m a l  c o d e .

P ro o f . L e t  u s  t r a n s f o r m  t h i s  i n f o r m a l  a r g u m e n t  i n t o  a  p r o o f .  R e c a l l  t h e  

p r o o f  o f  T h e o r e m  1 3 8  ( p .  2 1 4 ) . W e  h a v e  s e e n  t h a t  t h e  e n t r o p y  is  a  m i n i m a l  v a l u e  

o f  b g 2 Qi) t a k e n  o v e r  a l l  t u p l e s  o f  n o n - n e g a t i v e  r e a l s  qt t h a t  h a v e  s u m  1.

I n  p a r t i c u l a r ,  t h e  e n t r o p y  o f  t h e  p a i r  ( t h e  l e f t - h a n d  s id e )  is  t h e  m i n i m a l  v a l u e  o f

^2 pij{ - logqij)
i,j
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t a k e n  o v e r  a l l  t u p l e s  q  ̂ o f  n o n - n e g a t i v e  r e a l s  t h a t  s u m  u p  t o  1. L e t  u s  r e s t r i c t  o u r  

a t t e n t i o n  t o  “r a n k  1” t u p l e s  t h a t  h a v e  t h e  f o r m

Qij — ([i* ' q*j
f o r  s o m e  t u p l e s  o f  n o n - n e g a t i v e  r e a l s  qi* a n d  g * j ( b o t h  t u p l e s  h a v e  s u m  1 ) . T h e n  

( — log qij) c a n  b e  d e c o m p o s e d  i n t o  ( — lo g g * * )  +  ( — l o g g * j ) ,  a n d  t h e  e n t i r e  s u m  is  

d e c o m p o s e d  i n t o  tw o  p a r t s ,  w h i c h  a f t e r  p a r t i a l  s u m m a t i o n  o v e r  o n e  c o o r d i n a t e  

b e c o m e s  e q u a l  t o

EPi*(~log 4i*)
i

a n d

j
r e s p e c t i v e l y .  T h e  m i n i m a l  v a l u e s  o f  t h e  tw o  p a r t s  a r e  H(£)  a n d  H{rf).

T h e r e f o r e ,  t h e  l e f t - h a n d  s i d e  o f  o u r  i n e q u a l i t y  is  t h e  m i n i m u m  o v e r  a l l  t u p l e s  

a n d  t h e  r i g h t - h a n d  s i d e  is  t h e  m i n i m u m  o v e r  r a n k  1 t u p l e s ,  a n d  t h e  i n e q u a l i t y  is  

p r o v e n .  □

7.2.2. Conditional entropy. R e c a l l  t h e  d e f i n i t i o n  o f  c o n d i t i o n a l  p r o b a b i l i t y .  

L e t  A a n d  В  b e  tw o  e v e n t s .  T h e  conditional probability o f  В w i t h  c o n d i t i o n  A 
( d e n o t e d  a s  P r [ £ ? |A ] )  is  d e f in e d  a s  t h e  r a t i o  P r [ A  a n d  B\/'Px[A\. T h i s  d e f i n i t i o n  

a s s u m e s  t h a t  P r [ A ]  >  0 . T h e  m o t i v a t i o n  is  c l e a r :  W e  a r e  i n t e r e s t e d  i n  t h e  f r a c t i o n  o f  

o u t c o m e s  w h e n  В h a p p e n e d  b u t  r e s t r i c t  o u r  a t t e n t i o n  t o  t h e  c a s e  w h e n  A h a p p e n e d .

L e t  A b e  a n  e v e n t  ( t h a t  h a s  n o n - z e r o  p r o b a b i l i t y ) ,  a n d  l e t  £  b e  a  r a n d o m  v a r i ­

a b l e  w i t h  f i n i t e  r a n g e  , . . . , £ & •  T h e n  w e  m a y  c o n s i d e r  t h e  conditional distribution 
o f  £  w h e n  A h a p p e n s .  W e  g e t  a  n e w  r a n d o m  v a r i a b l e :  n o w  h a s  p r o b a b i l i t y  

P r [ ( £  =  i n s t e a d  o f  P r [ £  =  £*]. T h e  e n t r o p y  o f  t h i s  d i s t r i b u t i o n  is  c a l l e d  con­
ditional entropy of £ with condition A a n d  is  d e n o t e d  b y  Н(^\А). ( T h e  d i s t r i b u t i o n  

i t s e l f  c o u l d  b e  d e n o t e d  b y  ( £ |A ) . )

218 S h o w  t h a t  H(£\A)  c a n  b e  g r e a t e r  t h a n  H(£)  a n d  c a n  b e  le s s  t h a n  H(£). 
T h e  d i s t r i b u t i o n  ( £ |A )  h a s  n o t  m u c h  in  c o m m o n  w i t h  t h e  d i s t r i b u t i o n(Hint

o f  £ , e s p e c i a l l y  i f  A h a s  s m a l l  p r o b a b i l i t y .

I n f o r m a l l y  s p e a k i n g ,  H(f\A)  i s  t h e  m i n i m a l  a v e r a g e  c o d e  l e n g t h  i f  t h e  a v e r a g e  

is  t a k e n  o n l y  o v e r  t h e  c a s e s  w h e n  A h a p p e n s .

N o w  l e t  u s  c o n s i d e r  tw o  r a n d o m  v a r i a b l e s  £  a n d  77 ( a s  w a s  d o n e  i n  t h e  p r e v i o u s  

s e c t i o n ) .  L e t  a s  a s s u m e  t h a t  e a c h  v a l u e  o f  b o t h  £  a n d  77 h a s  n o n - z e r o  p r o b a b i l i t y  

( z e r o - p r o b a b i l i t y  o u t c o m e s  c o u l d  b e  i g n o r e d ) .  F o r  e a c h  v a l u e  r j j  ( f o r  77) c o n s i d e r  

t h e  e v e n t  77 =  777. ( I t s  p r o b a b i l i t y  w a s  d e n o t e d  b y  p*j.) C o n s i d e r  t h e  c o n d i t i o n a l  

e n t r o p y  o f  v a r i a b l e  £  h a v i n g  t h i s  e v e n t  a s  t h e  c o n d i t i o n .  I n  o t h e r  w o r d s ,  c o n s i d e r  

t h e  e n t r o p y  o f  t h e  d i s t r i b u t i o n  i Pij/p*j■ T h e n  w e  a v e r a g e  t h e s e  e n t r o p i e s ,  

u s i n g  p r o b a b i l i t i e s  o f  t h e  e v e n t s  77 =  r j j a s  w e ig h t s .  T h e  r e s u l t i n g  a v e r a g e  is  c a l l e d  

conditional entropy of £ with condition 77. I t  is  d e n o t e d  b y  H(£\ij). S o  b y  d e f i n i t i o n

Щ£\г}) = E  Prfo = ГЬ]Н(Л\П = Vj) 
3

o r ,  u s i n g  t h e  n o t a t i o n  a b o v e ,

j  г '

l o g ^
p*j
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T h e  f o l lo w in g  t h e o r e m  s u m s  u p  t h e  b a s i c  p r o p e r t i e s  o f  c o n d i t i o n a l  e n t r o p y  ( t h a t  

a r e  t r u e  f o r  a n y  r a n d o m  v a r i a b l e s  £  a n d  p)\

T heorem  1 4 2 . ( a )  H(£\p) ^  0 ;

( b )  H(£\p) =  0  if and only if £  =  f(p) with probability 1 for some function f  
(in other words, we iqnore the cases that have zero probability);

(c) Я (£|'„) < Я(£);
(d) Я ( ( £ ,т, ) ) = Я ( 1?) +  Я(£|7)).

P ro o f . I t e m  ( a )  is  e v i d e n t :  a l l  H(f\rj = pj) a r e  n o n - n e g a t i v e ,  s o  t h e  s a m e  is  

t r u e  f o r  t h e i r  w e i g h t e d  s u m .

( b )  I f  t h e  w e i g h t e d  s u m  o f  n o n - n e g a t i v e  t e r m s  e q u a l s  z e r o ,  t h e n  a l l  t h e  t e r m s  

t h a t  h a v e  n o n - z e r o  w e i g h t s  a r e  e q u a l  t o  z e r o .  S o  f o r  e a c h  v a l u e  pj t h e  r e s t r i c t e d  

v a r i a b l e  ( £ |^  =  pf) h a s  z e r o  e n t r o p y ,  a n d  t h e r e f o r e  h a s  o n l y  o n e  v a l u e  i f  w e  ig n o r e  

v a l u e s  t h a t  h a v e  p r o b a b i l i t y  0 .

S t a t e m e n t  ( c )  c a n  b e  e x p l a i n e d  a s  fo l lo w s :  H(£\p) is  t h e  a v e r a g e  l e n g t h  o f  a n  

o p t i m a l  c o d e  f o r  £  i f  w e  a l lo w  d i f f e r e n t  c o d e s  f o r  £  f o r  d i f f e r e n t  v a l u e s  o f  p ( fo r  

e a c h  v a l u e  o f  p w e  c o n s i d e r  t h e  c o d e  t h a t  is  o p t i m a l  w i t h  r e s p e c t  t o  c o n d i t i o n a l  

d i s t r i b u t i o n ) .  T h i s  p r o v i d e s  s o m e  a d d i t i o n a l  f r e e d o m  ( c o m p a r e d  t o  t h e  c a s e  w h e n  

t h e  s a m e  c o d e  s h o u l d  b e  u s e d  f o r  a l l  v a lu e s  o f  p), a n d  t h i s  f r e e d o m  c a n  o n l y  d e c r e a s e  

t h e  o p t i m a l  c o d e  l e n g t h .

T h e  s a m e  a r g u m e n t  is  m a d e  f o r m a l :  F o r  e a c h  j  t h e  v a l u e  o f  H(f\p — pj) is  t h e  

m i n i m a l  v a l u e  o f  t h e  s u m

t a k e n  o v e r  a l l  n o n - n e g a t i v e  v a l u e s  o f  t h e  v a r i a b l e s  q\j +  +  • ■ ■ +  qkj =  1 (w e  u s e

d i f f e r e n t  v a r i a b l e s  f o r  e a c h  j). T h e r e f o r e ,  H(f\p) is  t h e  m i n i m a l  v a l u e  o f  t h e  s u m

j i p*j
t a k e n  o v e r  a l l  t a b l e s  t h a t  c o n t a i n  n o n - n e g a t i v e  r e a l s  qtj a n d  e a c h  c o l u m n  h a s  s u m  1. 

I f  w e  r e s t r i c t  o u r s e lv e s  t o  t a b l e s  w h e r e  a l l  c o l u m n s  a r e  e q u a l  (qij =  qf), t h e  s u m  

t u r n s  i n t o

P t j ( - l o g f t )  =  ^ 2  Pi* { - log qi),
j i P*j j i i

a n d  i t s  m i n i m u m  is  ü f ( £ ) .  T h e r e f o r e  H(£\p) ^  Я ( £ ) .

F i n a l l y ,  i t e m  ( d )  is  j u s t  a n  e x e r c i s e  in  t r a n s f o r m a t i o n  o f  l o g a r i t h m s :

Y ^ P iÅ - b g Pij) = J 2 p*j b g p*j)
i j  j i P*j P*j

=  log  ^  lo g ^ )  
j  i  P * 3  p * 3  j { p * 3

=  ^ 2 p *3H { ^ \ v  =  V j )  +  Y ^ p * j ( - l ° è p * j î  =  Я ^1 г̂ ) +  H ^ l ) '
3 3

T h e  t h e o r e m  is  p r o v e n .  □

T h i s  t h e o r e m  i m p l i e s  T h e o r e m  1 4 1  ( p .  2 1 8 ) . W e  s e e  a l s o  t h a t  t h e  e n t r o p y  

o f  a  p a i r  o f  r a n d o m  v a r i a b l e s  c a n n o t  b e  l e s s  t h a n  t h e  e n t r o p y  o f  a n y  o f  v a r i a b l e s
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(since conditional entropy is non-negative). Thus we easily obtain the following 
statement:

T heorem  143. Let £ be a random variable with a finite range, and let f  be a 
function defined on that range. Then

я(/(£)) < #(£),
where /(£) is a random variable that is a composition of f  and £ (i . e f  is applied 
to the value o/£).

In terms of distribution the transition from £ to /(£) means that we combine 
several values into one that sums up the corresponding probabilities.

P ro o f . Indeed, the random variable (£,/(£)) has the same distribution as £, 
and its entropy cannot be less than the entropy of the second coordinate. □

219 Provide an interpretation of this result in terms of minimal average length
o f  c o d e s ,  a n d  t h e  d i r e c t  p r o o f .

220 W h e n  d o e s  t h e  i n e q u a l i t y  o f  T h e o r e m  1 4 3  b e c o m e  a n  e q u a l i t y ?

7.2.3. Independence and entropy. T h e  n o t i o n  o f  i n d e p e n d e n t  r a n d o m  v a r i ­

a b l e s  c o u l d  b e  e a s i l y  e x p r e s s e d  i n  t e r m s  o f  e n t r o p y .  R e c a l l  t h e  v a r i a b l e s  £  a n d  77 a r e  

c a l l e d  independent i f  t h e  p r o b a b i l i t y  o f  t h e  e v e n t  “£  =  &  a n d  77 =  77j ” is  e q u a l  t o  

t h e  p r o d u c t  o f  p r o b a b i l i t i e s  o f  t h e  e v e n t s  £  =  &  a n d  77 =  77j.  ( T o  r e f o r m u l a t e :  T h e  

c o n d i t i o n a l  d i s t r i b u t i o n  o f  £  w i t h  c o n d i t i o n  77 =  r/j c o in c id e s  w i t h  t h e  u n c o n d i t i o n a l  

d i s t r i b u t i o n .  A ls o  w e  c a n  e x c h a n g e  £  a n d  77 a n d  s a y  t h a t  c o n d i t i o n a l  d i s t r i b u t i o n  

o f  77 w i t h  c o n d i t i o n  £  =  £* c o i n c i d e s  w i t h  t h e  u n c o n d i t i o n a l  d i s t r i b u t i o n . )

I n  t h e  n o t a t i o n  u s e d  a b o v e  t h e  i n d e p e n d e n c e  c a n  b e  w r i t t e n  a s  pij — Pi*p*j 
( p r o b a b i l i t y  m a t r i x  h a s  r a n k  1 ) .

T h eo rem  144. Random variables £ and 77 are independent if and only if
я«£.ч)) = я«) + я(ч).

I n  o t h e r  w o r d s ,  w e  g e t  a n  i n d e p e n d e n c e  c r i t e r i o n :  T h e  i n e q u a l i t y  o f  T h e o ­

r e m  1 4 1  b e c o m e s  a n  e q u a l i t y .  U s in g  T h e o r e m  1 4 2 , w e  c a n  r e w r i t e  t h i s  c r i t e r i o n  a s  

# ( £ )  =  # ( £ | t 7 )  ( o r ,  s y m m e t r i c a l l y ,  # ( 7 7 )  =  Я ( т 7 ^ ) ) .

PROOF. Let us use once more th a t the logarithm is a strictly convex function: 
the inequality

b g

h o l d s  f o r  a l l  p o s i t i v e  w e i g h t s  pi w i t h  s u m  1 a n d  a l l  p o s i t i v e  ж*. T h i s  i n e q u a l i t y  

b e c o m e s  a n  e q u a l i t y  o n ly  i f  a l l  ж* a r e  e q u a l .

T h e r e f o r e ,  f o r  p o s i t i v e  pi w i t h  s u m  1 t h e  e x p r e s s i o n

^  Pi (-log  ft)

( w h e r e  f t  a r e  p o s i t i v e  a n d  s u m  u p  t o  1 ) t a k e s  i t s  m i n i m a l  v a l u e  o n ly  a t  t h e  p o i n t  

f t  =  Pi-
N o w  r e c a l l  t h e  p r o o f  o f  T h e o r e m  1 4 1  a b o v e .  T h e  m i n i m u m  o v e r  r a n k  1 m a t r i c e s  

( t h a t  m a k e s  t h e  r i g h t - h a n d  s i d e  e q u a l  t o  t h e  s u m  o f  e n t r o p i e s )  w a s  a c h i e v e d  fo r

Qij — Pi* ' P*j •
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I f  t h i s  m i n i m u m  c o in c id e s  w i t h  t h e  m i n i m u m  t a k e n  o v e r  a l l  m a t r i c e s  qjj ( t h e  l a t t e r  

is  a c h i e v e d  f o r  qij — pij ) , t h e n  w e  h a v e

Pij =  Pi* ' P*j i
a n d  v a r i a b l e s  f  a n d  77 a r e  i n d e p e n d e n t .  □

P r o v i d e  a n  a n o t h e r  ( t h o u g h  s i m i l a r )  p r o o f  u s i n g  T h e o r e m  1 4 2 .

P r o v e  t h a t  t h r e e  r a n d o m  v a r i a b l e s  a, ß,  7  a r e  i n d e p e n d e n t  ( t h i s  m e a n s  

t h a t  t h e  p r o b a b i l i t y  o f  t h e  e v e n t  (a = cti,ß =  ßj,  7  =  7*,) e q u a l s  t h e  p r o d u c t  o f  

t h r e e  p r o b a b i l i t i e s  f o r  e a c h  o f  t h e  v a r i a b l e s )  i f  a n d  o n l y  i f

H((a,  /3 , 7 ) )  =  Ща) +  H(ß) +  H ( 7 ) .

T h e o r e m s  1 4 1  a n d  1 4 4  s h o w  t h a t  t h e  d i f f e r e n c e  H(£) +  H(rj) — H((£,r))) is  

a lw a y s  n o n - n e g a t i v e  a n d  e q u a l s  z e r o  i f  a n d  o n l y  i f  f  a n d  77 a r e  i n d e p e n d e n t .  S o  w e  

c a n  t a k e  t h i s  d i f f e r e n c e  f o r  a  q u a n t i t a t i v e  m e a s u r e  o f  d e p e n d e n c e  b e t w e e n  f  a n d  

77. T h i s  d i f f e r e n c e  is  d e n o t e d  b y  / ( £  : 77) a n d  is  c a l l e d  t h e  mutual information o f  

tw o  r a n d o m  v a r i a b l e s  £  a n d  77. T h e o r e m  1 4 2  a l lo w s  u s  t o  r e w r i t e  t h e  d e f i n i t i o n  f o r  

/ ( £  : 77) in  t h e  f o l lo w in g  w a y :

Hi ■ v) = H(v) -  я(г,Ю = як) -  як|„)
( m u t u a l  i n f o r m a t i o n  s h o w s  h o w  m u c h  t h e  k n o w l e d g e  o f  o n e  r a n d o m  v a r i a b l e  d e ­

c r e a s e s  t h e  e n t r o p y  o f  t h e  o t h e r  o n e ) .

T o  s e e  a l l  t h e s e  n o t i o n s  in  a c t i o n ,  l e t  u s  r e t u r n  t o  t h e  M c M i l l a n  i n e q u a l i t y .  N o w  

w e  c h a n g e  t h e  o r d e r  a n d  p r o v e  f i r s t  t h a t  a  u n i q u e l y  d e c o d a b l e  c o d e  f o r  a  r a n d o m  

v a r i a b l e  f  h a s  t h e  a v e r a g e  l e n g t h  o f  t h e  c o d e w o r d  a t  l e a s t  H(£).
F i r s t  n o t e  t h a t  f o r  a n  i n j e c t i v e  c o d e  w h e r e  a l l  c o d e w o r d s  h a v e  l e n g t h  l e s s  t h a n  c  

t h e  a v e r a g e  l e n g t h  is  a t  l e a s t  H(£) — l o g e .  I n d e e d ,  i f  щ a r e  t h e  l e n g t h s  o f  t h e  

c o d e w o r d s ,  t h e  s u m  o f  2 ~ni d o e s  n o t  e x c e e d  c  ( f o r  e v e r y  f ix e d  l e n g t h  t h e  s u m  d o e s  

n o t  e x c e e d  1 ) . T h e r e f o r e ,  t h e  i n e q u a l i t y  o f  T h e o r e m  1 3 8  is  v i o l a t e d  a t  m o s t  b y  

l o g e .

T h i s  is  n o t  e n o u g h ,  a n d  t o  g e t  a  t i g h t  b o u n d  w e  c o n s i d e r  N  i n d e p e n d e n t  i d e n ­

t i c a l l y  d i s t r i b u t e d  c o p ie s  o f  t h e  r a n d o m  v a r i a b l e  £ . W e  g e t  a  r a n d o m  v a r i a b l e  t h a t  

c o u l d  b e  d e n o t e d  b y  ÇN. I t s  e n t r o p y  is  NH(£). L e t  u s  u s e  o u r  c o d e  f o r  e a c h  o f  

N  c o o r d i n a t e s  a n d  t h e n  c o n c a t e n a t e  a l l  t h e  s t r i n g s .  T h e  u n i q u e  d e c o d i n g  p r o p e r t y  

g u a r a n t e e s  t h a t  t h i s  is  a n  i n j e c t i v e  c o d e .  I t s  a v e r a g e  l e n g t h  is  N  t i m e s  g r e a t e r  t h a n  

t h e  a v e r a g e  l e n g t h  o f  i n i t i a l  c o d e  f o r  f  ( l i n e a r i t y  o f  e x p e c t a t i o n ) .  A n d  t h e  m a x i m a l  

l e n g t h  d o e s  n o t  e x c e e d  cN  w h e r e  c  is  a n  u p p e r  b o u n d  f o r  t h e  l e n g t h  o f  t h e  c o d e ­

w o r d s  o f  t h e  u n i q u e l y  d e c o d a b l e  c o d e  w e  s t a r t e d  w i t h .  S o  t h e  p r e v i o u s  p a r a g r a p h  

g iv e s  u s

N  • ( a v e r a g e  l e n g t h  o f  t h e  u n i q u e l y  d e c o d a b l e  c o d e )  ^  NH(£) — \og(cN).
N o w  w e  d i v i d e  o v e r  N  a n d  t a k e  N  —> 0 0 . S in c e  \og(cN)/N  —> 0  a s  N  —> 0 0 , t h i s  

g iv e s  u s  t h e  b o u n d  H(£) f o r  t h e  a v e r a g e  l e n g t h  o f  a  u n i q u e l y  d e c o d a b l e  c o d e .

N o w  t h e  M c M i l l a n  i n e q u a l i t y  is  e a s y .  A s s u m e  t h a t  t h e  u n i q u e l y  d e c o d a b l e  

c o d e  h a s  c o d e  l e n g t h s  П 1 , . . . , п д ,  a n d  2 ~Ui > 1. W e  s t a r t  w i t h  p r o b a b i l i t i e s  

Pi =  2 ~n‘ a n d  t h e n  p r o p o r t i o n a l l y  d e c r e a s e  a l l  o f  t h e m  m a k i n g  t h e i r  s u m  e q u a l  

t o  1. C o n s i d e r  t h e  r a n d o m  v a r i a b l e  t h a t  h a s  t h e  d i s t r i b u t i o n  Pi ( o b t a i n e d  i n  t h i s  

w a y )  a n d  i t s  c o d i n g  b y  m e a n s  o f  o u r  u n i q u e l y  d e c o d a b l e  c o d e .  T h e  a v e r a g e  l e n g t h  

is  YlPini w h i c h  is  l e s s  t h a n  H =  Y^Pi(~^°ëPi) ( r e c a l l  t h a t  щ < — l o g pi s i n c e  w e  

h a v e  d e c r e a s e d  t h e  v a l u e s  7 7 ) .

221

222
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223 L o o k  c lo s e ly  a t  t h i s  p r o o f  a n d  t r a c e  t h e  c o r r e s p o n d e n c e  b e t w e e n  i t  a n d

t h e  p r o o f  g iv e n  a b o v e .

7.2.4. “R elativization” and basic inequalities. A ll  t h e  s t a t e m e n t s  a b o u t  

e n t r o p y  h a v e  “r e l a t i v i z e d ” ( c o n d i t i o n a l )  v e r s io n s .  F o r  e x a m p l e ,  w e  c o u l d  a d d  s o m e  

r a n d o m  v a r i a b l e  a  a s  a  c o n d i t i o n  in  t h e  i n e q u a l i t y

я ( ( М ) < я ( 0  + Щ||)
a n d  g e t  i t s  c o n d i t i o n a l  v e r s i o n

H((t,v)\a) < H(t\a) + H(V\a).
T h e  c o n d i t i o n a l  v e r s i o n  is  a n  e a s y  c o n s e q u e n c e  o f  t h e  u n c o n d i t i o n a l  o n e .  I n d e e d ,  

f o r  e a c h  f ix e d  v a l u e  c q  o f  a  r a n d o m  v a r i a b l e  a,  w e  h a v e

H{(£,T])\a = ai) < # ( f |a  = cci) + Н(т)\а = aß)
( T h e o r e m  1 4 1  is  a p p l i e d  t o  c o n d i t i o n a l  d i s t r i b u t i o n s  o f  £  a n d  rj w i t h  c o n d i t i o n  

a =  aß). T h e n  w e  s u m  u p  a l l  t h e s e  i n e q u a l i t i e s  w i t h  w e i g h t s  P r [ a  =  aß.
S o  w e  g e t  a  c o n d i t i o n a l  i n e q u a l i t y  a s  a  c o n s e q u e n c e  o f  t h e  u n c o n d i t i o n a l  o n e .  

N o w , g o in g  in  t h e  o p p o s i t e  d i r e c t i o n  a n d  u s i n g  t h e  e q u a t i o n

Я(/9|1) =  Я ( 0 8 , 7 » - Я ( 7 ),

w e  c a n  e x p r e s s  a l l  c o n d i t i o n a l  e n t r o p i e s  in  t e r m s  o f  u n c o n d i t i o n a l  o n e s .

A f t e r  c a n c e l i n g  s o m e  t e r m s ,  w e  g e t  t h e  f o l lo w in g  i n e q u a l i t y :

T heorem  1 4 5  ( B a s i c  i n e q u a l i t y ) .

H ( t  4, a) + H (a ) < H((,  a) + Я (Ч, a).

W e  u s e  a  s im p l i f i e d  n o t a t i o n  a n d  w r i t e  Н(^,г),а) i n s t e a d  Н((^,г),а)) ( o r  e v e n  

m o r e  f o r m a l  H((((,T]),a))).
S i m i l a r  relativization ( a d d i n g  r a n d o m  v a r i a b l e s  a s  c o n d i t i o n s )  c a n  b e  a p p l i e d  

t o  m u t u a l  i n f o r m a t i o n .  F o r  e x a m p l e ,  w e  c a n  n a t u r a l l y  d e f in e  I  (a : /3 |у )  a s

Я ( а | 7 ) +  Я ( , а | 7 ) - Я « а , / ? ) | 7 ) .
T h e  b a s i c  i n e q u a l i t y  ( T h e o r e m  1 4 5 ) s a y s  t h a t  I  (a : ßl'j) ^  0  f o r  a l l  r a n d o m  v a r i a b l e s

224

225

P r o v e  t h a t  I((a,ß)  : 7 )  ^  I(a : 7 ) .  

P r o v e  t h a t

I((a, ß) : 7 )  =  I{a  : 7 )  +  I(ß  : ^\a).

I f  I  (a : 7 |/3 )  =  0 , t h e  r a n d o m  v a r i a b l e s  a a n d  7  a r e  c a l l e d  independent relative 
to ß ( w h e n  ß is  k n o w n ) .  E x p e r t s  in  p r o b a b i l i t y  t h e o r y  s a y  in  t h i s  c a s e  t h a t  a,ß, 7  

f o r m  a  Markov chain w h e r e  t h e  d e p e n d e n c e  b e t w e e n  t h e  past (a) a n d  t h e  future 
( 7 )  is  c a u s e d  o n l y  b y  t h e  current state (ß ).

226 P r o v e  t h a t  i n  t h i s  c a s e  I(a  : 7 )  < I  (a : /? ) , a n d  t h e r e f o r e  I(a  : 7 )  ^  H{ß).
T o  p r o v e  a l l  t h e s e  ( a n d  s i m i l a r )  s t a t e m e n t s ,  o n e  c o u ld  u s e  t h e  d i a g r a m s  t h a t  

a r e  s i m i l a r  t o  t h e  d i a g r a m s  f o r  K o lm o g o r o v  c o m p l e x i t y  d i s c u s s e d  i n  C h a p t e r  2 . 

T h e  d i a g r a m  f o r  tw o  v a r i a b l e s  c o n s i s t s  o f  t h r e e  r e g io n s .  E a c h  r e g i o n  c a r r i e s  a  n o n ­

n e g a t i v e  v a lu e .  T h e  s u m  o f  t h e s e  v a l u e s  f o r  tw o  le f t  r e g i o n s  is  H(a)  a n d  f o r  tw o  

r i g h t  r e g i o n s  is  H(ß) ( s e e  F i g u r e  2 0 ).
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F i g u r e  20. Entropies of two random variables

For three variables a, ß , 7 we get a more complicated diagram (Figure 21). The 
central region carries a number that is denoted by I  (a : ß : 7 ). It can be defined 
as I  (a : ß) — I  (a : ß \j) or, equivalently, as I(a  : 7 ) — I  (a : 7 |/3), etc. In terms of 
unconditional entropies we get the following expression:

F i g u r e  21. Entropies of three random variables

Note that (unlike the other six values shown) the value of I  (a : ß : 7 ) can be 
negative. For example, this happens if variables a are ß independent, but become 
dependent when 7 is known.

227
(Hint

Construct three variables a, ß , 7 with this property.
Following the example given on p. 51, consider uniformly distributed

independent variables a and ß with range {0, 1}, and let 7 = (a + ß) mod 2.)
228 (Fano inequality) Prove that if the random variables a and ß differ with

probability at most e < 1/2 and a takes at most a values, then

H(a\ß) < £loga + h(e),
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where h(e) is the entropy of a random variable with two values and probabilities e 
and 1 — e.

(Hint: Let 7 be a random variable with two values; 7 = 0 when ot ф ß and 
7 = 1 when a — ß. Then H(a\ß) < H{7 ) + H (a |/5,7 ). The first term is Д(er), and 
the second one can be rewritten as

Pr[7 = 0}H((oi\ß)\j =  0) + P r[7 = l]H((oi\ß)\j = 1),

i.e.,
Pr[a ф ß\H((a\ß)\a ф ß) + Pr[a = ß]H((a\ß)\a = ß),

which does not exceed e log a + 0.)

229 Assume that H(a\ß,'y) — 0 and I(ß  : a) — 0. Prove that 7 ) ^  H(a).
This problem has the following interpretation. If a spy wants to send to the 

headquarters a secret message a  as a plain text ß using a key 7 (that is agreed upon 
in advance) and wants the adversary, who does not know 7 , to get no information 
about a, then the entropy of key 7 cannot be less than entropy of the message a. 
This statement is sometimes called the Shannon theorem on perfect cryptosystems.

230 Prove that

2H(a, ß, 7 ) < H(a, ß) + H(ß, 7 ) +  H (a, 7 )

for any three random variables a , ß , 7 .
(Hint: See the proof of the corresponding statement about Kolmogorov com­

plexity, Theorem 26 (p. 48).)

231 Prove a similar inequality for n random variables:

{n -  l)H{oi \ , . . .  , an) ^  H(a2, . . . , £ * „ )  +  ■■■ +  # ( £ * ! , . . .  , a n _ i ) .

(The right-hand side contains n terms where one of the variables is omitted.)

232 (Shearer inequality [43]) Prove the following generalization of the pre­
ceding inequality. Let T\ , ...  ,Tk be arbitrary tuples made of (some of) the ran­
dom variables 07, . . . , a n, and each variable appears in exactly r tuples (among 
Ti , . . . ,Tfc). Then

rH (al ,a 2, . ■. , an) ^  H(T\) н------ \-H(Tk).

233 Prove that the inequality of Problem 231 implies the upper bound for the 
volume of an n-dimensional body in terms of the volumes of its (n — l)-dimensional 
projections onto coordinate hyperplanes (the case n = 3 was mentioned on p. 12): 
If V is the volume of the body and Vi,. . . ,  Vn are volumes of its projections, then

V̂ - 1 < Vi • V2 vn
(.Hint: First consider the discrete version when the body is made of unit cubes 

on the grid. For this a random variable that is uniformly distributed among these 
cubes is useful. An arbitrary case can be treated as the limit of the discrete one.)

The last inequality is a special case of a general Loomis-Whitney inequal­
ity [105].
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7.3. Complexity and entropy

As you surely have noticed, the properties of Shannon entropy (defined for 
random variables) resemble the properties of Kolmogorov complexity (defined for 
strings; see Chapter 2). Is it possible to formalize this similarity by converting it 
into exact statements?

This question has two interpretations. First, one can prove that Kolmogorov 
complexity and Shannon entropy have similar properties (in particular, the same 
linear inequalities are true for them; see Section 10.6, p. 326). On the other hand, 
one may compare the numeric values for complexity and entropy, and this is what 
we do in this section.

The problem here is that Kolmogorov complexity is defined for strings while 
Shannon entropy is defined for random variables, so how could one compare them? 
However, sometimes this comparison is possible, as we shall see. Let us start with 
a very vague and philosophical description of the results below: Shannon entropy 
takes into account only frequency regularities while Kolmogorov complexity takes 
into account all algorithmic regularities, so in general the latter is smaller. On the 
other hand, if an object is generated by a random process in such a way that it has 
only frequency regularities, entropy is close to complexity with high probability.

Let us give now some specific results that illustrate this general statement.

7.3.1. Complexity and entropy of frequencies. Consider an arbitrary fi­
nite alphabet A which may contain more than two letters. Kolmogorov complexity 
for А-strings can be defined in a natural way. (Note that we have never used that 
finite objects whose complexity is defined are binary strings. However, it is im­
portant that binary strings are used as descriptions: complexity measured in bytes 
would be eight times less than complexity measured in bits!)

Let X  be an А-string of length A/", and let p\ , . . . ,  pk be the frequencies of 
letters in x. All these frequencies are fractions with denominator N  and integer 
numerators. The sum of frequencies equals 1. Let h(p\,... ,pk) be the Shannon 
entropy of corresponding distribution.

T h e o r e m  146.
C(x)

N < h{pi, ■ ■,Pk) +
O(logiV)

N
Here the constant in О (log N) does not depend on N, x and the frequencies 

p i , ... ,pk- However, this constant may depend on к (we consider an alphabet of a 
fixed size).

PROOF. In fact this is a purely combinatorial statement. Indeed, the complex­
ity C(x\N,p\ , . . .  ,pk) does not exceed logC(iV,pi,... ,p*.) + 0(1), where

N\
C{N,pu . .. pк) (pt jV)!(p2iV)! • • • (pkN)\

is the number of А-strings of length N  that have frequencies p i,...,p k -  (Each 
string with given frequencies can be determined by its ordinal number in this set if 
the parameters N ,p \, ... ,pt are known, and this number has log C(A/’,p i, . . .  ,pk) 
bits.)

The number C(iV,pi, . ..  ,Pk) can be estimated using Stirling’s approximation. 
Ignoring factors bounded by a polynomial in N  (that appear due to the term \fb ik  
in Stirling’s approximation formula k\ ~  V2Îтк(к/е)к), we get exactly 2Nh P̂l'---'pA .
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This computation was performed (for к = 2) when we proved the Strong Law of 
Large Numbers (Theorem 27, p. 56). The general case (for arbitrary k) can be 
treated in the same way.

Finally, note that we need about к log TV bits to specify TV, p\ , . . . ,  pk (we need to 
specify к integers whose sum is TV), so by deleting the condition in C(x\N,pi , . . .  ,pk) 
we increase the complexity by 0(log TV) (and the constant in О (log Annotation is 
close to k). □

Another proof uses the upper bound for monotone complexity (Theorem 89, 
p. 144). Consider a probability distribution on infinite А-sequences that corre­
sponds to independent trials with probabilities Pi, ■ ■ ■ ,Pk hi each trial.

The event “a sequence with prefix 2 appears”, where 2 is an А-string of length TV 
that has frequencies q\ , . . . ,  qk, equals

(letter ai has probability pi and appears qiN times). The binary logarithm of this 
probability is equal to

- N  - (çi(— logpi) + ---- bç^-logpfc))-

For the special case qi — pi we get —N h(p i,... ,Pk)', therefore the monotone com­
plexity has upper bound N h(p \,... ,Pk)- (Recall also that monotone complexity 
differs from other complexity versions by a term О (log TV) for strings of length TV.)

In fact, this argument is flawed. When we proved the upper bound for mono­
tone complexity, we had assumed that distribution is fixed. The constant term, 
therefore, may depend on the distribution. And now we try to estimate KM(x) 
using a measure that depends on the letter frequencies in the string x. So formally 
Theorem 89 is not applicable. But if we recall its proof, we see that it provides a 
bound for conditional monotone complexity when p i ,■■■,Pk are given. The differ­
ence between this conditional complexity and the unconditional one is О (log TV), so 
we indeed get another proof for Theorem 146.

What is a value of a constant hidden in О (log TV) (as a function of к)?
: Both proofs give k(l + o(l)) log TV.)

Show that when all frequencies p i , ... ,Pk are not very close to 0, the 
statement of the previous problem could be improved up to (k/2 + 0(1)) log TV.

(Hint: In the first proof one should take into account the square roots in Stir­
ling’s approximation—most of them are in the denominator. The second proof can 
also be modified: instead of exact values of frequencies, one can consider approxi­
mate frequencies with an error of order 0 ( l /v /TV). This gives a weaker bound, but 
the difference is bounded by a constant. (Recall that a smooth function is qua­
dratic near its minimum.) In this way we can save half of the bits when specifying 
Pi,--- ,Pk-)

Note that the inequality provided by Theorem 146 may be very far from equal­
ity. Indeed, if A has two letters and they alternate in a string x , then the right-hand 
size equals 1 and the left-hand size is of order (log TV)/iV. This is not surprising and 
fits well into the general picture: the complexity is small since it reflects all the reg­
ularities (not only frequencies). In the next sections we prove that the complexity 
of a randomly generated string is close to the entropy with high probability.

234
(Hint
235
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7.3.2. Expected complexity. Let us fix k, a ^-letter alphabet A, and к 
positive numbers P i ,  ■ ■ ■ , P k  whose sum is 1 (for simplicity we assume that all pi are 
rational numbers).

Consider a random variable £, whose values are letters of A and probabilities are 
P i , . . .  , P k -  For each N  consider a random variable £jv consisting of N  independent 
identically distributed copies of £. Its values are Л-strings of length N. Now we may 
ask a question: What is the expected complexity of a string generated according 
to this distribution?

T h e o r e m  147. The expected value of K(£n \N) is NH(£) + 0 (  1) (the constant 
in 0(1) may depend on £ but not on N).

Note that (for positive pi) all Л-strings of length N  are among the values of 
£n . Some of them have complexity much greater than N H  (except for the case of 
uniform distribution), but others have complexity much less than NH.

PROOF. For each Л-string of length N  (i.e., for each value of £jv) consider its 
shortest description (with respect to some fixed prefix-stable decompressor). These 
descriptions form a prefix code (in the sense of Section 7.1.1). The average length 
of the codeword is exactly the expected value of K(£N). Therefore, Theorem 138 
(p. 214) guarantees that this expected value cannot be less than H(ÇN) = NH(£). 
The lower bound is proved (and even the 0(l)-term can be omitted).

The same theorem is useful for the upper bound, too. Indeed, it guarantees that 
there exists a prefix code that has average length of a codeword at most H(£N) +1. 
Such a code can be constructed by an algorithm if N  (and numbers pi, which are 
fixed) is given. For example, one may use the construction used in the proof of 
Theorem 138, or use Huffman code, or even just try all codes until a good one is 
found.

Anyway, the constructed code can be used as a conditional decompressor (with 
N  as the condition) such that average length of the shortest description of does 
not exceed H(£N) + 1 = NH(£) + 1. Replacing this decompressor by an optimal 
one, we increase the average length by 0(1). □

236 Show that one can slightly improve the upper bound and prove that the 
average value of monotone complexity KM(ÇN) does not exceed NH(£) + 0(1).

(Hint: Apply Theorem 89 to the distribution of £°°.)
We assumed that pi, ■ ■ ■ ,Pk are fixed rational numbers. One may wish to get a 

uniform bound that is true for all tuples p i , ... ,pk- Then we should add p i , ... ,pk 
to the condition and prove bounds for the expected value of K(£N\N ,p i,... ,pk) 
instead of K(£n \N). The lower bound is not affected at all, since it is true for 
any prefix code, and for the code construction the information in the condition is 
sufficient. (We assume that pi are rational numbers. This is not very important, 
since one may replace arbitrary reals by their approximations with sufficiently small 
error.)

237 Formulate the exact statement and prove it.
This theorem says that average complexity equals entropy though individual 

values of complexity could be much smaller or much larger. In fact, a stronger 
statement it true: most values of have complexity close to NH(£). More for­
mally, the event “the complexity of string ÇN differs significantly from N H (£)” has 
small probability. This statement could be considered as an algorithmic version of



7.3. COMPLEXITY AND ENTROPY 229

the Shannon theorem on (noiseless) channel capacity, and we will return to this 
question in Section 7.3.4.

7.3.3. Prefixes of random  sequences and their complexity. In this sec­
tion we consider infinite ML-random sequences and compare complexities of their 
prefixes with the entropy of a generating distribution. Again, let A be an alphabet 
that has к letters, and let p i , ...  ,p/~ be a probability distribution on A. We assume 
that p i , ... ,Pk are computable positive reals.

Consider the space A°° of infinite А-sequences and the probability distribution 
on this space that corresponds to independent identically distributed variables with 
distribution p i , ...  ,Pfc. This is a computable probabilistic measure on A °°, so the 
Martin-Löf definition of randomness can be used. (In fact, we have defined Martin- 
Löf randomness for a two-letter alphabet, but essentially the same definition can 
be used for any finite alphabet.)

T h e o r e m  148. Let to be an ML-random sequence with respect to this distribu­
tion. Let (co)n be its prefix of length N. Then

lim =  tf ,

where H is the Shannon entropy, i.e., H — ^2pi(— logpi).

238 Prove that for uniform distribution this statement is an immediate con­
sequence of the randomness criterion (Theorem 90, p. 146).

(It is a rare occasion when the uniform case is really special.)
The statement refers to the plain complexity C\ however, this is not important, 

since different versions of complexity differ only by O(logiV) = o(N). So we may 
use monotone complexity in the proof, and this is convenient.

P r o o f .  The Levin-Schnorr randomness criterion (Theorem 90, p. 146) says 
that complexity of a prefix of a random sequence is close to the negated logarithm 
of probability that this prefix appears. The probability refers to the distribution on 
A°° considered above, and the negated logarithm equals N  ^  qi( — logp*) where qi 
is the frequency of ith letter in (cj)n - It remains to use the SLLN, which guarantees 
that qi tends to pi as N  —> oo for a random sequence. □

Looking at this proof, we see that the difference between the complexity (per 
letter) and entropy has three reasons: first, the randomness deficiency from the 
Levin-Schnorr theorem that gives an 0(1)/N  difference; second, the difference be­
tween the plain and monotone complexities (of order 0(\ogN/N))-, and, finally, the 
difference between frequencies and probabilities which makes the most important 
term. (The law of iterated logarithm says that this term typically is a bit larger 
than 0{V N )/N .)

We have assumed that pi are computable reals, otherwise the notion of Martin- 
Löf randomness cannot be used. If they are not computable, we can still consider 
the set of sequences such that complexity of their prefixes (per letter) do not have 
entropy as a limit. Then we can prove that this set has measure zero (with respect 
to the corresponding distribution).

239 Prove this statement.
{Hint: For an upper bound we can use some approximations forp*; the precision 

1/N2 is enough if we consider prefixes of length N. The additional information



230 7. SHANNON ENTROPY AND KOLMOGOROV COMPLEXITY

needed to specify these approximate values is of size О (log N). The lower bound 
does not use at all the algorithmic properties of pp, for example, we can get a bound 
for relativized complexity with any oracle A that makes all Pi computable.)

7.3.4. The com plexity deviations. Theorem 148 is asymptotic. One may 
look for a bound of difference between complexity and entropy of frequencies for 
finite sequences. (This follows the example provided by the probability theory 
that has the SLLN for the limit values as well as large deviation bounds for finite 
sequences.)

Let A be a ^-letter alphabet, and let p \ , . . .  ,pk be a distribution on A. Again 
we assume for simplicity that pi are rational (or at least computable). Consider 
the product distribution on A N that corresponds to N  independent trials with 
probabilities p\, ... ,p^. So each А-string of length N  has certain probability (and 
certain complexity). We already know from Theorem 147 that the average value of 
complexity is close to N H , where H — ^ p * (—logp*). But we want to know also 
how far this complexity deviates from its average value.

The simplest case of two équiprobable letters (which is quite untypical, as we 
shall see) gives a uniform distribution on all binary strings of length N. We know 
that all these strings have complexity at most N  + 0(1) and the (overwhelming) 
majority of strings has complexity close to N: The fraction of strings that have 
complexity less than N  — c is at most 2~c. So in this case the significant difference 
between complexity and entropy has an exponentially small probability.

The case of uniform distribution on a ^-letter alphabet is similar. However, if 
not all the letters have the same probability, the situation changes significantly.

Here is the key observation. For any string x of length N  we compare proba­
bilities pi with empirical frequencies qi(x) (frequencies of letters in x). It turns out 
that with high probability the complexity of a random string (with respect to our 
distribution on A N) is close to k(x) = N  logpi). Indeed, Theorem 89
(p. 144) says that monotone complexity can exceed k(x) by at most 0(1). On 
the other hand, the argument used in the proof of Levin-Schnorr theorem (p. 146, 
Lemma 1) shows that for any c the probability of the event KM(x) < k(x) — c 
(according to the distribution considered) does not exceed 2~c.

Therefore, the question about complexity reduces to a question about the dis­
tribution of empirical frequencies. This question has been studied in probability 
theory for centuries. It is known (Moivre-Laplace theorem) that this distribution is 
close to a normal (Gaussian) one: the expectation of frequency equals the probabil­
ity, and the variance is proportional to 1/N. This is the main term, since it is much 
larger than terms caused by the О (log A") difference between different complexity 
versions and by using N  as a condition. This argument (made precise) gives us the 
proof of the following statement:

T h e o r e m  149. Let £ be a random variable with к values. For each positive 
£ > 0 there exists c such that for all N  the probability of the event

NH{£) -  cy/N < C(x) < NH{£) + cVN  

is at least 1 — e. (Here x is a string formed by N  independent copies of £.)

In fact our arguments assumed that pi are computable. However, this assump­
tion can be dropped if we replace pi by their approximations with sufficiently small 
error (the precision 1/A2 is enough and requires only 0(logN) additional bits).
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7.3.5. Shannon coding theorem. The theorem of the last section is a natu­
ral translation of classical Shannon results into complexity language. These results 
deal with the length of a code that allows us to transmit iV-letter blocks correctly 
with high probability (according to the given distribution).

Let f  be (again) a random variable with к values (letters of A) and some fixed 
distribution. Let N  be a positive integer. By we denote a random variable with 
range AN that is formed by N  independent copies of £. We want to encode values 
of £n by m-bit strings (see Figure 22).

: N -N

F i g u r e  22. Using m  bits for transmission of

Here an encoder is any mapping of type A N —> Bm, and a decoder is any 
mapping of type B'm —y AN. A given value of ÇN causes an error if the input 
and output А-strings (of length N) differ. The probability of error is measured 
according to the distribution of ÇN. The question is: What conditions on m and N  
guarantee the existence of an encoder/decoder pair that has small error probability? 
First, let us make the following evident remark:

T h e o r e m  150. For given N ,m  and e > 0, the code with error probability at 
most £ exists if and only if the 2m most probable values of£N have total probability 
at least 1 — e.

P r o o f .  Indeed, when m  bits are used for encoding, one may transmit (without 
errors) at most 2m values. To minimize the error probability, we should choose 2m 
most probable values. □

In the next theorem the alphabet A and the random variable f  are fixed.

T h e o r e m  151. For each e > 0 there exists a constant c such that:
(a) The values of£N can be encoded/decoded with NH(^) + c\/N  bits with error 

probability at most e;
(b) Any code for ÇN of length at most NH (£) — cy/N has error probability at 

least 1 — e (i . e th e  probability of correct decoding is at most e).

PROOF, (a) As we know, for a suitable c the value of random variable f N  has 
complexity less than m — NH(£) + cy/~N with probability at least 1 — e. So for these 
values one can use shortest descriptions (see the definition of plain complexity) as 
codes. (Formally speaking, we get strings not of length m, but of length less than m, 
but there are at most 2m of them, and they can be replaced by strings of length m.)

Note that coding is not performed by an algorithm, but the theorem (as stated) 
does not say anything about that, it claims the existence of a code mapping.

(b) Here we need to use some trick. If there exists a code of given length, 
then such a code can be constructed algorithmically using the previous theorem 
(or just by an exhaustive search). Then the decoding function for this code can be 
considered as a conditional decompressor (where conditions are pi and N). There­
fore, all values of f N that are decoded without error, have complexity at most
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NH(£) — cVN  + O(logiV) (the latter term corresponds to the complexity of pa­
rameters and can be omitted if we increase c). As we know (Theorem 149, p. 230), 
the probability of this event is at most e. □

240 As before, we assume that probabilities pi are known exactly, and if Pi 
are not computable, we get some problems. Correct the argument replacing pi by 
their approximations with sufficient precision.

Give a statement and proof for a similar result about conditional coding241
and conditional entropy.

(Hint: Assume that two dependent random variables £ and rj are given. We 
make n independent trials, the value of rjN is known both to the sender and the 
receiver, and the sender wants to send m  bits in such a way that the receiver could 
reconstruct the value of ÇN. How large should m  be?)



CHAPTER 8

Some applications

8.1. There are infinitely many primes

Let us start with a toy example and prove that there are infinitely many primes.
Assume that there are only m  different prime numbers p i , . . . ,pm,■ Then every 

positive integer x has a prime decomposition of the form

X = P i lP22 • • • P m *
and can be described by the list of exponents k i , . . . , k m. Each of ki does not 
exceed logx, since the base is at least 2, and has complexity at most O(loglogx) 
(its binary representation has O(loglogx) bits). Since m is fixed, i.e., m is the same 
for different x’s, the complexity of the tuple (ki,k2, . . . ,  km) is O(loglogx). As x 
can be obtained from that tuple, its complexity is O(loglogx). But for a “random” 
(incompressible) n-bit integer x the complexity is close to n and is not O(logn), as 
this formula says (the logarithm of an n-bit number does not exceed n). Euclid’s 
theorem is proven.1

Is this a real application of Kolmogorov complexity or just cheating? A skep­
tical reader would say that we just retell, in terms of Kolmogorov complexity, the 
following counting arguments. If there are only m prime numbers, then there are 
at most (log x)m different integers between 1 and x, since any integer in this range 
is determined by the m powers in its decomposition, and each power is less than 
logx. This immediately leads to a contradiction, since x > (logx)m for large x.

This is indeed true: our reasoning using Kolmogorov complexity is a direct 
translation of this argument (and is a bit more cumbersome due to asymptotic 
notation). However, such a translation may still have sense, since the new language 
provides new intuition, and this intuition may be useful even if later the same 
argument can be translated into the standard language.

We return to this discussion after looking at other applications.

8.2. M oving information along the tape

The other toy example is a well-known result saying that duplication of an 
n-bit string on the tape of a Turing machine (with one tape only) requires en2

Hn [1 0 3 ] this argument continues as follows. If N  has a prime factor p n (the nth prime), then 
we may encode AI as a pair (n, N / p n ), so C ( N )  ^ K ( n )  +  C ( N / p n ) +  0 ( l ) .  If N  is incompressible, 
then logAr ^ C ( N )  ^ K { n )  +  log(AI/pn) with 0(l)-precision, so logpn ^ K(n) +  0(1). This 
gives an upper bound for p n for infinitely many n;  one should note only that (as we have seen) 
incompressible integers may have arbitrarily large factors.

The combinatorial translation of this argument goes as follows. Let us choose some threshold 
m ,  and consider all integers that have only prime factors below m .  These integers form a minority 
among large integers, and all other integers have large prime factors. This implies that every tail 
of the series 1/p (inverse primes) is at least 1/2, so this series diverges.

233
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L R

b

F ig u r e  23 . A buffer zon e o f size  b

steps in the worst case. This classical result was obtained in 1960s using so-called 
crossing sequences; our proof is just a translation of this argument into the language 
of Kolmogorov complexity. (We assume that the reader is familiar with the basic 
notions related to Turing machines; see, e.g., [184]).

Consider a zone of size b on a tape of a one-tape Turing machine; this zone 
is considered a buffer, and we want to transmit information across this zone, say, 
from left (L) to right (R ); see Figure 23.

Initially the buffer zone and R are empty (filled with blanks), and L is arbitrary. 
We give an upper bound for the complexity of R  after t steps. The upper bound 
is (t \ogm)/b + O(logt) where m is the number of states that our Turing machine 
has and b is the width of the buffer zone. Informally the argument is quite simple: 
each state of the Turing machine carries logm bits of information, and during one 
computation step this information can be moved to the neighbor cell, so moving it 
at the distance b requires b times more time.

Now we have to convert this intuitive explanation into a formal argument.

T h e o r e m  152. Let M  be a Turing machine that has m states. Then there 
exists a constant c such that for any b and for any computation that starts with 
an empty buffer zone of size b and an empty tape on the right of the buffer zone 
the complexity of the contents R(t) of the right part of the tape after t steps of 
computation does not exceed

t logm
Г + 4 logt + с.

P r o o f . Let us consider some line between cells inside the buffer zone as a 
border, and let us write down the state of M  when it crosses the border from left 
to right (as was done in the time of the Iron Curtain). The sequence of states is 
called the crossing sequence. Knowing the crossing sequence, we can reconstruct 
the behavior of M abroad (on the right of the border) not using the contents of 
the tape on the left. Indeed, we should artificially put the machine into the first 
state of the crossing sequence and let it go abroad. When M  returns back, we put 
it in the second state of the crossing sequence and let it go abroad again. In this 
way we correctly reconstruct the abroad behavior of the machine (since it does not 
remember anything except its state when crossing the border). In particular, at 
some moment t' the tape on the right of the buffer zone contains R(t). Note that 
t! may be different from t since we do not take into account the time M  spends on 
the left of the border, but t' cannot exceed t. Therefore, to reconstruct R(t) we 
need to know the crossing sequence, t ', and the distance between the border and 
iü-zone. So there exists a constant c (depending on M  but not on b and t ) such 
that for any crossing sequence S and any b and t we have

C(R(t)) ^  l(S) logm + 41ogt + c.
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F igure 24. Buffer zone for duplication

Here we multiply the length l(S ) of the crossing sequence by logm since S is a 
string in an m-letter alphabet and each letter carries logm bits. To add b' and t' 
in a self-delimiting encoding, we need at most 2 log 6 + 2 logt bits. We may assume 
that t > 6, otherwise R(t) is empty since the head never visited R. The constant c 
appears when we switch to the optimal decompressor.

This inequality is true for any contents of L and for any placement of the border. 
Now if for the given contents of L we consider the shortest crossing sequence, the 
length of this sequence is less than t/b (there is 6+1 possible positions of the border, 
and at each step only one of the positions is crossed, so the sum of the lengths of 
crossing sequences does not exceed t). In this way we get the inequality stated by 
the theorem. □

242 Show that this bound can be improved by replacing 6 in the denominator
by 26.

(Hint: The return trips need almost the same time (the difference is at most
6).)

The quadratic lower bound for the duplication of an n-bit string immediately 
follows.

Assume that a one-tape Turing machine M  duplicates its input: If initially the 
tape contains a binary string x (followed by blanks), at the end of the computation 
the tape has a second copy of x (i.e., it contains xx).

T heorem 153. There exists a constant e > 0 such that for every n there exists 
an n-bit string that requires at least en2 steps to duplicate it.

P r o o f .  For simplicity let us assume that n is even, and let x be a string 
whose second half и has complexity close to its length (i.e., to n f2). Then apply 
the inequality we have proven considering the zone of size n j2 on the right of x as 
the buffer (Figure 24).

Assume that duplication takes t steps. Then the complexity of R zone after t 
steps (which is at least n/2) does not exceed t logm/6 + 4 logt + c, where 6 is the 
size of the buffer zone, i.e., n/2. Therefore,

n t log m 
2 g

We may assume without loss of generality that t < n2 (otherwise the statement is 
trivial). Then we replace 4 logt by 81ogn and conclude that

4 log m — O(nlogn);
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the second term is small compared to the first one for large n (we may then formally 
extend the result to every n by decreasing the coefficient e). □

Is Kolmogorov complexity essential in this proof? The skeptical observer may 
say again that we in fact just counted the number of different strings that can be 
copied in a limited time (using the fact that different strings should have differ­
ent crossing sequences, otherwise the behavior of the machine at the right of the 
boundary would be identical). Indeed, the original proof follows this scheme (in 
fact, it deals with palindrome recognition, not the duplication, but the technique 
is the same). Does the language of complexity make the proof more intuitive and 
easy to understand? Probably this is a matter of taste.

Many bounds in computational complexity theory can be proven in the same 
way, using the string of maximal complexity as the worst case and proving that the 
violation of the bound would imply this string is compressible. Many applications 
of this type (and further references) are given in the classical textbook [103]; its 
authors, Ming Li and Paul Vitânyi, played an important role in development of 
this approach, called the incompressibility method. Note that in several cases the 
historically first proof was obtained using Kolmogorov complexity.

In the next section we consider one more application of the incompressibility 
method, then we switch to other applications. The most interesting thing in these 
applications is not the statements in themselves but the various methods that allow 
us to apply Kolmogorov complexity to prove statements that do not mention it»

8.3. F inite au tom ata with several heads

A finite automaton with к heads is similar to the ordinary one (we assume 
that the reader is acquainted with basic notions related to finite automata; see, 
e.g., [185]), but it has к one-way read-only heads. Here one-way means that the 
head can only move from left to right.

Initially all к heads observe the leftmost character of the input string. At each 
step the behavior of the automaton is determined by its state and the к symbols 
it observes (under к heads): the automaton changes the state and instructs some 
heads (at least one) to move to the right. Then the automaton performs the next 
step, etc.

The input string is followed by a special marker; the automaton terminates if all 
the heads observe this marker. (We assume that the head that sees the marker does 
not move to the right.) Automaton accepts the string if it gets into an accepting 
state after processing this string. We say that the automaton recognizes the set of 
all accepted strings.

Example. Consider the language (=set of strings) x # x  where x is any binary 
string. It is well known that this language cannot be recognized by a standard 
(one-head) automaton. However, it is easily recognized by a two-head automaton. 
Indeed, we should send one head to look for the separator # , when the separator is 
found, two heads move synchronously and check that they read the same symbol.

So two heads are better than one (more languages can be recognized). It turns 
out that the same is true for more heads: к + 1 heads are (strictly) better than к 
heads.

T h e o r e m  154. For every к there exists a language that can be recognized by a 
(k + 1 )-head automaton but not by a к-head one.
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P ro o f . For each m  ^  1, consider the language Lm that consists of all strings

Wl# • ■■■Wi
(for any binary strings w \ , . . . ,  wm). Each wt is repeated twice, and in the right 
half the strings Wi go in reverse order (this is crucial for the argument).

A /с-head automaton can recognize this language if m  is not very large (is at 
most (2), see below). One of the heads goes to the right half, and the remaining 
к — 1 heads are placed before w i,. . . ,  W k-i■ Then each of these к — 1 heads checks 
its string while the first head crosses its copy. After that the first к — 1 strings are 
checked, the first head is of no use (it is at the end of the input string), but the 
remaining к —I heads are useful since they are on the left of the remaining strings 
Wk,Wk+1,.. ..  Now we repeat the same trick: one of the к — 1 heads is sent across 
the right half, к — 2 heads check the next к — 2 strings, etc. Repeating this, we can 
check

(* _ 1) + (t _ 2) + ...  + 1 = * ( * ^ )  = (* )

strings. (Note that m  is fixed, so for finding a substring with a given number, the 
finite memory is enough.)

Therefore, the language Lm can be recognized by a к-head automaton ifm  ^  (2).
It remains to show that if m > (2), the language Lm cannot be recognized by 

a к-head automaton. Assume that is not the case and some fc-head automaton 
M  recognizes this language. To get a contradiction, let us consider independent 
random strings W\, . . . ,  wm of sufficiently large length N. More formally, consider 
a string of length m N  and complexity at least m N  and split it into m  strings of 
length N  denoted by w i, . . . ,  wm. By assumption, the string

W = W 1#  ■ • ■ WmftWm# ---Wi

is accepted by M; we get a contradiction by showing that either w\ • • • wm is com­
pressible or the automaton does not recognize Lm.

Let us say that a given pair of heads of M  visited Wi if at some moment (while 
processing W  by M) these heads were simultaneously inside two copies of wi. A key 
observation: a given pair of heads cannot visit both Wi and Wj for i ^  j. Indeed, 
consider the moment when Wi was visited. After that the left head reads only Wj 
with j  > i and the right head visits only Wj with j  < i.

By our assumption m > (2) ; therefore there exists i such that Wi is not visited 
by any pair of heads. Let us show that either Wi is compressible or one of its copies 
can be counterfeited in such a way that M  will still accept the string (so M  does 
not work correctly).

Let us observe the actions of M  on W. Special attention is needed when one 
of the heads enters or leaves Wi (any of two copies): We write down the positions 
of all heads and the state of M  at these moments. The obtained “log-file” P has 
complexity O(logA^) where the hidden constant depends on k, m, and the number 
of states in M  but not on N. Indeed, there are at most 4к moments to consider 
(four per head) and at each moment we record the state of the automaton and head 
positions, and this requires O(logA^) bits.

Let us show that (if M  recognizes Lm correctly) the string Wi can be uniquely 
reconstructed if all other Wj (with j  /  i) and P are given. This would imply that 
the complexity of the string w\ ■ ■ ■wm does not exceed (m — 1)Â  (the number of
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bits in Wj for j  ^  i) plus O(logiV) (the complexity of the log-file) plus 0(1), which 
is less than m,N for large N, so we get the desired contradiction.

The reconstruction goes as follows: we try all strings of length m  as candidates 
for Wi (keeping Wj with j  ф i intact). For each candidate w we run M  on the 
resulting string and check whether we get the same protocol P. There are three 
possible cases:

(1) If (for some w) M  rejects (does not accept) the string, then M  does not 
recognize our language.

(2) M  accepts all these strings (for all candidates) and the protocol P appears 
only once, for w = W{. Then reconstruction is possible (and W\ • • ■ wm is compress­
ible).

(3) M  accepts all these strings, and P appears both for Wi and for some w ф Wj,. 
Let us show that in this case M  accepts a string not in Lm, namely, the string W  
that has Wj, in the left half while in the right half Wj, is replaced by w.

Indeed, there are two accepting computations of M : one if Wj, is used on both 
sides and the other one for w. Let us split both of them into parts; the splitting 
points are moments when one of the heads enters or leaves Wj, (or w). The positions 
of all other heads and the states of M  are recorded in P so they are the same for 
both computations. (Note that the moments of time can be different since they 
are not recorded. In fact, we may add them also, but this is not needed.) So we 
can glue the computation intervals for both cases; let us show that we can get an 
accepting computation of M  on a bad string (the left half has Wi while the right 
half has w).

By our assumption during the processing of W, there is no moment when 
both copies of Wj, carry some heads; since the border crossings for both copies are 
recorded in P, the same is true when Wi is replaced by w. So for each interval 
between two protocol events related to Wj/w there are three possibilities: (a) there 
is a head in the ith string on the left; (b) there is a head in the ith string on the 
right; (c) neither of the above. Then we can copy-and-paste the intervals into a 
new computation: for part (a) we use the computation of M  on W; for part (b) we 
use the computation of M  of changed input (where Wi is replaced by w); for part
(c) we can use either of two (they are the same). Then we get a computation of M  
on a mixed string W ', so M  does not work properly. □

8.4. Laws of Large Numbers

The Strong Law of Large Numbers was proven in Section 3.2 (Theorem 27, 
p. 56) without any references to Kolmogorov complexity by straightforward count­
ing. We consider (mainly) the uniform case. In this case the SLLN says that the 
set of all sequences cj = cno î • • •, such that the sequence

CUo + Wi + • • • + UJn- 1
P n  — П

has limit 1/2 as n tends to infinity, has full measure (with respect to the uniform 
Bernoulli measure on Q). In other words, the SLLN says that the complement of 
this set (i.e., the set of sequences cj such that pn either have no limit or have limit 
not equal to 1/2) is a null set. Later (Theorem 32, p. 65) we have shown that 
this null set is in fact an effectively null set; this implies that for every ML-random 
(with respect to the uniform measure) sequence cj the sequence pn converges to 1/2 
(Theorem 33, p. 65).
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However, we can go in the other direction. Namely, we may first prove that 
for any ML-random sequence the frequencies converge to 1/2 using the randomness 
criterion in terms of complexity (Theorem 90, p. 146). This criterion says that 
for an ML-random (with respect to the uniform Bernoulli measure) sequence u> the 
monotone complexity of its prefix (cj)n of length n is n+ 0( 1). This property implies 
that the frequency of ones in (ui)n (i.e., pn) converges to 1/2. Indeed, Theorem 146 
(p. 226) says that the complexity of u>n does not exceed nh(pn, 1 — pn) + O(logn), 
so h(pn, 1 — pn) — 1 + 0(\ogn/n ) for any ML-random sequence. (Note that the 
difference between plain and prefix complexity of u>n is O(logn), so any of them 
can be used.) This implies that pn —> 1/2 as n —> oo (see the graph of the entropy 
function, Figure 8, p. 57). So the SLLN is true for all ML-random sequences, which 
form a set of full measure.

The skeptical observer would say that this is not a different proof, or we have 
just repeated the same arguments using different language. And she is probably 
right. If we recall the proof of Theorem 146, we see that it uses the same estimate 
(based on Stirling’s approximation) that was used for the proof of SLLN. (Another 
argument, where monotone complexity is bounded by a negative logarithm of the 
measure, Theorem 89, also has a direct translation in the probabilistic language; it 
was discussed in Section 3.2 after the proof of Theorem 27 on p. 56.)

So what do we get by using complexity language? First, we find a broader class 
of sequences that satisfy the SLLN:

T h e o r e m  155. Letu> be a binary sequence such that C((u>)n) = n + o(n). Then 
the sequence pn (the frequency of ones in (cu)n) converges to 1/2.

P r o o f .  The proof remains essentially unchanged: in this case h(pn, 1 —pn) is

Second, we not only can prove that pn —> 1/2 but we also can give some 
estimates for the convergence speed. The corresponding result in probability theory 
is known as the Law of the Iterated Logarithm, and V. Vovk [208] has shown that it 
is valid for ML-random sequences. Following his argument, let us use Kolmogorov 
complexity to give a (rather simple) proof of the upper bound provided by this law.

T h e o r e m  156. Let u> be an ML-random sequence with respect to the uniform 
measure. Let pn be the frequency of ones in (cj)n. Then for every e > 0, the 
inequality

holds for any sufficiently large n.

P r o o f .  Let us first look at what bound can be obtained by the argument 
above (that uses Kolmogorov complexity). We know that

still 1 + o(l). □

n -  0(1) < K M ((u)n) ^  nh(pn, 1 ~Pn) + O(logn)

therefore
h(pn, 1 -  pn) > 1 -  0(\ogn/n).

The function

p h(p, 1 -  p) = p ( - logp) + (1 -  p ) ( - log(l -  p))
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has maximum at p = 1/2, and the second derivative at this point is non-zero (equals 
—4 / In 2). Therefore, the Taylor expansion gives us

h{ 1/2 + <5) = 1 -  + o(62)

as Ô —> 0, and for 6n = pn — 1/2 we have

Si = 0(logn/n),

So we get at least something, though the bound we need is much stronger. (Let us 
mention that in the probability theory the final bound was obtained in many steps. 
First Hausdorff (1913) proved the bound 0{n£ /  л/п)\ then Hardy and Littlewood 
(1914) improved it and replaced n£ by ^/logn; then Steinhaus (1922) came with 
the bound (1 + e) y/(2 In n)/n, and only later Khinchin (1924) got the final result. 
So we are now on the level of Hardy and Littlewood in this respect—not that bad.)

Let us think about possible improvements for the upper bound that we had 
for KM((oj)n). This upper bound was obtained by comparing KM((oj)n) and the 
negative logarithm of the probability of the prefix (cu)n with respect to the Bernoulli 
measure with parameter pn. This logarithm is exactly nh(pn, 1 — pn), but the 
Bernoulli measure used for comparison depends on n, so the construction used in 
the proof of Theorem 89 needs an additional term that is K(pn) (we start with 
a self-delimiting encoding of pn). Here K(pn) does not exceed (2 + e) log n, since 
both numerator and denominator of the fraction pn do not exceed n. Altogether 
we get the bound 

2
—  (pn -  1/2)2 «  1 -  h(pn, 1 — Pn) < (2 + e) logn/n,

which is still not good enough.
What else can we do? Note that we already know that pn is rather close to 1/2: 

with denominator n the numerator differs from n/2 by л/п or a bit more. So (when 
the denominator n is known) we can use fewer bits to describe the numerator, and 
this allows us to replace 2 by 1.5 in the right-hand side. But this is still not enough 
for us.

The crucial idea is to use approximations for pn instead of the exact values. Let 
us assume that pn = 1/2 + Sn > 1/2 (the case when pn < 1/2 is similar). Instead of 
pn we use (while constructing the Bernoulli measure used to get the upper bound for 
complexity) its approximation 1/2 + <5̂ where 6'n is an approximation to Sn from 
below with a small (fixed) relative error. For example, let us take S'n such that 
0,9<5n < S'n < Sn. Such a 6'n can be founded among the geometric sequence (0,9)k, 
and its complexity is about log A:, i.e., about log(— log Sn/log 0,9) = log(— log<5n)+c. 
Note that if 6n < lf^/n , then we have nothing to prove, so the complexity of 6'n can 
be upper bounded by (1+e) log log n (for every e this bound holds for all sufficiently 
large n).

This is good news; the bad news is that we have a more complicated bound for 
the complexity of (ш)п. Now instead of h(pn, 1 — pn) we have

(*) P n [ ~ bgp'n ] + (1 - P n ) [ ~ log(l - p 'n )\,
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where p'n = 1/2 + S'n. Recalling our discussion of entropy, we may say that a 
sequence (cu)n where frequencies of zeros and ones are pn and 1 — pn is encoded by 
a code adapted to the simplified frequencies p'n and 1 — p'n. The expression (*) can 
only increase if we replace pn by p'n: since pn > p'n > 1/2, the second expression in 
square brackets is greater than the first one, and increasing its weight by decreasing 
pn, we increase the entire expression (*).

Finally we get the bound
n -  0(1) < nh(pn, l - p ' n) + (1 +£)loglogn

for every e > 0 (the inequality holds for all sufficiently large n). As before, it implies

ô'n < (1 + е)л/\п2 • loglogn/2n.
For a true Sn we get a slightly bigger bound (1/0.9 times bigger); since 0.9 can 
be replaced by an arbitrary number less than 1, we get the desired statement (the 
factor In 2 is used to convert the binary logarithm to the natural one, while the 
replacement of the second binary logarithm by the natural one can be compensated 
by a change of £ in the factor (1 + e)). □

243 Show that this argument can be used to prove the statement of Theo­
rem 156 not only for ML-random sequences but also for arbitrary sequence oj such 
that n — KM((u))n) = o(loglogn).

8.5. Forbidden substrings

8.5.1. Forbidden and simple substrings. The statement we prove in this 
section is an example of a non-trivial application of Kolmogorov complexity (that 
cannot be directly translated into a counting argument).

T h e o r e m  157. Let a < 1 be a positive real number. Assume that for each n 
some binary strings are called forbidden strings and there are at most 2an forbidden 
strings for any length n. Then there exists some c and an infimité sequence of zeros 
and ones that does not have forbidden substrings of length c or more.

For example, we can declare strings of length n and (plain) complexity less 
than an as forbidden strings. Then we get the following corollary (called Levin’s 
lemma, see [51]):

T h e o r e m  158. Let a < 1 be a positive real number. There exists an infinite se­
quence of zeros and ones such that any of its substrings of sufficiently large length n 
has complexity at least an.

It is instructive to compare this statement with the randomness criterion for 
the uniform measure (Theorem 94, p. 151). In this criterion we considered only 
the prefixes of the sequence (instead of all substrings); on the other hand the lower 
bound for complexity was n — 0(1) instead of a weaker bound an that we have 
now. (The bound n — 0(1) was for monotone complexity; it implies the n — O(logn) 
bound for plain complexity that we use now). The following problem shows that 
such a strong bound cannot be true for all the substrings (not a surprise, since a 
truly random sequence contains all substrings, including simple ones).

244 For each infinite sequence u) of zeros and ones there exist a < 1 and infin­
itely many substrings that have complexity per letter (the ratio complexity/length) 
at most a.
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(Hint: Consider two cases: If all binary strings appear as substrings, the claim 
is evident. If ш does not contain some string и of length к , we can split long 
substrings into blocks of length к and use efficient coding that takes into account 
that block и is never used and does not need a code; this gives complexity per letter 
at most (log(2fc — 1 ))/k.)

The proof of Theorem 157 consists of two steps. First we prove its special case, 
Theorem 158. Then it turns out (surprisingly) that the general case follows from 
this special one.

PROOF. To prove Theorem 158, let us consider an intermediate ß such that 
a < ß < 1. Using Theorem 71 (p. Il l ) ,  we find a number N  with the following 
property: to each string x we can append N  bits (on the right) in such a way that 
the prefix complexity of the string increases at least by ßN.

Let us use this property iteratively starting from the empty string. We get an 
infinite sequence of iV-bit blocks; the prefix complexity increases at least by ßN  
when the next block is appended. This implies that the complexity of every group 
of consecutive к blocks is at least ßkN  — 0(1). Indeed, by appending this group, we 
increase complexity by ßkN  at least, but the inequality K(xy) ^  K(x)+K(y)+0( 1) 
shows that K (y) ^  K (xy) -  K (x ) -  0(1).

This implies that for every substring и (not necessarily block aligned) the com­
plexity of и is at least ßl(u) — 0(1) since the change in complexity and length due 
to boundary effects (by cutting the incomplete block on the border) is 0(1). It re­
mains to note that we have some reserve due to the difference between a and /3, and 
this reserve is enough to compensate both the boundary effects and the difference 
between plain and prefix complexities (for sufficiently long substrings). □

245 Give a similar argument that uses plain complexity instead of prefix
complexity.

(Hint: Use Problem 46, p. 42.'
246 Prove the statement of Problem 47 (p. 42) with prefix complexity instead

of plain complexity.

PROOF. N ow  let us prove Theorem 157; the simplest approach is to use the 
relativized version of complexity. Let us consider the set F  of forbidden strings as 
an oracle; this means that we consider algorithms that can ask (for free) whether 
a given string is forbidden or not. As usual, this relativization goes smoothly both 
in the statement of Theorem 158 and its proof, and this theorem is true for F- 
relativized complexity.

Now all forbidden strings of length n have F-complexity at most an + 0(\ogn), 
since each forbidden string can be determined by n and by its ordinal number in the 
list of all forbidden strings of length n. In fact the stronger bound an + 0(1) is valid 
since we can use the list of all forbidden strings in the order of increasing length, 
but this does not matter much since a small change in a covers this difference. So 
it remains to apply Theorem 158 and to get a sequence which does not have long 
substrings with complexity less than ß (per letter), for some ß > a. □

One can also make the following (rather unexpected) observation [160]: The­
orem 157 can be derived from Theorem 158 directly, without any relativization, 
using the following statement:
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T h e o r e m  159. If for some rational a and some set F of forbidden strings 
the statement of Theorem 157 is false (F has less than 2an forbidden strings for 
each n, but there is no infinite sequence without long forbidden strings), then the 
same happens for a decidable set F.

(Note that for a decidable F the relativization does not change anything; the 
restriction to rational a is also not important, since we can increase a  to a greater 
rational number.)

P r o o f .  Assume that for some a < 1 and some set F the statement of Theo­
rem 157 is false. Then for each c we may find a set Fc in such a way that:

(a) Fc contains only strings of length greater than c;
(b) Fc contains at most 2ak strings of length к (for every k);
(c) each infinite sequence contains at least one substring that belongs to Fc.
(Indeed, we can let Fc be the set of all strings in F that have length greater

than c.)
The standard argument (compactness, König’s lemma) shows that every suffi­

ciently long string has at least one substring in Fc, so one can find finite Fc with the 
same properties. Moreover, such a finite set can be found by an exhaustive search, 
so we get Fc that has these properties and can be found effectively when c is given. 
(Why do we first need to switch to finite sets? To make the search possible.)

Now we construct the sequence c* such that q+i is greater than the lengths of 
all strings in FCi. The union of all FCi is a decidable set that violates the statement 
of Theorem 157. □

Note the structure of our arguments: knowing that an object with some prop­
erty exists, we perform an exhaustive search and effectively find a (perhaps different) 
object with the same property. This observation is often useful when dealing with 
Kolmogorov complexity.

247 Prove that if for some set F of strings there exists a (one-sided) infi­
nite sequence that does not contain substrings from F, there exists a bidirectional 
sequence that does not contain substrings from F.

(Hint: The compactness argument shows that both properties are equivalent 
to the existence of arbitrarily long finite sequences that do no contain substrings 
from F.)

J. Miller [125] suggested a direct proof of Theorem 157, where the required 
sequence is constructed inductively, and we at each step guarantee that some quan­
tity (the emergency level) is not very large. Let us explain how the emergency level 
is computed and why it can be kept bounded.

Fix a set of forbidden strings F. The emergency level for a string x (the 
already constructed part of the sequence) is denoted by wc(x), where c will be 
some constant slightly greater that 1/2. The value of wc(x) is big if we have almost 
got a forbidden substring. The definition follows: For every possible occurrence of 
a forbidden string z e F in the possible extension of x (this means that 2 is on the 
right of x, but there is a non-zero overlap, Figure 25), we take the number к of bits 
of 2 that are missing in x, and add ck to wc(x). In other words, wc(x) is the sum 
of ck for all 2  G F and for all possible occurrences.
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Z

к

F i g u r e  25. A possible occurrence of a forbidden string 2: part of 
z is already in x, but к bits are missing. This occurrence adds ck 
to wc(x).

When c = 1/2, it is easy to explain the meaning of wc(x): it is the expected 
number of occurrences of forbidden strings that overlap x, assuming that x is ex­
tended to the right by a sequence of independent random bits. Having this inter­
pretation in mind, it is easy to see that

w i/2 (x) = ±wl/2(x0) + ±w1/2(xl) -  ^ ( l / 2 ) ' (z).
zeF

Indeed, we add 0 with probability 1/2 and add 1 with probability 1/2, and we need 
to take into account that in this way we count also those occurrences that happen 
immediately after x (and they should not be counted—the definition requires non­
zero overlap with x). In fact, this equation is a purely combinatorial fact and is 
valid for arbitrary c (assuming that x does not contain forbidden strings):

wc(x) = cwc(x0) + cwc(x 1) — ^  c^z\
zeF

Initially (when x is empty) the value wc(x) is zero, and if x contains a forbidden 
substring, then wc(x) is at least 1. So it is enough to show that we can maintain 
the invariant relation “wc(x) < 1” when adding the next bit. It is enough to prove 
that

wc(x0) + wc(xl) = -  (wc(x) -I- ^  c'(z)) < 2
C zÇF

(assuming wc(x) < 1), and this does happen if 1 + J2zeF < 2c.
To finish the proof of Theorem 157, it remains to make the sum J2zeF °1̂  

finite by choosing c close enough to 1/2 (the value of c depends on a and becomes 
closer to 1/2 as a approaches 1), and then to make this sum small by deleting the 
strings of small lengths from F .

I 248 I Using this argument, prove an effective version of Theorem 157. If the set 
F satisfies the conditions and is decidable, then there exists a computable sequence 
that does not have short substrings from F.

The result of the last problem can be extended to bi-infinite sequences (as noted 
by K. Makarychev): One can also prove the existence of a computable bi-infinite 
sequence with the same property. (His argument follows Miller’s scheme, but we 
should define “left” and “right” emergency levels and look how they change when 
several characters are added: one of the levels should decrease significantly while 
the other should not increase much.) A more general argument is given in [159]; 
it uses an effective version of Lovâsz local lemma (see the next section) and can be 
generalized to multidimensional case.
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8.5.2. Lovâsz local lemma. We have seen how a statement about Kol­
mogorov complexity (the existence of a sequence without simple substrings) may be 
used to prove the combinatorial version of this result (the existence of a sequence 
without forbidden strings). In this section we move in the opposite direction. We 
start with a combinatorial statement (namely, the Lovâsz local lemma) and use 
it to prove statements about Kolmogorov complexity. But first let us make some 
general remarks.

Probabilistic existence proofs. To prove that there exists an object satisfying 
some conditions, one can consider a probability distribution on objects and compute 
for each condition the probability that it is violated. If these probabilities are very 
small and their sum (over all conditions) is less than 1, the random object with 
positive probability satisfies all the conditions, and the existence is proven.

In this argument we use the following (trivial) property: If the probability of 
an event Ai  is at most e*, then the probability of the union of the events A \ , . . . A n 
is bounded by the sum of e*, and the probability of avoiding all these events is at 
least

1 — £\ — £ 2  — ' ' ' ~ £n-
When computing probabilities, we often count “bad” elements in some class; if 

the total number of bad elements is less than the cardinality of the class, there exist 
“good” elements. This reasoning can also be translated to complexity language: 
If there are only a few bad elements, then bad elements have small complexity, so 
every random (incompressible) element of the class is good.

However, we cannot use arguments of this type to prove Theorem 157. Indeed 
the probability of finding a bad string in a given position is small (2(a-1)n), but 
if there are many possible positions, the sum of probabilities exceeds 1. (Recall 
that we need to prove the existence of arbitrarily long strings without forbidden 
substrings.) However, there is an important observation that can be used to save 
the argument: If two positions are disjoint (do not overlap), then the appearance of 
a bad string in the first position and in the second position are independent events. 
This is what the Lovâsz local lemma is about.

The case of independent events. Let us consider first the case when all events 
Ai are independent. If the probability of Ai equals e*, then the probability of the 
event “none of Ai happens” is equal to

(1 - e i )  • (1 - £ 2 ) ■ ••• • (1 - £ n )

(and it is also greater than 1 — eq — £ 2  — ■ ■ •, as guaranteed by the Bernoulli 
inequality).

So for any independent Ai  the probability of avoiding all Ai  is positive even if 
the sum of £i exceeds 1; the only thing we need is that each £i is less than 1.

The Lovâsz local lemma deals with an intermediate situation when there are 
many events (so our first observation does not help), and not all events are inde­
pendent (so our second observation does not help either).

Assume that n events A i , . . . ,  An are given, and for each i G {1 ,..., n} some 
set N (i) C {1,... ,n} is fixed that does not contain i. The elements of N(i) are 
called neighbors of i in the sequel. (We do not require the neighborhood relation 
to be symmetric, so a number may not be a neighbor of its neighbor.)

Assume that each event Ai  is independent with all other events, except for 
i itself and г’s neighbors (for simplicity we identify index i and event Ai).  More
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precisely, we assume that Ai is independent with the tuple of all non-neighbor 
events (not only with each of them). Then the following bound can be proven.

Theorem 160 (Lovâsz local lemma (LL)). Assume that for each i — 1,2 ,. . . ,  n, 
a positive real Ei < 1 is fixed such that

Pr[Ai]<£i Yl (! —
j € N ( i )

for all i. Then the probability of avoiding all the Ai is at least

(1 - £ i )  • (1 - e 2) • ... • (1 - e n).

So we get the same bound as in the case of independent events, but the condi­
tions are stronger: For each neighbor event j  we need to add the factor (1 — £ j )  in 
the right-hand side of the assumption.

PROOF. The proof of LL is a bit strange: All the steps are quite easy, but the 
intuition behind them is rather unclear (so it was probably difficult to invent it, 
and it is even quite difficult to reproduce it). So we prepare ourselves by making 
simple observations first.

(a) For every two events A and В  we have

Indeed, the conditional probability is Pr[AAß]/Pr[ß] and Pr[AAß] < Pr[A]. (As 
usual, Л stands for “and”.)

(b) One can add some condition C to all the events in the previous inequality 
(the relativization trick), and get

Pr[A IВ  Л C\ <
Pr[A I C\ 
Pr[F? IC] '

This observation is used in the proof of Lovâsz local lemma for independent A and 
C (in this case the numerator Pr[A | C] equals Pr[A]), and the denominator P r[В \ C] 
is not very small.

Now we are prepared to prove LL by induction. As often happens, we need a 
stronger statement for induction purposes. Let us prove the following statements 
(here -i stands for the negation, or complement, of the event):

(1) For every i and for every p ,q ,... that are not equal to i and to each other, 
we have

Pr[Af I “iAp A “iAq Л • • • ] < Ei.
(2) For every two disjoint families of events i , j , ... and p ,q ,... we have

Pr[->Ai Л ->Aj Л ■ • • I -iAp A ->Aq A ■ ■ ■ ] > (1 -  Ei) ■ (1 — Ej) ■ —
Note that the first statement implies the second one for the case when the family 
i , j , . . .  consists of one event i : If the probability of Ai (with some condition) is at 
most Ei, then the probability of its negation is at least (1 — £i).

Moreover, this argument can be extended to the case when there is more than 
one event in the family i , j , ..

Pr[~Â i A ->Aj I ~>Ap A —>Aq A • • • ]
= Pr[-iAi I ~>Aj A —'Ap A —iAq A • • • ] • Pr[-iAj I —>Ap A —>Aq A • • • ];
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it remains to apply (1) to each factor.
On the other hand, the following argument derives (1) from (2). Let us split 

the conditions in (1) and consider separately the events inside N(i) and outside 
N(i). (Here i is the number of the event in the left-hand side of (1).) Let N  and 
F be the conjunctions of the negations of the events in these two groups (near and 
far). Then, following the scheme explained above, we estimate the probability as 
follows:

Pr[Ai\N A F] <
Pv[Aj\F\ 
Pr[iV IF]

Pr [A] 
Pr[iV IF] ’

We can use inequality (2) and conclude that the denominator in the last fraction is 
at least the product of (1 — Et) for all t G iV, and it remains to recall the assumption 
of LL where these factors (and, maybe, others) appear. We assume here that there 
are neighbor events among the conditions. If not, the left-hand side in (1) equals 
Pr[Aj] (due to independence) and is bounded by E{.

It remains to explain why the reductions of (1) to (2) and vice versa (which we 
have described) do not lead to a vicious circle. Reducing (1) to (2) as explained 
above, we use (2) in the situation where the number of events in the inequality 
(on both sides of “|”) is smaller than in inequality (1), which we want to prove. 
(Indeed, the event A* disappears). The other reduction, where we derive (2) from 
(1), does not increase the total number of events in the inequality. □

Here is an example of a combinatorial problem where LL is useful:
249 A finite tape is given where each cell may contain a number between 1

and N. For each borderline between neighbor cells some pairs of numbers (l.r ) are 
prohibited, in the sense that one should not put I on the left and r on the right of 
this border. Prove that if for each border the fraction of prohibited pairs (among 
N 2 pairs) is at most 4/27, then one can fill all cells satisfying all restrictions.

(Hint: For each border consider the event “a prohibited pair appears”. Each 
event has at most two neighbors, and for Ei = 4 one can apply the LL.)

250 Prove a similar result (even with slightly better parameters) without 
using the LL. If each set of forbidden pairs contains less than 1/4 of all pairs, then 
one can satisfy all the restrictions.

(Hint: In each position more than half of candidates accept more than half right 
neighbors, and more than half of candidates accept more than half left neighbors. 
So there exists some candidate that accepts more than half of left neighbors and 
more than half of right neighbors at the same time. Starting with this number, one 
may add numbers from the left to the right, using the fact that two sets containing 
more than half of the elements always have a common element.)

8.5.3. Lovâsz lemma and forbidden strings. Now let us use LL to prove 
Theorem 157. As usual, it is enough to prove the existence of arbitrarily long 
strings without forbidden substrings (due to the standard compactness argument).

So we fix some length and consider random strings of this length where all the 
bits are independent and uniformly distributed. A bad event happens when some 
forbidden string appears at some fixed position (different positions give different 
events). For every n consecutive bits, the appearance of a forbidden string in this 
position has probability 2̂ a-1 n̂. Using the LL, we need to fix some number Ei for 
each event A*, and for this event (the appearance of a forbidden string in a given
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position of length n ), we use 2 ^ -1 n̂ for some constant ß G (a, 1). Then we need 
to check that for suitable ß the conditions of the LL are satisfied.

Let I  be the position of some event (the interval where we look for a forbidden 
string). The neighbor events happen at intervals J  that overlap with I  (all other 
events are independent). The bounds Si depend on the lengths, so we group all 
possible intervals J  according to their lengths. There exist n + к — 1 intervals J  of 
length к that have a non-zero overlap with a given interval I  of length n. Each of 
them adds a factor (1 — on the right-hand side of the condition of the LL,
and in total we get

(1 — 2 ^~ l k̂)n+k~l
Now we have to multiply these expressions for all k, starting with some N  (if we 
construct a sequence with forbidden substrings of length at least N). So to apply 
the LL, we need to prove the inequality

2(a-i)n ^  2^~ l)n . (i _  2('0-1)fc)n+/c_1. 
k^N

(In fact, we included I  while considering intervals of length к — n, though we were 
not obliged to, but this makes our task only more difficult.) Now we use a quite 
rough bound: we replace n + к — 1 by nk, take nth roots, and use the Bernoulli 
inequality. It remains to prove that

2 a - ß  ^ 1 - ^ 2  k 2 i ß ~ 1)k . 

k^N

The infinite series ^2k k2^ß~l k̂ converges when ß < 1, and the left-hand side is less 
than 1 for a < ß , so the inequality is true if N  is large enough.

Let us repeat what we are doing. First, we take arbitrary ß G (a, 1) and then 
choose a suitable N  that makes the tail of the series small. Then we apply the 
LL to an arbitrarily large finite length and show that there exists a string of that 
length which does not have forbidden strings of length N  or more. (Our bounds 
work for arbitrary lengths.) Finally, we use the compactness argument to get an 
infinite sequence.

251 Prove a two-dimensional version of Theorem 157: one can fill an infinite 
cell paper by zeros and ones in such a way that every rectangle of large enough 
area is not forbidden. (We assume that for every rectangle of area k, at most 2ak 
forbidden combinations of zeros and ones inside this rectangle are fixed, for some 
constant a < 1.)

(Hint: Similar bounds can be proven, and the LL can be used.)

8.5.4. Forbidden subsequences. In the previous section we considered for­
bidden substrings, i.e., forbidden combinations of consecutive bits. But why should 
the bits be consecutive? This looks artificial, and we may consider a more general 
setting, as in [158]. Assume that we have a countable family of Boolean variables 
and some restrictions; each of them forbids some combination of values for some 
variables. We are interested in a result of the following type: If the restrictions are 
not too numerous, there exists an assignment of Boolean values to all the variables 
that satisfies all the restrictions. (In this kind of result, we do not care about exact 
combinations of values that are forbidden; the only thing we use is that there are 
not too many restrictions.)
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In other words, we want to prove the satisfiability of a formula in a conjunctive 
normal form (CNF), i.e., a conjunction of several clauses. For example, in the 
formula

(->a V b V с) Л (a V с V ->d) A • • ■
the first clause (~>a V b V c) forbids the combination of values a = 1, 6 = 0, c = 0. 
Our goal is to find a satisfying assignment, a combination of values that satisfies 
all the requirements.

Assuming that all variables are independent, we observe that disjoint clauses 
(that do not have common variables) are independent. So, if we want to apply the 
LL, we have to bound the number of clauses that contain a given variable.

Let us fix some notation. Let lj — cjocjicj2 • • • be an infinite sequence of bits. 
For a finite set F  C N, we denote by w(F) a string composed of for i e F (in 
order of increasing i). Consider a pair (F, X) where F  is a finite set of indices and 
X  is a binary string whose length is equal to the cardinality of F. We say that a 
sequence w is forbidden by the pair (F, X) if w(F) = X. We call the pair (F, X) a 
restriction, and the number of elements in X  is called the size of this restriction. 
We say that the restriction (F, X) covers the indices in F. Now we are ready to 
formulate and prove the statement we spoke about [158]:

Theorem 161. Let a € (0,1) be a constant. Assume that we have a set of 
restrictions (F,X) such that for every position i and for every positive integer n 
there are at most 2an restrictions of size n that cover i. Then there exist a number 
N  and a sequence that is not forbidden by any of the restrictions of size greater 
than N.

PROOF. For compactness reasons, it is enough to prove the statement for finite 
sequences (and for some N  that is the same for all lengths).

For each restriction we have the event “this restriction is violated”. The prob­
ability of such an event for a restriction of size n is 2~n. To apply the LL, let us 
choose Ei for restrictions of size n as 2~l3n where ß is some constant in (a. 1) (in 
fact, every value in this interval can be used).

The neighbors of some restriction are the restrictions that have common vari­
ables with the first one. To apply the LL, we need to consider a restriction of size 
n and check that 2~n does not exceed 2~l3n times the product of all the factors 
(1 — 2~@m) for all neighbor restrictions.

We split the product into parts that correspond to common variables. There 
are n parts (for each of the variables involved in the restriction). If a neighbor 
shares two or more variables, we arbitrarily break the tie and choose one of them. 
In each part, we classify the factors according to their sizes. Then for each variable 
and for each size m, we get at most 2am factors, each equal to (1 — 2~l3rn). Then 
we take the product over all m, and the nth power (since we have n parts that 
correspond to n possible common variables). So we need to show that

2_n ^  2- ßn Y [ { 1 -  2~ßm)2“"'n:
m>N

or (since all the terms are nth powers)
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Using the Bernoulli inequality, we see that it is enough to prove that

2ß~l < 1 -  2am2~ßm.
in >  N

The left-hand side is less than 1, and

2(a-ß)m
m

is a converging geometric series, so this inequality is true for large enough N.
Let us repeat how the proof goes: First we choose some ß £ (a , 1), then we note 

that the series is converging and choose a suitable N,  then (for every length) we 
apply the LL and show that there exists an assignment of this length that satisfies 
all the restrictions, and finally we use the compactness argument. □

A direct proof of Theorem 161 (that does not refer to the LL but uses some ideas 
similar to the proof of the LL) was suggested by An. Muchnik and A. L. Semenov. 
This proof goes as follows. Assume that a set of restrictions is fixed that satisfies 
the conditions of this theorem. Let N  be the minimal size of restrictions in this set.

For each finite set of indices I  C N, let us denote by c(J) the number of valid 
partial assignments, i.e., the number of mappings I  —> {0,1} that do not violate 
any restrictions. (Here we consider only restrictions {F,X)  where F с  I. Our 
mapping is defined only on /, and we cannot check the restrictions that involve 
variables outside I.) For empty I  we let c(I) = 1.

Fix some ß £ (a, 1). Let us prove that c(I) is multiplied by at least 2ß when 
we add a new point to I. (We assume that N  is large enough.) This implies that 
c(J) ^  2ßk if I  contains к variables. In particular, c(J) > 0 (this is what we really 
need, but for induction purposes we use a stronger statement).

Imagine that we add to I  a new point (^variable, index) i, and Г — I  U {?’}. 
Every good assignment for I  creates two assignments for I' (the new variable may 
have two values), but not all of these 2c(I) assignments for I' are good, so we 
need to subtract the number of assignments that violate the restrictions. Since 
the /-assignment was good, the violated restriction should contain i in addition to 
some other points in I. Fix some restriction, and let К  С I  be the set of these 
other points used in this restriction. How many assignments do we lose because 
of this restriction? Since the variables that are part of the restriction are fixed to 
make it false, the number of lost assignments is bounded by the number of good 
assignments on I \ K ,  and this number is bounded by c(I)/2ßk due to the induction 
assumption. (Indeed, if we increase the number of assignments by at least a factor 
of 2ß when adding a new point, then we decrease the number of assignments by at 
least the same factor when deleting one of the points.) Now we need to sum up all 
the deleted assignments for all Z = N  — 1, N , . . . ,  I, and for each к there is at most 
2a'(fc+i) restrictions that involve i and also к elements in I.

In this way we get the bound

c(J') £ 2c(J) -
hi
E 2

k = N - l

Q(fc+1) C(j )
2 ß k  ■
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Let us make it weaker: replace 2a by 2, and include all к ^  N  — 1 in the sum. Then 
we get

< !')>  M I ) (  1 -  £  J ) .
V  k^N- l  Z /

The series in the right-hand side converges; therefore for large enough N  the factor 
in the right-hand side (in parentheses) is at least 2/3_1, and the induction step is 
finished. (Note that we applied the inductive assumption only to sets of size less 
than |/|, so there is no circle in our argument.)

8.5.5. Complex subsequences. Now we want to translate the result of the 
previous section into complexity language and prove that there exist a sequence 
that has complex subsequences and not only substrings (as before).

What kind of statement can we get? Can we guarantee that every subsequence 
of (large enough) length m  has complexity at least am  for some a < 1? (A similar 
result was true for substrings.) Of course not—one can select a subsequence that 
consists only of zeros (or ones). But in this case the set of indices may have high 
complexity. So we should take into account both the complex^ of the set of indices 
and the complexity of the subsequence.

Indeed a result of this type can be proven, as we saw in Problem 145 (and 
Theorem 94, p. 151, for the case of uniform measure): if a sequence cu is ML- 
random with respect to the uniform measure, then

K ( F cj( F ) ) ^ \ F \ - c

for some c and for all finite sets F .
But now we want to prove a different result [158]:

T h eo rem  162. Let a £ (0.1) be a real number. There exist a sequence u> and 
a constant N  such that

nvc\xC(F,u>(F)\t) ^  ot\F\ 

for every F that contains at least N  elements.

To understand better the meaning of this result, let us consider the following 
corollary: for every finite set F of size at least N  there exists t £ F such that

C( u( F) \F , t ) ^ a \ F \ - 2C( F\ t )

(the constant 2 can be made smaller, but we want a simple statement). Omitting 
t in the left-hand side, we may conclude also that for every finite F the inequality

C(u(F)\F) ^  a \ F \ - 2 mzx C (F \ t )

holds.
This implies that all substrings are complex. Indeed, if F is an interval, then 

the complexity C(F\t) is logarithmic for every t £ F and can be absorbed by a small 
change in a. Moreover, this gives us also a two-dimensional version: If indices form 
a planar grid and F  is a rectangle, the complexity C(F\t) is also logarithmic in 
the size of F , and the same trick works. So we get the statement of Problem 251 
(p. 248) as a corollary.

Note also that this corollary shows that ML-random sequences do not have the 
required property and LL is essential here.
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P r o o f .  In fact. Theorem 162 is just a complexity reformulation of Theo­
rem 161. Indeed, consider the set of all restrictions (F, Z ) such that C(F,Z\t)  < 
a\F\ for all t G F. Then for every index t the number of restrictions (F, Z) of size 
k, where F contains t, is at most 2ak. and we can apply Theorem 161. □

8.5.6. The “effective” proof of the Lovâsz local lemma. Are the prob­
abilistic existence proofs “constructive”? No, in the sense that they do not provide 
an explicit example of an object with required properties. (One can perform a 
brute-force search and call the first object with the property an explicit example, 
but this looks more like cheating, and the search usually takes a very long time.) 
On the other hand, if the probability of the event “random object has the required 
property” is close to 1, we at least have a probabilistic algorithm that generates an 
object with required properties, with small probability of error (and rather fast).

What can be said about existence proofs based on the LL? In these proofs the 
probability is exponentially small (though positive). Random choice is no more an 
option: We cannot just take a random object according to the distribution used 
in the LL. However, we can use random bits in a more clever way, and in this 
section we explain how (and get a new proof for the LL in some special cases as a 
byproduct).

Assume that we want to construct a binary string (an assignment) that sat­
isfies some restrictions (^clauses of a CNF, see Section 8.5.4). Let us first choose 
independent random values for all the bits. Most probably some small part of the 
restrictions will be violated. Take one of them and try to improve the situation 
by resampling all the variables that appear in this restriction. (Resampling means 
that we assign fresh random bits to these variables.) Most probably this will solve 
the problem with this restriction; it is quite unlikely that we will get the same bad 
values for these variables once more. Of course, other restrictions may still be vi­
olated, and new violations may happen (for the restrictions involving the changed 
variables). Then we can repeat the process: Take some restriction that is currently 
violated, and perform the random resampling for its variables. And so on.

More formally, the initial values of all variables are chosen at random, and 
then we iterate the following procedure: While some restrictions are violated, take 
one of them (say, the first one in some ordering, or the random one, or use some 
other rule) and perform the resampling for all variables that appear in it. This is 
repeated until all restrictions are satisfied. It looks like a miracle, but R. Moser and 
G. Tardos recently proved [130, 131] that this trivial algorithm indeed achieves the 
goal rather fast and with high probability. (Before them, much more complicated 
algorithms were studied and much weaker results with much more complicated 
proofs were obtained.)

We do not present their proof in full generality; instead we consider a special 
case when all the clauses have the same number of variables. Moreover, we assume 
that the resampling is made in some special order (determined by recursive calls, 
see below). In this case a simple argument using Kolmogorov complexity can be 
used, and we explain this argument, following L. Fortnow.

So let us assume that a CNF is given with n variables and N  clauses, and each 
clause has some fixed length m  (contains m variables). We say that two clauses are 
neighbors if they have a common variable. Assume that every clause has at most t 
neighbors. We claim that if t is not very large, the LL guarantees the satisfiability 
of the CNF in question.



8 .5 . F O R B I D D E N  S U B S T R IN G S 253

How large can be t to make the LL applicable? Since all the clauses have the 
same size, it is natural to use the same value of e for all of them. This e should 
satisfy the inequality

2“m
(the left-hand side is the probability that a given clause is false). The right-hand 
side is maximal when e — l / ( i  + 1), but to simplify the computation we let e — 1ft 
instead. Then the right-hand side is (1 — l / t )1 ft, which is almost I f  et. So we need 
(approximately) t ^  2m/e to apply the LL. In the constructive proof we use a bit 
stronger requirement, namely, t ^  2m/8.

T h e o r e m  163. There exists a probabilistic algorithm that founds a satisfying 
assignment for a given CNF with n variables and N  clauses of size m where each 
clause has at most 2m/8 neighbors, in time polynomial in n  + N  and with success 
probability at least I f 2.

(As usual, the bound for success probability can be amplified easily: Repeating 
the algorithm s times, we find a satisfying assignment with probability at least 
1 -  2“s.)

P r o o f .  Our algorithm uses the recursive procedure Fix(d) (where d is some 
clause) and works as follows:

for all clauses d of a given CNF : 
if d is false: Fix(d)

All the clauses of a given CNF are processed in some order. The processing of a 
clause d is simple: If d is not satisfied yet, is is “fixed” by calling Fixfd). To prove 
the correctness of the algorithm, we need the following property of the procedure 
Fix(d): It makes clause d true and keeps true all clauses that were true before the 
call. (Some clauses that were false before the call may become true; this is even 
better for us since it saves some future work.)

The procedure Fix(d) is simple, too:
resample all variables in d using fresh random bits; 
for all clauses d' that are neighbors of d: 

if d' is false: Fix{d')
Note that it may happen (with small probability) that the new random values 

are in fact the same as before, so the resampling does not make d true. It would be 
natural to perform the resampling again until we get new values, but it is easier to 
postpone this and just consider d as its own neighbor (so that the resampling will 
be performed later as part of the loop, if it would still be necessary at that time).

The correctness of this procedure (assuming that the recursive calls work cor­
rectly) is obvious: During the resampling only the clauses that are neighbors of 
d may become false, and they all will be fixed in the loop (including d itself, if 
necessary). The only problem is to prove that the process terminates with high 
probability in polynomial time. For that let us analyze how this process uses ran­
dom bits. (We assume that random bits are produced in advance and used when 
needed.)

First of all, we use n random bits as initial values of the variables. Then each 
call Fix(d) uses the next m  random bits to resample variables in d. (Recall that 
we do not resample d twice even if the resampling gives the same bad values; it 
simplifies our analysis.) The following is a crucial observation: At every step
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the values of used random bits can be reconstructed if we know 
(1) the current values of all the variables of the CNF; (2) the 
list of clauses for which the procedure Fix (d) was called, in the 
order of calls.

Indeed, the call Fix(d) is performed only when d is false, and this determines 
the values of variables in d before the call. And their values after the call are just 
the next random bits. Unrolling the execution backwards, we can reconstruct the 
values of variables between the calls and finally n initial values, so we know all the 
random bits used.

Now the idea of the proof can be explained as follows. If the algorithm makes a 
lot of calls, then we can compress the values of random bits used by the algorithm, 
because the list of clauses for which Fix was called has a shorter description. To 
finalize the proof, we should estimate the complexity of this list. Here it is very 
important that Fix(d) calls Fix(d') only for those d! that are neighbors of d, and 
these d' can be specified by their ordinal number in the list of neighbors.2 (Here 
we use the bound for the number of neighbors.)

Now let us compare the number of random bits used and the number of bits 
needed to describe them (as explained in the previous paragraph). Consider the 
situation after к calls of Fix. At that time the algorithm has used n + km  random 
bits. To reconstruct them, we need to know the following:

• the current values of the variables;
• for which clauses the procedure Fix was called in the main loop;
• which recursive calls of Fix were made during each of those calls.

Current values are n bits; the list of clauses called in the main loop can be
described by N  bits (for each clause we say whether it was processed or not; the 
order of clauses is fixed, so N  bits are enough). To estimate the complexity of 
the third component, let us consider trees of recursive calls. For example, the tree 
illustrated in Figure 26 starts with a call Fix (a). This call generates three calls 
for b, c, d; the call for b generates calls for e, f, g, the call for c does not generate 
anything, and the call for d generates only one call for h. The chronological order 
of all the calls is a, b, e, f, g, c, d, h (the left to right ordering of the sons of a vertex 
corresponds to the order of calls). Indeed, we call c only after we return from 6-call 
(that generated calls for e,f,g),  and then make d-call that generates /г-call. In 
other words, the order of calls can be described as follows: imagine that our picture 
is a bird’s view of a wall; we start walking around it from a and always touch the 
wall by the right hand. The we visit the vertices in the order

a-b-e-b-f-b-g-b-a-c--a-d~h~d-a,

and this corresponds to the control flow during the execution. New random bits 
are used when we come to some vertex for the first time (from below).

So to specify the processed clauses (and the order of processing) it is enough 
to encode the tree walk. It consists of steps up and down. For a step up, we 
need to specify not only the fact that we are going up but also the number of the 
neighbor where we are going. In total we use 1 + logt bits (one for the direction, 
and one for the number). Here t is the upper bound for the number of neighbors,

2So (as we have mentioned) it is a bit surprising that the result is true for other rules that 
select the next clause for resampling. (We want to stress that the argument we provide depends 
on the choice of the rule, though the result does not.)
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i.e., 2m/8 = 2m~3 according to the assumption. When going down, only one bit 
that indicated the direction is sufficient. (In other words, when making a recursive 
call, we perform a push operation for the stack of calls, and we should specify the 
top of the stack; for pop operation no additional information is needed.)

So for each vertex (except the root) we use log t + 2 bits (we need log t + 1 
bits when we come to this vertex from below, and then one more bit when going 
back to its father). In total (for all the vertices) we need N  + n + k(\ogt + 2) bits 
for description. If the random bits used in the algorithm are incompressible, then 
N  + n + к (log t + 2) ^  n + km, and we get an upper bound for k. Namely, we get 
the bound к ^  N  (recall that logt + 2 = m — 1), so we make at most N  calls of the 
procedure Fix, and the algorithm is polynomial (in N  + ri).

Some final clarifications are needed still.
1. If we literally use Kolmogorov complexity, then some constant appears, and 

we should keep track of all these details. As usual, when the idea is clear, we can 
switch to the probabilistic language: If к — N  + c, then the difference between the 
number of random bits used and the number of bits in the description is c. This 
means that the number of random bit strings that cause N  + c or more calls of Fix 
is 2C times smaller than the total number of possible strings, so the probability is 
bounded by 2~c.

2. When we describe several objects by a sequence of bits, we should check 
that no separators are needed to perform the decoding. Here it is indeed the case: 
The number of variables, clauses, and the clause size (as well as the bound for the 
number of neighbors) are known; after a bit that specifies the direction (whether 
we go up or down) is read, the decoder knows how many bits it should read next.

3. The last problem: It may happen that we stopped the execution at the
moment when one of the trees is only partially processed, so we should be able to 
describe the unfinished tree walk. But our way of description works in this case as 
well; we should only note that at every moment the number of steps down does not 
exceed the number of steps up (the number of Fix-calls). □

8.6. A proof of an inequality

As we have said (see p. 12), the inequalities for Kolmogorov complexity have 
quite unexpected consequences. In this section we explain one of them, a version 
of the Loomis-Whitney inequality (this topic will be continued in Chapter 10).
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T heorem  164. Let X, Y, and Z be finite sets. Let f  : YxZ  —»• M,
and h : X x Z  —> M be some functions with non-negative values. Then

f ( x >y)9(yiz )h(x,z)
x,V,z

PROOF. Believe it or not, this inequality is in fact a corollary of the inequality

2K(x,y,z)  < K(x,y) + K(y,z)  + K(x,z)  + 0(logn)

for prefix complexity (Theorem 26, p. 48). We wrote the last inequality for prefix 
complexity, not plain complexity, but this does not matter since the difference is 
O(logn). (For prefix complexity this inequality is true up to 0(l)-precision (see 
Problem 114, p. Ill) ; for now the 0(logn)-precision is enough.)

It is convenient to assume that elements of the finite sets X,  Y, Z  are binary 
strings. It is enough to show that if the sums in the right-hand side of the inequality 
do not exceed 1, the same is true for the left-hand side. (Indeed, we can multiply 
/  by an arbitrary constant c, and both sides of the inequality are multiplied by the 
same factor, so we can normalize /;  the same for g and h.)

Now assume that y f 2(x,y) =  1 and that the same is true for two other 
sums. We have to show that J2X z /(x , y)g(y, z)h(x, z) < 1.

The idea is simple: The function / 2 is a probability distribution on pairs 
(x , y ), so K(x,y)  < — lo g /2(x,y) = —21og/(x,y) (we temporarily ignore the 
constant in the comparison of this distribution and the a priori one). Similarly, 
K(y,z)  < —2 logg(y,z) and K( x , z ) < —2\ogh(x,z).  Then we apply the inequal­
ity for K(x,y,z)  (temporarily ignoring the logarithmic term) and get

2K(x,y,z)  ^  -2  log f (x,y)  -  21ogg(y,z) -  21ogh(x,z),

i.e.,
f (x,y)g(y,z)h(x,z)  ^  2~K{x'y'z).

Since the sum of 2~K(x,y,z') over all triples x,y , z  does not exceed 1 (Theorem 57, 
p. 92), we get the desired inequality.

This argument is, of course, too simple to be valid. All our bounds are of as­
ymptotic nature, so we have to switch somehow from individual strings to sequences 
of strings. Let us show how it can be done.

We start with a simple remark: It is enough to prove the inequality for functions 
/ ,  g, h with rational values (by continuity).

Let N  be some natural number (later we take the limits as N  tends to infinity). 
Consider the sets X N, Y N, and Z N whose elements are ALtuples (of elements 
of X,  Y, Z, respectively). Consider a probability distribution on X N x Y N — 
(X x Y) n that corresponds to N  independent copies of distribution f 2 on X  x Y . 
Formally speaking, the probability of a point ((x i,. . . ,  хдг), (y\ , . . . ,улг)) is equal 
to the product f 2(xi,yi) ■ ... ■ / 2(хм,Уы)- We get a family of distributions that 
computably depends on N.  Therefore, there exists a constant c such that

K((x i , ... , xN), (yi , ... ,yN)\N) < 2 ^ ( —log f(xi,yi)) + c
г

for all N  and for all x \ , . . . ,  хдг, yi , . . . ,  y^  (we compare our distribution with a priori 
probability). We can delete the condition N  in the left-hand side, and replace c by
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clog N  in the right-hand side. Then (as before) we add three inequalities of this 
type and apply the inequality for complexities. Then we get

A"(( x \ ,  ■ • • (î/i) • • • ) Un ) ) (^i ? ■ • ■ ) )

< ] T ( - log/(^,2/z)) + ^ { - \ o g g { y i , zi)) + Y ^ ( - ^ h ( x i , Z i ) )  + clog AT
i i i

for some constant c and for all N,  aq, . . . ,  x^ ,  г/ i , . . . ,  ум, z \ , . . . ,  zpj. (Note that 
the total length of all the strings Xi,yi,Zi for г = 1, . . . ,  N  is O(N),  so all loga­
rithmic terms are absorbed by clogN.) Combining this bound with the inequality 

2~K(U) ^  1, we conclude that for every N  the sum

ЕП f(xi,yi)g(yi, Zi)h(xi, Zi)

(over all tuples aq, ... ,x n , г/i, . . .  ,yw, z 1, . . .  ,zpj) does not exceed 2°(logiV), i.e., it 
is bounded by a polynomial in N.  But this sum is the Nth  power of the sum

Z f(x,y)g(y,z)h(x,z),
{ x , y , z ) ( z X x Y  X Z

so polynomial growth is possible only if the latter sum does not exceed 1. This 
ends the proof. □

252 Show that this inequality implies the bound for the volume of a three- 
dimensional body in terms of its two-dimensional projections mentioned on p. 12.

(Hint: We can let /,  g, h be the characteristic functions of the projections. This 
works for the discrete case; for the continuous case we should either approximate 
the body using a cubic grid or approximate the integral by finite sums.)

For comparison let us give two other proofs of the same inequality. Here is the 
first one (rather simple) using the Cauchy-Schwarz inequality (u,v)2 < ||u,||2 • ||v||2, 
or, in coordinates, Ç^UiVi)2 < (Y^ui)(J2vi )• We can argue as follows:

Y  f ( x , y ) g( y , z )h{x, z ) )  ̂( Y f 2(x ' y ï )  ( Y ( Y 9 ŷ ' z ^ x ' z ^) )
x , y , z  J  \ x , y  /  \ x , y  \  z J  /

= (z/2(̂ )) fz^’̂V
\  x , y  J  \ y , z  J  \ x , z  J

Another proof uses Shannon entropy (and can be considered as a translation of 
the Kolmogorov complexity argument into probabilistic language). Let us assume 
that f 2 = g2 = h2 — 1. We want to prove the inequality y z p(x > Viz ) ^  
1, where p(x, y, z) = f(x,  y)g(y, z)h(x, z). Assume that is not the case and this sum 
equals c > 1. Then we can multiply it by 1/c and get a probability distribution p' 
on X  X Y  X Z\

P'{x,y,z)  =  \ f (x , y )g( y , z )h(x , z ) .
The corresponding random variable (whose range is X  x Y  x Z) is denoted by £. It 
can be considered as a triple of (dependent) random variables £x, £y, £z. One can
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also consider the joint distributions £xy — (£е,£у), etc. For example, the random 
variable £xy takes the value (x,y) with probability z).

Recall that by definition the Shannon entropy of the distribution (pi, ... ,py) 
equals Y^Pi{~ logp,;); it does not exceed logg,;) for any other distribution
(<7i , . . . ,  Çfc). Therefore the entropy H(£xy) can be bounded (from above) by using 
f 2(x,y) as the “other” distribution,

H itxy) ^  Y  \ Y p \ x , y , z ) \  ( - 2 log f(x,y)).
x , y  \  z  /

Then we write similar bounds for two other projections and apply the inequality

Я « )  = < \ (Н(Ь , )  + Я ( ^ )  + Я « „ ) )
(Problem 230, р. 225). We conclude that

я (£) ^  Y P'(x ^y^z ) ( - lo&f{x,y) -  logg(y,z) -  logh{x,z))
X , y , z

= Y p,(x ' y ’z^ ~ logp(x ' y ' z^-
x , y , z

By definition H(£) = z p'(x, y, z)(— \ogp'(x, y, z)), so we get a contradiction, 
since p' is c times smaller than p (and therefore — log;/ exceeds — logp by loge).

8.7. Lipschitz transformations are not transitive

In this section we apply Kolmogorov complexity to analyze the properties of 
infinite sequences. Let us start with the following definition related to the Cantor 
(metric) space Q of infinite binary sequences.

A mapping /  : Q —> is a Lipschitz one if

d(f(wi ) , / (w2)) ^  cd(ui,w2)
for some constant c and for all u>i,u>2 £ Here d is the standard distance in the 
Cantor space defined as 2~k where к is the first place where two sequences differ.

Informally speaking, Lipschitz property means that the first n digits of the se­
quence f(co) are determined by n + 0( l )  first digits of to. In particular, all mappings 
defined by local rules (each bit in f(co) is determined by some its neighborhood in со) 
have Lipschitz property.

We are interested in the following property of a mapping /:  For every two 
sequences co\, cü2 and for every e > 0, there exist a number N  and sequences 
and cd2 such that

u'2 = /(/(/(■•• / (^i )  • • ■ ))) (N  iterations)
and

d(u)i,U)[) < e, d(co2,co'2) < £.
(In other terms, for any two open neighborhoods there exists an orbit that starts in 
the first one and gets inside the second one.) We call this property the transitivity 
of /  (in this section).

It is easy to check that left shift (that deletes the first bit of the sequence) 
is transitive: If we need a sequence that starts with x\ and is transformed (after 
several shifts) into a sequence that starts with X2 , just take a sequence that starts 
with X1 X2 .
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Now we pose the following question: Does the left shift remain transitive if we 
change the definition and replace Cantor distance d by the so-called Besicovitch 
distance,

p{u)\, U)2 ) = Uni Slip dn (u>i, U)2 )/n
» oo

(where dn is a number of discrepancies among the first n terms, i.e., the number of 
i < n such that ith. terms of uj\ and 0J2 differ)?

It turns out that in this case the left shift is no more transitive (is not Besi- 
covitch-transitive). Moreover, the following statement is true (we reproduce the 
proof given in [17]):

T h e o r e m  165. No Lipschitz mapping can be Besicovitch-transitive.

(Speaking about the Lipschitz property, we have in mind the original definition 
using Cantor distance.)

The reason is quite simple. The Lipschitz mapping does not significantly in­
crease the complexity of the prefixes of a sequence, since n bits of the output 
sequence are determined by n + 0(1) bits of the input sequence. (We assume that 
transformation rule is computable; if not, we have to relativize complexity by a suit­
able oracle.) On the other hand, if two sequences are Besicovitch-close, then their 
prefixes have almost the same complexities (a change in a small fraction among the 
first n bits can be encoded b}' a short string compared to n).

PROOF. For a formal proof it is convenient to use the notion of effective Haus- 
dorff dimension of a sequence (which is equal to liminf C(ujo • • •u)n- \) /n  for a sin­
gleton {ta}; see Theorem 120, p. 174).

L em m a 1. A computable Lipschitz mapping does not increase the effective 
Hausdorff dimension of a sequence.

(Speaking about computability of a Lipschitz mapping /  : Q, —y Q, we mean that 
n first bits of f(u j)  are effectively determined by n + c first bits of uj for some c.)

P r o o f .  Indeed, if f(u ji )  =  u j2 , then the complexity of an n-bit prefix of uj2  

does not exceed (up to 0(1)) the complexity of an (n + c)-bit prefix of uq, and for 
the dimension these constants are not important.

L em m a 2. I f  Besicovitch distance p(uji,uj2 ) is less thane, then effective Haus­
dorff dimensions ofu j\ and uj2 differ at most by H(e).

(Here H(e) is the Shannon entropy of a random variable with two values that 
have probabilities e and 1 — e.)

P r o o f .  Indeed, if the first n terms of uj\ and uj2 differ in к places, then the com­
plexities differ at most by the complexity of the bitwise xor of these two sequences 
(since knowing one sequence and their xor we easily get the other one). And every 
sequence of length n that has к ones has complexity at most n H (k /n ) + O(logn) 
(Theorem 146, p. 226). Lemma 2 is proven.

So if we take a sequence of a zero dimension (say, a computable sequence), then 
any sequence that is Besicovitch-close to it has small dimension, and a computable 
Lipschitz mapping does not increase this dimension, so we can get only sequences 
of small effective Hausdorff dimension. On the other hand, any sequence that is 
Besicovitch-close to a random sequence (that has dimension 1 ) has dimension close 
to 1 (Lemma 2 again).
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So we have proven our theorem for computable Lipschitz mappings. It remains 
to note that all our arguments are relativizable and that every Lipschitz mapping 
is computable relative to some oracle. □



CHAPTER 9

Frequency and game approaches to randomness

9.1. The original idea of von Mises

Nowadays the axiomatic approach to probability (that makes it a special part 
of measure theory) is standard, and it is difficult to forget all we know now and 
return to the situation in the beginning of the twentieth century when Richard von 
Mises suggested basing probability theory on the notion of a random sequence (he 
used the word Kollektiv). Still let us try to describe von Mises’ ideas.

Some natural phenomena are easy to predict (after we have discovered the laws 
of nature they obey). For example, the laws of classical mechanics can be used to 
predict the positions of planets in the sky with very high precision. But there exists 
another class of phenomena: Even as we try very hard to predict the outcome of 
coin tossing, usually we get about 50% of predictions correct. Those phenomena 
are the subject of probability theory.

So the basic notion of probability theory (according to von Mises) is the notion 
of a Kollektiv—a sequence oj of outcomes (we will assume there are two possible 
outcomes 0 and 1) that is hard to predict. Since this is a basic notion, we do not try 
to give a definition that would reduce it to other mathematical notions; instead we 
formulate a frequency stability axiom that captures the main property of Kollektivs:

There exists a limit

,. Шо + + • • • + шп-1p = Inn -------------------------- .
n—5-00 п

Moreover, p remains the limit if we consider not the entire se­
quence oj but some of its subsequence selected according to some 
rule; for example, the subsequence oj2n, or the subsequence of ojn 
with composite n, or the terms that follow ones (i.e., шп such 
that ojn- 1 = 1).

This p is called the probability of 1 in a given Kollektiv.
Why do the Kollektivs exists? We know that gambling facilities are commer­

cially successful, and this would be impossible if some selection rule existed that 
allowed the gamblers to select a subsequence of games with different frequencies of 
outcomes.

This is a short (but faithful, we hope) summary of what von Mises wrote; 
see, e.g., his book Wahrscheinlichkeit, Statistik und Wahrheit [127]. But his book 
was written not in the times of Euclid or Spinoza, but in the beginning of the 
twentieth century, when people tend to ask nasty questions about exact definitions 
and for detailed proofs. Indeed, one can declare that the existence of sequences 
with some properties is an axiom that is confirmed experimentally (though to speak 
about experimental confirmation of the statement that deals with limits of infinite

261
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sequences is a bit strange). But even then one should say exactly what property 
we have in mind.

The problem is with the selection rules: We did not say what kind of selections 
are allowed. Mises gave only some examples of admissible selection rules (we gave 
three examples of this type), and noted that the decision to se lec t (or do not 
select) some wn should not depend on the value of cjn itself; otherwise, we can 
select a subsequence of zeros (or ones) only from every sequence, and this violates 
the frequency stability property.

Trying to make Mises’ ideas precise, one can give different formal definitions 
of admissible selection rules and can therefore get different notions of Kollektivs. 
After some version is chosen, one can ask whether Kollektivs exist. This question 
is a mathematical one, while the question of whether coin tossing really gives a 
Kollektiv belongs to natural sciences or philosophy (and can be put aside).

For simplicity we restrict ourselves to the case of a symmetric coin (p = 1/2) 
unless the opposite is not said explicitly. To simplify the statement, let us define 
a balanced sequence of zeros and ones as a sequence where the frequency of ones 
(and, therefore, the frequency of zeros) has limit 1/2.

9.2. Set of strings as selection rules

The first (and, probably, the most natural) interpretation of Mises’ ideas of an 
admissible selection rule is the following one. We decide whether to select some 
term ojn looking at all the preceding terms, i.e., coocoi • • -wn-i- So an admissible 
selection rule is a function that maps all binary strings ujq - ■ ■ ojn- i  to a two-element 
set {select, do not select}. In other words, a selection rule is a set R of binary strings 
(corresponding to the value select).

Formally speaking, for every set R of binary strings we define a selection rule as 
a mapping S r that maps an infinite binary sequence ш € ft into a (finite or infinite) 
subsequence S r (co). Namely, S r (co) consists of terms шп such that ujq • • -wn-i G R. 
(The order of terms is the same as in the original sequence.)

We give an example: If R consists of strings whose lengths belong to some set 
{no, ni, • • •} (where no <n\ < ■ • • is an increasing sequence of integers), then Sr {uj) 
is шПоШщ • • • (note that the length of xo • • • z/c-i is k). We give another example: 
The rule “select terms that follow ones” corresponds to the set R which contains 
all strings with last bit 1.

Assume that we fix some R and then go to a casino where a sequence w of zeros 
and ones is generated by tossing a fair coin. Then we get some subsequence S r (co).  

(In other words, we use R to decide when to make bets). It is natural to expect 
that this selection does not give us any advantage, and the limit frequency of ones 
in the subsequence is still 1/2. There is an important point, however: We assume 
that we have chosen R before we came to the casino. After the game it is easy to 
find a rule R that would win if it were used in the game. In other words, we make 
the following (obvious) observation: For every sequence to there exists a set R such 
that S r (co) consists only of zeros or consists only of ones, and therefore S r (uj) is 
not balanced. So we cannot define the Kollektiv as a sequence и  such that S r (co) 

is balanced for all R. With this definition there are no Kollektivs at all.
However, as Wald noted in [217], for every countable family of selection rules 

SRj (that corresponds to a countable family of sets Ri) there exists a sequence
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uj that has a frequency stability property with respect to all Rp. For every i the 
sequence Sr^ uj) is balanced (or finite).

This is easy to prove by a probabilistic argument:

T h e o r e m  166. Let R be an arbitrary set of strings. Then the set of all se­
quences uj £ Cl such that Sr (oj) is an infinite unbalanced sequence is a null set with 
respect to the uniform measure on Cl.

This theorem says that every selection rule discards a null set. So a countable 
class of selection rules generates a countable family of null sets, and the union of 
these null sets is a null set. So there are sequences not discarded by any selection 
rule in the class (moreover, this happens with probability 1).

PROOF. This statement follows from the Strong Law of Large Numbers (the 
set of unbalanced sequences is a null set, see Section 3.2) and the following lemma 
that holds for every selection rule Sr .

L em m a. Let U  C Cl be a null set. Then its preimage S ^ l ( U )  is a null set.

Informally, each next bit of the sequence Sr (uj) has the same chance to be zero 
and one (for every fixed combination of previous bits); the difference with uniform 
distribution is that the next bit may be absent (if the sequence is finite), but this 
may only decrease the probability.

(Recall an old question: Will the percentage of men change if families stop 
giving birth to children after a son is born to keep their heir unique? The answer 
is negative for the same reasons.)

Now let us present the formal argument.
Consider the set £ x of all finite and infinite extensions of x and two of its subsets 

£ xo and Exi . Let us prove that 5ß-preimages of £ xo and £ xl have equal measure 
(in other words, 0 and 1 can appear after x in Sr (uj) with the same probability).

Indeed, consider all strings г such that z £ R and Sr  selects x from z. They 
correspond to the situation when x is already selected and the next bit will be 
selected right now. So every two strings 2 with this property are incompatible, and 
the sets Clzo are disjoint. The union of these sets is the preimage of the set £ xo- 
Similarly, the preimage of £ xi is the union of disjoint sets Clz i .  So we have split 
the preimages into equal parts so the preimages have equal measures.

Now it is easy to prove by induction that the measure of the S^-preimage 
of £ x is bounded by Therefore, the preimage of a null set is a null set
too. Indeed, consider the cover of U by intervals Clx. with small total measure. 
Consider the preimages of £ Xj. ; each of these preimages is a countable union of 
intervals. Combining all these intervals, we get a cover of 1 (£/) with small total 
measure. So the Lemma—and Theorem 166 as well—is proven. □

Note that the standard measure-theoretic argument (a measure of a set is the 
infimum of the measures of its covers) now implies that

p (S f i \U ) )^ p (U )
for every measurable U C fi. If Sr (oj) is infinite for every uj (or for almost every 
uj), then we can guarantee also that Sr (uj) is uniformly distributed,

ß{S-R1(U)) = ß (U). 
for every measurable U. (Consider U and its complement.)
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253 Fix some selection rule R. Show that if ш has a Bernoulli distribution 
(independent trials with the same probability p, not necessarily equal to 1/2), then 
Sr (co) has the same distribution (assuming that it is infinite with probability 1).

So the definition of Kollektiv gives a non-empty notion (Kollektivs exist) if we 
restrict ourselves to some countable family of sets R and consider corresponding 
selection rules. But which countable family should we choose?

9.3. M ises-Church randomness

The ideas of von Mises appeared before the notion of algorithm (or computabil­
ity) was formalized. As soon as the notion of computable function appeared, it 
became possible to use it in the Mises’ scheme. This was done by A. Church [44], 
so selection rules Sr that correspond to decidable (=computable, recursive) sets R 
are called Church-admissible in the sequel. The corresponding class of sequences, 
i.e., sequences ш such that Sr (cj) is finite or balanced for every Church-admissible 
rule, are called Mises-Church random, or Church stochastic.

We know already that they exist and form a set of full measure. Moreover, the 
following stronger statement is true:

T heorem 167. Every ML-random sequence (with respect to the uniform mea­
sure) is Mises-Church random.

P roof. The effective version of the SLLN (Theorem 32, p. 65; see also Sec­
tion 8.4) guarantees that the set U of non-balanced sequences (that do not have 
the limiting frequency or have it different from 1/2) is an effectively null set.

Let us show that for a Church-admissible selection rule Sr the preimage of 
an effectively null set is an effectively null set. Indeed, if R is decidable, the con­
struction used in the proof of Theorem 166 becomes effective (one can effectively 
enumerate all the intervals that form a preimage of a given interval). So an ML- 
random sequence does not belong to this preimage, i.e., its image is balanced (or 
finite). □

What else can we prove about Mises-Church random sequences, except for 
the SLLN (that is satisfied by definition)? For example, we can prove that each 
substring (not only each symbol) appears with a correct frequency:

Theorem 168. Let oj be a Mises-Church random sequence, and let U be a 
binary string. Consider the positions к where U appears in и  (this means that 
UqU\ • • • = cjkCJk+i • • • )• The fraction of those i among the first N  positions tends 
to 1 /2 ^ )  as N  —» oo.

P roof. We already know that zeros appear in (approximately) half of the 
positions. Consider now the rule “select terms that go just after zeros”. Mises- 
Church randomness guarantees that the selected subsequence contains (approxi­
mately) equal numbers of zeros and ones. This means that the groups 00 and 01 
have approximately the same frequency, so the limit frequency of each group is 1/4. 
The same is true for 10 and 11. Now consider the rule “select terms that follow 00” 
(or “select terms that follow 01”), etc. □

254 Consider a Mises-Church random sequence and split it into fc-bit blocks 
(for some k). Show that in the resulting sequence (in a 2fc-letter alphabet) each of 
2k blocks appears with limit frequency l/2 fc.
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{Hint-. This problems differs from the preceding theorem, because now we take 
into account only ^-aligned blocks. However, the same argument works.)

The sequences where each combination of letters (of every fixed size) has the 
same limit frequency (as claimed by Theorem 168), were considered independently 
of Mises; they are called normal

Let us change the definition of normality of a bit sequence a and require255
that for every m the sequence of m-bit strings, obtained by splitting a into m- 
bit blocks, contains every m-bit string with limit frequency 2~m. Prove that this 
definition is equivalent to the original one.

{Hint: The difference is that now we consider only aligned m-bit occurrences 
instead of all occurrences. Still we can prove equivalence considering not only m-bit 
blocks but also M-bit blocks where M is a large multiple of m. Assume that aligned 
M-bit blocks appear with right frequencies. Then for a fixed position inside each 
long M-bit block (modulo M) all short m-bit blocks appear with right frequencies, 
and short blocks that cross the boundaries between large blocks are rare (m <C M). 
In the other direction, assume that non-aligned frequencies are OK. Most M-bit 
blocks are good in the sense that frequencies of short blocks inside them are almost 
right. Bad blocks are exponentially (in M) rare in terms of non-aligned frequencies. 
Aligned frequencies could be at most M times bigger, and the factor M is absorbed 
by the exponent.)

The reals whose binary representations are normal sequences, are called normal 
in base 2; similarly one can define reals that are normal in base b. If a real is normal 
in base b for every integer b, it is called absolutely normal

Prove that the same reals are normal in base b and in base bk.256
(Hint: Use the preceding problem.)
One can prove that the class of normal in base b reals depends on b, but this is 

a non-trivial number-theoretic result [161], and we will not prove it here.
257 Let us consider a bit sequence ш as a binary representation of a real

a G [0,1]. The tails of oj form a sequence of points in [0,1] which is the orbit of a 
under the mapping x (->■ {2x} where {u} stands for the fractional part of u. Show 
that oj is normal if and only if this orbit is uniformly distributed in [0,1]. (The 
latter means that for every interval the fraction of points that are in this interval 
has a limit proportional to the length of the interval.)

258 Prove that multiplication by an integer factor preserves normality: If a
is normal in base 2 and к is an integer, then ak is normal in base 2. (The same is 
true for other bases.)

{Hint: Use the preceding problem. Applying the nth iteration of the mapping 
x и  {2x} to some real u, we get {2nu}. For every integer к the number {2n{ku)} 
is obtained from {2nu} by the transformation у i-> {ky}. It remains to prove that 
this mapping preserves the uniform distribution property.)

One can prove that normality is also preserved when we divide a number by 
some integer (and therefore, when we multiply a number by an arbitrary rational 
number). This was shown by D. Wall [218] (see also [88]), but the proof is non­
trivial and we do not provide it here; see [182] for the proof.

We know that Mises-Church random sequences are normal, but one can also 
find a computable normal sequence. For example, if we write numbers 1, 2,3,. . .  in
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binary and concatenate all these strings, we get a normal sequence 

1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 - - •

(Champernowne’s example [36]; he considered base 10, but this does not matter 
much).

259 Prove this statement.
(Hint: Fix k, the block size. Starting from some point, the numbers have many 

more than к digits, and after that the boundaries between numbers do not change 
the frequencies significantly. And the average of block frequencies in all strings of a 
given length N  is as it should be. (Some care is needed to deal with the case when 
we stop in the middle of strings of length N.))

This construction of a computable normal sequence is performed for one base, 
and we cannot use it to get a computable absolutely normal number. But such 
a number (whose 6-ary representation is a computable normal sequence for every 
base n) exists. This observation was made long ago by Turing in his unpublished 
notes; see [8].

260 Prove that a computable absolutely normal number exist.
(Hint: Numbers that are not normal in base 6, form a Schnorr effectively null 

set; this is true for all b, and the union of these sets is also a Schnorr effectively 
null set, so there exists a computable point outside it.)

Unlike normal sequences, Mises-Church random sequences cannot be com­
putable for obvious reasons (otherwise we can select a sequence of zeros or a se­
quence of ones by a computable rule). Moreover, the following statement is true:

T h eo r e m  169. For every total algorithm that gets bits of a sequence from left to 
right and predicts the next bit before getting it, the fraction of successful predictions 
for a Mises-Church random sequence tends to 1/2.

P r o o f . Indeed, a (total) algorithm that makes predictions can be converted 
into two selection rules: one selects the terms where the algorithm predicts zero, the 
other selects the terms where the algorithm predicts one. So our sequence is split 
into a “mixture” of two subsequences, and Mises-Church randomness guarantees 
that each of the two sequences is balanced (or finite, but then the statement is 
trivial). So the fraction of successful predictions for each subsequence tends to 1/2; 
so the total fraction of successful predictions tends to 1/2. □

This statement can be generalized further. Consider the following game: before 
the next term of the sequence appears, we may make a bet on zero or one; the 
amount of a bet is a rational number in [0,1]. If our guess is correct, we get the 
doubled amount; if not, we lose the money. A strategy in a game of this type is 
a function S  whose arguments are binary strings (the bits already disclosed) and 
the values are rational numbers in [—1,1]. The positive values mean that we bet 
on 0, the negative values mean that we bet on 1. The total gain of the strategy S 
playing with the initial segment шо • • • шп-1 is then

71—1 

i = 0

the negative values correspond to our loss (in this game we can go below zero).
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Theorem 170. Let S be a total computable strategy of this type, and let ui be a 
Mises-Church random sequence. Then the gain of S playing against ui is o(n) after 
n steps.

P r o o f .  Assume that the strategy may have only values 1 and —1. Then it is 
essentially equivalent to guessing the next bit. We already know that the fraction 
of successful guesses tends to 1/2, and this means that the average gain per bit 
tends to 0.

Now consider more general strategies whose values are rational numbers be­
tween — 1 and 1 with denominator к (i.e., multiples of 1 /к), for some fixed k. Every 
strategy S  of this type can be considered as an average of 2к strategies with values 
— 1 and 1 only, and the gain of S  after n bits is at most en, if n is large enough. 
We know that for each of them the gain is o(n), so the average is also o(n).

Finally, we consider an arbitrary strategy with rational values. For each e > 0 
we need to prove that the gain of S  after n bits is at most en, if n is large enough. 
So let us fix some e. Choose к in such a way that 1/k < e, and approximate S  by 
a strategy S' whose values are multiples of 1/k (taking the closest multiple). The 
approximation error is bounded by e/2. For S' we already know that its gain is 
o(n), so it is less than (e/2)n for large enough n, and the difference between gains 
of S  and S' is at most (e/2)n. □

Here is one more property of Mises-Church random sequences. (It was men­
tioned by Mises as one of the basic property of Kollektivs.)

T heorem 171. Applying a Church-admissible selection rule to a Mises-Church 
random sequence, we get either a finite sequence or a Mises-Church random one.

P r o o f .  It is easy to see that the composition of two Church-admissible selec­
tion rules is a selection rule of the same type. If we select some terms (by looking at 
the previous ones) into a subsequence and then again select some terms of these sub­
sequence looking at the previous ones, the resulting decision for some uji (whether 
it will survive the first and the second selection or not) is determined by ojo • • • u>i_i. 
(And the composition of two computable selection rules is computable.) □

Later (Section 9.12, p. 291) we consider more general selection rules (non-mono­
tonic ones) and modify accordingly the notion of randomness (the so-called Mises- 
Kolmogorov-Loveland randomness or Kolmogorov-Loveland stochasticity). This 
new class of selection rules will not be closed under composition, and, moreover, 
the corresponding notion of randomness in not closed under selection rules (see 
Theorem 203, p. 307.)

We have not discussed yet the relation between Martin-Löf randomness and 
Mises-Church randomness. As we will see soon, they differ, and not all Mises- 
Church random sequences are Martin-Löf random. But first let us make some 
remarks about Mises’ definition.

9.4. V ille’s example

We have seen already that for every countable family of sets Ri there exists a 
sequence that satisfies the frequency stability property with respect to all selection 
rules Sri (each of these rules selects a finite or balanced subsequence). Indeed, the 
set of sequences with these properties has measure 1. This is an existence proof;
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can we give a more explicit construction of such a sequence? Indeed this is possible, 
and we now explain such a construction following A. Wald [217], J. Ville [206], 
and D. Loveland [106].

Let us first consider the case when there is only one selection rule Sr that 
corresponds to some set R. Then it is easy to construct a sequence ш such that 
Sr (oo) = 01010101 • • • (zeros and ones alternate), so Sr (oo) is balanced. Indeed, we 
construct ш from left to right. When the rule Sr informs us that it intends to select 
the next term, we look at the number of this term in the subsequence (whether it 
is even or odd) and choose the next term to be 0 or 1 depending on this number. 
(The terms of ш that are not selected by Sr can be chosen arbitrarily.)

Now assume that we have m  sets R i , . . . ,  Rm that define selection rules. We 
want to construct a sequence и  such that Sr^ cj) is finite or balanced for each Ri. 
Again we construct the sequence from left to right. Before we choose the value of 
the next term oon, let us apply all the rules to the previous terms and see which of 
the rules SRi will select un. We get a ?n-bit vector, so we can classify the terms 
of и  into 2m classes depending on this vector, even before the value of the term is 
chosen. The sequence со, therefore, is a mixture of 2m interleaving sequences (some 
of them may be finite).

We have not said yet how we construct to. We use the following rule. All 
the 2m subsequences (corresponding to 2m values of the m-bit vector) should be 
01010101 • • •. This can be achieved in a unique way: Before oon is chosen, we 
know ojq ■ • ■ ojn—i , and we know which rules will select con, so we know in which 
subsequences is con and we can choose its value.

Note that Sr^ co) is a mixture of 2m~1 subsequences (that correspond to 2m~1 
bit vectors that have 1 at position г). Therefore Sr^ co) is balanced; moreover, we 
can guarantee that in each prefix of Sr^ oo) the number of ones does not exceed the 
number of zeros, and the difference is bounded by 2m~1 (one for each subsequence).

Now we switch to the general case of countably many rules R{. The main idea 
is that we add these rules one by one, and at each moment deal with finitely many 
rules. If we do it slowly, the transition effects are negligible, and every selection 
rule selects a balanced subsequence.

If this is not convincing, here are the details. Assume that we have already 
constructed some prefix ooo ■ ■ -ojn-1 of the sequence to. Then it is already known 
which rules S r 1 will select the next term oon (while the value of con is yet to be 
determined). This information is now not an m-bit vector, but an infinite bit 
sequence iqiq--- (where щ — 1 if S r ï selects the next term). We consider the 
sequence U\U2 ‘ ■ ■ as a path in an infinite binary tree.

Fix some increasing sequence ko < к± < k,2 < of positive integers. We 
assume that it grows fast enough; for example, we may let кг =  22г. At each step 
of the construction (for each term cjn) one of the tree vertices will be declared as 
active. Namely, following the path щ щ  - ■ ■, we select the first vertex that was 
active fewer than ki times, where г is the height of this vertex, and we declare it 
as active. In other words, an active vertex (at the step when con is chosen) is a 
shortest string x such that

• the ith bit of x is 1 if and only if 5д; selects wn;
• at previous steps of the construction (when ooo ■ • -u;n_i was constructed), 

the vertex x was active fewer than кцх) times.
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So first the root is active, until it happens ko times. Then 0 or 1 is active (depending 
on whether the rule S ^  selects the next term or not) until they become “tired” of 
being active ki times, etc.

In this way we construct a sequence coocoi ■ • • that is a mixture of countably 
many finite subsequences that correspond to countably many possible active ver­
tices. The subsequence that corresponds to vertex x (the terms constructed at the 
steps when x was active) has length at most кцх) (but it may be shorter). As 
before, we choose u)n in such a way that all these subsequences are of the form 
010101 •••.

Let us look at the subsequence selected from cj by and show that it is 
balanced (or finite). Now the situation is a bit more complicated: First, we have 
countably many subsequences, and second, the rule Sд. was initially ignored (when 
the active vertices were shorter than i). Let us look at the subsequence selected 
by SR. more closely. It consists of terms of two types. First, there are some terms 
that correspond to active vertices of height less than i, so was not taken into 
account. Second, Sr . includes all the terms that correspond to active vertices 
where the ?th bit equals 1. The number of terms of the first type is bounded by 
2°ko + • • • + 2l~lki-\, so we can safely ignore them.

As for the terms of the second type, note that for every active vertex the 
subsequence corresponding to this vertex is 010101 • • •, and each of its prefixes 
contains no more ones than zeros, and the difference is at most 1. So the imbalance 
in the selected subsequence (if we ignore terms of the first type) at some moment 
t is bounded by the number of active vertices appearing at that moment. Let N  
be the maximal height of the active vertices used before £; we assume that N  ^  i 
(otherwise there is no term of the second type). Then at most 0(2N) active vertices 
were used, and the imbalance is at most 0(2^). On the other hand, since the vertex 
of height N  became active, the preceding active vertices should be used completely, 
so the length of the sequence is at least км -1- It remains to use that 2N = о(км-i).

So we have described an explicit construction of a sequence that has the fre­
quency stability property with respect to a given countable family of selection rules. 
Does it give something really new when compared to the probabilistic existence 
proof? Yes. For example, we may note that in this sequence each prefix contains 
at least as many zeros as ones, since this is true for all the 010101 ■ • ■ pieces. So we 
have proved the following result:

T heorem 172 (Ville’s example). There exists a Mises-Church random se­
quence where each prefix contains at least as many zeros as ones.

(We can also get a sequence whose prefixes have strictly more zeros than ones 
just by starting with first bit 1 and then using the construction.)

This result can be used to prove that there exists a Mises-Church random se­
quence that is not ML-random. For that it would be enough to prove that this 
property (more zeros than ones) is not possible for an ML-random sequence. It 
is indeed that the case, and it is a consequence of the Effective Law of the Iter­
ated Logarithm—but, unfortunately, not the part that we proved in Section 8.4 
(Theorem 156).

261 Prove that in this case we do not really need the effective version: If the 
set of sequences that have more zeros than ones in all prefixes is a null set, then it 
is an effectively null set.
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{Hint\ Let pn be the probability of the event “up to length n all prefixes have 
more zeros that ones”. The sequence pn is a decreasing computable sequence, and 
its limit is the measure of the set in question. So if this limit is 0, for a given e > 0 
we can wait until pn becomes less than e . One can also refer to the results about 
Kurtz randomness (p.70).)

262 Prove that the set of sequences that contain more zeros than ones in all 
prefixes in an effectively null set, not referring to the Law of the Iterated Logarithm.

(Hint : For every n the probability of the event “the n-bit prefix has more zeros 
than ones” is about 1/2. If we take a sequence of values of n that grow fast, these 
events will be almost independent (the deviations for the short prefixes is negligible 
compared to the expected deviation for the long prefixes).)

We do not provide the details of this argument here. Instead, we prove in a 
different way that there exist Mises-Church random sequences that are not Martin- 
Löf random. Namely, we show that there exists a Mises-Church random sequence 
whose prefixes have logarithmic complexity, using the same explicit construction.

T heorem 173. There exists a Mises-Church random sequence d  = l)qL)\ • • • 
such that

C{u)0 • • -wn_ i) = О (log n).
PROOF. To construct such a sequence, we apply our construction to the count­

able list of all Church-admissible selection rules: The sets R{ are all decidable sets 
of strings. This is not an effective construction, since we cannot enumerate all de­
cidable sets (all total algorithms)—this is not a surprise, otherwise we would get a 
computable Mises-Church random sequence!

We can enumerate all programs, but then we need some extra advice: Some­
body should tell us which of the programs define decidable sets (so we can replace 
the bad ones by some fixed decidable set). This information for the first m. programs 
takes m  bits (one bit per program), and it is enough to perform our construction 
until we reach active vertices of height (length) m. At that moment we have con­
structed at least km- \  = 22m-2 bits of the sequence. So the amount of additional 
information (advice) is logarithmic in the length of the prefix. □

Let us repeat again the important corollary of this result:
Theorem 174. There exists a Mises-Church random sequence that is not 

Martin-Löf random {with, respect to the uniform measure).
If the Mises-Church definition is too weak, maybe we should make it stronger? 

For example, one can consider a broader class of selection rules or a different type of 
gambling. In the following sections of this chapter we consider some generalizations 
that involve non-monotonic rules (the order of terms in the subsequence is not the 
same as in the entire sequence) and martingales (where we start playing with a 
fixed amount and can bet all the money we have).

9.5. M artingales

When discussing why Kollektivs exist, we referred to gambling practice. But 
from the practical viewpoint our gambling framework looks quite unnatural: a gam­
bler comes to a casino where a fair coin is tossed, he selects some of the bits (before 
they are produced) and then “wins” (discredits the casino’s source of randomness) 
if the selected outcomes are imbalanced (do not have limit frequency 1/2).
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As we have said (trying to make the game more natural), we get the same 
definition if we allow the gambler to make a bet of fixed size at some moments 
(having the unlimited credit needed for long sequences of losses), and we require 
that the gambler’s average gain (per game) tends to zero as the number of games 
increases. One can also allow variable bets of bounded size to be made; see above.

J. Ville suggested another setting that looks more natural. Here the gambler 
comes to the casino with some fixed amount of money, say $1. Before a coin is 
tossed, the gambler splits the capital into two parts: the first is used to make a 
bet on 0, and the second is used to make a bet on 1. One of the bets is successful; 
the corresponding amount is doubled (and the other part is lost). For example, a 
cautious gambler may split the current amount into two equal parts, then one is lost 
and the other one is doubled, so the capital remains unchanged. (It is clear therefore 
that a special option to leave some part of the money aside is not necessary, it can 
be emulated anyway.) Now we cannot go into negative, so both parts should be 
non-negative numbers.

After a game is described, it is clear how the notion of a gambler’s strategy in 
this game should be defined: a strategy is a function that maps the history of the 
game (the sequence of already seen bits) to the next move (how much should be 
bet on 0 and on 1). In fact, we will use more a convenient representation of the 
strategy: let m(x) be the gambler’s capital after playing with x (if she follows the 
strategy). This (non-negative) function determines the strategy uniquely: After 
seeing x, we bet m(:r0)/2 on 0 and m(x 1) on 1. Not all non-negative functions 
correspond to strategies; two conditions are necessary (and sufficient):

• m{A) — 1 (as we agreed, the initial capital when we observed the empty 
string A equals 1);

• m(x) — (m,(x0) + m(x 1 ))/2 (the sum of bets on both outcomes is equal 
to the current capital).

A non-negative function m  that has both properties is called a martingale with 
respect to the uniform measure on the Cantor space. Later we also consider mar­
tingales with respect to other measures on the Cantor space. In probability theory 
a more general notion of martingale is used, but for our purposes this will be suffi­
cient. So from now on we speak mostly about martingales instead of corresponding 
strategies.

Let v be an arbitrary measure on the Cantor space. It is easy to check that 
the ratio v(Ctx)/p(Q,x) (here p is the uniform measure on the same space and Ltx 
is the set of all extensions of x) is a martingale, and every martingale is obtained 
in this way from some measure.

263 Show that this is indeed the case.
The following intuitively obvious statement is sometimes called the Doob in­

equality or Kolmogorov inequality.

T heorem 175. Let m be some martingale, and let к be some positive threshold. 
Consider the set of strings where the martingale exceeds k, and consider all infinite 
sequences that have a prefix in this set. Then the (uniform) measure of the set of 
all these sequences does not exceed 1/k.

P roof. Let us follow the strategy that corresponds to m, but when the capital 
achieves к (or more), we stop playing and go home. This modified strategy has an
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expected return of at most 1 (since the game is fair), so that the probability that 
we achieve к or more is at most l /к.

To make this argument formal, consider the corresponding measures. Assume 
that m(x) is u(Qx)//j,(Ctx) for some measure v (and p is the uniform measure). We 
consider vertices (strings) x such that the ^-measure of cone Гlx is к (or more) times 
bigger than the /^-measure of the same cone. Now consider only the minimal strings 
x with this property (this does not change the union of Qx). They correspond to 
disjoint cones. The total /^-measure of these cones is к times smaller than their 
total measure (or even smaller), and the latter is at most 1. □

264 Prove that for a lower semicomputable martingale m the function

t(u)) = sup m(x)

is a probability-bounded randomness test in the sense of Section 3.5.
We have seen that the set where the martingale wins a lot has small measure. 

The reverse statement is also true: for every set S  of small measure, there exists a 
strategy (martingale) that wins a lot on every sequence in S.

Theorem 176. Let U c  Q  be an open set of measure e > 0. Then there exists 
a martingale m with the following property: Each sequence id € U has a prefix x 
where m(x) ^  l/e.

PROOF. Consider a measure v such that v(X)  = p(X  П U)/e. (This measure 
is zero outside [/, and it is (l/e) times the uniform measure inside U.) Then the 
function m(x) — u(Qx) /  p(Qx) is a martingale with the required properties. Indeed, 
if id El l ,  there exists a prefix ж of id such that Qx C U  and m{x) = l/e. □

This theorem can be explained as follows. Imagine the there are dishonest 
people in the casino’s management who are ready to sell some “insider information”. 
Namely, they specify some open set U and guarantee that the sequence of future coin 
tossing (due to cheating) is in U. What is the “market value” of this information 
(together with the option to start the game with initial capital 1 in the casino)? 
Our theorem says that it is l/p(U).  For example, if the insiders tell us (in advance) 
the first N  bits, the corresponding open set has measure 1/2N, and indeed we can 
win 2N by betting all the money on the known outcome for N  first games. The 
same is true for more complicated types of cheating. For example, if the insiders tell 
us that some outcome is not possible (“In our casino we never have N  consecutive 
zeros after opening”), this is still something valuable (this information allows the 
gambler to make 2N/(2N — 1) dollars out of 1).

The proof of the theorem also can be explained easily in these terms. If at the 
first step the set U is split between По and Hi proportional to ao : a\ , we split our 
money in the same proportion. (For example, if all elements of U start with 0, we 
bet all the money on 0.) Then the ratio

current capital
the fraction of U among the extensions of current situation

does not change during the game. Initially the numerator is 1 and the denominator 
is £ (or even less). When we bump into U (and this will surely happen, unless the 
insiders sold us false information), the denominator is 1, so the numerator is at 
least l/e.
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Similar statements are true for the limit behavior of a martingale. Let us 
say that a martingale m wins on a sequence oj if the values of m  on the prefixes 
of oj are not bounded. The following result, discovered by Ville (who introduced 
martingales), was one of his main motivations.

T heorem  177. (a) Let m be a martingale. Then the set of sequences on which 
m wins has measure 0.

(b) Let X  be a set of measure 0. Then there exists a martingale m that wins 
on all elements of X .

P ro o f , (a) The set Uk of sequences, where m  reaches the value к or more, 
has measure at most l /к  and is open; all sequences where m  wins belong to Uk for 
every к.

(b) For every к consider the open set Uk of measure at most 1 /к  that contains 
X , and the corresponding martingale that achieves к or more on all elements of 
Uk- Now we need to combine these martingales into one. Note that the weighted 
sum of martingales is a martingale (we may split the capital into pieces and use a 
separate strategy for every piece). Let us use martingale 7774« with initial capital 
(weight) 2~n for all n in parallel (note that 1 = J2n 2~n)- Then for all sequences 
that belong to £/4n, we guarantee a return of 4n • 2~n = 2n (plus, maybe, some 
return from other investment strategies). So the return on every element of X  is 
infinite. □

The proof of this result is similar to the proof of the randomness criterion 
(Theorem 90, p. 146); we can say that we now have proved the classical version of 
Theorem 90 by the same argument.

In fact we have proved a bit more that was promised. Let us say that m strongly 
wins on the sequence oj if its values on the prefixes of oj are not only unbounded 
but have limit + 00. In the proof of Theorem 177 we have constructed a martingale 
that strongly wins on all elements of X. (Indeed, the martingale constructed in the 
proof of Theorem 176 is at least \ je on all sufficiently long prefixes.)

Again, Theorem 93 on p. 149 can be considered as a constructive version of 
this stronger result. (We will discuss later the connection between randomness and 
effective versions of the martingale notions.)

Combining these observations, we get the following corollary:
T heorem  178. For every martingale m there exists (another) martingale m! 

that strongly wins on all sequences where m wins.
P ro o f . As we have noted, we can obtain m! going to sets and back. There is 

also a very intuitive direct construction. The martingale m! should behave like a 
wise stock market player: when it achieves capital 2 (using the m-strategy), it puts 
aside half of its money as a safety measure (i.e., this part of the money is bet on 
0 and 1 in equal parts), and the other half is used according to m  (but with twice 
smaller amounts). When the capital reaches 4 (i.e., when m  would reach 8), again 
the half (2) is saved, and the rest is used for playing, etc.

Here is another version of the argument (which is better if we want to keep 
the martingales enumerable from below): For each martingale m  and each number 
c > 0, consider the martingale m c which imitates m  while the capital is smaller 
than c, and then stops. Then the limit of mc is at least c on every sequence where 
m  reaches c at least once. It remains to take the weighted sum of m±k with weights 
2~ k . □
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Choosing the weight more carefully, one may prove the following general state­
ment [171, 47]. Let /  : [1, +oo) -> [0, -boo) be a non-decreasing continuous function 
such that Jj00 f i t )  f t 2 d t  ^  1. Then for every martingale m  there exists a martingale 
m !  with the following property: If at some sequence ш the martingale m  reaches c 
at some moment, then m !  reaches /(c) at the same moment and never goes below 
/(c) later. (The integral bound in the condition is sharp.)

Up to now we assumed that the coin is symmetric—the probabilities of heads 
and tails declared by the casino are equal. This means that in a fair game the 
bets on zeros and ones should be doubled. But we can consider other settings. 
Imagine that casino claims that 0 appears with probability 1/3 and 1 appears with 
probability 2/3. To make the game rules consistent with this claim, the casino 
should return bets on 0 multiplied by 3, and bets on 1 multiplied only by 1.5. The 
definition of the martingale changes accordingly: m ( x ) ,  the capital after x ,  should 
be equal to the sum of its two parts—the amount bet on 0 equals m { x 0)/3, and 
the amount bet on 1 equals to 2m(xl)/3. So we get the condition

1 2
m(x) = - m i x 0) + - m { x  1),

which can also be read as “the capital before the next game is equal to the expected 
capital after it”.

Let us now give a formal definition. Let 7Г be an arbitrary probability distri­
bution on f2 (informally, the casino claims that the coin behaves according to it). 
The corresponding function on strings will also be denoted by 7Г, so 7г(х) = тг(0,х).

A non-negative function m  on binary strings is called a m a r t i n g a le  w i th  re s p e c t  
to  7Г (with initial capital 1) if m(A) = 1 and

т (х )т г (х )  =  т (х 0 )т г{х 0 )  +  т(а;1)7г(а:1)

for all x .  (This definition corresponds to the informal discussion above: Dividing 
the equation by 7г(ж), we get conditional probabilities тг(х0)/тг(х) and 7г(ж1)/7г(:г) 
of 0 and 1 after x . )

In other words, we require that the function т[х)тт[х) is a measure, so a mar­
tingale with respect to 7Г (or a i r - m a r t in g a le )  is just a ratio of some other measure 
and 7Г. Now we can extend the results above (essentially with the same proofs) to 
the case of arbitrary measures:

(1) Let m  be a 7r-martingale, and let к  be some threshold. The ^-probability 
of the event “m reaches к  on some prefix of ш" is at most 1 / к .

(2) For every open set U there exists a martingale that reaches 1/tt(U) on all 
elements of U.

(3) A set A is a 7r-null set if and only if there exists a 7r-martingale that wins 
(or strongly wins) on all elements of X.

The Doob-Kolmogorov inequality guarantees that every martingale is bounded 
almost everywhere. The following stronger statement (D o o b ’s  th e o r e m )  is also true:

Theorem 179. F o r  e v e r y  n - m a r t i n g a l e  m  f o r  тг- a l m o s t  e v e r y  s e q u e n c e  ш, the  
v a lu e s  o f  m  o n  p re f ix e s  o f  ш h a v e  a f i n i t e  l im i t .

(In o t h e r  w o r d s ,  t h e  s e t  o f  s e q u e n c e s  ш, w h e r e  m  d o e s  n o t  h a v e  a  f i n i t e  l i m i t ,  

i s  a  7 T -n u ll  s e t . )
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P roof. Kolmogorov’s inequality guarantees that m is bounded on prefixes of 
u) with probability 1. So it remains to prove that for every rational p, q such that 
0 < p < q, the following event has probability zero: “The capital on prefixes of ш 
oscillates becoming less than p infinitely often and greater than q infinitely often.” 
To show this, we consider another martingale m'  that is unbounded at all sequences 
to where the oscillations happen. The martingale m'  implements the classical “buy 
low—sell high” strategy: it looks at the capital of the original martingale, but 
keeps its own capital unchanged until m  becomes less than p. Then m! behaves 
like m  (with some constant factor) until m reaches capital greater than q\ then in! 
again keeps the capital unchanged until m  goes below p, etc. At each iteration m'  
increases its capital by factor (q/p), so it tends to infinity for sequences where m 
oscillates. □

This theorem can be used to define conditional probabilities. Consider some 
measure pi on the product f l x f l .  Then we can consider pi, which is the projection 
of p at the first coordinate (the marginal distribution). We also want to define the 
conditional distribution of the second coordinate when the first coordinate is equal 
to some ö é Q .  We cannot use the elementary definition of conditional probability 
with some event as a condition since the event “the first coordinate is equal to 
a ” often has zero probability. Usually the conditional probability is defined (for 
//x-almost every a) using the Radon-Nikodym derivative, but in our case we can 
give a more concrete definition using the Doob theorem.

Let A be some property of the second coordinate. Consider the conditional 
probability of A with the condition “the first coordinate has prefix a = ao ■ • • a^- i”. 
For a fixed A this probability (as a function of a) is a pi-martingale (up to a con­
stant), so the Doob theorem guarantees that for p \-almost every a these probabili­
ties converge to some limit. This limit (defined pi-almost everywhere) is called the 
conditional probability of A when the first coordinate is equal to a. (It is possi­
ble that some prefix has probability 0, and then the conditional probability is not 
defined, but this creates problems only for a set of measure 0.)

The advantage of this construction is that it allows us to define the conditional 
probability for computable measure p on fl x Q and every ML-random (with respect 
to pi)  sequence. See [7] for details.

Returning to our main topic, we conclude this section with the following (evi­
dent) observation:

T heorem 180. For every martingale there exists a sequence on which it does 
not win (and, moreover, is bounded by 1 on all prefixes).

P roof. The definition of martingale implies that one of the numbers m (x0) 
or m(x 1) does not exceed m(x), so to each x we can add one bit not increasing the 
value of the martingale. □

(If the casino can choose the outcome of coin tossing after the gambler makes 
a bet, it can guarantee that the gambler never wins anything.)

9.6. A digression: M artingales in probability theory

Theorem 177 can be interpreted as follows:
(a) to prove that some set has //-measure 0, it is enough to construct a p- 

martingale that wins on all its elements;
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(b) this method can be applied to every null set (by finding a suitable martin­
gale).

This interpretation is important for two reasons. First, from a purely technical 
viewpoint, we get a tool to prove that some set has measure zero (by constructing 
a martingale that wins on all its elements).

To illustrate the point, let us present in this style the proof of the Strong Law 
of Large Numbers. Let ß = Bp, the Bernoulli distribution with independent trials 
and success probability p.

For a given q > p, let us prove that the Bp-probability of the event “the 
frequency of ones exceeds q infinitely many times” is zero. (For q < p and the 
event “the frequency of ones falls below q infinitely many times” the arguments 
are similar.) To achieve this, consider £ p-martingale Bq/ B p. For a sequence z of 
length n, where the frequency of ones is r (with nr ones and n(l — r) zeros), the 
value of this martingale is

qnr(l  — g)n(1~r) 
pnr(l  — p)n(1~r) ’ 

and the logarithm of this value is

n[(r\ogq + (1 - r ) l og( l  -  q)) -  (rlogp + (1 -  r) log(l -p))].

Since q > p, the latter expression is an increasing linear function of r\ the coefficient 
is log[q/p] + log[(l —p)/ {  1 — g)] and both terms are positive. So for r > q (the case 
we are interested in), we can only decrease this expression replacing r by q, so the 
logarithm of the martingale value is

n [{qlogg + (i -  g) bg (i -  g)) -  (giogp + (i -  g) iog(i -p))].

The Gibbs inequality (p. 215) guarantees that the expression in the square brackets, 
the Kullback-Leibler distance between the distribution (g, 1 — g), (p, 1 — p), is 
positive. So the martingale is unbounded on the sequences where frequency exceeds 
q infinitely often.

This proof of the SLLN does not follow completely the scheme outlined above: 
We consider not one martingale but a family of martingales (one for each g). Each 
of the martingales is used to prove that some set has measure zero, and then we 
observe that the countable union of null sets is a null set.

Instead, we could take a countable family of g,- (say, all rational g), construct 
a martingale for each g7, and then mix all these martingales with positive weights. 
If some of the martingales are infinite, the mix will be infinite, too.

Essentially the same proof of the SLLN was discussed in Section 3.2 (Prob­
lem 67, p. 58), but there we considered finite sequences and did not use the term 
martingale speaking just about the ratio of two measures. (Similar arguments will 
be used later in Section 9.13.)

The second reason why martingales are important is more philosophical. What 
do we do when we prove some theorem using the martingale approach? We consider 
some property L of binary sequences ( “to be balanced” for the case of the SLLN) 
and some martingale m. Then we prove that for every binary sequence oj at least 
one of two things happens:

• the sequence oj has the property L\
• the martingale m  wins on oj.
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Moving in this direction, one can suggest the following market (or game) approach 
to the notion of randomness and say that

the randomness of a bit sequence is not the property of the se­
quence but the type of insurance provided for this sequence.

It sounds a bit strange at first, but it still makes sense. Imagine a shop where we 
can pay $1 in exchange for a bit sequence written on a scratch card.. The sequence 
is guaranteed to be random: The seller guarantees that our martingale (its copy is 
given to the seller in a sealed envelope) will not win much on that sequence. More 
precisely, we discover the bits on the card one by one (from left to right), and at 
every moment we may get back the value of martingale on the currently discovered 
bits.

In other words, we come to the shop with $1 and a description of some mar­
tingale in a sealed envelope. Giving the money and the envelope to the seller, we 
get in exchange the scratch card with an (infinite) bit sequence. Then we reveal 
the bits on the card sequentially, and at every moment (at our discretion) we can 
get m  dollars as a refund, where m  is the value of our martingale on the sequence 
of bits that we have read. (After that the seller has no other obligations.)

Note that it is important that we do not see the next bits. Otherwise we 
could cheat—if the next bits decrease the martingale, we demand the refund now, 
otherwise we wait for a better refund.

Buying the random bits from such a seller, we may hedge the risks of getting a 
“bad” sequence of random bits. If we have a randomized algorithm that works fast 
for most values of random bits and we were unlucky and bought a bit sequence that 
makes it work long, then we can at least get some refund according the martingale 
(it was carefully chosen when we made the purchase—this martingale should be 
large on rare sequences that make the algorithm work long). So we need to deposit 
different martingales depending on the future use of the sequence. For example, if 
we use the sequence in the probabilistic algorithm that generates large primes (i.e., 
produces a large prime number with high probability), the martingale should be 
large on random sequences that lead to composite numbers. Then, if we lose some 
money because of the nonprimality of the generated number, we at least can get a 
refund from the randomness provider.

To make the story more realistic, one should consider finite sequences, but 
the scheme remains the same. Also note that the parties should agree about the 
measure on bit sequences when making a deal (because the notion of a martingale 
depends on it). According to this philosophy, one may say that the probability 
distribution does not exist anywhere in the real world, but is a part of the contract. 
(However, a wise seller would take into account this part of the contract when 
producing the sequence for sale.)

This approach to probability theory is discussed thoroughly in the book of 
V. Vovk and G. Shafer [172].

9.7. Lower sem icom putable m artingales

The results about martingales proven above have a natural effective version. 
We already have studied the notion of effective null sets. Since null sets are related 
to martingales, one could expect that effectively null sets correspond to some class 
of martingales. This is indeed the case.
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Fix some computable measure 7Г on Q. In this section we consider martingales 
and null sets with respect to 7r; we do not require now that the initial capital of 
the martingale is 1. Now consider lower semicomputable martingales in the sense 
of Section 4 . 1  (a function m is lower semicomputable if the set of pairs (r, x ), where 
a rational number r is less than m(x), is enumerable).

The following problem explains why we should not require the initial capital 
to be 1.

265 Show that a lower semicomputable martingale m with m(A) = 1 is always
computable.

The following effective version of Ville’s result (Theorem 177) was discovered 
by C. Schnorr [166]:

T h e o r e m  181. (a) Let m be a lower semicomputable martingale. Then the set 
of sequences on which m wins is an effectively null set.

(b) Let X  be an effectively null set. Then there exists a lower semicomputable 
martingale m that wins on all sequences in X .

P r o o f ,  (a) Since m is lower semicomputable, the set of sequences where it 
exceeds an integer к at some prefix is effectively open and has measure at most 
l /k.  (Here we consider the measure of an open set that is a union of a computable 
sequence of intervals. As usual, we should modify the sequence and make these 
intervals disjoint.)

(b) If a set is effectively open and has measure less than l /k,  then the martingale 
constructed in the proof of Theorem 176 is lower semicomputable (when a new 
interval appears, the approximation to the martingale increases). One precaution 
is necessary, though: we should divide the measure of the intersection not by the 
measure of the set (it may be non-computable) but by its upper bound l / k  (so we 
should multiply the measure by k). The root value of the martingale is then less 
than 1, but this is allowed.

It remains to sum up the martingales for different к with suitable (computable) 
coefficients, as is done in the proof of Theorem 177. Note that the sum will also be 
semicomputable. □

This result can be strengthened in two directions. First in the proof of (b) we 
actually construct a martingale that strongly wins on all sequences in X  (as we 
have discussed). In fact, we also can repeat the second proof of Theorem 178 and 
convert a lower semicomputable martingale into another martingale which is also 
lower semicomputable and strongly wins on all sequences where the first one wins.

Second, we can extend the notion of martingale and consider lower semicom­
putable semimartingales, also called supermartingales. Supermartingales corre­
spond to games where the player at each step can donate some part of the capital. 
The definition of a supermartingale requires that

m{x) ^  (m(x0) +  m(x l ) ) /2

(for the uniform measure) or

m(x)7г(х) ^  m(x0)7r(x0) +  m{xl)n{xl)

(for arbitrary measure 7r) instead of the corresponding equality. Since the dona­
tions can only decrease the capital, the upper bound for the probability of winning
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remains the same, so the proof of the part (a) still works. And the part (b) be­
comes only weaker, so we can replace martingales by supermatringales everywhere 
in Theorem 181.

It is clear that a 7r-supermartingale is just the ratio of some semimeasure and 
7Г. Since 7Г is computable, lower semicomputable martingales correspond to lower 
semicomputable semimeasures. Therefore, we immediately see that there exists the 
largest (up to O(l)-factor) supermartingale, and it is equal to

m(x) — a(x)l тг(х).
This gives us a new proof of the Levin-Schnorr theorem in the version for an 

a priori probability (Theorem 91, p. 148): A sequence uo is ML-random with respect 
to a computable measure 7Г if and only if the ratio a(x)/ir(x) is bounded for the 
prefixes of co.

9.8. C om putable m artingales

The notion of a lower semicomputable martingale is rather unnatural from the 
gambler’s point of view: The proportion in which the capital is split between two 
bets is then a ratio of two lower semicomputable reals, which is rather strange.

Maybe we should consider only computable martingales? Let us assume that 
a computable measure 7Г on Cl is fixed and all the values 7г(а;) = тг(£1х) are strictly 
positive (this is important since these values are in the denominators). Then a 
computable martingale corresponds to a computable (in the natural sense) strategy 
in the game.

We say that a sequence со is computably random with respect to 7Г if no com­
putable 7r-martingale wins on it, i.e., every computable martingale is bounded on 
its prefixes. (The name “computably random” sounds a bit strange; it would be 
better to say something like “random with respect to computable martingales”, but 
here we stick to the commonly used terminology even if it is not perfect.)

266 (a) Show that we get an equivalent definition if we consider only martin­
gales that are separated from zero; for example, we can consider only martingales 
with values at least 1/2.

(b) Assume that 7г(^а;) are positive rational numbers that can be computed 
given X (exactly). Show that we get an equivalent definition if we consider only 
martingales with rational values and require them to be exactly computable.

{Hint: (a) Take the average of a given martingale and the constant 1. (b) If all 
the values are separated from zero, we can approximate the proportions by rational 
numbers, and it is easy to guarantee that the approximation error does not affect 
the winning property.)

How does the notion of a computably random sequence relate to other defini­
tions of randomness? The following theorem gives some answer to this question. 
The first two statements are valid for every computable measure 7Г, while the two 
following ones are for the uniform measure. (They can be also stated for the case of 
Bernoulli measure Bp with computable probability p\ the proof remains essentially 
the same.)

T heorem 182. (a) Every ML-random sequence is computably random.
(b) There exists a computably random sequence whose prefixes have logarithmic 

complexity. (So the previous statement cannot be reversed.)
(c) Evey computably random sequence is Mises-Church random.
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(d) Not every Mises-Church random sequence is computably random.

P roof, (a) We know from Theorem 181 that even lower semicomputable mar­
tingales (not only computable ones) cannot win on an ML-random sequence.

(b) We have already mentioned that for every martingale there exists a sequence 
on which this martingale is bounded (we should go in the direction where the 
martingale does not increase).

If a martingale is computable, one can find a computable sequence on which 
this martingale is bounded. It is a bit more difficult—now we cannot find the 
minimal value among m (x0) and m(x 1) since we can compute these numbers only 
with some precision. But this is in fact not needed. It is enough to choose an 
extension where the martingale increases at most by l/2 n (and this can be done 
easily if the approximation errors on step n are small compared to l/2 n).

(An immediate corollary is that the largest computable martingale does not 
exist. This is one of the main reasons to consider lower semicomputable martingales 
and supermartingales.)

But we need to continue the proof of (b). The next step is to consider two com­
putable martingales and find a computable sequence where both are bounded. It is 
easy to achieve. Take a weighted sum (e.g., the average) of these two martingales; 
it is a computable martingale, so we know already that there exists a computable 
sequence where the average martingale is bounded. Then both martingales are 
bounded (with twice bigger bound—recall that martingales are non-negative func­
tions).

A similar argument can be used to deal with a computable sequence of com­
putable martingales (i.e., of programs for them). Then we may mix all the martin­
gales in a weighted sum with weight 2“! for 2th martingale.

The problem is that there is no computable sequence that would include all 
computable martingales (otherwise there would be a computable sequence on which 
all computable martingales are bounded, which is evidently not the case—it is 
easy to win on a computable sequence). So to construct a sequence ш such that 
no computable martingale wins on it requires some non-algorithmic steps. There 
is additional information that allows us to perform this construction: For each 
program we should be informed whether this program computes a martingale, so 
we require one bit of information per program. To get a sequence with logarithmic 
complexity, we should use this information in a very economic way, taking into 
account the information about 2th program only after a long prefix of the sequence 
(say, of length 2г, or even more) is constructed.

Let us describe the construction in more detail. At every step we have some 
bit string X  (the bits already fixed) and some linear combination

mi (x) + £2m 2(x) H------ (- ekm k(x)

with positive coefficients. Here m* is a martingale computed by 2th program (or 
some replacement martingale, or just zero, if the 2th program does not compute a 
martingale according to the advice we got). We maintain the invariant relation: this 
combination is strictly less than 2. (Initially, x = A, we have only one martingale 
mi, and the combination is equal to 1.)

As we already discussed, the string x can always be extended by one bit in such 
a way that the expression remains less than 1 (and this can be done effectively as 
we know the programs for martingales). So we can extend x while keeping к (the
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number of martingales involved) unchanged. On the other hand, we may (from 
time to time) add a new term £^т^(ж) to this linear combination, choosing £k > 0 
so small that the sum remains less than 2 (the closer the combination is to 2 and 
the bigger is the value rrik(x) for current ж, the smaller should be).

In this way we get a sequence on which all rrii are bounded, because each m; 
appears in the sum (bounded by 2) with a positive coefficient (though maybe very 
small one).

The decision complexity of this sequence is bounded by the number of used 
advice bits and can grow as slow as we want (if we add new martingales only 
rarely). And the plain (or prefix) Kolmogorov complexity of the initial segments is 
O(logn), as we promised.

(c) Recall that the SLLN says that the set of unbalanced sequences has measure 
zero, and the corresponding martingale (that wins on all unbalanced sequences) can 
be chosen to be computable (see Section 9.6 where we constructed martingales for 
each threshold and then mixed them; it can be done in a computable way).

Moreover, if R is a set and Sr is the corresponding selection rule, we can 
easily construct a martingale that wins on every sequence uj such that Sr {oj) is 
not balanced. Indeed, the martingale should ignore the terms that are not selected 
by Sr (keeping the capital unchanged) and use the martingale from the preceding 
paragraph playing with the selected terms.

For computable R  we get a computable martingale, so for every sequence that 
is not Mises-Church random, we can find a computable martingale that wins on it 
and thus proves that it is not computably random.

(d) Consider a Mises-Church random sequence where each prefix contains as
many zeros as ones (or more); see Theorem 172. Let pn be the probability (with 
respect to the uniform Bernoulli distribution) that all prefixes of length at most 
n contain at least as many zeros as ones. As we already discussed (Problems 261 
and 262), the probabilities pn form a computable decreasing sequence that converges 
to zero. For each n we can computably find a martingale Mn that wins 1 fpn on 
every sequence such that all prefixes up to length n contain at least as many zeros 
as ones. It remains to take a weighted sum of some Mn (in such a way that 1 fpn 
increases faster than the coefficients decrease) and get a computable martingale 
that is not bounded on the sequence we started with. □

267 Give an explicit construction of a martingale used in the proof of (d).
(Hint: Assume that we come to a casino knowing in advance that every prefix 

of the game sequence has at least as many heads as tails. Then we can make 
bets of fixed size being sure that we never run out of money. If the difference 
between the number of heads and tails tends to infinity, this is the winning strategy 
(martingale). If it is not the case, there exists some moment t and some number I 
such that, starting from t, the difference between heads and tails is at least I and 
is equal to I infinitely often (liminf). Then after t we can make a bet on tails when 
the difference is I, and we always win. So we get a martingale for the first case and 
a family of martingales (with parameters t and I) for the second case; it remains to 
combine them into one martingale.)

Note that the statements (b) and (c) imply that there exists a Mises-Church 
random sequence with logarithmic complexity of prefixes. In this way we get a new 
proof of Theorem 173 (following [120]).
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268 Prove the following stronger version of the statement (b) in the last 
theorem: Let /  be a total computable noil-decreasing unbounded function with 
natural arguments and values. There exists a computably random sequence u> such 
that C(u)q • • -oJn-i |n) ^  /(n ) + 0(1) for all n.

(Hint: Adding a new martingale costs us one bit of advice—it should be done 
only when the value of /  increases.)

Moreover, there exists a computably random sequence u> such that the state­
ment of the last problem is true for every total computable non-decreasing un­
bounded function /  [120].

Show that for a computable measure P on fî x О and for every sequence269
a that is computably random with respect to the first projection of P, one can 
define the conditional probability along the second coordinate with condition “the 
first coordinate equals a ”, using a computable version of Doob’s theorem (p. 275).

Let us stress again that all the results about computable martingales can be 
translated into the language of computable gambling strategies (algorithms that 
look on the known bits and compute in which (rational) proportion the current 
capital should be split between two bets. (Recall that the underlying measure P, 
which determines the rules of the game, is assumed to be computable and strictly 
positive for all intervals. When performing the rational approximations, we may 
assume that martingale values are separated from zero, e.g., by taking the average 
with a martingale that equals 1 everywhere.)

9.9. M artingales and Schnorr random ness

The notion of computable randomness is closely related to Schnorr randomness 
(see Section 3.4). Both these notions were introduces in C. Schnorr’s book [166] 
The following statement was also proved there:

T h e o r e m  183. Let tt be a computable measure, and let all intervals £ lx  have 
positive tt-measure. A sequence u> is not Schnorr random if and only if there ex­
ists a computable it-martingale m and computable total non-decreasing unbounded 
function g : N —> N such that

m(u!0u!i ■ ■ -u!n- i)  > g{n)
for infinitely many n.

This theorem says that sequences that are not Schnorr random are not com­
putably random, and, moreover, there is a martingale that is not only unbounded, 
but unbounded in a strong sense (exceeds infinitely often some computable non­
decreasing unbounded function).

P r o o f .  Assume that u> is not Schnorr random. As we have seen in Section 3.4 
(Problem 90, p. 70), there exists a sequence of strings xo,x\,X 2 , ■ ■ ■ such that the 
series X^7r(:r0 computably converges and infinitely many of Xi are prefixes of u>.

Let us split the series 7г(жо) + 7r(æi) + 7г(а:2) + • • ■ + тт(х{) + ■ • • into groups (each 
contains finitely many consecutive terms) in such a way that the sum of kth group 
is at most 4~k (discard some initial segment of the series if necessary). Since the 
series converges computably, this splitting can be performed in a computable way. 
We may also assume without loss of generality that the groups can be separated 
by string lengths: there exists a computable sequence no < n\ < щ  < • • • , and
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strings in the kth group have length in the interval [п^,п^+1). Indeed, every string 
Xi can be replaced by a group of strings of some large length (the interval is split 
into many intervals of the same size), and we can do this for all X{ sequentially 
using longer and longer strings (this does not change the covering property and the 
sums in groups).

Consider now separately the strings from kth group. The corresponding inter­
vals have total measure less that 4“fc, and there exists a martingale that reaches 
4k on all these strings. Now we mix all these martingales and get a combined mar­
tingale m = 2~knik- It reaches 2k at the strings of kth group. It remains to 
let g(n) = 2k for all n  between nk and n^+i and note that infinitely many groups 
contain prefixes of oj.

Now the reverse direction. Assume that a computable martingale m  and a 
total unbounded computable function g are given. We need to cover a sequence oj 
for which we know only that m(ojQ • • -ojn- i )  ^  g(n) for infinitely many n. And the 
measure of this cover should not exceed some given e > 0 and be computable. How 
do we do this?

First of all, we increase g at some initial segment of N and assume that it is at 
least \fe  + 1 everywhere (this does not matter when we speak about events that 
happen infinitely often). Now we consider all the strings in the order of increasing 
lengths and select those where m  exceeds g. (More precisely, since we know rn only 
with some precision, we select strings in such a way that m > g — 1 for all selected 
strings and all strings with m > g are selected.)

The assumption guarantees that the intervals, which correspond to the selected 
strings, cover oj. Since for these strings the martingale is at least 1 / e ,  the total 
measure of intervals does not exceed e. Finally, the sum of measures is computable: 
To find it with error at most 5, we wait until g becomes bigger than 1/5 + 1; all the 
subsequent (longer) intervals can change the sum of measures at most by 5. □

A similar argument can be used to prove the following criterion of Schnorr 
randomness in terms of prefix complexity [10]:

Prove that a sequence oj is Schnorr random with respect to a computable270
measure g if and only if for every computable total upper bound к for prefix com­
plexity and for every non-decreasing unbounded computable function h: N —> N 
the inequality

К(и)п) ^  -  log2 At(fi(w)n) -  h(n) -  0 (1 )
holds for all n (the constant in 0(1) does not depend on n).

(Hint : For computable к and h the cover constructed in the proof of the Levin- 
Schnorr theorem has computable measure. The argument in the other direction is 
similar to the proof of the preceding theorem: We split the cover into groups of 
strings of the same length, where the nth group has total measure less than 4“", 
increase the measure of strings in nth group to get 2~n instead of 4n, and use the 
Kraft-Chaitin lemma to get a computable bound for prefix complexity; h can be 
found since all strings in the nth group have the same length.)

This result can be used to show that there exists a Schnorr random sequence 
(with respect to uniform measure) that is not Mises-Church random [10]. Indeed, 
it shows that if K((oj)n) > n — h(n) — 0(1) for some non-decreasing unbounded 
function h that tends to infinity slower than every computable non-decreasing un­
bounded function, then oj is Schnorr random. Such functions h exist (diagonal



284 9. FREQUENCY AND GAME APPROACHES TO RANDOMNESS

construction), and it remains to select one of them and find a sequence that satis­
fies the inequality above but is not Mises-Church random.

How can we do this? Take a random sequence a, and insert zeros at some 
places. These zeros will later form an unbalanced subsequence (so the sequence 
is not Mises-Church random). What are the requirements for the places of ze­
ros? They should be (1) computable (or at least one can find them by look­
ing at the previous bits), and (2) very rare (so the complexity of prefixes does 
not decrease significantly). The requirement (2) hints that the function F :n  4  
(place of the nth insertion) should grow faster than any computable function, but 
how do we combine this with (1)? The key idea is that the Kucera-Gåcs theorem 
says that we can take arbitrary F and then find a sequence a that computes F. 
There is a subtle point: We are able to compute F having access to the entire a, 
and only some prefix is available. But this is not a problem—if the current prefix 
of a is not enough to compute F, we just wait (and place zero after the value of 
F is computed; if this place is farther than we planned, the better). It remains to 
estimate prefix complexity. Here we note that by adding zero at predictable places, 
we do not change the prefix complexity of an initial segment.

271 Provide the missing detail in this argument, and prove that there exist
Schnorr random sequences that are not Mises-Church random.

(These sequences will not be computable random, so we also know now that 
Schnorr randomness is strictly weaker than computable randomness.)

It turns out that Kurtz randomness also can be characterized in terms of mar­
tingales.

272 Prove that a sequence uj is not Kurtz random (Section 3.4, p. 70) if and 
only if there exists a computable martingale such that computable converges to 
infinity on prefixes of to (an equivalent formulation is that there is a computable 
monotone lower bound that is not bounded).

(Hint: The sets of small measure that cover u> and are finite unions of intervals 
can be converted to martingales. We know how long the prefix of u> should be for 
this martingale to work, and this can be used to find a computable lower bound for 
the final martingale. On the other hand, knowing the martingale m  and a length 
I, where the martingale should exceed some c, we can consider all the strings of 
length I where m exceeds c and get a finite cover of u> of measure at most 1/c.)

This shows that Schnorr random sequences are Kurtz random (and the inclusion 
is strict, since some Kurtz random sequences do not satisfy even the SLLN; see 
Problem 92, p. 70).

9.10. M artingales and effective d im ension

In the previous section we have seen how the notions of null, effectively null, 
and Schnorr null sets can be translated into the language of martingales. A similar 
translation is possible for the notion of Hausdorff dimension. In one sentence this 
translation can be described as follows: The smaller the dimension of a set is, the 
faster martingales can grow on its elements. (In this section we consider martingales 
with respect to the uniform measure.)

Let us start from a statement that relates classical Hausdorff dimension (no 
algorithms) and martingales.
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T heorem 184. A set A c  Q, is an а -null set if and only if there exists a 
martingale m such that for every со € A the ratio

m(x)

is not bounded on prefixes of uj.

(For a = 1, we get Theorem 177.)
This result can be reformulated as follows. Assume that the gambler is taxed. 

After each game she pays a tax proportional to her capital, so the capital is multi­
plied by some constant factor 2a_1 < 1. Then the capital m(x) (as a function of a 
history X of the game) is no more a martingale, but satisfies the condition

2a~1m(x) 

and this can be rewritten as

m(x 0) m(x 1)
2 +  2

2 am(x) = m(x 0) + m(x 1).
Functions that satisfy this condition are called (following [110]) a-gales. They also 
can be defined equivalently in terms of measures: An a-gale is a function

p(x) 2al<x\
where p(x) = ir(Qx) and 7r is a measure on Q (we do not require here that 7r(f7) = 1 
or m(A) = 1). Similarly we can define a-supergales, where an additional decrease 
in capital is allowed after each game. The condition is

2am(x) ^  m(x0) + m(x 1).
In this language the statement of Theorem 184 says that for every a-gale the set 
of sequences, for whose prefixes this a-gale is unbounded, is an cc-null set; every 
a-null set is contained in a set of this kind (for some a-gale).

P r o o f .  The proof is just a slightly modified argument used to prove Theo­
rem 177. We use the language of cc-gales (see above). Let m  be an arbitrary a-gale. 
We need to show that the set of sequences, where m  is unbounded, is an а -null set. 
It is enough to show that strings x, where m  achieves к (or more) for the first time, 
have the sum of а -powers of measures at most 1/k. Writing m(x) as p(x)2al(x\  we 
see that for these strings we have p(x) > k2~al x̂\  All the strings are incompatible 
(none of them is a prefix of any other). So the sum of p-measures is at most 1, and 
so the sum of 2~al№ for all these x (=the sum of а -sizes of corresponding intervals) 
does not exceed 1/k.

In the other direction, let A be an а -null set. We need to construct an a-gale 
that is unbounded on prefixes of uj for every w e d .  For each k, consider a cover 
of A by intervals with sum of а -sizes at most 1/k. We will construct an a-gale m*, 
that reaches к on these intervals. (Then we compute the sum of all a-gales mAk 
with coefficients 2k, since the sum of a-gales is an a-gale.)

How do we construct m^? For each x we consider an a-gale that equals 1 on x 
and equals 0 on all other strings of the same length; the values for shorter strings 
are determined uniquely by the definition of a-gale, and for longer strings we choose 
some extension. On the root (empty string) the value of this a-gale is 2~al(x\  i.e., 
the а -size of x. So the sum of values of this a-gale (over all x in the cover) is at 
most 1/k in the root, and multiplying it by k, we get m*,. □
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Now we switch to the effective version of this theorem. Let a € (0,1] be a 
computable real. We can define the notions of lower semicomputable a-gale (or 
a-supergale) in a natural way. As in the case a = 1, we do not require that 
m(A) = 1, only that ra(A) < 1. One may expect that lower semicomputable ci­
gales (or supergales) correspond to effectively а -null sets and this can be proved by 
an effective version of the argument above.

In one direction it is indeed the case:

T h e o r e m  185. Let a e (0,1] be a computable real number, and let A c  SI be 
an effectively а -null set. Then there exists a lower semicomputable a-gale that is 
unbounded on prefixes of uj for every u> € A.

P r o o f .  Indeed, the construction above gives computable mjt and their mix is 
lower semicomputable. □

In the other direction the situation is more complicated. Let m  be a lower 
semicomputable a-gale. For some integer к we may consider the set of strings x 
such that m(x) > k. This is an enumerable set. Moreover, the sum of а -sizes of 
its minimal elements is bounded by 1/k. The problem is that the set of minimal 
elements of an enumerable set is not guaranteed to be enumerable, and if we consider 
all (not only minimal) elements, we do not have the bound for the sum of a-sizes 
anymore. So we cannot use this argument to prove that the set of sequences, where 
a given lower semicomputable a-gale is unbounded, is an effectively а -null set.

In fact this is not true. Lower semicomputable a-gales correspond to a weaker 
notion of an effectively а -null set where we bound not the sum of a-sizes of all 
intervals in a cover but only the sum of a-sizes of subfamilies of disjoint intervals. 
(An equivalent definition considers only maximal intervals that are not part of other 
intervals in the cover.) But if we are interested only in effective dimensions, all these 
subtle differences are easily compensated for by an arbitrarily small change in a, 
and the following statement is enough:

T h e o r e m  186. Let m be a lower semicomputable a-gale. The set of the se­
quences u>, such that m is not bounded on the prefixes of uj , is an effectively ß-null 
set for every ß > a.

(We assume here that a and ß are computable.)

P r o o f .  Let к be a positive integer. Consider strings x such that m{x) > к and 
the corresponding intervals. We get a cover of the set in question. What can be said 
about the sum of /З-sizes of the covering intervals? As we have seen, every subset of 
disjoint intervals in this family has a sum of a-sizes at most 1/k. In particular, for 
every length N  the sum of a-sizes for strings of length N  in the family is at most 
1/k , and the sum of /3-sizes is at most (l/k)2~N^ ~ a\  So taking the sum over all 
lengths, we multiply the bound 1/k by the sum of the geometric series, which is 
finite. □

Two last results give the following corollary:

T h e o r e m  187. For an arbitrary set A <z Lt, its effective Hausdorff dimension 
is equal to the infimum of the set of a such that there exists a lower semicomputable 
a-gale that is unbounded on all elements of A.



9 .1 1 . P A R T IA L  S E L E C T IO N  R U L E S 28 7

The same is true for a-supergales instead of a-gales (with the same proof).
This result provides an alternative proof of Theorem 120. Indeed, a-supergales 

are semimeasures multiplied by 2al x̂\  So there exists a maximal lower semicom- 
putable Q-gale that corresponds to a maximal lower semicomputable semimeasure 
(=continuous a priori probability). In the last result we can therefore consider only 
this Q'-supergale, and the effective dimension of {w} is equal to the infimum of a 
such that a{ujQbJi • • -tdn_i)2an is an unbounded function of n. The logarithm of 
this expression is an — К A • • • con-i), so the infimum of those a is

limtof - 1* .—‘ >,
n

(In Theorem 120 we used plain complexity instead of a priori complexity, but the 
difference is O(logn) while we have n in the denominator.)

9.11. Partial selection rules

Returning to the selection rules, note that we required the selection rule to be 
total (the selection always says, in finite time, whether to select the next term or 
not, for all possible sequences). But this condition can be relaxed. Of course, if 
the rule is undefined on some prefix of the given sequence, then it does not select a 
subsequence. But the rule may hang in some other situations (that do not happen 
for our sequence).

Let us define this broader class of rules formally. Let r be a computable par­
tial function that maps (some) bit strings to {0,1}. To decide whether the term 
ujn should be selected (while applying the rule to some sequence lo) we compute 
r(cjо • • • tdn_i). The value 1 means that we select cjn, the value 0 means that we do 
not select cju; if the value is undefined, the selection process hangs, and we get a 
finite sequence. This selection rule is denoted by Sr. (It is equivalent to the rule Sr  
where R  is the set of all x such that r is defined on all prefixes of x and r(x) = 1. 
Note that this R  is not always decidable for computable partial functions /.)

This class of selection rules was considered by R. Daley [46]; we call them 
Church-Daley admissible selection rules. The sequence is called Mises-Church- 
Daley random if every Church-Daley admissible rule selects a balanced (or finite) 
sequence.1

273 Prove that a Church-Daley admissible selection rule applied to a Mises-
Church-Daley random sequence gives a Mises-Church-Daley random sequence.

This extension of the class of selection rules makes the class of random sequences 
smaller, which follows from Theorem 173 (p. 270) and the following result proven 
by W. Merkle [120]:

T h e o r e m  188. There is no Mises-Church-Daley random sequence oj such that 
C{u)Q • • -wn_i) = O(logn).

P r o o f .  Assume that
C(u)Q • • -(jJn-i) < clogn

1W. Merkle called them the “Mises-Wald-Church stochastic sequence” in [120], though the 
historical reasons for this name are unclear. Church never considered partial computable rules, 
while Mises and Wald did not consider computability at all, so the difference between partial and 
total rules was not essential for them.
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for some c and for some large enough n. We want to show that u> is not Mises- 
Church-Daley random, i.e., construct a rule that selects an unbalanced sequence.

Let us first consider the case when c < 1. The set of all strings of complexity 
less than clogn is an enumerable set of at most nc elements, and for large n the 
number or elements in this set (we denote it by Cn) is bounded, say, by n/10. Fix 
some of those large values of n.

Reading the n-bit prefix from left to right, we try to the predict the next bit 
(after reading all the previous ones). Let us show that we can guarantee at least 
90% success. Enumerating Cn, we find a first element in this enumeration, call it 
the “current candidate”, and predict the bits that are there until our prediction 
turns out to be incorrect. As soon as this happens, we continue the enumeration of 
Cn until we find a new element that is consistent with all already discovered bits. 
Then it becomes the current candidate, and it is used for predictions until one of 
the predictions turns out to be incorrect, etc. Since we know that the actual prefix 
is in Cn, we will never run out of candidates, and the number of changes (=number 
of errors) is bounded by the cardinality of Cn, i.e., by n/10. So at least 90% of the 
predictions are correct.

This can be done for every large enough n. To deal with an infinite sequence, 
we consider a fast growing computable sequence no < n\ < П2 ■ • ■ where no is 
large enough (so our prediction method works for all щ). Using CUi for predictions 
between Щ-\ and щ , we make at most 0.1щ errors, and in total we get at most 
0.2n errors (even if all previous predictions are false, which is not the case, but 
we do not need a better estimate). So our prediction method will be successful 
infinitely often.

It remains to note (as was done in Theorem 169) that the prediction algorithm 
corresponds to two selection rules: one selects terms when we predict ones, and the 
other selects terms when we predict zeros. If predictions are successful, at least 
one of these selection rules will select a highly unbalanced sequence. This ends the 
proof for c < 1.

This trick does not work for c > 1. For example, if c = 1.5 we have n 1-5 candi­
dates, and all our predictions could be false (leading to the change in the current 
candidate without any contradiction). But we can use a more clever argument.

Let us split the string u>o • ■ -cun_ i into two halves and get a pair (u,v) where 
и and v are (n/2)-bit strings. The complexity of this pair is at most 1.5 log n (we 
still consider our example with c = 1.5). On the other hand, the complexity of 
the pair is equal to C(u) + C(v\u) up to 0(\ogC(u, v)), so either C(u) < 0.8logn 
or C(v\u) < 0.8logn. In both cases we can apply the trick used for c < 1, since 
n0-8 is much less than n f 2. Note also that, while predicting the bits in the second 
half, we already know the bits in the first half, so the condition и in the inequality 
C(v |u) < 0.8 log n is not an obstacle.

So at least one of the two prediction algorithms is successful (on its half). Then 
one of the two selection rules corresponding to this algorithm will select a highly 
unbalanced sequence. (The selection rule does not select any terms from the other 
half.)

There is a problem, however. All this can be done for every n, but how do we 
combine the selection rules for different n? Imagine, for example, that we tried to 
predict bits in the left half assuming that C(u) < 0.8n while in fact that is not the 
case. Then our algorithm can make many errors (this is not a big problem) and
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can even hang (and this is the problem, because then it cannot be used as a step 
in a prediction algorithm for an infinite sequence).

To get around this problem, we should recall the proof of the formula for the 
complexity of pairs (Theorem 21, p. 37) and use it as a part of our construction. 
Let us explain what this means.

As before, we make predictions for the left and the right halves (и and v) of 
the n-bit prefix separately. When we read the right half v bit by bit, we enumerate 
the set Cn of possible candidates for the n-bit prefix (^strings of complexity less 
than 1.5n), waiting until a candidate appears that is consistent with и and already 
known bits of v. When such a candidate is found, we use it for predictions until 
one of the predictions turns out to be false. Then we look for the next candidate, 
etc.

Will this prediction algorithm be successful? It depends on u. More specifically, 
it depends on the number of different v such that uv E Cn. If there are many of 
them, we can make an error and change the candidate at each step. But at least 
our prediction algorithm will not hang as far as uv is indeed in Cn.

Now we discuss the left half. Here we use as candidates the values of и such 
that there is at least n0,8 different v with uv 6 Cn. The prediction in the left half 
is guaranteed to be successful if и is among the candidates (and this will happen 
if the predictions in the right half are not successful). But if not, this prediction 
algorithm may hang (at some moment we could wait forever for a candidate which 
is consistent with known bits).

What happens when we combine these algorithms for different prefixes? First 
we consider the joint algorithm based on the predictions of right halves for each щ. 
This algorithm never hangs (we assume that щ  is large enough, so all prefixes of 
length щ have complexity less than 1.5пг). If for infinitely many i the prediction is 
successful, then we are done (the fraction of successful predictions does not converge 
to 1/2). So it is enough to consider the case when the right half prediction works 
only for finitely many i. Then for all sufficiently large i the left half prediction works, 
and the finite number of bad prediction algorithms can be replaced by something 
safe (that never hangs).

So we see that in both cases и  is not Mises-Church-Daley random.
This proves the theorem for c = 1.5 (and the same trick works for every c < 2). 

But what should be done for bigger values of c? One can split the sequence not into 
two halves, but into к pieces of equal size for some к > 2. One should take к greater 
than c, and repeat the same argument. The prediction algorithm for the rightmost 
piece never hangs, so we can combine these algorithms into a prediction algorithm 
for the entire sequence. If it is successful for infinitely many prefixes, we are done. 
If not, it fails starting from some moment, and then the prediction algorithm for 
the second (from the right) piece is total (but not necessarily successful). If it is 
successful infinitely often, we are again done. If not, we should consider the third 
piece, etc. (A more formal exposition with all details can be found in [120].) □

So we know the Mises- Church-Daley random sequence cannot have O(logn)- 
complexity of prefixes. However, it can only slightly exceed this bound (e.g., 
O(lognloglogn) complexity is possible), as shown in [120]:

T h e o r e m  189. Let f  : N —> N be a total non-decreasing unbounded computable 
function. Then there exists a Mises-Church-Daley random sequence whose n-bit 
prefix has complexity at most f (n ) logn + 0(1) for all n.
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P roof. Recall how we constructed Mises-Church random sequences in Theo­
rem 173. The advice information there was very small, only one bit per algorithm 
(that may or may not compute a selection rule) — we needed to know whether it 
would compute a selection rule. Now this is not enough, because the selection rules 
are partial. Now we can enumerate all selection rules, but for each selection rule 
we need to know when it becomes undefined for the first time (so it can be replaced 
by something harmless starting from this moment). So, if we use fin )  programs 
to construct the first n bits, the total size of the advice needed is /(n)logn bits 
(for each of /(n) programs we need logn bits to specify the first place where it is 
undefined — we may agree that this place is n + 1 if it is defined for all currently 
known prefixes).2

Note that we use n in the condition, but the О (logn) change does not matter 
since this corresponds to the 0(l)-change in / .  □

A similar extension (allowing partial functions) can be done for martingales. 
Recall that we may define computably random sequences using total computable 
functions with rational values as martingales. Now we can consider also partial 
computable functions requiring the equation (defining martingales) to be true if 
all three quantities m(x), m(x0), and m(x 1) are defined.3 We call these functions 
partial martingales. A partial martingale wins on a sequence u> if it is defined for 
all prefixes of ui and is unbounded. A sequence is partial-computably random if no 
computable partial martingale wins on it. Now, following [120], we may generalize 
Theorem 189:

T heorem 190. (a) Every partial-computably random sequence is also Mises- 
Church-Daley random.

(b) Let f  : N —> N be a non-decreasing unbounded computable function. Then 
there exists a partial-computably random sequence u> such that the n-bit prefix of со 
has complexity at most f{n) logn + 0(1).

(These two statements together imply the statement of Theorem 189.)

PROOF, (a) We use that same construction to convert a selection rule into a 
martingale as in Theorem 182(c). If the rule is partial, we get a partial martin­
gale. But if the rule selects an infinite subsequence from some sequence u>, the 
corresponding martingale is defined on all prefixes of u>.

(b) Here again we may follow the argument used to prove Theorem 182(b). 
For each martingale that is added to the construction, we need to know at which 
moment it becomes undefined (so we can replace it by something harmless, e.g., 
by its last value). This information requires at most log n for each martingale used 
to construct the first n bits of the sequence, and if at this moment we use at most 
f{n) martingales, we get the required bound. □

2 One may ask also why we need to know exactly the moment when the algorithm becomes 
undefined for the first time, not just one bit saying whether this happened or not. This is because 
the constructions for different n  should give prefixes of the same infinite sequence.

3From the gambling point of view it is natural to require that m(a:0) and m ( x  1) are both 
defined or both undefined; one cannot toss the coin before both bets are made. However, it is not 
important: If m ( x ) and m(a:0) are defined, we can compute m ( x  1) knowing that m is a  martingale, 
and vice versa.
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9.12. Non-monotonie selection rules

Up to now we considered selection rules that keep the ordering of terms in 
the input sequence (read it from left to right). However, this restriction can be 
relaxed in a natural way. Such a relaxation was suggested by Kolmogorov in [77] 
and independently by D. Loveland in [106, 107].

Let us explain informally how it is done. Imagine that a casino outsources the 
coin tossing to some producer of random bits who writes these bits on paper cards 
and puts the cards on a table face down. The gambler may then ask to reveal some 
bit, then the corresponding card is turned over. Also the gambler may select some 
bit that is not revealed yet; then the corresponding card is also turned over, and 
the bit written on it is added to the subsequence.

More formally this class of selection rules can be described as follows. The 
cards (and corresponding bits) are indexed by natural numbers. The selection 
rule is determined by a pair of functions F and G. The function F maps binary 
strings to natural numbers and says which bit should be revealed at the next step 
(depending on the bits already revealed). We assume that the values of F on 
every two compatible bit strings (one is a prefix of the other) are different. This 
guarantees that the same bit is never requested again. The second function, G, is 
also defined on binary strings and has values in {0,1}. The value 1 means that the 
bit chosen by F is selected (and becomes the next bit of the output subsequence); 
the value 0 means that it is observed but not selected.

According to this description, for every two partial functions F (that satisfies 
the condition above) and G, we define the selection rule Sf,g '• £  as follows.
First we consider a (finite or infinite) sequence of integers no, Щ, ... where

n0 = F{A), ni = F(cjno), n2 = F(cjnocjni), ...

(the construction stops when the next value of F is undefined). The condition for 
F guarantees that all щ are different.

Then we select the terms coni for which the value of G on cjnocjni • • -Ь0П1_Х is 
defined and equal to 1, and, moreover, the values of G on all prefixes of this string 
are defined. The corresponding usni (in order of increasing i) form the output 
subsequence (We call it a subsequence though usually subsequences are
defined as monotonie subsequences, keeping the ordering of the initial sequence.)

The selection rules Sptc  that correspond to computable partial functions F and 
G are called Kolmogorov-Loveland admissible selection rules. A sequence cj € Q is 
called Mises-Kolmogorov-Loveland random, or Kolmogorov-Loveland stochastic, if 
every Kolmogorov-Loveland admissible rule selects a balanced (or finite) sequence.

We consider mainly the case of the uniform measure, but a similar definition 
can be given for Bernoulli measure Bp (independent trials with success probability 
P)-

The following simple (though unexpected) observation was made by W. Merkle 
in [119]:

T h e o r e m  191. Restricting the class of selection rules and requiring F and G 
to be total, we get the same class of Mises-Kolmogorov-Loveland random sequences.

PROOF. Assume that some selection rule applied to some sequence cj se­
lects an infinite unbalanced subsequence. Let us split the selected subsequence into
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two: ojni is included in the first subsequence if щ is even, and in the second subse­
quence otherwise. At least one of these two subsequences is infinite and unbalanced. 
So we can assume without loss of generality that the selection rule produces an in­
finite unbalanced sequence that consists only of terms with even numbers (or only 
of terms with odd numbers—this case is similar). Knowing that we select only bits 
with even numbers, we can read other bits at any time; this will not interfere with 
the selection since these bits will be never selected. So if the partial computable 
rule starts a long computation, we may in parallel read the bits with odd numbers 
(they may be requested later by the original rule or not; if the original rule requests 
them, we have them already at hand and do not read them again). This new selec­
tion rule is defined by total functions F' and G' (if the original algorithm hangs at 
some point, then the new one reads the terms with odd numbers one after another, 
and never selects anything). □

This proof reduces one partial selection rule to two total ones.
How is the new definition of randomness related to the one previously given? 

A partial answer is provided by the following theorem:
T heorem 192. (a) Every Mises-Kolmogorov-Loveland random sequence is 

Mises-Church-Daley random (and, therefore, Mises-Church random).
(b) Every ML-random sequence is Mises-Kolmogorov-Loveland random.
More precisely, (a) holds for every real p G (0,1); in (b) we assume that the 

measure is uniform or equals Bv for some computable p (and both notions of ran­
domness are understood accordingly).

PROOF, (a) Church-Daley admissible selection rules (including Church admis­
sible rules) are a special case of Kolmogorov-Loveland admissible rules.

(b) Here we use essentially the same argument as for Mises-Church randomness. 
Assume that some computable p is fixed in the definition of Mises-Kolmogorov- 
Loveland randomness, and we require that every selected subsequence should be 
finite or have limit frequency p. For Martin-Löf randomness we consider the com­
putable Bernoulli measure Bv that corresponds to independent trials with success 
probability p.

Fix some computable (partial) functions that consider the corresponding selec­
tion rule S f,g ■ For every integer n and for every rational q, consider the set Dnq 
of all n-bit strings where the frequency of ones exceeds q. We know that for the 
fixed q > p and for n —> oo, the Hp-measure of the set Dn q̂ (more precisely, the 
Hp-measure of the set D n%q of all sequences that have a prefix in Dn q̂) decreases 
exponentially.

Now consider the preimage of this set with respect to Sf ,g \ more precisely, con­
sider the set of all sequences u> for which the selection rule produces a subsequence 
of length at least n and the frequency of ones among the first n terms exceeds q. It 
is easy to see that В p-measure of this set is bounded by Bp(Dn q̂).

Informally speaking, this happens because the output distribution of the selec­
tion rule applied to Hp-distributed sequence has the same distribution Bp, if we 
ignore that some sequences are cut at some point (output sequence can be finite), 
and cutting may only decrease the probability. More precisely, let f be a binary 
string of length к — 1. Consider the conditional probability of the event “E  = kth 
bit of the selected sequence is 1” with the condition “C = selected sequence has 
length at least к and preceding bits are t”. This probability is equal to p. Indeed,
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there are many cases when bits equal to t are selected and the next bit to be se­
lected is chosen (depending of the values of the revealed but not selected bits) so 
the condition C  can be split into a union of disjoint subsets Ci, and for each of 
them the conditional probability Pr[E\Ci] equals p: the event Ci determines the 
position of the bit that will become the kth bit in the selected sequence, and Ci 
is determined by the values of the other bits (before this position). Then we (by 
induction) conclude that the probability that the first n selected bits form a given 
string и is bounded by the probability of getting и according to Bv, and we sum 
these inequalities over all и G DnA.

It remains to note that the set of sequences u>, such that <SV,g(w) has a prefix in 
Dn>q, not only has small measure but also is effectively open (since we can enumerate 
different scenarios when such a prefix could appear). So for each q we get (as in 
the proof of the effective version of the SLLN) an effectively null set. (Similar sets 
should be considered for all rational q < p.) So an ML-random sequence does not 
belong to these sets, and this finishes the proof. □

In the next section we prove the following generalization of statement (b): if 
a computable sequence pn of real numbers in (0,1) computably converges to some 
p G (0,1), then every sequence that is ML-random with respect to the product 
measure (independent trials with success probability pi in the ith trial) is Mises- 
Kolmogorov-Loveland random with parameter p. This statement is an impor­
tant tool (suggested by M. van Lambalgen) for constructing examples of Mises- 
Kolmogorov-Loveland random sequences with pathological properties (not ML- 
random, having more zeros that ones in all prefixes, and others).

Now we take another direction and show (for the case of uniform measure) 
that every Mises-Kolmogorov-Loveland sequence has almost maximal complexity 
of prefixes. (Recall that this is not the case for Mises-Church and Mises-Church- 
Daley random sequences.)

T h e o r e m  193. Let to be a binary sequence such that C{ojq • • -w n_ i )  <  an for 
some a < 1 and for all sufficiently large n. Then oj is not Mises-Kolmogorov- 
Loveland random.

This result (proven by An. Muchnik in the late 1980s) was later strengthened: 
it turned out that if the inequality is true for infinitely many n , the sequence is 
not Mises-Kolmogorov-Loveland random. But we prove only the original weaker 
statement.

For this proof we need some auxiliary statement about the price of “insider 
information” in the game with fixed size bets. Let us state and prove this statement 
first, and then come back to the proof of Theorem 193.

Assume that we come to a casino when a sequence of random bits is generated 
by coin tossings, and before each of them we can make a bet и G [— 1,1], where 
positive (resp. negative) и means that we bet on 1 (resp. on 0). After the coin is 
tossed, we get и dollars if the bit is 1 and — и dollars if the bit is 0.

Note that (unlike for martingale games) our maximal bet is always 1 and does 
not depend on how much we have won (or lost) in the previous games. So our 
potential loss is not bounded (in the martingale games the loss was bounded by the 
initial capital). To avoid confusion, let us stress also that we play with the bits in 
the same order as they appear (we do not consider the non-monotonic rules yet).
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L em m a. Assume that we know in advance some set A of n-bit strings that 
contains at most 2s elements for some s < n. Then there exists a strategy in the 
described game that guarantees that we win at least n — s on every element of A 
(for every series of n games when the sequence of outcomes belongs to A).

For example, if A contains only one string (in other words, we know in advance 
all the outcomes for all n games), the lemma says that we can win n dollars (not 
a surprise: we win one dollar in each game). For comparison, in the martingale 
setting we could make 2n dollars out of 1 dollar. If we know results of some к 
games, the lemma guarantees that we can win к dollars (and this is again trivial). 
A bit more complicated example is to assume that we know that the number of 
ones is even; in this case s = n — 1. The lemma says that we can win one dollar. 
(Indeed, we can make zero bets until the last game, and then put 1 dollar on the 
right outcome which is known at that moment.)

P r o o f .  At each moment we know some prefix w of the sequence; let j  be its 
length. There are 2n-J possible extensions of j  (up to an n-bit string), but only 
some of them are in A. Let us consider their fraction (the conditional probability 
of A after w)\ a negated logarithm of this fraction is called the information capital 
of the player.

Initially this capital equals n — s. We will show that we can make bets in such 
a way that the sum of the information and real capitals never decreases. Then at 
the end of the game, when the sequence is in A and the information capital is 0, 
the real capital is at least n — s, as required by the lemma.

Why can we make a bet that guarantees the non-decrease? Assume that the 
information capital is now (—logp) for some p (the current fraction of A-elements 
among the extensions). Knowing A, we can compute this capital. We know also 
how it will change after the next game: if 0 appears, it becomes equal to (— logpo)) 
and if 1 appears, it becomes equal to (— logpi), where po and pi are fractions of A 
among the extensions of wO and w 1. Evidently, p = (po +pi)/2. We need to find 
a bet d such that in both cases the sum of information and real capitals does not 
decrease:

-logpo -  О  -logp, 
log Pi +d  ^  log p,

or (finding the corresponding bounds for d)

-logpo T log P  > d ^  log p  T log p i ,
log(p0/p) ^  d ^  log(pi/p).

Such a d exists if and only if p / p o ^ P i / p ■ This can be rewritten as p 2 ^ p o p i  

and follows from the inequality between arithmetic and geometric means. Note 
also that p o and p \ do not exceed 2p , so the bounds for d (and d itself) are in the 
interval [—1,1]. The lemma is proven.

One can explain the relation of this lemma and martingales (and an alternative 
proof of the lemma) as follows. The martingale makes some decision about the 
proportion between two opposing bets, and this decision determines a multiplication 
factor for the capital in a given round. The possible choices are parametrized by a 
point in a closed interval. The factors for different rounds are multiplied, so their 
logarithms are added. The choices for the different values of the parameter can be
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F i g u r e  27. Possible choices of a gambler presented in usual (left) 
and logarithmic (right) scale. A dashed line represents possible 
choices for the game with bounded bets considered in the lemma.

shown in a logarithmic scale, then we get a curve (instead of a line segment, if we 
use a normal scale); see Figure 27. It is easy to see that this curve is below the 
tangent line, so the game will be better for us if we replace the curve by the line. 
And this line corresponds exactly to the game with bounded bets considered in the 
lemma.

Now it is easy to prove the following statement (where both the condition and 
the claim are stronger than in Theorem 193):

T h e o r e m  194. Let к be an arbitrary computable upper bound for the function 
C, and let ш be a sequence such that

k ( ü j Q  ' ' ' А  (У .П

for some a < 1 and for all sufficiently large n. Then ш is not Mises-Church 
random.

P r o o f .  For every n we can compute the list An for all n-bit strings x such 
that k{x) < an. This list contains at most 2an+°(1) strings, and for all sufficiently 
large n the n-bit prefix of ш is among them.

For these n the strategy constructed using our lemma (for the set An) wins 
at least (1 — a)n — 0(1) dollars playing with the first n bits of oj. Consider a 
computable fast growing sequence of щ (we assume that n^-i/n* —> 0), and combine 
the strategies for all AUi into one. In fact, the strategy for AUi will be used only 
after Пг- i  (where the preceding one stops), but this is a negligible fraction of щ. 
So the combined strategy is successful: Its gain on the first n bits exceeds en for 
some fixed e and for infinitely many n. (Take e < 1 — a and n = щ for large i.)

This is not possible for a Mises-Church random sequence (see Theorem 170 on 
p. 267). □

Now we are prepared to prove Theorem 193.

PROOF. Following the same scheme, we consider the set An of all n-bit strings 
that have complexity at most an; it contains about 2an strings, including the prefix 
of oj. However, now we cannot compute the list of all elements of An, we can only 
enumerate it, and we never know whether all the elements appeared or not. So we 
cannot use An in the lemma. To overcome this problem, we use non-monotonic 
selection rules.

Again, we need to select a fast growing sequence щ, for example, щ = г!, and 
cut the sequence into pieces of size щ — Щ-\. Increasing a, we may assume that 
the complexity of the ith piece is at most a times its length, so the complexity 
per letter is at most a. Let Ai be the set of all strings of length щ — n*_i where
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complexity per letter is at most a. We know that the zth piece of из (we denote it 
by U3i in the sequel) is in Aj, and we can enumerate A* given i. (The problem is 
that we cannot compute Ai as a list of strings.)

Let ti be the number of steps of the enumeration of Ai that are needed for w* 
to appear. Let us group the values of i into pairs and compare the values £2™ and 
t 2m+i- Trivially, either £2™ ^  2̂m+i or £2m+i ^  t 2m (or both). How does this help? 
We can now construct two strategies: One reads U32m not making any bets, then 
waits until U32m appears in A 2 m, thus finding t2 m, and then makes the same number 
of steps enumerating A2m+i and uses the discovered part of A2m+i to construct a 
gambling strategy (in the hope that u>2m+i is already discovered). This works only 
if t 2m ^  2̂m+i) otherwise we may lose all bets. But then the symmetric strategy 
(the one that reads U32m+i) waits until uj2 m+i appears in A2m+i and makes the 
same number of steps enumerating A 2m will win.

So for every sufficiently large m  we have a pair of strategies (that makes bets 
in [—1, 1]) and we know that at least one of them is successful (it wins at least 
l — o: per bet). Omitting small m, we can combine them into two strategies in the 
infinite game. One of them is monotone, and we may (as we did in Theorem 170) 
approximate it by an average of finitely many selection rules. The number of the 
selection rules depends on the required precision; we need the error to be small 
compared to 1 — a, and this can be achieved by a fixed (=not depending on m) 
number of Church admissible selection rules. We denote this number by N. The 
other strategy is not monotonie, and we get N  Kolmogorov-Loveland admissible 
selection rules. In total we get 2N  selection rules.

Recall that Щ -\/щ  is small; we note that the frequency deviation for some m 
cannot be compensated by any behavior for previous m. So for each m  at least 
one of 2N  selection rules leads to a significant deviation. Therefore, there exists 
one rule that leads to a significant deviation for infinitely many m, and из is not 
Mises-Kolmogorov-Loveland random.

Theorem 193 is proven, □

Together with Theorem 189 we get the following corollary:

T h e o r e m  195. There exist Mises-Church-Daley random sequences that are 
not Mises-Kolmogorov-Loveland random.

There is a natural question related to Theorem 193: Is there some finite coun­
terpart for this result? Assume that we know that the complexity of some (finite) 
string X is small. Is there a non-monotonic selection rule of small complexity that 
selects from x some unbalanced sequence? Of course, the exact statement of this 
type should include several parameters: the length n of the strings, its randomness 
deficiency d, the complexity of the selection rule (with n as a condition), and the 
required imbalance in the selected subsequence. In [53] the following result in this 
direction is proven: There exists a selection rule of complexity 0(\og(n/d)) (with 
n as a condition) that selects a subsequence where the number of ones and zeros 
differ at least by Q(n/ log(n/d)). In particular, if the randomness deficiency is pro­
portional to n (as in Theorem 193), then the complexity of the selection rule is 
bounded, and the imbalance is proportional to the length.
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9.13. Change in the measure and randomness

In this section we describe a tool (suggested by M. van Lambalgen) that allows 
us to construct Mises-Kolmogorov-Loveland random sequences with pathological 
properties (not ML-random, with more ones that zeros in prefixes, etc.).

9.13.1. Randomness w ith respect to two measures. Let us start with a 
question that is interesting in itself: Imagine that we change slightly the measure. 
What happens with the class of random sequences (with respect to this measure)?

Here are two examples of opposite types.

E x a m p le  1. Let ß be the uniform Bernoulli measure ß = В г/2. Consider 
another measure ß' that has independent trials with success probability 1/2 in all 
trials except the first one where the success probability is (for example) 2/3. It is 
intuitively clear that the same sequences should be random with respect to both 
measures (for all reasonable notions of randomness): only the first trial is different, 
and in both cases both outcomes are possible (though the probabilities are not the 
same). Indeed, this happens for Martin-Löf randomness: The effectively null sets 
are the same (because for every set its ^-measure and //-measure differs at most 
by a factor of 2).

Show the same result using the complexity criterion for randomness.
Show that the class of computably random sequences for these two mea­

sures is the same.

E x a m p le  2. Consider the uniform Bernoulli measure B Xj2 and also some other 
Bernoulli measure, say B2/3. Is it possible that some sequence is ML-random with 
respect to both of them? No, because for a random sequence with respect to 
Bernoulli measure Bp the limit frequency is p , so it cannot be both 1/2 and 2/3 at 
the same time.

So we come to the following question: Imagine that two sequences of reals 
PiiPi £ (0,1) are given. Consider the measures for independent trials with prob­
abilities pi (call it ß) and p[ (call it ß'). What can be said about the classes of 
ML-random sequences with respect to these two measures? Our examples suggest 
that if pi and p[ are close to each other, then these classes should coincide, and if 
P i  and p'i differ significantly, these classes should be disjoint.

Let us prove that this is indeed the case, assuming that p i  and p [  are separated 
from 0 and 1, i.e., all belong to (e, 1 — e) for some positive e. We also assume 
that pi and are computable sequences of computable real numbers (we need the 
measures to be computable; otherwise, Martin-Löf randomness is not well defined).

V. Vovk proved the following result [207] which is a constructive version of the 
classical Kakutani’s theorem:

T h e o r e m  196. (a) If the sum J2(Pi ~ Pi)2 *s finite, then the classes of ML- 
random sequences with respect to ß and ß! coincide.

(b) If the sum J2(Pi ~ Pi)2 *s infinite, these classes are disjoint.

The classical version of this result [70] says that in the first case the classes of 
null sets coincide, and in the second case the measures are orthogonal, i.e., there 
exists a set that has probability 0 with respect to one measure and probability 1 
with respect to the other.

274

275
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P r o o f .  Let us first try the following naive approach to (a). Assume that 
oo G Q is random with respect to p (that corresponds to probabilities Pi). Then 
the (monotone) complexity of its n-bit prefix is close to a negated logarithm of the 
measure of the corresponding interval, which equals

П— 1

IT-
i=0

where = pi if ooi = 1 and r* = 1 — Pi if ooi — 0. If pi is close to p'{, then r* is 
close to (defined in the similar way as r*, but for the other measure). So the 
product of all Ti is close to the product of all r(; thus, randomness with respect to 
one measure implies randomness with respect to the other.

All this is indeed true and can be formalized easily, but for this argument we 
need to know that the sum

(*) X ^(“ 1oST) -  JZ (- lo g r ')
i=0 i=0

is bounded; this is indeed true if ^2 \Pi — p[\ < oo (recall that we assume that pi 
and р[ are separated from 0 and 1). But this is a much stronger assumption than 
the one we have—we know only that the sum of squares is bounded.

How can we improve this argument? Note that it is enough for us if the 
difference (*) is bounded for every random with respect to p sequence. Let us see 
why this happens. Indeed, if oo is random with respect to p, then

n — 1

KM(U0 ■ ■ ' OJn—l ) = ^ ( - l o g r ; )  + 0(1).
2=0

Since the complexity and the negated logarithm of measure differ by 0(1), the 
upper bound for the complexity in terms of p! (recall that we can use arbitrary 
measure to get an upper bound for monotone complexity) guarantees that

71— 1 71— 1

^ ( - l o g r i )  ^  ^ ( - l o g r ' )  + 0(1). 
i—0 2=0

Let us denote r[ — ri by S{. Using this notation and taking the exponents, we get 
the following inequality (that is true up to a constant factor):

71—  1 71— 1

П ( ^ + й ) -
i—0 2—0

We know that J2i $ï < °°, so Si —> 0 as i —> oo. Therefore, for sufficiently large i 
the value of 6i is smaller than e (the gap between probabilities and 0,1). We can 
change finitely many p\ and assume that it is true for all i. Then we may consider 
a measure p" that is symmetric to p (i.e., pi is the middle point between p\ and 
p'l). For this measure we can write a similar inequality, only the sign before Si is 
different:

72—  1 71— 1

П г ^  ш * -  ^
2 =  0 2 =  0
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(it is also true up to a constant factor). Multiplying these two inequalities, we get 
the inequality

n—1 n—1

ГИ^п ̂  ~i=0 i=0
which is obvious anyway (without any constant). Due to our assumptions about 
Ti (separation from 0) and Si (the convergence of ^2 Sf), the last inequality is an 
equality (up to a 0(l)-factor). Indeed, the product П(1 ~ Ы) is strictly positive 
(assuming that 0 < hi < 1) if and only if ^  hi < oo.

Now the main point: Since the product of two inequalities is an equality, then 
each of them is also an equality (up to a 0(l)-factor). Then the randomness 
criterion (Theorem 90) guarantees that on is random also with respect to p' (and 
also p" , but this does not matter). So the statement (a) is proven.

For statement (b) we postpone the proof since it works for the more general 
case of dependent trials, and we will prove it soon in this more general version; see 
Theorem 197 below. □

The classical version of Kakutani’s theorem can now be proven as a corollary:
Let Vo,V\,P2 , ■ ■ • and Po,p[,P2 , ■ ■ • be sequences of reals in (e, 1 — e ) for 

some £ > 0. Consider the measures p and p' that correspond to independent trials 
with success probabilities pi and p', respectively. Prove that:

(a) if XXPi ~Pi)2 < oo, the classes of null sets with respect to p and p' are the 
same;

(b) if YliVi — Pi)2 = oo, then p and p' are orthogonal (there exists a set that 
has measure 0 with respect to one measure and measure 1 with respect to the other 
one).

(Hint: Use Theorem 196 in a relativized version. Note that for every null set 
one can find an oracle that makes the measures computable and makes this set an 
effectively null one. For (b) consider the set of random sequences.)

Now we formulate this more general statement. Let p be a measure on Q, and 
let p(x) = p(£lx) be the corresponding function on binary strings. If p(x) > 0 for 
some X, we can consider the conditional probabilities of 0 and 1 after x, i.e., the 
ratios p(0\x) — p(x0)/p(x) and p( 1 \ x ) = p(xl)/p(x) (their sum is 1). For the case 
of independent trials these values depend only on the length of x (and were denoted 
earlier by pi).

If, in addition to p, some sequence on € Q, is fixed, we may consider the con­
ditional probabilities of 1 after each term of this sequence, i.e., the sequence of pi 
defined as

Pi = p ( l |w 0 • ■ -Wi-i) =p(w0 • • -^_11)/р(а;о ■ --Wi-i )
(they are well defined if p is not equal to zero on the prefixes of cu). The next 
result [207] shows that these probabilities for a given sequence do not depend 
much on the measure that makes this sequence random:

T h e o r e m  197. Let w be a sequence that is ML-random with respect to two 
computable measures p and p!. Assume that the conditional probabilities pi and p\ 
along ua constructed using p and p' are all in the interval (e, 1 — e) for some e > 0. 
Then

276
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Before proving this statement, let us note that it directly implies statement (b) 
of Theorem 196. Note also that for a random sequence the numbers pi are well 
defined: the denominator p(x) in p{xl)/p{x) is non-zero for a random sequence 
(otherwise Q.x is an effectively null set).

PROOF. Consider one more measure ß that averages the conditional probabil­
ities for ß and p!. Namely, the probability of 1 after x for ß" is an average of two 
similar probabilities for ß and ß ' . (Note that ß" is not an average of ß and ß1: if 
we let ß(X) = (ß (X ) + ß'(X))/2, we also get a measure, but a different one.)

Since the sequence to is random with respect to ß, we can use the Levin-Schnorr 
criterion

n — 1

KA (ш0 • • • LJn-i) = £ ( - 1 о ё гч) + 0(1),
i=0

where (as before) n  = pi if = 1 and r* = (1 — pi) otherwise. Similar equality is 
valid for r[ that correspond to p!. For the intermediate measure ß and corresponding 
fi we know only the inequality (the upper bound for complexity).

Thus, we have the following inequalities for conditional probabilities:
n—1 n —1

£ ( - l o g r ; )  ^  £ ( - 1 о 6 тч) + 0(1),
i=0 i=0
n —1 n —1

£ ( - 10̂ )  < £ ( - i o g f i )  + o( i ) .
i=0 i—0

Taking the average of these two inequalities, we get

E  (-bgrO  + C-logri) ^ g (_ logfJ + 0(1)
i=0

Recalling that fi = (г* + г[)/2, we get

^ ( ( - ‘ogn) + (- togfi)  _  ( - b g ^ - t d ) )  < 0(1).

Each summand in the left-hand side is non-negative (the logarithm is a concave 
function) and is (up to a 0(l)-factor) equal to (г* — r()2, so

£ ( n  -  A f  ~  £ ( р { -  p'if < oo,

as we claimed.
(This argument has a subtle point which needs to be mentioned. We con­

sider the average of conditional probabilities, which creates a problem if one of the 
measures has zero values: In this case the computation of conditional probabilities 
never terminates. So the average measure ß is in fact a semimeasure, but this is 
enough for us (since the upper bound for complexity is still valid, and to never goes 
through problematic points being random with respect to both measures). □

Note that this theorem says only that ß and ß' are close to each other along uj 
(that is random with respect to both). Of course, they can be completely different 
in other parts of the Cantor space.
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277 Give a corresponding example.
(Hint: Consider two measures that are uniform in the left half of the Cantor 

space and differ significantly in the right half.)

278 Prove that in fact for this argument we do not need Martin-Löf ran- 
It is enough to know that cj is computably random with respect to both

and conditional
domness
measures (assuming that both measures are non-zero on all Ц 
probabilities are well defined).

This proof has an interesting game interpretation. Assume that there are two 
bookmakers who take bets for the same (sequence of) events, but who have different 
ideas about their probabilities. Each event has two possible outcomes 0 and 1: the 
first bookmaker thinks that the probability of 1 is p (and the probability of 0 is 
q — 1 — p) and therefore returns the bets on 1 [0] with coefficients 1/p [1/ç]; and 
the second bookmaker does the same for probabilities p' and q'. The probabilities 
P)Ç)P/)Ç/ т а У be different for different events.

(Note also that we assume that the bookmakers are altruistic; a more practical 
bookmaker would use coefficients Co and C\ such that 1/co + l/c i > 1.)

Now assume that we are allowed to play with both bookmakers at the same 
time, having a separate account for each (so we cannot use money from one book­
maker to make bets with the other one). In this language the argument above 
shows that if all p, ç,p/, q1 are separated from 0 and the sum YliP ~ P')2 ls infinite 
(for the sequence of events), then we can achieve unbounded capital in (at least) 
one of the games for sure (for every sequence of outcomes).

How do we achieve this? Assume that in the first game our current capital 
is и , in the second game our capital is v , and the (assumed) probabilities of the 
outcomes are p,q (in the first game) and p \q ' (in the second one). Let us split и 
between two bets in the proportion that brings us (p + p')u/2p for outcome 1 and 
(q + ql)u/2q for outcome 0. (It is easy to check that these bets are valid, i.e., the 
expected value of capital after the game according to the (p, ^-distribution is u.) 
In the second game capital v becomes (p + p/)u/2p/ (for outcome 1) or (q-\-q')v/2q' 
(for outcome 0). Let us track the product of capitals in both games. It is multiplied 
either by (p + p/)2/4pp/ or (q + q')2/^qq'■ The inequality between arithmetic and 
geometric means (the concavity of the logarithm function) guarantees that in both 
cases the product increases. Taking the logarithm and estimating the increase, we 
note that for p^q^p'^q' separated from 0 and for the case Ylip ~ p')2 — +°° the 
product of the capitals tends to infinity, so at least for one of the games the capital 
is unbounded.

In other words, we have constructed two martingales (with respect to two mea­
sures), and they have the following property: For every sequence where conditional 
probabilities for both measures are separated from 0 and 1 and the differences of 
probabilities have infinite sum of squares, at least one of the martingales is un­
bounded.

9.13.2. The Law of Large Numbers for variable probabilities. The
SLLN says that for every p G (0,1) and for the corresponding measure Bp (inde­
pendent trials with success probability p) the set of sequences with limit frequency 
p has measure 1 (and its complement, the set of sequences where the limit does not 
exist or is different from p, is a null set).
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Now assume that the trials are independent, but the success probabilities are 
different for different trials (pi for the îth trial). One would expect that if pi 
converges to some p, then again for almost all (with respect to the product measure) 
sequences, the limit frequency is p. The intuitive explanation follows: Consider 
some e > 0. All pi except for a finite number of them (which could be ignored) are 
smaller than p+ef 2. We know that if we replace all pi by p+ ej2, then almost surely 
the frequency will be less than p + e starting from some moment. By monotonicity 
reasons, this should be true also for the original pi.

With some effort, this argument can be made precise, but we prefer to prove 
a more general statement that is useful in many cases. It deals with an arbitrary 
measure ß on Q, let p(x) = ß(flx) be the corresponding function on strings. For 
every binary string x = xq ■ • • xn_i consider the number of ones in x, and also the 
sum of conditional probabilities pi of the appearance of 1 in the ith position of x 
(after the corresponding prefix),

P i  =p{x0 • ■ - X i - i l )/p(x0 ■ ■ - X i _ i ) .

Both quantities (m and the sum of pi) depend on x; the bound below guarantees 
that with high ß-probability for a given n these quantities are close to each other. 
Here is the exact statement (we have explained what m  and Pi are; the probability 
is taken with respect to ß):

T h e o r e m  198.
Pr[|m -  (po + ---- bPn—\)\ > d] ^  2e~d2/4n.

This theorem is essentially finite, and this inequality is true for every proba­
bility distribution on n-bit strings. This is a weak form of a classical inequality in 
probability theory called the Azuma-Hoeffding inequality. We will give a simple 
argument that uses the same technique that we used for the proof of the SLLN, 
though it does not give the best possible result (in fact, the constant 1/4 can be 
replaced by 2, so one can get the bound with right-hand side 2e~2d ln [66, Theo­
rem 2]).

P r o o f .  We consider separately the probabilities of m being too big or too 
small. Both cases are similar, so we need to consider one of them and prove, for 
example, that

Pr[m -  (po H------ bpn-i) > d] ^  e~d2/4n.
We use a standard trick and construct some measure ß' for which the ratio ßl j ß is 
big for all sequences that belong to the event in the left-hand side. (The ratio ß'/ ß 
is a martingale that reaches ed !4n if this event happens.)

Since we want to increase the measure for the sequence with many ones, it is 
natural to increase the conditional probability of 1 in ß' (compared to ß). Namely, 
if for the original sequence the conditional probabilities of 1 and 0 after some x are 
p and q, in the new measure we let these probabilities be

p' =p + epq, q' = q~ epq,
where e is some positive real. The value of e will be chosen later; now we say only 
that £ does not exceed 1/2. It is easy to check the p' and q' are still in [0,1].

So we get another probability distribution on n-bit strings. Let us compute the 
ratio of these two distributions on some string x of length n. Each bit of x adds a 
factor p'/p  (if this symbol is 1) or q'/q, where p, q,p', q' are conditional probabilities
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of 1 and 0 in the old measure and in the changed measure. In logarithmic scale, 
the logarithm of the ratio in question is equal to the sum of

ln(p7p) = ln(l + eq) ^  eq -  (eq)2 ^  e(l -  p) -  e 2

or
\n(q'/q) = ln(l — ep) ^  —ep — (ep)2 ^  —ep — e 2

for all bits in x (with corresponding probabilities p and q). The first expression 
is used for ones in x and the second is used for zeros. (We used the inequality 
ln(l + h) ^  h — h2 that is true for all h with \h\ ^  1/2.)

What happens when we add all these inequalities? We get a lower bound for 
the logarithm of the ratio p'(x)/p(x) of two measures for x; this lower bound has 
a common factor e. Then we have m ones (each term (1 — p) contributes one, and 
there are m of terms of this type) minus the sum of all p*, where pi is the conditional 
probability of 1 at zth place, and minus ns2,

i P'W  ̂ ( V - a 2 m — >  £{m -  l^pi) -  п е  . p{x)

We are interested in x where the excess m — ^ P i  exceeds d. For them we have

, P'{x) , ч
In . . >  Ed — ПЕ =  E{d — п е ). p(x)

This is true for all e G (0,1/2), so let us choose e to get the strongest statement. 
The right-hand side achieves maximal value when e = d/2n (note that d ^  n, 
because the number of ones in x does not exceed n, so £ = d/2n < 1/2).

Therefore

In V'(x)
p{x) > d2/An

for x where the excess is greater than d, and

P ' ( x ) .  d2/4n
p(x)

as we claimed. This finishes the proof. □

It is instructive to look at the special case where zeros and ones are équiproba­
ble. The probability that the number of ones exceeds its expectation (n/2) by 2^/n 
is bounded by 1/e, and expectation exceeds 2кл/п with probability at most l /e fc 
Comparing this with the classical de Moivre-Laplace theorem, we see that our 
bound is not optimal, but the difference is only in the coefficient (in the exponent).

Now we can repeat the proof of the SLLN with this bound and get the following 
result that is true for arbitrary measure p on the space fh

T h e o r e m  199. For a sequence cj — cjquji ■ ■ ■ that has distribution p ,  the fol­
lowing property holds with probability 1:

lim  f r n  _  pp H-------- V p n - 1
n —>oo \ n n

where m is the number of ones among wo,wi, • • ■ ,Wn-i omd p is the conditional 
probability of 1 after cjqcji • • -u^-i according to p.
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In particular, this theorem implies that for independent trials where success 
probabilities Pi converge to some limit p, the limit frequency p exists with proba­
bility 1 (since the limit of averages (po + • • • +pn- i) /n  is also p).

On the other hand, we need more: We wanted to show that the sequence is 
random according to a Mises-style definition (in one of the versions), so we need 
to ensure that the limit frequency is p not only for the sequence itself, but for all 
its subsequences selected by some admissible rule. Let us look at this question, 
starting with monotone selection rules (the Church-Daley definition).

9.13.3. The Law of Large Num bers for subsequences. Let us generalize 
Theorem 198 by adding selection rules. This theorem considered some measure 
д on fi, and the corresponding function p{x) = p(fix) and conditional probability 
p(l I x) = p(xl)/p(x). For a sequence из and number n we considered two quantities:

• the number m  of ones among wo,. . . ,  wn_i ;
• the sum of conditional probabilities of 1 at n first positions, i.e.,

p(l|A) +p( l |w 0) + p ( l |w 0wi) -I----- hp(l|wo---wn_2).

Theorem 198 guaranteed that (for every n) these two quantities differ significantly 
only for a д-small fraction of sequences из (the д-measure of the set of из such that 
the difference exceeds d is bounded by 2e~d /4n.

Now let us add some selection rule Sr to this picture. Here R  is an arbitrary 
set of binary strings (the set of prefixes before the selected terms). For every 
sequence из the rule Sr selects some positions го, ii, • • • and outputs a subsequence 
Sr (u3) = U3i0u3i1 ■ ■ ■ made by the terms at those positions. Now we compare:

• the number m  of ones among the first n selected terms, i.e., the number 
of ones among n first bits of S#(w);

• the sum of conditional probabilities of ones for the n first selected posi­
tions, i.e.,

P( 1 l^oWl • • • Wio-l) + p( 1 l^oWi • ■ -U3ii_i) -I- • • ■ +p( 1 |Ш0̂ 1 • • ■U3in_1-i).
When R  is the set of all strings, we get the same quantities as in Theorem 198. 
The following theorem says that the same bound is valid in the general case:

T h e o r e m  200. The p-measure of the set of из where these two quantities differ 
by d, is at most 2e~d2̂ 4n.

Note that for some из the sequence Sr (co) may contain less than n terms. These 
из are not elements of the set whose measure is bounded.

E x a m p le .  Consider an arbitrary measure д and a selection rule R that selects 
the terms where the conditional probability of 1 is at most 1/2. Theorem 200 
guarantees that the д-probability of the event “there is at least 51% of ones among 
the first n selected terms” is exponentially small (as n increases).

P r o o f .  This theorem is also a simple consequence of a general Azuma-Hoeff- 
ding inequality for martingales in the sense of probability theory, but we can easily 
modify the argument used to prove Theorem 200.

First note that this theorem now deals with the entire sequence из instead of its 
prefix of some length (since the first n selected terms may appear arbitrarily late). 
But due to the continuity of measure, it is enough to prove the same inequality for
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first N  bits of u) (it gives a smaller set, but the union of all these sets for all N  is 
the set in question).

As in the proof of Theorem 200, we construct a new measure, but now we change 
conditional probabilities only in the positions where the next term is selected, i.e., 
the conditional probabilities of p(l\x)  for x G R. Then the ratio of probabilities 
(for the modified and original measures) will include the length of the selected 
subsequence (instead of the sequence itself) and the sum of conditional probabilities 
for the selected terms (instead of the sum of all conditional probabilities), i.e., 
exactly what we need. □

This result gives us a tool (following van Lambalgen [90]) to construct Mises- 
Church--Daley sequences. Let Po,Pi, ■ ■ ■ be a computable sequence of computable 
reals that computably converges to some p G (0 ,1 ) .  This means that for every given 
£ > 0, one can compute some N  such that \pi — p\ < e for all i ^  N. (It is easy 
to see that in this case p is computable.) Consider a computable measure ß that 
corresponds to a sequence of independent trials with probabilities pi.

T h e o r e m  201. Every ML-random sequence with respect to ß is Mises-Church- 
Daley random with frequency p.

PROOF. Consider some rational e > 0 and some Church-Daley admissible rule 
Sr (not necessarily total). We need to show that the set U of all sequences uj, 

where Sr(oj) gives an infinite sequence in which the frequency of ones exceeds p + e 
infinitely often, is an effectively null set. (The argument for frequencies less than 
p — e is similar.)

Fix some n, and consider the set Un of sequences uj such that Sr{u)) has length 
at least n and the frequency of ones among the first n terms exceeds p + £. This set 
is effectively open (applying the computable partial selection rule to all branches, 
we enumerate all strings that guarantee that its every extension is in Un).

Theorem 200 provides the upper bound for the ß-measure of Un. If n is large 
enough, the average of conditional probabilities is less than p + e/2 (and we know 
how large n should be, since the sequence pi converges computably to p). This 
bound decreases exponentially as n increases. So one can cover U by an effectively 
open set of arbitrarily small measure (taking all the intervals in Un, Un+i, Un+2 , ■ ■ ■ 
for arbitrarily large N; recall that by definition of U each element of U belongs to 
infinitely many Un). Therefore, U is an effectively null set and cannot contain an 
ML-random sequence. □

Now we extend this statement to Mises-Kolmogorov-Loveland random se­
quences.

T h e o r e m  202. Every ML-random sequence with respect to ß is Mises- 
Kolmogorov-Loveland random with limit frequency p.

PROOF. The application of a Kolmogorov-Loveland admissible selection rule 
Sp,G a sequence uj consists of two phases. First we use F to select a sequence 
of revealed bits (both selected and not selected). Then G is used to select some of 
the revealed bits, and this operation is a Church-Daley admissible selection rule.

After this decomposition is done, let us consider the distribution of a sequence 
up that is obtained at the first step. (We assume that the original sequence is 
obtained by independent trials with probability pi in the îth trial.) Let us first 
assume that F and G are total functions.
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The first term of uip is chosen when no bits are revealed; it occupies a fixed 
position in u>. This position is no = F(A). So the probability that 1 appears as 
the first term in up  is pno• Now consider the second term of up. Its position in 
Q. depends on the value of uino and can be either F(0) or F( 1). So the conditional 
probability for the second term of uip to be one (given the first term as the condition) 
is either Pf(o) or Pf{i)- In general, the probability of 1 after x in uip equals Pf{x)-> 
since the next revealed bit has number F(x). Note that the restrictions of F (no 
bit is revealed twice) guarantee that conditional probabilities along any branch 
form a subsequence of {p*} (without repetitions), so the number of terms outside 
of (p — e/2,p + ef 2) for this subsequence is bounded by the number of such terms 
in the original sequence.

This allows us to apply the bound of Theorem 200 to sequence cop and the 
selection rule determined by G in the same way as in the proof of Theorem 201.

The same bound is true for partial F and G: Extending them to some total 
functions, we may only increase the set whose measure is bounded. (A computable 
partial function may have no computable extensions, but here we are interested in 
the bound only, so a non-computable extension can be used.)

Having proven the bound for partial F and G, we now observe that for com­
putable F and G the set of u> such that Sf,g(w) starts with x , is an effectively 
open set (uniformly in x). So now we can finish the argument as in the preceding 
theorem. □

R em ark . One can give a more direct proof of Theorem 202. Here is one of 
the possible arguments (taken from [177]).

Fix some (rational) e > 0 and some Kolmogorov-Loveland admissible selection 
rule Sf,g- We need to show that the set U of sequences u> such that Sf,g(w) is 
infinite and the frequency of ones exceeds p + e infinitely often is an effectively null 
set. (The argument for p — e is similar.)

By Un we denote the set of all sequences u> such that Sf,g {̂ >) contains at least 
n terms and the frequency of ones among the first n terms exceeds p + e. We need 
to show that the series ß(Un) computably converges. (Here ß is our measure; it 
corresponds to independent trials with success probabilities pi.)

By <2n,fc0r ? • • •, тп) we denote the probability of getting more than к ones on n 
independent trials with success probabilities r \ , ... ,rn. The function an^  is a non­
decreasing one with respect to each argument r*. (A side remark: it is a multilinear 
function, i.e., a polynomial of degree at most 1 with respect to each argument.) It 
is easy to see also that anj . < anj  if к ^  I.

We claim that ß(Un) ^  &п,к{г1-> • • • ? rn), where к = n(p + e) and r* is the ith 
element of {po,Pi, • • •} in decreasing order, or, more precisely,

ri = sup Р», r2 = sup min (pi,pj), r3 = sup min (pi,pj,pk), ■■■■
ij£j i^jßk

Let us show that this bound implies the convergence of the series ß{Un). Obviously, 
ri ^  r2 ^  ■ ■ ■ and limn = p. Let us replace all n  that exceed p + e j2 by 1; let s 
be the number of these replacements. We conclude that

KUn) ^  &n—s,k—s{p “b ^/2j ■ • ■, p T ^/2),
so we have reduced the question to the case of constant probabilities (that we have 
already discussed several times). It is important to note that for large n the ratio 
(k — s)/(n — s) is close to p + e and exceeds p + e/2 significantly.
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It remains to prove the bound for ß(Un) mentioned above. Again imagine that 
the bits of the sequence are written on cards that lay on the table face down, and 
the selection rule determines which bit should be revealed next and whether it is 
used just for information or is selected. While applying the selection rule, let us 
record which cards were turned over and the corresponding bits; we get an (infinite) 
record, or log file. Let 7Г be the initial segment of such a record. By п(тг) we denote 
the number of terms that were selected during 7Г, and by к (it) we denote the number 
of ones among these terms. By rfiir) we denote ith biggest number in a sequence 
obtained from рсьРь • • • by deleting the terms that correspond to the bits already 
revealed (for information or for selection).

Let ß(Un 17r) be the conditional probability of Un with the condition “the record 
starts with 7r”. Let us prove the generalized version of the inequality in question: 
If n(7г) < n, then

(*) ß(Un \ir) ^  ап-п(тг),к-к(тг)(Г1(1г),Г2(тг), .. .).
For empty 7r we get the bound we are interested in. This inequality can be proven 
by backward induction. If п(тг) =  n, this inequality becomes an equality (left- and 
right-hand sides are either both zeros or both ones). Let п(тг) < n, and let m be 
the index of the bit that is turned over immediately after pi (if F(tt) is not defined, 
then ß(Un 17г) = 0 and we have nothing to prove). Then

H(Un \ir) =Pmß(UnU\) + (1 - P m M ^ n k o ) .
where 7To and 7Ti are obtained from 7Г by adding that the mth card contains 0 
(respectively 1). Let us show that if (*) is true for 7To and 7Ti, then it is true for i t . 

Indeed, in this case ß(Un 17r) does not exceed

(**) Рт&п—п{-к\ ),k — fc(7ri) (̂ 1 (tTI )?■•■) "Ь (1 Pm)otn—n(no),k — k(no) (̂ "l (^o)? • • •)•
If the bit on the mth card is used only for information, then n(7To) = n(7Ti) = п(тг) 
and к(тто) — к(тт\) — k(ir), and it remains to use the monotonicity of an^  and the 
inequality Гг(7Го) = r.j(7Ti) ^  rfiir). On the other hand, if the mth bit was selected, 
then ti(ttq) = п(тг\ ) = п(тт) + 1, к(тто) = к(тт), and k(TTi) = к(тт) + 1, and (**) is 
equal to

ап—п{ж),к — к{ж) (P m ? n(7Tl),7-2(7ri), • • •)■
Note that r;(7Ti) = rfittq) and therefore does not exceed

^n—n(n),k — k(n) (Т1 (̂ ") ) Г 2 (̂ ")> • • ■)•
This ends the proof of the inequality (*) in the case when all 7Г with п(тт) — n have 
bounded length. If not, this argument gives a bound for ß(Un,t 17r) where Untt is 
the set of all sequences from which a subsequence of length n with more than к 
ones is selected after revealing at most t bits. It remains to let t tend to infinity.

9.13.4. Examples. Now it is easy to prove the existence of Mises-Kolmo- 
gorov-Loveland sequences with some pathological properties.

T h e o r e m  203. (a) There exists a Mises-Kolmogorov-Loveland random se­
quence with frequency 1 /2 that is not ML-random with respect to the uniform mea­
sure.

(b) There exists a Mises-Kolmogorov-Loveland random sequence with frequen­
cy 1/2 where each prefix has more zeros than ones.
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(c) There exists a Mises-Kolmogorov-Loveland random sequence with frequency 
1/2 such that some Kolmogorov-Loveland admissible (and even Church admissible) 
rule selects from it a subsequence that is not Mises-Kolmogorov-Loveland random.

(d) There exists a Mises-Church-Daley random sequence with frequency 1/2 
that becomes not Mises-Church random after a computable permutation of its terms.

P r o o f ,  (a) Consider a computable sequence of rational numbers that con­
verges to 1/2 very slowly, for example,

1 1
Pi ~  2 ”  JT + Î

(here 5 is added to make all pi positive). Consider the computable measure p that 
corresponds to independent trials with success probabilities p*.

Since the series XXp* — 1/2)2 diverges, no ML-random sequence (with respect 
to ft) is ML-random with respect to the uniform measure (Theorem 197). On the 
other hand, all these sequences are Mises-Kolmogorov-Loveland random with limit 
frequency 1/2 (Theorem 202).

(b) This statement can be proved in a similar way, but one should consider the 
sequence pi that converges to 1/2 even more slowly. For example, let

_  1 1
Рг 2 log(i + 5) '

What is the probability (according to ft) of the event “n-bit prefix contains fewer 
zeros than ones” (the frequency of ones exceeds 1/2)? Theorem 198 says that this 
probability (let us denote it by 6n) is bounded by e“n/° (log (the threshold d is 
about n/0(logn), and d2/4n = n/O (log2n)). The series converges, so the
probability of the event “all prefixes of length at least N  contain at least as many 
zeros as ones” is positive. The set of positive measure (obviously) contains some 
ML-random (with respect to ft) sequence. Now we know that there exists an ML- 
random sequence (with respect to ft) where all prefixes of length at least N  have at 
least as many zeros as ones. This sequence is Mises-Kolmogorov-Loveland random 
(Theorem 202). Adding jV+1 zeros before it, we get a Mises-Kolmogorov-Loveland 
sequence with the required property.

(c) As W. Merkle has noted, here we can use the same trick to generate the 
required sequence. However, the sequence Pi should be chosen in a more compli­
cated way. Let us split the sequence into blocks: the kth block consists of one 
term, where probability (to be 1) equals 1/2, and two parts of equal (and large 
enough) length Пк. In the first part the probabilities of 1 are the same and exceed 
1/2 slightly, while in the second part they are slightly less than 1/2 (and again the 
same); see Figure 28. Here Ek is strictly positive and converges to 0 as к —> oo,

1
2

Пк

2 + £k,---

Пк

1 ■ _ 1 _2 + £k 2 _  £k' ' ' 1 1
2 - £ k

F i g u r e  28. The kth. block and the probabilities



9.13. CHANGE IN THE MEASURE AND RANDOMNESS 309

but the convergence is slow. More precisely, we need the following relation between 
Пк and Ek : The probability that for Пк independent trials with success probability 
I + Ek the fraction of ones is strictly greater than 1/2 is at least 1 — 2“ f̂c+3l  (In 
fact, this can be achieved for any sequence Ek if Пк are sufficiently large.)

If Пк and Ek are chosen in this way, we get with positive probability a sequence 
u) such that for all к in each of the two halves of the kth. block the imbalance 
between zeros and ones is in the expected direction (more ones in the left half and 
more zeros in the right half).

Therefore, there exists an ML-random (with respect to fi) sequence uj with this 
property, and Theorem 202 guarantees that it is also Mises-Kolmogorov-Loveland 
random.

Now let us show that some Church admissible selection rule selects from lo a 
sequence that is not Mises-Kolmogorov-Loveland random. The selection rule is 
very simple: we select the first bit of each block all the time, and depending on its 
value we select either all bits in the left half or all bits in the right half (of the rest 
of the block).

Why is the selected subsequence ui' not Mises-Kolmogorov-Loveland random? 
This is easy—the imbalance condition allows us to reconstruct the value of the key 
(the first bit of the block) by counting zeros and ones in the following Пк bits. So 
we first read bits that go after the key bit and then predict correctly the value 
of the key bit. This ends the proof of (c).

We may also note that the sequence uJ is Mises-Church-Daley random, since 
the composition of two Church-Daley admissible rules is again a Church-Daley 
admissible rule. On the other hand, if we permute ui' (computably) by placing the 
key bit after all the other bits of the same block, we get a sequence that is not 
Mises-Church random. So statement (d) is also proven. □

Note that this result shows that all the Mises-style definitions of randomness 
are not very natural. Indeed, Mises noted the following important property of 
Kollektivs: Applying an admissible selection rule to a Kollektiv, we should get 
another Kollektiv. And statement (c) shows that the Mises-Kolmogorov-Loveland 
definition does not have this property. The definitions with monotonie selection 
rules (Mises-Church, Mises-Daley) have this property, but are not stable with 
respect to computable permutation of terms, which is also quite strange.

279 Prove that by applying a Kolmogorov-Loveland admissible selection rule 
to a Mises-Kolmogorov-Loveland random sequence we get a Mises-Church-Daley 
random sequence.

280 Prove that there exists a Mises-Kolmogorov-Loveland random sequence 
(with limit frequency 1/2) that is not even Kurtz random.

(Hint: Take a sequence that is random with respect to a slightly biased measure. 
One of the martingales constructed in the proof of Theorem 197 is bounded on it, so 
the other one has a computable lower bound that computably converges to infinity.)

It seems that the examples of this section tell us that the Mises-Kolmogorov- 
Loveland definition is probably too weak from the intuitive viewpoint. The same 
can be said about the definition of computably random sequences. Now the nat­
ural question arises: What happens if we combine these two definitions? Assume 
that we play with a sequence of bits that is selected in arbitrary (not necessar­
ily monotonie) order as in Kolmogorov-Loveland selection rules, but we can make
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F i g u r e  29. Relations between different notions of randomness

bets of arbitrary computable size (not exceeding the current capital), as in the 
definition of computable random sequences? One can naturally define this class of 
sequences; they are sometimes called unpredictable or Kolmogorov-Loveland ran­
dom. It is easy to prove that all ML-random sequences have this property, but it is 
not known now (2017) whether these two classes coincide. One can note also that 
for non-monotonic martingales (games with non-monotonic subsequences) it does 
not matter whether they are total or not (the same argument as in Theorem 191 
(p. 291) works).

Finally, let us summarize what we know about relations between different no­
tions of randomness (Figure 29). We have two columns; in each column the notion 
becomes weaker (and the class of random sequences increases) as we go down. 
The left column contains game definitions (extending Ville’s idea in different ways) 
that use martingales of different types. The right column (extending von Mises’ 
ideas in different ways) uses selection rules of different types. Both columns start 
with Martin-Löf randomness (that is equivalent to randomness with respect to 
lower semicomputable martingales) and the definition of randomness with respect 
to non-monotonie (partial) computable martingales. We do not know whether these 
definitions are equivalent or if the second one is weaker.

In the right column the class of admissible selection rules decreases; in the left 
column the requirements for a winning strategy increase (see Section 9.9, Theo­
rem 183, and Problem 272). So the corresponding classes of random sequences 
increase when we go down.

To see why all the implications shown (except for the top one) are irreversible 
and there are no other implications, let us consider the relations between columns. 
As we have seen, Mises-Kolmogorov-Loveland randomness does not imply even the 
weakest notion in the left column—Kurtz randomness (Problem 280)—so there are 
no implications going from right to left.
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When going from left to right, the “random with respect to partial com­
putable martingales sequences” are Mises-Church-Daley random (Theorem 190, 
p. 290); computably random sequences are Mises-Church random (Theorem 182, 
p. 279); Schnorr randomness implies SLLN (Problem 92, p. 70). But these impli­
cations cannot be improved: Kurtz randomness does not imply the SLLN (Prob­
lem 92, p. 70); Schnorr randomness does not imply Mises-Church randomness 
(Problem 271, p. 284); computably random sequences may be not Mises-Church- 
Daley random, since in the first case the complexity may grow as O(logn) (Theo­
rem 182, p. 279) and in the second case this is impossible (Theorem 188, p. 287); 
finally, randomness with respect to computable partial martingales does not imply 
Mises-Kolmogorov-Loveland randomness, since in the first case the complexity of 
prefixes may be sublinear (Theorem 190, p. 290) while in the second case this is 
not possible (Theorem 193, p. 293).

Therefore in each column all the arrows are irreversible (since the consequences 
in the right column are different for each notion in the left column; similarly for 
the right column), so indeed no other implications can be added to our table.



CHAPTER 10

Inequalities for entropy, complexity, and size

10.1. In troduction and sum m ary

The first publication of Kolmogorov in which the definition of complexity was 
given is the paper “Three approaches to the quantitative definition of informa­
tion” [78]. The three approaches mentioned there are combinatorial, probabilistic, 
and algorithmic.

The algorithmic approach measures the amount of information in a message 
by its Kolmogorov complexity (as we call it now—of course, this name was not 
used by Kolmogorov himself). Using the probabilistic approach, we consider a 
message as one of the possible values of some random variable, and we measure the 
Shannon entropy of this random variable. But Kolmogorov started the paper with 
the combinatorial approach, making the following (trivial) observation: If there are 
N  different messages that can be transmitted, we need log N  bits to specify which 
of the messages is transmitted. (If we need to guess one of N  objects, we need to 
ask logiV yes-or-no questions.)

We have already mentioned some results that relate these three approaches. For 
example, Theorem 8 (p. 19) related the combinatorial and algorithmic approaches 
and refined the following (absurd, if understood literally) statement, “a string x has 
complexity at most n if and only if x belongs to the set of at most 2n elements”. 
Another example is that the results of Section 7.3 relate Kolmogorov complexity 
and Shannon entropy.

In this chapter, following [64, 157], we establish more formal connections be­
tween the three approaches and restrict ourselves to a rather specific class of state­
ments: linear inequalities for entropy and complexity (and corresponding combina­
torial statements).

Let x \ , . . .  , xn be binary strings. For every non-empty set I  C {1, 2 ,... ,n} 
of indices, consider the tuple xj  made of all X{ with i € I. We are interested in 
the Kolmogorov complexity of this tuple. For example, for n = 3, we have seven 
possible tuples, and we get a list of seven complexities:

C(xi), C(x2), C(x3), C(xi ,x2), C(xi, x3), C(x2, x3), C(xi ,x 2 , x3).

Let us give several examples of linear inequalities where these complexities appear:

• C(x\ ,x2) ^  C(xi) + C(x2) + O(logiV);
• C(xi ,x 2 , x3) ^  C(xi) + C(x2 , x3) + O(logiV);
• C(xi ,x 2 , x3) + C(xi) ^  C(xi ,x2) + C(xi,x 3) + O(logiV);
• 2C( x i , x2, x3) ^  C(xi,x 3) + C(x2 , x3) + C(xu x2) + O(logiV)

(we assume here that x \ , x 2 , x 3 are strings of length at most N).

313
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In general, linear inequality for complexities has the form

X > C ( * 7) ^  O(logAZ'), 
i

where the sum is taken over all non-empty subsets of {1 ,..., n}. The coefficients А/ 
may be positive, negative, or zeros; we assume that all strings X{ have length at 
most N, and the constant in О-notation does not depend on N  (but may depend 
on n and the inequality chosen).

Which of these inequalities are true? More formally, we are looking for the 
tuples of coefficients A/ such that

^  XIC(xI ) ^  clog N
I

for some c, every N, and all strings aq,. . . ,  xn of length at most N.
This question is still wide open, and only some partial results are known.
First of all, this question is not specific to algorithmic information theory, as 

shown by A. Romashchenko who proved that such an inequality is true if and only 
if the inequality for Shannon entropies with the same coefficients is true, where 
strings X{ are replaced by random variables £/ (with arbitrary joint distribution),

I

where £/ is a random variable made from & with i € I  (in other words, projection 
of the random vector (£i,... ,£n) on /-coordinates).

The implication in one direction is an easy consequence of the result proven 
in Section 7.3: Theorem 147 (p. 228) says that entropy is an expected value of 
complexity and any linear inequality that is true for complexities should be also 
true for their expectations (with no error term, since the ratio 0( \ogN)/N  tends 
to 0 as N  -» oo).

More precisely, let & be a random variable with values in some finite set X{. 
Then the value of a random vector £ = (£i,. . . ,  £n) can be represented by a column 
of height n. To apply Theorem 147, consider N  independent variables distributed 
as £. Together they form a random variable that we denote by ÇN. Its values are 
matrices having N  columns and n rows. Theorem 147 says that the expected value 
of the complexity of this matrix is NH(£) + О (log N)  (we spoke there about prefix 
complexity and had A as a condition, but with 0 (log7V)-precision this does not 
matter).

We can consider this matrix as a tuple of rows: the zth row is a string of length 
N  over the alphabet Xi. We can apply Theorem 147 not only to the entire matrix, 
but also to selected rows indexed by i G /, where I  is some subset of {1, 2 ,.. . ,  n}. 
The expected complexity of this part of the matrix is NH(£i) + 0(logA/^).

If the inequality
s: O(logiV)

I

is true for all tuples x \ , ... ,xn, it can be applied to the rows of our matrix. So, 
taking the averages, we get

£A ,JV tf(6 )< 0 (lo g iV ).
I
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JV,

so this is possible only if
^ T A /tffô K O ,

I

as we claimed.
The other direction is much less trivial. We want to show that if the inequality 

is true for entropies, it should be true for complexities with logarithmic error. Here 
some strings x \ , . . . ,  xn are given, and we need to construct a family of random 
variables whose entropies (and the entropies of their combinations) are close to the 
complexities so we can apply the inequality for entropies. This can be done by a 
typization trick suggested by A. Romashchenko: We consider the set of all tuples of 
strings x \ , . . . ,  x'n whose complexities and conditional complexities are bounded by 
the corresponding complexities of x i , ... , xn, and take a random element of this set 
(with uniform distribution). See below Section 10.6 (Theorem 212) for the details.

Further results are related (in different ways) with the combinatorial interpre­
tation of inequalities. Let us start with a simple inequality

C(xi ,x2) ^  C(xi) + C(x2) + O(logiV)
and try to understand its combinatorial meaning. Let X\  and X 2 be finite sets 
whose elements x\ G X\  and x 2 G X 2 are considered as messages. Assume that 
we have a set A c  X\  x X 2 whose elements are possible pairs of messages. Then 
we have \A\ possibilities for the pair (here \A\ stands for the cardinality of A). 
For the first component the number of possibilities is equal to the size of the first 
projection of A (the set of x\ such that (xi ,x2) G A for some x2). Denoting this 
number by m(l) and a similar number for the other coordinate by m(2), we can 
write a combinatorial version of the same inequality,

log \ A\ ^  logm(l) + logm(2)
or

|A| < m(l)m(2)
(the size of a set is bounded by the product of sizes of its projections, an evident 
observation).

To see a less trivial example, consider the inequality for complexities from 
Theorem 26 (a similar inequality for entropies is considered in Problem 230):

2C(xi ,x2 , x3) ^  C(xi,x 2) + C(xi ,x3) + C(x2 , x3) + O(logiV).
Using our analogy, we guess that for an arbitrary subset A of the Cartesian product 
X\  x X 2 x X 3 the following inequality holds:

21og|A| ^  logm(l,2) + logm(l, 3) + logm(2,3),
where m (i , j ) is the number of elements in the projection of A onto X{ x Xj  (see 
Figure 30) or

\A\2 < m(l, 2)m(l, 3)m(2,3).
And indeed this is true; moreover, this inequality can be deduced from the inequality 
about complexities using the following simple argument. For an integer N  consider 
the set A N; we represent elements (xi ,x 2 , x3) G A as columns of height 3, so every
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element of A N can be represented as a matrix of width N  and height 3. There 
are \A\N matrices in A N, so among them there is a matrix of complexity at least 
log |A|N = Л/Tog A. Such a matrix is a triple of strings (x2 , x 2 , x3) of length N  (its 
rows), and we can apply the inequality for complexities

2 C(xl ,x 2 , x3) < C(xi ,x2) + C(xi ,x3) + C(x2 , x3) + O(logiV).
Note that the complexities in the right-hand side are bounded. For example, the 
pair (x\ ,x2), a matrix of width N  and height 2, is an N -tuple of its columns. Each 
column is an element of the projection of A onto coordinates (1,2), so the matrix 
is a string of length N  over an alphabet of size m(l,2). Therefore its complexity 
(given N  and A) is bounded by iVTogm(l, 2) + 0(1). The set A does not depend 
on N, and the complexity of N  is 0(log iV), so we get

N  log \A\ < iVlog m(l, 2) + N  logm(l, 3) + iVlog m(2,3) + O(logiV), 
which is possible for arbitrarily large N  only if

2 log\A\ < logm(l, 2) + logm(l, 3) + logm(2, 3).

2

F i g u r e  30. Three projections

281 Prove the same inequality for sets starting with the inequality

2 # ( 6 , 6 , 6 )  < H ( b , 6 )  +  H ( b , b )  +  t f  ( a  b )

for entropies.
(Hint: Consider a triple uniformly distributed in A, and recall that the entropy 

of every random variable is bounded by the log-size of its range.)
282 Give a direct proof of the same inequality without using complexities or

entropies.
(Hint: It can be derived from the inequality of Theorem 164.)
This inequality can be used to show that the number of triangles in a graph 

with V edges is 0 ( V L5).
A similar argument can be applied to an arbitrary linear inequality for com­

plexities that has only one term in the left-hand side (an inequality of this type
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says that some complexity is bounded by a positive linear combination of some 
other complexities). One can also extend this argument to inequalities that have 
conditional complexities in the right-hand side. For example, the inequality

C{xi ,x2) < C(xi) + C(x2 \xi)
corresponds to the (evident) combinatorial statement

m(l, 2) < m( 1) • m(2 11)
valid for an arbitrary set A C X\  x X 2, where by m(l,2) we mean the number of 
elements in A, by m(l) we mean the number of elements in the first projection of 
A, and by m(211) we mean the maximal size of all sections of A obtained when the 
first coordinate is fixed.

Let us explain informally why this inequality is a natural combinatorial coun­
terpart for the inequality about complexities. The “combinatorial amount of infor­
mation” in x\ is logm(l); for a fixed value of X\ we have at most m{2 11) possible 
values of x2, so the amount of information in x 2 given x\ is (from the combinato­
rial viewpoint) bounded by logm(2 | 1). And the amount of information in a pair 
(x\ , x2) G A is measured as log A = logm (l,2).

Show that every linear inequality of the form L < R, where L and R  are283
positive linear combinations of (conditional or unconditional) complexities and L 
has only one term, corresponds to a (true) combinatorial inequality.

We can describe completely the inequalities of this type that do not include 
conditional complexities. Consider an inequality

(*) C{x i , . • • , xn) < ^  XjC(x i ) + О (log A/"),
i

where all the coefficients in the right-hand side are non-negative and the sum is 
taken over non-empty I  except for I  — {1,2 ,. . . ,  n}. (We can assume without loss 
of generality that the left-hand side includes all X{. Then if some Xj is missing there, 
we can delete Xj everywhere in the right-hand side. In other words, replacing Xj 
by the empty string, we get a stronger inequality.)

T h e o r e m  204. The inequality (*) holds if and only if for every г e {1 ,2 ,..., n} 
the sum of coefficients in the right-hand side for the terms including Xi is at least 1.

P r o o f .  If the sum of coefficients is less than 1, the inequality is false even for 
the case when all strings except хг are empty.

Assume now that for all i the sum of coefficients near terms that contain X{ is 
at least 1. Represent each term as a sum of conditional probabilities; for example,

C(x 1 , x 2 , x3, . .. ,xn)
now becomes

C(x i) + C(x2 \xi) + C(x3 |x i,x 2) H------ h C(xn \x i , ... ,xn_i).
In all the terms (in the left- and in the right-hand sides) we use the same ordering 
(increasing indices, as in this example). Look at the terms C(x{ | • • • ) with some 
conditions in the left-hand side and in the right-hand side. On the left we use 
all preceding variables as conditions, and on the right some terms may have fewer 
conditions. But the complexity may only increase when a condition is deleted, 
and it remains to recall that the sum of coefficients in the right-hand side is at 
least 1. □
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284 Prove that for prefix complexity the inequalities from the previous the­
orem are true with 0 (l)-precision (better than 0 (logn)-precision that we usually 
have for strings of length n).

(Hint: The argument above shows that this inequality is a linear combination of 
basic inequalities, and the latter are true with 0 (Imprecision for prefix complexity 
(Theorem 70, p. 110). Indeed, if we (temporarily) redefine prefix complexity as 
K(u\v) = K(u,v)  — K(v), then the inequalities of type K(z\x,y)  ^  K(z) are 
reduced to basic inequalities.)

However, we want to understand the combinatorial meaning of arbitrary linear 
inequalities (and not only those with one term in the left-hand side). To understand 
the problem, let us consider an example: the basic inequality

C(xi) + C(xi ,x 2 , x3) < C(xl , x2) + C(xi ,x3) + 0(\ogN).

The naive idea is to write a combinatorial inequality in the same way as before and 
hope that for every A C X\  x X 2 x X 3 the following inequality holds:

m(l) • m(l, 2,3) ^  m(l, 2) • m(l, 3).

This is not the case. This inequality is indeed true for every parallelepiped a x b x c  
where m(l) = a, m( 1, 2,3) = abc, m( 1, 2) - ab, and m(l, 3) — ac. But if we add to 
this parallelepiped another one, a' x l x l ,  where a' a, then the values of m(l, 2), 
m(l,3), and m (l,2,3) remain almost unchanged while m(l) increases significantly, 
so the inequality may become false.

Another example is to consider the reverse inequality for the complexity of a
pair

C(xi) + C(x2 \x\) < C(x\ ,x2) + 0(1).
What statement is its combinatorial translation? Again, the naive attempt is to 
consider the inequality

m(l) • m(2 11) < m(l, 2),
but it does not work—the ratio m (l,2)/m (l) is an average size of a (non-empty) 
section, and this average size can be much smaller than the maximal size m(2 | 1).

So we now see the problem. What can be done? There are several possibilities. 
First, one may consider not arbitrary sets but some special (uniform or almost 
uniform) sets, where this problem does not appear. The other approach is to find a 
better combinatorial translation of the inequalities. Both approaches are considered 
below; we start with the first one (uniform sets).

10.2. Uniform sets

Let us recall the notation used. Let A C X\ x • ■ ■ x X n be a non-empty subset 
of a Cartesian product of n finite sets X \ , . . . ,  X n. For every set I  C {1 , . . . ,n} of 
indices, we consider the projection of A onto corresponding coordinates, which is a 
subset of П iei Xi- The size of this projection is denoted by ша(1). We consider 
not only projections, but also their sections. Let I  and J  be two disjoint sets of 
indices. Let us fix /-coordinates in some way (by selection of a point in -̂ "0 
and consider the set of all /-coordinates of points in A with given /-coordinates. 
So for every point in П ieI X{ we get some subset of YljejXj-  The maximal size 
of these subsets is denoted by m^(J  \ /)• (If the set A is clear from the context, we 
omit the subscript A in this notation.)
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We assume (as usual) that m(0 ) = 1 and m(0 1J) = 1 for every J. On the 
other hand, we define m(I\ 0 ) as m(I). For example, consider a set A C X\  x X 2 

(see Figure 31).

2

Figure 31. A two-dimensional set and its parameters

Then 7Пл({1}) is the cardinality of the projection of A onto a horizontal axis, 
m A({2 }) is the size of the vertical projection, mA({2} | {1}) is the maximal size of 
the vertical section, and m A({ 1} | {2}) is the maximal size of the horizontal section. 
The total number of elements in the set is mA({l,2}).

We can write the (obvious) inequality

m(l, 2) ^  m{ 1) ■ m { 2  | 1)

(we omit the subscript A and curly brackets for brevity). Indeed, each of m{ 1) 
vertical sections contains at most m(2 | 1) elements.

For an n-dimensional set a similar inequality says that

m(l, 2 , . . .  ,n) ^  m{ 1) • m( 2 11) • m(311, 2) • ... ■ m(n| 1, 2, . . . ,  n — 1).

It is true for the same reasons: for each of m(l) possible values of the first co­
ordinate, there are at most m(2 |l)  values of the second coordinate; for each pair 
there are at most m(3|l ,2) values of the third coordinate; and so on. The same 
inequality is true for every permutation (k\ , . . . ,  kn) of (1, 2, . . . ,  n):

m(ki , . . . , k n) ^  m(ki) ■ m(k2 \ki) ■ m(k3 \ki,k2) • ... ■ m(kn \ki , ... ,fcn_i),

the left-hand side remains the same (the cardinality of A).
Now we are ready to give the definition of a uniform set. A set A is uniform 

if all these inequalities (for all n! permutations of the set of indices) are equalities. 
The simplest example of a uniform set is a (combinatorial) parallelepiped, i.e., the 
set A\ x • • • x An for some Ai c  Xi.

However, there are other examples of uniform sets. For example, Figure 32 
shows a uniform sets of six elements (all non-zero sections have two elements and 
both projections have three).

Let J, J, К  be disjoint sets of indices. Then for arbitrary A the following in­
equality holds:

m(J U K \ I )  ^  m(J\I )  ■ m (K \ I  U J)
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• • 
• • 
• •

F igure 32. A uniform set

(for each combination of /-coordinates there are at most m ( J \ I )  combinations of 
/-coordinates, and for each of them there are at most m ( K \ I  U J) combinations 
for //-coordinates).

We can use this inequality to prove the inequality considered earlier,

m(fa , . . . ,  kn) ^  m(fa) ■ m(fa\fa) ■ m(fa | fa, fa) • ...  • m(kn \ fa , . . . ,  kn-i)
(which is evident anyhow, but let us continue the argument, it will soon become 
clear why we do this) by grouping factors in the right-hand side. For example, the 
product

m(fa I fa, fa) • m(fa I fa, fa, fa)
is at least

m( fa,fa\fa,fa),
then the product

m{ fa\fa) • m(fa, fa\fa, fa) 
can be replaced (without increase) by

m^fa, fa, fa I fa),
and so on, until we get the left-hand side. For a uniform set, therefore, all these 
inequalities are equalities (since the first and last terms in the chain of inequalities 
are equal). Now we conclude that for uniform sets the inequality

m(J U K \I )  ^  m(J  11) • m(K  | /  U J)

turns into an equality for all I, J, K. Indeed, we can find a chain of inequalities 
where this inequality appears. The equation

m(J  U К 11) — m(J  11) • m(K \ I  U J)

can, therefore, be considered as an (equivalent) definition of uniform sets. We 
require it to be true for every disjoint set I, J, К  of indices.

285 Following this argument, give a complete proof that the property above
is an equivalent definition of uniform sets.

286 Prove that a projection of a uniform set on every subset of coordinates 
is again a uniform set.

Prove that every section of a uniform set (we fix some coordinate and287
consider the set of possible values of all other coordinates) is again a uniform set.

Uniform sets are important as sources of random variables. Consider a uniform 
set A C Xi  X • ■ • X X n and a random point that is uniformly distributed in A. 
Its projection onto the ith coordinate is a random variable with values in Xf, we 
denote this variable by &.
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T h e o r e m  205. A set A is uniform if and only if for every I  — { « i , . . . ,  г^} the 
random variable £/ = (£^,... , £ifc) has uniform distribution on its range.

P r o o f .  Let I  be some set of indices, and let J  be its complement (the difference 
between {1,2,...  ,n} and I). Then the equality

m(l, 2 , . . .  ,n) = m(I) • m(J\I)

means that that the average size of a (non-empty) section obtained by fixing I- 
coordinates, i.e., m(l, 2, . . . , n)/m{I), is equal to its maximal size m(J\I) ,  so all 
the sections have the same size. And this means that all the values of £/ are 
équiprobable.

On the other hand, assume that for some set A for every set I  of indices all the 
values of £/ are équiprobable. In particular, for I  = {1,... ,  n — 1} we get that all 
(non-empty) sections obtained by fixing the first n — 1 coordinates have the same 
size, so

(*) m(l, 2 , . . .  ,n) = m(n | 1, 2, . . . ,  n — 1) • m(l, 2 , . . .  ,n — I).

Moreover, since the random variable (£i,£2, • • • 5£n-i) is uniformly distributed in 
the projection of the set A to coordinates 1,2,. .. ,  n — 1, we get the same picture 
for this projection: £1 , ... ,£n- i  are random variables obtained by projection of a 
point uniformly distributed in this set. Using induction, we may assume that this 
set is uniform. Then the equation (*) can be continued:

m ( l ,2, . . . ,n )
= m(n 11, 2, . . . ,  n — 1) • m(n — 111, 2, . . . ,  n — 2 ) • ... • m(3 [1, 2) • m(211) • m(l).

The same argument can be applied for every ordering of coordinates, so we conclude 
that A is uniform according to our definition. □

C o r o l l a r y .  For the random variables £1 , • • • ,£n constructed in this way, the 
entropy of the tuple £/ equals log m(I) (for every I  C {1,2,...,  n}).

So we conclude that the following statement is true:

T h e o r e m  206. Every linear inequality that is true for entropies is also true 
for the log-sizes of projections for uniform sets.

For example, if А С X\  x X 2 x A3 is uniform, then the inequality

m(l) ■ m(l, 2,3) ^  m(l, 2) ■ m(l, 3)

holds, since it corresponds to the basic inequalities for complexities and entropies 
(Theorem 24). Note that (as we have discussed) this inequality is false for some 
non-uniform sets.

In the next section, following [37], we prove a reverse statement. Starting 
from a tuple of random variables, we find a uniform set for which the log-sizes of 
projections are (almost) proportional to the entropies of the corresponding groups 
of variables.

10.3. Construction of a uniform set

Assume that we have some tuple of (dependent) random variables 771, . . . ,  rjn\ all 
of them have finite range. We want to construct a uniform set A whose projection
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sizes (their logarithms) are proportional to the entropies of ту. The ideal situation 
is

logm A{I) - H(ry)

for all I  C {1,... , n}. Then we would conclude immediately that every inequality 
that is true for the (log-sizes of the) projections of uniform sets is true for arbitrary 
random variables.

Of course, this requirement is too restrictive: The entropies in general are not 
logarithms of integer numbers. But if we are interested in linear inequalities, it 
is enough if the log-sizes are proportional to entropies, or approximately propor­
tional to them. To achieve this, we consider first the case when the probabilities 
of all values of (ry,. .. ,уп) are rational. This is enough to conclude that the lin­
ear inequalities for entropies and log-sizes are the same (the rational numbers are 
dense, and every distribution can be approximated by a distribution with rational 
probabilities, while the entropy is a continuous function of the distribution).

Assume that a tuple of random variables ту, . . . ,  rjn is given. Each value of 
this tuple is a column of height n. Each column has (we assume) some rational 
probability. Let iV be a common denominator for all the probabilities. Consider a 
matrix with N  columns where the columns appear with given probabilities, so our 
tuple can be obtained by taking at random a column from this matrix.

Let us consider the rows of this matrix. The ith. row is a string of length N  
over an alphabet whose letters are possible values of Denote the set of all strings 
of length N  in this alphabet by X{. (The length N  is fixed, so we do not include 
N  in the notation.) Then the entire matrix is an element of X\  x • • • x X n.

Consider now all matrices that can be obtained from this one by a permutation 
of columns. In other words, consider all matrices of width N  where the frequencies 
of all the columns are exactly the same as in our matrix, i.e., they correspond to 
the distribution of the tuple ry, ... ,rjn. We get some set U C X\  x • • • x X n. Let 
us show that this is a uniform set with the required sizes of all the projections.

First, let us note that every element of U is obtained from the original table by 
some permutation of columns. If we take a random permutation (all N\ permuta­
tions are équiprobable), the probability of getting a given element of a set U does 
not depend on the element. (Indeed, the number of permutations that give this 
element is equal to the number of permutations that keep this element unchanged, 
and this depends only on the multiplicities of different columns and not on their 
positions.)

This property remains true if we delete some rows from the table. Therefore, 
the projection of a random point in U on an arbitrary subset of coordinates is also 
uniformly distributed, so the set U is uniform.

Now we need to estimate the sizes of projections. First, let us find the size of 
the set itself. Assume that the matrix has m  different columns that appear in it 
with probabilities q\ , ... ,qm. Then the number of matrices that can be obtained 
by permutations of columns is equal to

N\
(qiN)\(q2 N)\---(qmN)V 

and its logarithm is (by Stirling’s formula)

Nh(qi , . . . ,qm) + 0(logAO,
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where h(q\ , . . . ,  qm) = log<ft) is the Shannon entropy of a random vari­
able that has m values with probabilities qi, . ■ ■ ,qm, i.e., the Shannon entropy 
of {rji,. ■ ■ ,r]n). So the log-size of U is (approximately) N  times bigger than the 
entropy of (?7i , . . . ,  r]n), and the same can be said about every projection of the set 
(and the corresponding projection of the random variable).

If a linear inequality is true for log-sizes of the projections of all uniform sets, 
it will be true for the set U. Increasing N  (we can multiply N  by an integer factor) 
and taking the limit (as N  —> oo), we conclude that the same inequality is true for 
all random variables with rational probabilities. By continuity it is true for every 
probability distribution, and we get the following result [37]:

T heorem  207 (Chan and Yeung). Every linear inequality that is true for log- 
sizes of the projections of uniform sets is also true for entropies of arbitrary random 
variables.

10.4. Uniform sets and orbits

Let us think again about the construction of the previous section. How do we 
get a uniform set? Usually uniformity is a byproduct of some algebraic structure on 
the objects considered. Such a structure indeed can be found in our construction.

Namely, we have a permutation group S'/v and its action on the columns of the 
matrix. The uniform set is an orbit of some point (and contains all the matrices with 
the same frequencies). This is a special case of the following situation. Consider 
some finite group G and some actions of G on finite sets X \ . . . . ,  X n. Together they 
define an action of G on Xi  x • • • x X n. Consider and arbitrary point (aq,. . . ,  xn) 
Xi X ••• X X n and its orbit U (for this action).

T heorem  208. The set U is a uniform subset of X i x • ■ • x X n.

P ro o f . Let us consider all elements of G as équiprobable. Consider the action 
of a random element of G on the point x = {aq,... , æm); the image is a random 
variable whose range is the orbit of G. All the values of these random variables are 
équiprobable. Indeed, the elements of G that map a given point ж to a given point 
у form a coset of a stabilizer subgroup of the point x (which contains the group 
elements that map x to itself), and all the cosets have the same size.

The same is true for every subset of the set of indices, so a random element of 
U has the same chances of being projected onto all points (of the projection of U)\ 
thus the set U is uniform. □

How can we rewrite the inequalities for the sizes of projections in terms of the 
size of the group and its subgroups? The orbit U has size |G|/|Sj where S  is the 
stabilizer of the point x. This stabilizer (for our action) is the intersection of the 
stabilizers of aq, ... ,xn. The same can be said for every set I  of indices: the size 
of the projection of U on indices {UU2, ...} is the ratio |G|/|5ij П Si2 П • • • | where 
Sj is the stabilizer of Xj. Note that we can go in the other direction: an arbitrary 
subgroup H  of G is the stabilizer of some point in the action of G on the cosets of 
H. In this way every inequality for the projections of uniform sets translates to an 
inequality about the sizes of subgroups and their intersections.
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For example, the inequality m(l, 2) ^  m(l) -m(2) gives the following inequality 
that is valid for arbitrary subgroups H i and H2 of an arbitrary finite group G:

|G| |G| JG|_
\Hl C\H2\ "  |H ,| \H2\

or | H 1 n F 2 | ^ | H 1| - | H 2 | / |G | .
A more interesting inequality m(l,2,3)2 < m(l, 2)m(l, 3)m(2,3) gives the in­

equality
|Я, П H2 П Я 3|2 > \Hi n Я2| • |Я, П Я3| • |Я2 П Я 3|/|С |

for an arbitrary finite group G and its subgroups Hi, H2 , H3 .
The proof of Theorem 207 shows that the reverse statement is true: every 

inequality for the size of a group and its subgroups (that contains the products 
of them with some exponents) can be translated into an inequality for arbitrary 
random variables, since we may approximate a random variable by the action of 
the permutation group. We get the following surprising result [37]:

T heorem  209 (Chan and Yeung). Every linear equality for the entropies of 
random variables translates into an inequality for the sizes of the group and its 
subgroups, and vice versa.

10.5. Almost uniform sets

Recall that a set A C Xi  x • • • x X n is uniform if the inequality
m (k i , ... ,kn) ^  m(ki) • m(k2 \ h )  ■ m(k3 \ ki, k2) • ... • m(kn \ k i , . . . ,  kn-i)

(that is true for all sets) turns out to be an equality for every permutation k \ , . . . ,  kn 
of {1,2,...,  n}. Now consider a weaker requirement and say that A is c-uniform if 
the ratio between two sides of this inequality is bounded by c (for every permuta­
tion). So 1-uniform sets are uniform sets as defined above.

Many properties of uniform sets are still true (up to some error factor) for 
almost uniform sets.

T heorem  210. Let A be a c-uniform set.
(a) Let I, J , К  be disjoint sets of indices. The right-hand side in the inequality

m ( J u K \ I ) < m(J\I)  -m (K \ IU J )
(it is true for every set A) exceeds the left-hand side at most by a factor c.

(b) The projection of A onto an arbitrary set of coordinates is a c-uniform set.
(c) Let A' be a subset of A that contains at least an e-fraction of elements of 

A. Then A' is cje-uniform.
(d) Let £ be a random variable uniformly distributed in A, and let I  be a set of 

coordinates. Then its projection £/ on I-coordinates has entropy between log m(I) — 
loge and logm(I).

(e) Let I  and J be disjoint sets of coordinates. Then i7(£j|£/) is between 
log m(J  11) — log c and log m(J\I) .

P ro o f , (a) We can group the factors in the right-hand side of the inequality 

m (k i , . . . , k n) < m(ki) • m(k2 \ h )  ■ m(k3 \ ki, k2) ■ ... • m(kn \ kx, . . . ,  kn-i)  
using the inequality

m(J\ I)  -m (K \ IU J )  ^  m ( J U K \ I )
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for some /, J, and K. The product decreases at each step, and at the end we get 
the left-hand side. If the initial inequality was an equality up to a c-factor, the 
same is true for the inequalities used at each step. And the ordering of coordinates 
can be chosen in such a way that this process goes through a given triple I, J, К .

(b) By assumption
m(n| 1, . . .  ,n — 1) • m(n — 1 11, . . .  ,n — 2 ) ■ ■ m(2 | 1) • m(l) < cm(l , ... ,n),

and this inequality can be continued
cm(l , . . . ,  n) < cm(n| 1, . . . ,  n — 1) • m ( l , . . . ,  n — 1).

Cancelling the terms m(n| 1,... ,n — 1) in both sides, we see that the projection 
onto 1, 2, . . . ,  n — 1 is c-uniform (and we can do the same for every group of n — 1 
coordinates). Then we can delete one more coordinate, etc.

(c) The maximal sizes of the sections for a subset do not exceed the correspond­
ing sizes for the entire set, and the size of the entire set is multiplied by e, so the 
constant c can be replaced by cje.

(d) The random variable £/ has m(I) different values, so its entropy is bounded 
by log m(I). On the other hand, let J  = {1, 2, . . . ,  n} \  I. Then

m (I) ■ m(J\ I)  ^  cm(l, 2, . . .  ,n),
so every value of £/ has probability at most

m(J|/)/m(l, 2,..., n) < c/m(/),
and the entropy is at least logm(I) — loge.

(e) Let us compare the equality

я(б,...,£„)
= Я(^п | ^ , . . . ^ п_1) +  Я(^п_ 1 | 6 , . . . ^п - 2 )  + -" +  Я ( б 1 б )  + Я( 6 )

and the inequality
logm(l, ...  n)

^  logm (n 11, . . . , n — 1) + logm(n — 1 11, . . .  ,n — 2)
-I------ h logm(2| 1) + logm(l).

The left-hand sides are the same since £ is uniformly distributed in A. Each entropy 
term in the first inequality is bounded by the corresponding logarithm in the second 
inequality (the conditional entropy is the average of entropies for all possible values 
of the condition, and each entropy in this average is bounded by the log-size of 
the range). Since A is c-uniform, both sides of the inequality differ at most by 
loge. Therefore, each entropy can differ from the corresponding log-size at most 
by log c. By grouping the terms in these two sums (after a suitable permutation of 
coordinates), we can prove the inequality

log m{J  11) -  log c < H(Çj I £/) < log m(J \ I) 
for an arbitrary disjoint set of indices I  and J. □

An immediate corollary of statements (d) and (e) is that if some linear inequal­
ity is true for entropies, it is also true for log-sizes of corresponding projections and 
sections of a c-uniform set with error term at most A loge, where A is the sum of 
absolute values of all coefficients. (Increasing c, we allow sets that are less uniform, 
so the error term increases.)
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This property will be used in the next section when we start from a tuple of 
strings, construct a c-uniform set, and then consider the corresponding random 
variables.

10.6. T ypization  trick

The following theorem starts from an arbitrary tuple of strings x i , ... , xn and 
constructs an almost uniform set A in some Cartesian product X\  x X 2 x • • • x X n 
of finite sets Xi such that \ogm(J\I)  «  C( x j \xj ) with logarithmic precision:

T heorem 211 (A. Romashchenko). For every n there exists a constant d such 
that the following holds: For every N  > 1 and for every tuple x \ , ... , xn of strings of 
complexity at most N  there exist finite sets X \ , . . . ,  X n and an N d-uniform subset 
A C X\  x • • • x X n such that

| logm(J| /)  -  C( x j \xj )\ ^ d l o g N  

for all disjoint subsets I , J  C {1,. . . ,  n).

Note that the sets Xi are not really relevant here: We can speak instead about 
a finite set of arbitrary n-tuples with the required size of projections and sections. 
Note also that a strange condition N  > 1 is needed since for N  = 1 the bound N c 
does not grow as c increases.

The proof uses the notion of a complexity vector for a tuple of strings. For-a 
given tuple Xi, . . . ,  xn the complexity vector is the list of all complexities C(xj \xj) 
for all pairs (/, J) of disjoint subsets of the set of indices {1, . . . ,  n}. Note that the 
length of this vector is exponential in n: There are 2 n — 1 unconditional complexities 
(where J — 0 ) and a lot of conditional ones. Let us denote the complexity vector 
for x i , ... :xn by x (x i , .. .,x„).

P roof. Consider (for given x i , . . . , x n) the set A ( x i , . . . , x n) of all strings 
y i , . . . , y n such that

х(у  1 ,  ■ • • , У п )  ^  x ( x i , . . . ,x„)
componentwise. For example, for n — 1 this is the set of all strings of complexity 
at most C(xi). For n — 2, we consider all pairs (£1,2:2) such that

C(yi) ^  C(x1), C{y2) ^  C(x2),
C{yi,y2 ) < C { x i , x 2), C(yi\y2) ^  C(xi \x2), C{y2 \y1) < C(x2 \x{).

The set A(x 1, . . . ,  xn) is guaranteed to be non-empty—it contains {x\ , . . . ,  xn). In 
fact, it contains about 2c('Xl,---,Xn̂  elements. Indeed, this is an upper bound since 
the complexity of all elements of this set is bounded by C(x 1, . . .  , xn). It remains 
to show that this set cannot be much smaller.

Indeed, knowing the complexity vector x ( x i , ... , xn), we can enumerate the 
elements of A(x 1, . . . ,  xn). To specify the complexity vector, we need 0(log N)  bits. 
(Note that the number of components in the complexity vector depends only on n, 
so we consider it as a constant even though this constant grows exponentially in n .) 
So every element of A(x 1, . . .  , xn) can be described by specifying (in addition to 
the complexity vector) its ordinal number in the enumeration, and therefore every 
element of A(xi , . . . ,  xn) has complexity

log \A{x\ , ... , xn)\ + 0(\ogN).
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In particular, this is true for the initial tuple (xi, ... , xn), so we get the required 
bound for the cardinality.

Let us show now that the set A(xi , . . . ,  xn) is c-uniform for some constant c the 
depends polynomially on N. For that let us consider both sides of the inequality

m(l, 2, . . . ,  n) ^  ra( 1) ■ m(2 11) • m(3 11, 2) • ... ■ m(n | 1, 2, . . . ,  n — 1).
The logarithms of the factors in the right-hand side do not exceed the corresponding 
complexities: m( 1) ^  2 c X̂l\  since by construction we have C(y\ ) < C(x\) for every 
tuple (yi , ... ,yn) G A (x \ , ...  , xn) (to be exact, one should write 2c (Xl)+1, but all 
our estimates have logarithmic precision anyway). For the same reasons we have 
m(2| l) ^  2c X̂2 X̂l>) and so on. We conclude that the logarithm of the right-hand 
side does not exceed

C(x i) + C(x2 \xi) + C(x3 \x i , x2) H------ 1- C(xn \ x i , .. • ,xn_i) + 0(1),
and this sum is equal to C(xi , ... ,xn) + 0(\ogN).  But we know also that the 
logarithm of the left-hand side is at least C(xi , . . . ,  xn) — О (log N), so the difference 
between logarithms is O(logiV) and both sides differ at most by a polynomial (in 
N ) factor. As a byproduct we conclude that

C{xi Ixi, ... ,x»_i) = logm(i 11, • • • ,i -  1) + O(logiV), 
and a similar argument (with the permuted indices and grouped terms) shows that 

C(xj \x i)  = log m(J  11) + O(logiV) 
for every disjoint I  and J. □

The construction used in the proof may be called a typization trick: starting 
from a tuple, we construct the set where this tuple is typical.

Now it is easy to finish the proof of the promised result:

T heorem  212 (A. Romashchenko). Every linear inequality

i
that is true for arbitrary random variables £ i , . . . ,£n> a ^s 0  true f or strings of 
complexity at most N  with О (log N) -precision,

£ > / * ■ ( 6 )  «  0(logJV).
I

Here the constant hidden in О (log AT) depends on n (and grows exponentially 
as n increases) but not on the strings Xi,. . . ,  xn.

PROOF. The reverse implication (every inequality that is true for complexities 
is also true for entropies) was proven in Section 10.1.

Now we are ready to go in the other direction. Assume that this linear 
inequality is true for entropies. Consider arbitrary strings x i , . . . , x n and the 
set A = A(x i , . . . ,xn) from the previous theorem. Consider a random variable 
(£i,... ,£n) that is uniformly distributed in A. Since the set A is jVc-uniform, the 
entropies are О (log iV)-close to the sizes of the corresponding sections, as Theo­
rem 210 says. On the other hand, the log-sizes logm(/| J) (even for the conditional 
case, though we need this only for J  = 0 ) coincide with corresponding complexities 
with 0(logiV)-precision (Theorem 211). □
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The linear inequalities (of the type considered) are universal formulae of some 
language, so a natural question arises: Is a similar result true for more complicated 
statements, say, for V3-formulas of the same language (defined in some natural 
way)? The answer turns out to be negative, as shown in [141].

10.7. Combinatorial interpretation: Examples

Let us recall the main idea of the combinatorial interpretation: The statement 
“x has complexity at most n” is translated as “x belongs to the set of at most 2n 
elements” .1 (Since the complexity is defined up to 0(1), we do not specify whether 
we consider strict or non-strict inequalities.) In this way we get a combinatorial 
translation of a binary relation C(x) < n, so all statements should be reformulated 
in terms of this binary relation. Here are some examples:

• The inequality C(x) ^  C(y) means that for every n the statement C(y) < 
n implies C(x) < n.

• The inequality C(x) ^  2C(y) can be rephrased as follows: for every n the 
inequality C(y) < n implies C(x) < 2n.

• For the inequality C(z) ^  C(x) + C(y), the following translation can be 
used: for every и and v, if C(x) < и and C(y) < v, then C{z) < u + v.

Using the last example as a guideline, let us try to invent a combinatorial translation 
of the inequality C(x,y) ^  C(x) + C(y). As we have said, it means that C(x) <_u 
and C(y) < v imply C(x, y) < u + v. So we want to say something like “if x belongs 
to some set of size at most 2 U, and у belongs to some set of size at most 2 V, then 
we can construct a set of size at most 2 U+V that is guaranteed to contain (x ,y )”. 
Indeed, we can consider the Cartesian product of two given sets, and its size is 
indeed bounded by 2 U+V, so we get a true (though trivial) statement.

To get a combinatorial version of the inequality C(x,y) ^  C(x) + C(y |x), we 
need to translate the statement C(y |x) < v. This can be done as follows: (x,y) 
belongs to some set whose sections (for every fixed x) have size at most 2V. In this 
way we again get a true (but trivial) combinatorial statement.

We get a much more interesting situation when we consider the reverse inequal­
ity. We can try to rewrite C(z) > C(x)+C(y) as follows: If C(x) ^  и and C(y) > v, 
then C(z) ^  и + v. But our approach is asymmetric: We know what it means in 
combinatorial terms when C is small, not large (the reason for this asymmetry is 
that we can enumerate strings of small complexity, but not of large complexity). 
So we need to consider a dual reformulation: If it is not true that C(x) < и and it 
is not true that C(y) < v, then it is not true that C(z) < u + v. In other words, if 
C(z) < u + v, then C{x) < и or C{y) < v.

Let us now try to invent a combinatorial translation of the inequality

C(x,y) ^  C(x) + C(y |x).

Using the trick described, we get the following statement. If a pair (x, y) belongs 
to a given set of size at most 2 U+V, then either x belongs to some set of size at 
most 2 U or (x, y) belongs to some set of pairs whose sections (for every fixed first 
coordinate) are of size at most 2 V.

course this should not be understood literally: every x  belongs to a singleton. We will 
see how this is interpreted in the examples below.
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A more precise formulation of the statement would be for every u, v and for 
every set A of pairs that has at most 2U+V elements, there exist

• a set В of size at most 2U\
• a set C of pairs that contains at most 2 V pairs with the same first com­

ponent
such that for every (x, y) € A either x G В or (x, y) € C (or both).

In fact the proof of the formula for the complexity of a pair used exactly this 
approach: For a given x and y, we looked at how many pairs with the same x have 
small complexity. If there are only few of them, then C(y |x) was small (now we 
say that the pair (x,y) belongs to C); if there are many of those pairs, then C(x) 
is small (because this can happen only for few values of x). (Now we say that x 
belongs to B.)

288 Translate the arguments used to prove the formula for the complexity of
a pair to give a formal proof of the combinatorial statement in question.

Now consider an inequality where both sides have more than one term:

C{xx) + ^ (х ^ х г^ з )  < C (xi,x2) + C(x2,x3).
(We called it a basic inequality; it is true with an O(logiV) error term for strings 
of complexity at most N.)

In terms of a binary relation C(x) < n , this inequality can be restated as 
follows:

If C(xi, X2) < a, C(xi, X3 ) < 6, and a + b — p + q, then at least 
one of the inequalities C(x 1) < p and C(x 1,Х2,хз) < q holds.

(For the sake of brevit)', we omit all the details about 0(log iV)-precision.)
The natural combinatorial translation of this statement looks as follows:

If A C X\  x A2 x A3, т л (  1,2) < 2“, m^( 1,3) ^  2Ь, and a + b — 
p + q, then there exist B,C  С A1XA2XA3 such that A C B u C ,  
niß( 1 ) ^  2P, and mc(l,2,3) ^  2 q.

Eliminating the variables a and b, we can rewrite this statement (in a multi­
plicative version):

If A C X\ x X ‘2 x A3 and т л (  1, 2)-тл(1,3) = l-V for some /, V >
0, then the set A can be covered by two sets В and C such that 
T7iß(l) < I and mc(l,2,3) < V.

In geometric terms, if some set A has small projections 011 the planes 1, 2 and
1,3, its length in direction 1 (the size of the projection on the first coordinate) and 
its volume (the cardinality of A) can both be large. But we can split A into two 
parts В and C in such a way that В has small length and C has small volume.

(Recalling the example with two parallelepipeds, we see that in this example 
В could be the large one and C can be the small one.)

Of course, these heuristic arguments are not proofs. But in fact the last state­
ment is indeed true (though not completely trivial). Here is its proof.

Consider the projection of the set A onto the 1, 2-plane; this projection is a 
subset of Ai x A2, and we denote it by A 12. For every x G Ai consider the section 
of this projection (pairs with first component x). Let n 2 {;x) be the cardinality of 
this section. Then

m ( l ,2) = |Ai2| = ^ n 2(x)
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(the size of the set is the sum of sizes of all its sections). Similarly,

m(l,3) = |Ai3| -  ^ 2 n 3 (x).
X

The length m^( 1) is the number of non-zero terms in these sums, and m(l,2,3) 
has an upper bound,

m(l, 2,3) = \A\ ^  ^ n 2 (x)n3 (x).
X

One can assume without loss of generality that this inequality is an equality: we 
can add missing elements to A leaving A ’s projections unchanged.

Now we need to split A into two parts В  and C, and we need to care about the 
length of В  (its 1-projection) and the size of C. For a given length of В  we need to 
cover a maximal number of points, so we consider I maximal sections (that make 
n 2 (x)n3 (x) maximal) and put all their elements in B. The rest is C.

It remains to prove that the cardinality of C does not exceed |Ai2| ■ |Ai3|/7. 
How can we do this? We have bounds for the sizes of two 2D-projections of C: 
They do not exceed |̂ Ti21 and |Ai3|. We know also that all sections of C (for every 
X  £ X\)  have area at most Si, where Si is the size of the Zth section of A (in 
decreasing order). Consider the inequality

2C{xi,x2 , x3) < C(xi ,x2) + C(xi ,x3) + C(x2 , x 3 \xi).
It is easy to prove. Rewrite all terms of the form C(xi , ...) as C(xi) + C ( . .. laq). 
The left-hand side contains only one term, so we already know that it implies the 
combinatorial statement

m(l, 2, 3)2 < m(l, 2) • m{ 1,3) • m(2, 3 11).
Therefore

|C7|2 < |Л12| • И 13| • S,.
It remains to show that

о . IA12I • |4i3|
' /2

Recall that В  consists of I rectangles, and each of them has size at least Si. The sum 
of widths n 2 (x) of these rectangles is at most |̂ 4i21, and the sum of their heights 
n 3 (x) is at most |Ai3|. The average width is then bounded by |Ai2|//, and the 
average height is bounded by |Ai3|/7. To finish the proof, note that if S  ^  афг for 
all i = 1, 2, . . . ,  /, then

e ^  ai + • • • + uz bi + • • • + bi 
I I

(the logarithm function is concave).
So our guess (the combinatorial statement that is similar to the basic inequality 

about complexities) turns out to be true.

10.8. Combinatorial interpretation: The general case

After all these examples let us consider the general case. Assume that an arbi­
trary inequality for complexities is given. Split the negative and positive coefficients, 
and get the inequality with positive coefficients in both sides
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(the sums in the left-hand side and the right-hand side are disjoint: all 7’s are 
different from all J ’s, and the coefficients А/ and ß j  are positive).

How can we translate this inequality into a combinatorial statement? The 
examples above suggest the following translation:

Consider a set A c  X\  x • • • x X n. Let n7 be arbitrary positive 
numbers such that

Пмл' =
i j

Then A can be covered by some Bj  such that

m B,( I ) < n7.
Unfortunately, we can prove this statement only with logarithmic factors (though 
one can hope that the stronger statement, say with 0(l)-factors, is also true). Here 
is the weaker version:

For some constant d, for every X \ , ... , X n, for every finite A c  
X\  x • • • x X n and for every family of positive numbers n7 (one 
number for each I  in the left-hand side) such that

Пмл'=
i j

there is a cover of A by sets Bj  such that 

m Bl(I) < • (log|i4|)d.

Theorem 213. This statement is true for some coefficients А/ and ß j  if and 
only if

Y  AiG(x,)  < Y + O(logJV)
for all N  and for all strings aq, . . . ,  xn of complexity at most N.

PROOF. Assume that the inequality for complexities is true. Let us show how 
a given set A can be split into parts of the required size. First of all, we may assume 
without loss of generality that the elements of A are tuples of strings (x\ , . . . ,  xn), 
and the length of all strings is bounded by N  = log \A\ (we have enough strings for 
that).

Let us assume for now that the set A is simple (it has complexity O(logiV)). 
Then all its projections are simple, so the complexities of every element of some 
projection is bounded by the logarithm of its size (with 0(log iV)-precision). Then 
for every element (aq,. . . ,  xn) G A, we have

C(xj)  ^  logm^(J) + O(logiV)
for all J. Adding all these inequalities with coefficients ßj,  we conclude that

^ 2 ßjC(x j)  ^  log ( l \ m A( j y f  +O(l0gJV).
J ' J '

Now we use the inequality for complexity (which we assume to be true) and the 
condition for nj, and we conclude that

^ 2  ^iC(xi)  < bg (  П  n ) 1 ) + ° ( loS N ) = ^ 2  Xi loS ni + О (log N)
I  ^  I  '  I
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for (x i , ... , xn) G A. Therefore, for each element of A at least one term in the 
left-hand side is upper-bounded by the corresponding term in the right-hand side: 
For every (aq.. . . ,  xn) G A there exists I  such that

C(xj) ^  nj + O(logJV),

i.e., xj  belongs to the set of all objects of complexity at most nj  + О (log N). This 
set (more precisely, its intersection with A) can be now used as Bj.

This ends the proof for the case when A is simple. The result can be extended 
to arbitrary A by a standard trick. For each N  consider all possible subsets A C 
X\  X • • • X X n where all Xj consist of strings of length at most N. Among all these 
A, we consider the “worst” one (for given coefficients Xj and (ij), i.e., the set that 
has the worst ratio of the sizes of the left- and right-hand sides for optimal Bj. 
This set can be found by an exhaustive search (for given N  and given coefficients 
Лi ,ßj) ,  so it is simple, and we can apply the argument above. Since it was the 
most difficult set, the same statement is true for all other sets.

In fact, this argument has some flaw. We do not assume that the coefficients 
Xj and (ij are rational (they may even be non-computable reals). However, it is 
enough to know them with precision 1/iV, since all logarithms of cardinalities are 
bounded by N, and this brings only 0(1) total error. And we need only O(logiV) 
bits to specify the coefficients with that precision.

So we have proven one direction of the statement of the theorem. It remains 
to show that if the statement about the cover is true, then the inequalities for the 
complexities are also true. This can be done with the same typization trick.

Consider an arbitrary tuple aq, . . . ,  xn of strings. Each has complexity at most 
N. Assume that the inequality for complexities is false and the left-hand side 
significantly (by more than O(logiV)) exceeds the right-hand side. The typization 
trick gives us an almost uniform set A = A(x i , . . . ,  xn). Let us define nj. Decrease 
all C(xj) by the same quantity in such a way that the left-hand side becomes equal 
to the right-hand side. Since logmq(J) does not exceed C(xj), we can apply our 
assumption. In this way we get a cover of A by sets Bj  whose /-projections have 
at most 2n,+°(log N') elements. This is significantly smaller than the corresponding 
projection of the set A; it contains about 2C X̂’  ̂ elements. (Recall that we have 
decreased nj  significantly.) Since A is almost uniform, every part that generates a 
small fraction in one of its projections is a small part of A itself, so the sets Bj  (the 
number of these sets is fixed) cannot cover A entirely. □

289 Make all the estimates in this argument precise (instead of speaking
about “significant increase”, “small fraction”, and so on).

290 Show that Theorem 213 and its proof can be generalized to the inequal­
ities that contain conditional entropies (not only unconditional ones)

10.9. One more combinatorial interpretation

The last argument in the previous section suggests another combinatorial inter­
pretation for inequalities. It looks somewhat less natural, but it is easy to formulate 
since now we do not need to separate the positive and negative coefficients in the 
inequalityand treat them differently.
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Let us consider arbitrary (positive or negative) coefficients Л/ and the following 
combinatorial statement:

For some constant d, for every tuple of finite set X \ , . . . ,  X n and 
for every A c  X\  x • • • x X n, one can represent A as a union of 
at most (log |A|)d sets, and for each of these sets the inequality

Y[m{I)Xj < (log|A|)d

is true for the projections of the set. (The sets may have non­
empty intersections.)

T heorem  214. Consider a tuple of coefficients Aj. The combinatorial state­
ment above is true for these A/ if and only if

^ A , C ( x , ) < 0 (logJV)

for every N  and for all strings x \ , . . . ,  xn of complexity at most N.
P ro o f . Assume first that the combinatorial statement is true, and let us prove 

the inequality for complexities. Consider arbitrary strings x* of complexity at most 
N. Using the typization trick, we find a set A = A(x 1}. . . ,  xn) of similar objects; 
its log-size log |A| is a polynomial in N.

We apply the assumption to A and conclude that it can be represented as 
a union of a polynomial (in log|A|, therefore, also in N) number of sets with 
required properties (inequality for the sizes of the projections). Let В  be the 
biggest of these sets. The set В  is a polynomial fraction of A, and A is c-uniform 
for a polynomially large c; therefore, В  itself is c-uniform for some larger (but still 
polynomially large) value of c. The log-sizes of A- and ^-projections differ at most 
by O(logiV). Therefore, the inequality for В  implies the same inequality for A 
(with 0 (log iV)-precision); we know that in this case the inequality for complexities 
of Xi holds.

To prove the reverse implication, we need the following lemma.
Lemma . Every set A c  X\  x • • ■ x X n can be represented as a union of poly­

nomially (in N  = log |A|) many parts where each part is a c-uniform set for some 
polynomially (in N) large value of c. (The parts do not need to be disjoint.)

Note that this lemma mentions neither Kolmogorov complexity nor inequalities. 
Still it implies the result we want. Indeed, the inequality for complexities is also true 
for Shannon entropies of an arbitrary tuple of random variables. In particular, this 
inequality is true for a random variable uniformly distributed in one of the parts. 
Since the parts are uniform, for each of them the entropy of each projection of this 
variable is equal to the log-size of this projection of the set (with O(logc) = O(logn) 
precision), so we get the desired inequality for the sizes of the projections.

It remains to prove the lemma. There are several proofs; interestingly, the 
simplest proof uses Kolmogorov complexity and proceeds as follows. Without loss 
of generality we may assume that the elements (xi, . . . ,  xn) € A are tuples of binary 
strings. For each x € A consider the set of all (yi, . . . ,  yn) G A whose complexity 
vector (the list of all conditional complexities) relative to A (i.e., A is added as 
a condition to all the complexities) is bounded coordinate-wise by the complexity 
vector for x (also with A as a condition).

Note the following two changes: (1) before we considered all tuples y, while now 
we consider only the elements of A; (2) now we add A as a condition everywhere.
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Each of the subsets constructed in this way is determined by the complexity 
vector of X, so we get only polynomially many sets. It remains to show that each 
of these sets is c-uniform for some polynomially (in N ) large value of c.

This can be done as before: The number of elements in such a set is not 
significantly smaller than 2c (Xl'—'Xn\A\  and the log-sizes of the sections are upper 
bounded by conditional complexities, so we can use the same argument. □

It is interesting to find a purely combinatorial proof of this lemma that does 
not use Kolmogorov complexity (recall that the statement does not mention Kol­
mogorov complexity). This is not straightforward even for the two-dimensional case 
(when A is a set of pairs). Assume that some finite set A C N2 is given. We said 
that A is almost uniform if

m(l, 2) «  m(l)m(211), m(l, 2) «  m(2)m(l 12).

In other words the average size of a (non-empty) vertical section, i.e., 
m(l, 2)/m(l), should be not much less than the maximal size m(2 |l), and the 
same should be true for the horizontal sections.

How can we try to achieve this? We can split the set A into parts classifying 
the vertical sections according to their size (say, up to factor 2). Each part then 
has maximal size not greater than 2 times the average size (or even minimal size). 
In this way we take care of vertical sections, but if after that we classify horizontal 
sections in the same way, then we lose the property in the vertical direction.

So what could we do? Let us first note that it is enough to find an almost 
uniform subset of A that is not too small, i.e., it contains at least some polynomial 
fraction of the original set. If we know how to do this, we can then apply the 
same argument to the rest of A, and so on. If at each step we separate at least an 
e-fraction, then after 1/e steps we decrease the cardinality of A approximately by 
factor e =  2.71828 • • •, so after a polynomial number of steps we have fewer than 1 
element (i.e., nothing remains).

So how can we get a (not very small) part that is uniform in both directions? 
Let us make a vertical classification and then take the biggest part. We forget 
about the other parts, split this biggest part in the horizontal direction, and again 
take the biggest part. It remains to note that this biggest part is still vertically 
uniform; see the proof of Theorem 210(c).

This argument can be generalized for arbitrary dimension. Its advantage (com­
pared to the complexity argument above) is that we get parts where non-uniformity 
is bounded by a polynomial in the log-size of the part (and not of the entire set).

We can improve the statement even more and guarantee that non-uniformity 
of all the parts is bounded by some constant that depends on the dimension n but 
not on the size of the set. It is done in [3] in the following way.

For every partition (into disjoint parts) let us define its weight in such a way 
that a minimal weight partition (it exists because the number of possible partitions 
is finite) would satisfy all the requirements.

The weight of the partition is the sum of the weights of its elements, and the 
weight of an element x that belongs to some part X  is defined as

^ l o g m x ( H |A )  -  dlog|X|,
а ,в
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where the sum is taken over all pairs of disjoint subsets А, В C {1, 2, ,  n}, and d 
is some constant factor to be chosen later. Note that the sum also includes log \X\ 
(obtained for A = 0 , В  = {1, 2, . . . ,  n}). All the elements of some part have equal 
weights.

Let us show that for large enough d the number of parts in the minimal weight 
partition is small. Namely, we show that the total weight decreases when we com­
bine two parts with almost equal parameters into one part. “Almost equal” means 
that the values of log m x  (В  | A) for the two part differ at most by 1 (for every A and 
В ). Indeed, the value of mx{B\A)  for the combined part is at most three times 
bigger than the same value for each of the parts, and the value of \X\ is multiplied 
at least by factor 1.5. For large enough d the increase in |X| will outweigh the 
possible decrease in all the mx(B\A).  Note that the suitable value of d depends 
only on the number of terms in the sum (and the latter is determined by n and 
does not depend on the size of the set).

So let us assume that d is chosen in this way. Now we classify the parts 
according to the integer parts of \ogmx{B\A)  for all A and B. As we have seen, 
for every tuple of integers there is at most one part, and the number of possible 
tuples is bounded by a polynomial in log|A|, and the latter is bounded by the 
log-size of the set to be partitioned, so we get the desired bound for the number of 
parts.

It remains to show that in minimal weight partitions, all the parts are almost 
uniform. To achieve this, we show that a non-uniform part can be split in such a 
way that the total weight decreases. While splitting some part, we do not change 
the weights of the elements of the other parts, so we can concentrate on the weights 
inside the non-uniform part. Consider the formula that defines the weight, i.e.,

^T \o g m x (B\ A) -  dlog|A|.
а ,в

When the part is split, for each of its points all the terms in this expression (both 
with plus and minus signs) decrease. We need that the decrease in the plus-part is 
bigger that in the minus-part. The latter can be computed easily: If a part contains 
m  elements and is split into two parts of size pm and qm (where p + q = 1), then 
the subtracted term (for all m  elements altogether) decreases by dmh(p,q), where 
h(p, q) — v{— logp) + <?(— logg) is the Shannon entropy of a random variable with 
probabilities p and q, and it does not exceed 1. So the decrease (per element) in 
the negative part is at most d.

If the part (that we try to split) is very non-uniform, there exist sets A and 
В such that m(A U В ) significantly exceeds m(A) • m(B| A). This means that the 
AuB-projection has В-sections of very different sizes, and the maximal one exceeds 
the average one by some large factor I. We then split this projection (and therefore 
the entire part) into two pieces, using the geometric mean between the average 
and maximal size as a threshold. For the piece with small sections the maximal 
size is now y/l times smaller. On the other hand, the large sections form at most 
l/\//-fraction of all the sections (Chebyshev inequality), so for the other piece the 
size of the А-projection also decreases at least by factor y/l.

So the splitting reduces at least one positive term (for both pieces) at least 
by logy/l (and other positive terms do not increase, as we have mentioned). So if 
I is large enough (log y/l > d), the total weight decreases. We conclude that the
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partition of minimal weight has c-uniform parts for some constant c that is (as well 
as d and I) determined by n (though c increases fast as a function of n). This 
finishes the alternative proof of the lemma that uses weights instead of Kolmogorov 
complexities.

10.10. The inequalities for two and three strings

As we have seen, there exists some class of linear inequalities that can be 
defined in many equivalent ways, using entropies, complexities, sizes of projections 
of uniform sets, sizes of subgroups, etc. This is indeed remarkable, but what is 
this class? Can we give some explicit description of it? Unfortunately, it remains a 
wide open problem, and this class is known only for the simple case n ^  3. Let us 
describe the answer.

For n = 1 the situation is trivial. For n = 2 we have the inequalities

о а й К Я й . Ы ,  0 ^ Я ( 6 К Я К ЬЙ),
which (in other words) say that all three quantities

tf(ftlïi ),  16), Щ г - Ь )

are non-negative. On the other hand, it is easy to see that these three quantities 
may be arbitrary non-negative real numbers. Take three independent variables 
a, ß, 7 with arbitrary non-negative entropies, and let

£i = (a ,/?),£> = {ßi l)-
Then we have # ( £ i | 6 ) = H(a ), / (£ i :6 ) = H(ß), and #(&|£ i)  = H{i). So 
the three inequalities listed above are necessary and sufficient for a triple of real 
numbers to be equal to

Я « 1) ,Я ( & ) ,Я ( |„ 6 )
for some random variables 0  and £2- So we do not need other inequalities since any 
other inequality is a consequence of these three. Note also that linear programming 
guarantees that every consequence is a non-negative linear combination of these 
three inequalities.

In fact, this statement is not just the description of all true linear inequalities 
for entropies (complexities, etc.) in the case n — 2: We have shown also that every 
triple of reals that satisfies our inequalities can appear as an entropy triple. Let us 
repeat this statement in geometric language.

Each n-tuple of random variables determines a point that is a tuple of 2n — 1 
values of entropies (for n = 2 we get points in three-dimensional space). Consider 
all these points (for all n-tuples of random variables). We get some set E in the 
corresponding vector space. The linear inequalities for entropies are closed half­
spaces that contain E. In the case n = 2, as we have seen, the set E is exactly the 
intersection of half-spaces corresponding to the inequalities listed above.

In the general case the intersection of all the half-spaces containing some set 
can be bigger than the set itself. For example, this happens if the set is not convex 
or not closed. So even if we know all the inequalities for entropies, we have only 
some partial information about E. On the other hand, the inequalities are the 
most interesting part, since the equivalence is proven only for inequalities. The sets 
themselves are different (e.g., the sizes of projections are logarithms of integers, for 
Kolmogorov complexity everything is defined only up to some 0(l)-term, etc.).
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Now let us consider the case n = 3. Here we have a subset in M7. The 
coordinates correspond to seven non-empty subsets of the three-element set. It 
is convenient to perform a linear transformation of this space and consider other 
coordinates a\ , . . . ,  07, as described in Figure 5 (p. 49) for the case of Kolmogorov 
complexities. In these coordinates our inequalities just mean that all a*, except for 
the central part a5 (that we denoted by /(£1 :^2 :^з))5 are non-negative,2 and this 
central part is non-negative if we add 02, 04 or üq to it. We can say that £ С M7 is 
a subset of a set F  defined by these inequalities.

It is easy to see that F  is a set of non-negative linear combinations of finitely 
many generators. These generators can be chosen in the following way. First, we 
let some a-L be 1 while all others are zeros. In this way we get seven vectors. This 
is not enough: we add one more where as = — 1, 02 = — а% = 1, and all the
other ai are zeros. All these vectors belong to F\ let us check that they generate 
the entire F . Indeed, take some point in F . The value of as may be negative, but 
its absolute value does not exceed 02, 04, and üq , so  we take our special vector with 
coefficient |as| and then adjust all the other coordinates as needed.

Now it is clear that there are no other inequalities for entropies. Indeed, all 
the generating vectors belong to £ (can be implemented as entropies); the last 
vector corresponds to independent £1 and £2 uniformly distributed in {0, 1} and 
£3 = £1 + £2 (mod 2). Every true inequality is true for the generators, so it is true 
for the entire F  (and is a consequence of basic inequalities).

291 Show that the set £ (for n — 3) is not convex. For example, for the last 
generator e the vector Ae belongs to £ if and only if A is the logarithm of some 
positive integer.

292 Show that (for arbitrary n) the set £ is closed under addition: If two
vectors e, e' £ belong to £, then their sum e + e' also belongs to £.

(Hint: Consider two tuples that give e and e', and combine independent copies 
of them.)

293 Prove that the closure of the set £ is convex (for arbitrary n)
(Hint: If e and e' belong to £, then ke + le' belongs to E for arbitrary non­

negative integers к and I. So it is enough to multiply a vector in £ by a positive 
real. We know how to multiply it by an integer factor; we can also (approximately) 
multiply it by a small positive real using the following trick—take our variables 
with some small probability e, otherwise use fixed dummy values.)

10.11. Dimensions and Ingleton’s inequality

In the previous section we described all true linear inequalities for the entropies 
of two and three linear variables. (Moreover, for n = 2, we described the set £ itself, 
not only the dual set of linear inequalities that are true for all elements of £.) For 
n = 4, we do not have such a description; let us describe what is known.

Recall that we consider an n-tuple of random variables £ = £1, . . . ,  £n; by £/ (for 
some set I  C {1,... ,  n} of indices) we denote the tuple of variables & with i £ I. We 
consider the entropies H (£/) of these subtuples. The conditional entropies H (£/ | £j) 
are linear combinations of unconditional ones, so we do not need to consider them.

2In fact we used the notation I ( x  1 :X2  :хз) for strings Х1 ,Ж2 ,жз and not for random variables, 
but the definition for variables is the same.
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Each tuple £ corresponds to a point in M2"“ 1; the coordinates of this point 
are H(£i) for all non-empty I. These points (taken for all tuples £) form a set 
that we have denoted by £. As we noted (Problems 291, 292, and 293), this set 
is not necessarily convex, but its closure is a convex cone (for each two points in 
the closure, all their non-negative linear combinations also belong to the closure). 
Then we switched from £ to its dual set, the set of all linear inequalities that are 
true for all points in £. Geometrically speaking, we consider all half-spaces that 
contain £. If we take the intersection of all these half-spaces, we get the minimal 
closed convex cone containing £ (standard result in linear programming theory).

The following basic inequalities are guaranteed to be true for all points in £:

H(£i) ^  0 for every I,
# (£/) < #  (O) for еуегУ I  CJ ,

+ # (Ouj ) < # (£/) + #  (O) for every I, J.
We have already used the name “basic inequality” for the inequality

Я ( 6 ) +  t f  ( 6 , 6 , £з) <  Я ( 6 , 6 )  +  Я ( 6 , £з),

that corresponds to the case I  = {1,2}, J  — {1,3} (the case of arbitrary I  and J  can 
be reduced to this special case by grouping). Now for convenience the inequalities 
of the first two types are also called basic inequalities.

To summarize: the set £ is contained in the polyhedral cone defined by basic 
inequalities. For n — 2, the set £ coincides with this cone; for n = 3, this is not 
true, but at least £ is dense in this cone. For n = 4, even this weaker statement 
becomes false.

How can we describe the convex cone defined by basic inequalities? Each set 
defined by a finite family of linear inequalities is generated by its extreme rays, 
and there are finitely many extreme rays. If all of those rays intersect £ (as it was 
earlier), we could conclude that all the inequalities for entropies are consequences 
of basic inequalities.

For n — 4, this is not the case, but it is still instructive to look at the extreme 
rays. They can be found (see [64]); most of them correspond to points in £, but 
there are some others called “special” rays. All special rays are the same up to the 
renaming of variables, so we show here only one:

Я (6 )  =  я(6) =  ЯКО  =  Я(£4) =  2 га,
Я ( |  1 .6 )  = 4 n ,

Я К , Кз) =  Я  К, К 4) =  Я ( |2Кз) =  Н((2,Ь)  = Я «  3,£ 0  =  Зп,

Я К ь К К з) =  Я К „ 6 К 4) =  Я К ,К зК 4) =  Я (6 К з К 4) =  4п,
Я К 1К 2 К 3 К 4 ) =  4га.

In other words, each string has complexity 2n; all the strings together, as well as all 
triples, have complexity 4n; and all pairs have complexity 3n, except for one special 
pair that has complexity 4n. (Here n is a non-negative factor that parametrizes the 
ray.)

It is not easy to understand the informal meaning of these conditions. One 
can draw a picture, but the picture for four strings is rather complicated. One 
may note that £1 and £2 can be exchanged, as well as £3 and £4. One can also 
draw the pictures for triples (Figure 33). Trying to construct random variables or
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ft f t  f t  [ f t ]

F igure 33. Complexity pictures for triples

strings that correspond to this picture, we come to the following problem. The 
right picture hints that £3 and £4 have n bits of common information that is also 
included in £1 and £2- On the other hand, the left picture shows that £1 and £2 
do not have common information (they have zero in the intersection part). Of 
course, it is not a formal contradiction, since we have not specified what we mean 
by “common information”. But indeed we will show later that £ь£2)£з, and £4 
with these complexities do not exist.

If some extremal rays to not intersect £, it may happen that some other in­
equalities (in addition to the basic ones) are true for complexities. How can one 
find them? Maybe we know all the extreme rays of our cone, and it remains to find 
the faces of this cone to get the new inequalities? One can indeed find the faces of 
the cone generated by all non-special rays. In addition to basic inequalities we get 
one more (up to renaming of the variables):

Щз : f t  К  / ( f t  : f t  I f t  ) +  / ( f t  : f t  I f t  ) +  A f t  : f t  ).
We have rewritten this inequality in terms of conditional entropies to make it more 
understandable. In terms of unconditional complexities we get the inequality

12 + 3 + 4 + 134 + 234 < 13 + 23 + 14 + 24 + 34
(we write only the indices to make it short; for example, 134 stands for FT(£i, £3, £4)), 
which looks even more mysterious).

It turns out that this inequality is well known in matroid theory; it is called 
Ingleton’s inequality for the dimensions of subspaces of vector spaces:

T heorem  215. Let H\, H2 , H3 , H4 be finite-dimensional subspaces of some 
vector space. Then

d im (# i+ # 2) + dim#3  + dim #4 + dmfiHi+Hs + Hi) + dim(#2+#3  + # 4)
< dim (#4 + # 3)+ dim(#2 + #3 ) + dim(#4 + #4  )+ dim(#2 + #4 )+ dim( # 3 + Hfi).

Before proving this theorem, let us elaborate upon the connection between 
entropies and dimensions. Let F be a finite field, and let X  be a finite-dimensional 
space over F. For each subspace Y  С I ,  we consider a random variable. The 
probability space is the space of all linear functionals X  —> F; the random variable 
£y (corresponding to the subspace Y)  maps every functional in the probability 
space to its restriction on Y . (Less formally, for each subspace Y  we consider a 
random variable that is a restriction of a random functional on Y.) The values of 
£y are elements of the space Y* (dual to У), and they all have the same probability, 
so the entropy of £y equals dim У • log |F|.
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Note that all the random variables are defined on the same probability 
space, so we may consider the joint distribution of a pair ( £ y , £ z )  for two subspaces 
Y  and Z. What is the entropy of this pair? The restrictions of a functional on Y  
and Z  determine its restriction on Y  + Z = {y + z\y £ Y, z £ Z} and vice versa. 
So the entropy of the pair equals dim(T + Z) • log |F|.

This observation immediately gives the following corollary:

T heorem  216. Every inequality that is true for entropies of random variables 
and their tuples is also true for the dimensions of finite-dimensional subspaces of a 
vector space over a finite field if the entropy of the tuple is replaced by the dimension 
of the sum of corresponding subspaces.

294 Show that a similar statement is also true for finite-dimensional vector 
spaces over M and over C.

(Hint: Since the M-dimension of a space over C is twice as big as its K- 
dimension, it is enough to consider M. We assume that a scalar product is defined 
and consider the random variables that are projections of a random point in the 
unit ball on the subspaces; the projections are rounded up to e-precision for some 
small E. The resulting variables do not have entropies exactly proportional to the 
dimensions, since the projection of the random point of the ball is not uniformly 
distributed and the projections on X  and Y  determine the projection onto X  + Y  
only up to some precision, so we have finitely many possibilities, etc. Still the main 
terms are proportional to dimensions as e —> 0.)

If we want to generalize this result to arbitrary infinite fields, a more compli­
cated argument is needed. First of all, the statement about the existence of a tuple 
of subspaces with prescribed dimensions (and the dimensions of their sums) can 
be translated into the language of matrices—it says that there exists a matrix of 
a certain size where some minors are zeros while some other minors are not. So if 
some tuple of dimensions is possible for a field F, it is also possible for all its ex­
tensions. Thus we may consider only algebraically closed fields. The algebraically 
closed fields of some characteristic are elementarily equivalent to each other, so we 
can choose an appropriate field: C for characteristic zero was already discussed, and 
we can choose the algebraic closure of Z/pZ for prime characteristic p. If for this 
field a tuple of dimensions can be implemented, it can be implemented by matrices 
with algebraic elements, so there exist a finite extension that contains all needed 
elements, and we again reduce the statement to the case of finite fields (already 
considered).

295 Provide the details for this argument.
Note that the conversion of subspaces into random variables is a rather general 

way of constructing tuples of variables with required entropies (and therefore points 
in S )—all the points in 8 that we have seen are constructed in this way. Only in 
the next section, speaking about conditionally independent variables, will we see 
examples of an essentially different type.

P ro o f . Now we finally prove Ingleton’s inequality for dimensions. It cannot 
be derived directly from Theorem 216, since it is not true for entropies of arbitrary 
random variables. So we need to prepare ourselves by establishing more connections 
between entropies and dimensions.
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Recall that in the inequalities for entropies the conditional entropy H(a \ß) 
appeared as a shortcut for H(a,ß)  — H(ß). This expression translates into dimen­
sions as dim(A + B) — dim#. In other words, it is the dimension of the image 
of the subspace A under linear mapping with kernel B, and this dimension equals 
dim A — dim(A П В ). Similarly, I(a:ß)  means H(a ) + H(ß) — H(a,ß),  and it 
corresponds to dim A + dim# — dim(A + В ) and is equal to dim(A П В ). Fi­
nally, I{ot:ß\')) is equal to H(a  I7 ) + H(ß I7 ) — H(a,ß  I7 ), and it corresponds to 
dim A /C + d im B /C —dim(A + B)/C,  where X / C  is the image of X  under the linear 
mapping that has kernel C. Note that the latter expression cannot be rewritten 
as dim(A П B)/C—the image of А п  В  under the mapping with kernel C can be 
smaller than the intersection of images of A and В  under the same mapping. (This 
happens, for example, if А, В, C are three different one-dimensional subspaces of a 
two-dimensional space.)

Ingleton’s inequality for the dimension of subspaces can now be rewritten as

dim(A П В) ^  I  (A : В \ С) + I  (A : B \ D) + dim(C П D),

where I(A:B\C)  stands for the dimension of the intersection of the images of A 
and В  under the mapping with kernel C. Denote А П В  by X\  it is enough to show 
that

dimX ^  dimX/C + d imX/D + dim(C П D),
since dim X / C  ^  I  (A : В \ C) (the image of the intersection is contained in the inter­
section of the images, and can be even smaller). The latter inequality corresponds 
to an easy inequality for entropies

and it remains to use Theorem 216. □

296 Prove the inequality #(£) ^  # ( £ | 7 ) -t- H(£\ö) + / ( 7 :5) that we used.
(Hint: Using the picture (or a simple computation), we note that 

л  (Î) +  Я «  I ■7 , Ö) + I h  : 5 1Î) = H(i  I ■7 ) +  H(i  IS) + J(7 : «), 
so this inequality is the sum of basic inequalities.)

A careful reader would note that our proof of Ingleton’s inequality works297
only for vector spaces over some finite field, unless we use some rather obscure 
tricks for the case of an infinite field (see the discussion above). How can we avoid 
these tricks?

(Hint: The choice of the field was important for converting the inequality for 
entropies into an inequality for dimensions. But this inequality for entropies was a 
combination of basic inequalities, and basic inequalities for dimensions are true for 
arbitrary field.)

298 We know that the inequalities for entropies can be translated into in­
equalities for the sizes of subgroups. Show that Ingleton’s inequality under this 
translation becomes true for subgroups of an abelian group.

(Hint: Follow the proof of Ingleton’s inequality using the sum of subgroups 
instead of the intersection of subspaces (in the abelian case the sum of subgroups 
is a subgroup itself).)

As a byproduct of our arguments we obtain the following interesting observa­
tion:
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299 Every true linear inequality for dimensions that involves only four sub­
spaces is a consequence of the basic inequalities and Ingleton’s inequality.

(Hint: As we have mentioned, all the extreme rays for the cone defined by 
basic inequalities, except for the special cases mentioned, can be implemented by 
subspaces, not only by random variables. Consider the convex cone generated by 
these (non-special) rays. One can check by a (long) computation that the faces 
of this cone are given by basic inequalities and Ingleton’s inequality (for different 
orderings of variables).)

Formulate and prove a similar statement for four finite subgroups of an300
abelian group.

10.12. Conditionally independent random variables

We have mentioned several times that Ingleton’s inequality may be false for 
random variables. Moreover, in this section we show an example in which the right- 
hand side of this equality is zero while its left-hand side is positive. A useful tool 
here is the notion of conditional independence; see [153, 112] for more advanced 
applications of this tool.

Let a,ß,  7 be three variables defined on the same probability space. We say 
that a and ß are independent given 7  if / ( a : / 3 | 7 )  = 0. It is easy to check that this 
condition is equivalent to the following statement: For every value 7 0  of 7  that has 
non-zero probability, the conditional distributions of a and ß  under the condition 
7  =  7 o  are independent.

301 Prove this statement.
(Hint: I (a : ß  I7 ) is an average (taken over all 70 with corresponding probabil­

ities) of the mutual information between corresponding conditional distributions.)
Abusing slightly the terminology, we say that two random variables a  and ß 

defined on the same probability space are conditionally independent if one can find 
two other random variables 7 and 6  defined on the same probability space or on 
its more fine-grained version (where elementary events are split into smaller ones) 
such that

• 7 and 6  are independent;
• a  and ß are independent given 7 ;
• a  and ß are independent given 5.

We are allowed to split the elementary events in the probability space, so the 
conditional independence property is now a property of the joint distribution of a 
and /3, and it does not depend on the space where a  and ß are defined. (As usual, 
we consider random variables with finitely many values.)

The three conditions in this definition mean that three terms in the right-hand 
side of Ingleton’s inequality are zeros. It remains to construct an example where 
the left-hand side is positive nevertheless:

THEOREM 217. There exist conditionally independent random variables that 
are not independent.

PROOF. We need to provide an example of a quadruple of random variables 
a, ß , 7 , 6  that satisfies the requirements stated in the definition of conditional inde­
pendence, but where a and ß are dependent. The following example was suggested 
by Romashchenko. Each of the four variables has values 0 and 1. The variables 7
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and 6  are independent and uniformly distributed, so each of four possible combina­
tions has probability 1/4.

It remains to define a and ß. It is done as follows: If 7 = 5, then the common 
value of 7 and Ö is at the same time the value of a and ß (so they are equal). If 
7 Ф 6 , the joint distribution of a and ß (for two cases 7 = 1, Ö = 0 and 7 = 0, 6  = 1) 
is defined as follows:

0 1
0 1/8 3/8
1 3/8 1/8

For a fixed value (say) 7 = 0 the conditional distribution of a and ß is the average 
of this matrix and the matrix

0 1
0 1 0
1 0 0

The average is
0 1

0
9/16 3/16

1 3/16 1/16
and we get the joint distribution of two independent variables; each is equal to zero 
with probability 3/4. On the other hand, the joint distribution of a and ß is the 
average of all the four matrices (for four possible conditions) and is equal to

0 1FI 5/16 3/16
1 3/16 5/16

so a and ß are dependent. □

Let us summarize what we know about £ for the case n = 4 at this moment. We 
started with a polyhedral cone defined by basic inequalities. It is an upper bound 
for £. We stated (without providing details of the corresponding computation) 
that the extreme rays of this cone are of two types: non-special ones and special 
ones. For non-special ones it is easy to show that they belong to E, and we get a 
lower bound for £\ the cone generated by these non-special rays. One can check 
(again a computation is needed) that this cone can be equivalently defined as the 
set of points that satisfy the basic inequalities plus Ingleton’s inequalities. The 
last theorem provides an example of a point in £ that does not satisfy Ingleton’s 
inequality, so this lower bound is not exact (for n = 4).

In the next section we will see that the upper bound is not exact either (for 
n — 4).

10.13. Non-Shannon inequalities

The inequalities that are not linear combinations of basic inequalities were 
founded in [222, 223]; see [113] for more details. They are called non-Shannon 
inequalities. Currently many such inequalities are known; however, their nature is 
not well understood yet. We consider only one example, the inequality from [113] 
it is probably the most intuitive among them.



344 10. INEQUALITIES FOR ENTROPY, COMPLEXITY AND SIZE

ß

F i g u r e  34. The additional term W(a,ß,e)

T h e o r e m  218. For every quintuple of random variables a , ß , j , S , £  the follow­
ing inequality holds:

I(or.ß) < I (a :/? |7) + I(a:ß\S) + IfriS) + I(a:ß\e) + I(cr.e\ß) + I(ß:e\a).

This inequality looks frightening; nevertheless, some comments could be useful 
(at least, for memorizing this inequality). The right-hand side consists of two parts. 
The first three terms, without e, are exactly the same as in Ingleton’s inequality. 
If there were no other terms in the right-hand side, we would get exactly Ingleton’s 
inequality, which is false, so we add other terms to make the inequality weaker. 
Namely, we add

W(a,ß,e)  = I(a:ß\e) + I (a:e\ß)+I(ß:e\a) .
This additional term (see Figure 34) contains £ while the rest of the inequality 

does not. One can say that Ingleton’s inequality may be false, but the error is 
bounded by infe W{a,ß,e)\  this (mysterious) quantity depends only on a and ß.

One more observation: we can use the same variable (let us call it £) as a, 
ß, and £ (here we really mean the same variable, not the identically distributed 
variable). Then W(a,ß,e)  — 0, and we get the inequality

(*) Щ ( ) ^ Н Ш + Н Ш 6 )  + 1(т.6)
that we have seen while proving Ingleton’s inequality for the dimensions of vector 
spaces.

We can also derive the following conditional inequality from Theorem 218. If 
W(a,ß,e)  = 0 for some e, then

I  (a : ß ) ^ I { a : ß \ 4 )  + I{a:ß\6)  + J(7 : S)
for all 7 and 5. Using this conditional inequality, we see that the special ray from 
Section 10.11 does not belong to E (let a = £3, ß = £4, 7 = £ — S = £2). 
However, this ray satisfies all basic inequalities, so the inequality of Theorem 218 
cannot be derived from basic inequalities.

This conditional inequality can be proven directly by applying the inequality 
(*) to the random variable £ provided by the next theorem (applied to a, ß, and e).

Theorem 219. I f W ( a , ß ,  7 ) = 0, the random variables a , /3 , 7  have “fully 
extractable common information” in the following sense. There exists a random 
variable £ such that

H( ( \a)  = H( ( \ß)  = H( t \ ' 1) = 0 ,
=  0.
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P r o o f .  Consider a three-dimensional table for the joint probability distribu­
tion of a, ß , 7 . Our assumption says that every two-dimensional section of this table 
(some coordinate is fixed) has rank 1 (if it has rank 0, then the corresponding value 
appears with probability zero and can be eliminated).

First let us assume that all the elements in the three-dimensional table are 
positive; it this case the three variables a, /5,7 are independent. Indeed, consider 
all one-dimensional sections that are parallel to the first coordinate, and fill a two- 
dimensional table (indexed by other coordinates) with these vectors. All the vec­
tors are non-zero (and even have all non-zero coordinates), and the assumption 
guarantees that they are proportional in each row and each column of this two- 
dimensional table. So all the vectors are proportional, therefore all the orthogonal 
two-dimensional sections are proportional. By the assumption, these section have 
rank 1, and this finishes the proof for the case of an everywhere positive table.

Now consider the general case. In this case we will show that the table has 
a block diagonal structure, i.e., it may be split into blocks, where each block is 
a combinatorial parallelepiped (product of three sets of indices), projections of 
different blocks onto the coordinate axes are disjoint, and the table has zeros outside 
the blocks (and positive values inside all blocks).

We can apply the above-mentioned argument to each block to get independence 
inside each block. This finishes the proof, since we can use the block number as 
£; the variable £ is a function of each of the variables a , ß , 7 , and when £ is given 
(=the block is fixed), variables a , /5, 7 become independent.

So it remains to prove the block diagonal property. Consider the set of positions 
that contain strictly positive elements. This set has the following property: I f two 
opposite corners of a rectangle (parallel to the axes) contain positive elements, then 
the two other comers contain positive elements. (Otherwise, the determinant of the 
corresponding 2 x 2  matrix is not zero, and the rank is greater than 1.) Now, using 
this property, let us find bigger and bigger blocks in the table. We start with an 
one-element block. At each step we look at whether there exists a positive element 
in a place that falls into the block along at least one coordinate. If yes, it is easy 
to see (using the property above) that the block can be extended into a bigger one 
with all non-zero elements. In this way we get a maximal block that is separated 
from other non-zero elements along each coordinate, and we then apply the same 
argument to the rest of the table. □

Provide the missing details for this argument.

(a) Prove the following statement (it is sometimes called the double 
Markov property lemma): if I(ß : 7 1 a) = 0 and I  (a: 7 1 ß ) = 0, there exists a random 
variable £ such that H(£\a) — 0, H(£ \ß) — 0, and I((a,ß): 7 ^ ) = 0.

(b) Derive Theorem 219 from this statement.
(Hint for (b): For Theorem 219 one can use the same variable £ as in (a). One 

can prove that the variables a and 7 are independent when £ is known using the 
independence of the pair aß  and 7 . (A similar argument shows that ß and 7 are 
independent when £ is known.) In addition, we know that a  and ß are independent 
when £ is known. One can derive from this that a  and ß are independent when £ 
is known and that £ is a function of 7 . How can we do this? For the first claim, 
draw a diagram with three variables aß, 7 , and £ and look at the regions that 
contain zeros. This diagram shows that the mutual information between £ and aß

302

303
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is not less than the mutual information between 7 and aß. On the other hand, the 
condition W(a,ß,  7 ) =  0 implies that the mutual information between aß  and 7 
equals I (a:ß:7 ) = I(a:ß).  Also, the conditions H(£\a)  = #(£|/3) — 0 imply that 
the mutual information between aß and £ equals I  (a :/?:£) (see again the diagram). 
Therefore, I(a:ß)  ^  /(cc :/?:£) ^  I (a:ß:7 ) = I(a:ß),  and all inequalities here 
become equalities. The equality between the two first terms means that a and 
ß are independent when £ is given. Finally, the entropy #(£  17 ) is bounded by 
#(£ |q!,7 ) + # (£ |/? ,7 ) + I(a:ß  I7 ) and all three terms in the last sum are zeros.)

In [154] a Kolmogorov complexity version of Theorem 219 is proven. Assume 
that a, b, c are strings, and three quantities I(a:b\c), I(a:c\b), and I(b:c\a) are 
small, e.g., are bounded by 0(log(|a| + |b| + |c|)). Then there exists a string d 
such that the conditional complexities (7(d|a), C(d\b), C(d\c), as well as the 
mutual information I(a:b\d), I(b:c\d), and I(a:c\d) are also small (bounded by 
0 (log(|o| + \b\ + |c|))).

Artificial independence. We considered some special cases of Theorem 218. 
Now we will prove Theorem 208 in the general case using some trick (by making 
some variables independent).

P ro o f . Let us split the variables in the inequality into three groups:

(1) a .ßi (2)4,*; (3) e.

Note that in our inequality (2)-variables never appear in the same tuple with (3)- 
variables, though variables of both groups are used together with (Invariables. So 
without loss of generality we may assume that the pair ( 7 ,  S) and e are independent 
given (a,ß).  Indeed, consider a different joint distribution for all the variables, 
obtained in the following way: First we generate values of (a,ß)  according to 
the existing distribution, and then we independently generate values of ( 7 ,  S) and 
e according to their (existing) conditional distributions given (a,ß).  Indeed, for
(l) + (2)-variables the distribution remains the same, so the entropies do not change; 
the same is true for (1) + (3)-variables.

Knowing this, we see that it is enough to prove a weaker inequality (with 
additional terms in the right-hand side):

I  (a : ß ) ^ I ( a : ß \ ' y )  + I(a:ß\S)  + / ( 7  : Ô) + W(a,  ß, e)
+ / ( ( 7 ,  S):e\(a,ß))
+ I('y:e\(a,ß))
+ I(6:e\(a,ß)) .

Indeed, if the pair (7 , S) is independent with e given (a,ß), then the same in true 
for its components 7 and 5, so the last three terms vanish after making the groups 
artificially independent (and the other terms remain the same).
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The latter inequality is in fact the sum of eight basic inequalities:

I({a,ß):e | 7 ,£) ^  0,
I(a:ß  |e,7) ^  0,
I (a:ß\e , 6 ) ^  0,

I ( T . ô \ e )  ^ 0,

I(T-e\a) > 0,

I{l'-£ \ß) > о,
I(S:e I a) ^  0,

I( 6 :e\ß) ^  0.

There is no problem to check this: we just need to express all the mutual information 
in terms of entropies of tuples, and we get the same inequalities after canceling the 
opposite terms. Still it remains unclear why this happens and how one can invent 
such a trick. □

One may say that our non-Shannon inequality, while not being a positive linear 
combination of basic inequalities, still follows from them in a more general sense. 
In fact, we have discovered a general deduction rule for entropy inequalities: if we 
manage to split the variables in some inequality into three groups in such a way 
that the second and third group never meet, then this inequality can be derived 
from a (generally) weaker inequality where the mutual information between the 
variables of the second and third group (conditional to all the variables of the first 
group) is added.

This rule can be used to prove many other non-Shannon inequalities for en­
tropies (it is known that one can get in this way infinitely many inequalities for 
four variables, and each of them is not a positive linear combination of others).

Deleting the unique information. There is one more tool that can be used 
to derive new inequalities for entropies. It is based on the following Ahlswede- 
Körner theorem [2] that we state here without proof. (See [113, Lemma 5] for the 
proof.)

T heorem 220. Let a,ß,e be random variables with some joint distribution. 
Consider n independent copies of this triple, and denote them by ai,ßi,£{ (i = 
1, . . . ,  n). Let

A = (ax, . . . , a n) ,B = {ßi, ... ,ßn) ,E = (el 5. . . , en).

Then there exist a random variable E ', defined on the same space as A , B , E  such 
that all seven entropies on the diagram for the triple А, В , E' are the same (up to 
o(n)) as for the triple А, В , E, except for one, H(E'  | A , В ), that is now o(n) instead 
of H(E\A,B) .

Informally speaking, E'  is like E  but does not contain any information that is 
missing in A , B. A similar statement is true for an arbitrary number of random 
variables ai, . . . ,otk (with some joint distribution). Let us take n independent 
samples from this distribution and denote the resulting variables by A \ , . . . ,  Ak ■ 
One can “delete” the information that is unique for Ak (is missing in A \ , . . . ,  Ak- 1) 
and replace Ak by some A'k in such a way that all the regions on the diagram
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k e e p  t h e i r  s i z e  ( w i t h  o ( 7 r ) - p r e c i s i o n )  e x c e p t  f o r  t h e  o n e :  

H(A'k \ A i , . .., A - i )  i s  n o w  o{n).
304 Prove this statement for the case к = 2.

the conditional entropy

Note that it is important here that we deal with n independent copies and allow 
o{n) errors. It is not possible to get such a result without that. Indeed, let a and 
£ be dependent uniformly distributed binary variables. Then one cannot construct 
a variable e' that has Н{е'\а) = 0 (i.e., is a function of a) and has the required 
entropy.

Now let us explain how the Ahlswede-Körner theorem can be used to prove 
Theorem 218. Let a , /5,7 , 5, e be some random variables (on the same probability 
space). First of all, let us prove the inequality of Theorem 218 with the addi­
tional term 3H(s | a, ß) in the right-hand side. It can be obtained by adding the 
inequalities

H ( e b ) ^ H ( e \ c , )  + H(e\ß) + I(a-.ß\1 ), 
H(e IÄ K  H(e I a) + H(e \ 0) + I(a : ß \ S), 

Н { е ) ^ Н { е Ь )  + Н(е\5) + 1(т.0),

and the equality

I  {a : ß) + 2 H{e \ a) + 2 H{e | ß) = H{e) + W{a, ß, e) + 3H{e\ a, ß ).

We have already seen the third inequality (Problem 296, p. 341). The first two 
inequalities follow from its conditional version. All three inequalities are combi­
nations of basic inequalities. The equality is easy to check using the diagram for 
c*,ß,£.

Now the Ahlswede-Körner theorem allows us to get rid of the undesirable 
term 3H(£\a, ß). Consider n independent tuples cq, /?i,7t,£t,£i (for i = l , . . . , n)  
of variables with the same distribution, and random variables A — (cq, . . .  , an), 
В = {ßi С = (7i , . . . , 7n), D = (5Ь . . . , 5П), E  = (fi, . . . ,  en). The
entropies of variables А, В , C, D , Е  and their combinations are n times bigger than 
the entropies of the original variables and their combinations. Now we can apply the 
Ahlswede-Körner theorem to random variables a, ß, £ and get a random variable 
E'  defined on the same space as the variables A, B,C,  D, E. For A, B, C,D,E'  
we write the inequality with the additional term 3H(E' \A, B) in the right-hand 
side (that we have just proven). This additional term is o(n) as stated by the 
Ahlswede-Körner theorem. Then we replace E'  by E  in all other terms. We claim 
that all the terms then change only by o(n). Indeed, for the terms that contain 
C or D, nothing changes as these terms do not contain E'  (here we use the same 
property of our inequality as in the other proof of Theorem 218). And terms that 
do not contain C or D can be represented as sums of regions on the diagram for 
A, B, E '  different from H(E'  \A, B). Therefore the inequality remains true with 
o(n)-precision after the replacement. It remains to divide by n and note that we 
get the desired inequality as n —> oo.

It is instructive to compare these two tricks (making variables artificially inde­
pendent and applying the Ahlswede-Körner theorem). In both cases we have mod­
ified the joint distribution of the variables A, B , C, D , E. (We can apply artificial 
independence to the n-times-sampled variables, it does not make any difference.) 
In the first case we kept that joint distributions for А, В, E  and for A, B , C, D
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unchanged. In the second case we kept unchanged only the joint distribution for 
A,B,C,D.  Then we killed the term I ( CD: E\ AB ) in the first case, and the term 
H{E\AB)  in the second case, while keeping the other terms (almost) unchanged.



CHAPTER 11

Common information

11.1. Incompressible representations of strings

Is “the information in a string” material? Though this question sounds quite 
informal, the following example gives an idea of what we are asking. Assume that 
we are given a string x whose Kolmogorov complexity is n and thus x “has n bits of 
information”. Can we divide that information into two equal parts, as if those bits 
were pebbles? This question may be formulated quite formally: Are there strings 
x\ and X2 , each of complexity n j 2, such that C(x\ \ x) ~  0 and C(x2 |x) ~  0 (i.e., 
X\,X2 do not have any new information compared with x) and C(x\x \ , x 2 ) ~  0 
(i.e., no information is lost)? It is natural to understand the approximate equalities 
as equalities holding with accuracy O(logn). We will soon see that such x\ and X2 

indeed exist.
It is convenient to use the following notion in this context. We say that strings 

x and y are equivalent with accuracy c, or just c-equivalent, if C(x\y)  ^  c and 
C(y I x) ^  c. Of course this relation is not an equivalence relation. If x is equivalent 
to y, and y is equivalent to z, both with accuracy c, then we can prove only that x 
is equivalent to 2 with accuracy 2c + O (loge). (An alternative approach would be 
to consider sequences xo, x \ , . . . ,  Xi, ... of strings where the length of Xi is bounded 
by a polynomial in i, instead of individual strings; then we may call sequences 
x0,x b ... and j/о, г/ i , . . . ,  equivalent if C(xi\yi) = O(logi) and С(у{\х{) = O(logi). 
In this way we get a true equivalence relation on sequences of strings.)

The complexities of c-equivalent strings are almost the same—they differ by at 
most 0(c) and even c + O (loge). More generally, if we replace a string by another 
string that is c-equivalent to the original one, then all the complexities involving 
that string change by at most 0(c). For example I (x :y \ z ) changes by at most 0(c) 
after replacing each of the strings x, y, z (and even all of them at the same time) 
by a c-equivalent string.

Using this notion, we can now formulate our first observation:

T h e o r e m  221. For every string x there is a string x' of length C(x) that is 
О (log C(x))-equivalent to x. The string x' is incompressible, that is, its complexity 
differs from its length by at most 0 (logO(x)).

P r o o f . Let x' be (some) shortest description of x. Then its length is C{x) and 
its complexity differs from C{x) by at most a constant. As we can algorithmically 
transform x' into x, we have C(x \x') = 0(1). On the other hand, the following 
inequalities

C(x) ^  C{x,x') < C(x') < l{x') = C(x)
hold up to a constant additive term. As the leftmost and the rightmost terms in 
these inequalities coincide, they are equalities. In particular, C{x,x') ~  C{x). The

351
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theorem on the complexity of the pair implies that C{x' \ x) æ 0 with accuracy 
0 (logC(x)). □

As a corollary we obtain a positive answer to the above question: Replace the 
given string by its shortest description x', and let x\ and X2 be two halves of x '.

Verify that all the requirements are fulfilled.
Assume that C(y\x) = n. Show that there is an (intermediate) 2 such 

that C(z |x) æ n j 2 and C(y\z) æ n / 2  with accuracy 0(logC(x, y)).
In these examples information bits behave as something material. A similar 

thing happens when we deal with information in a string and some part of this 
information. Let us explain what we mean by this.

Assume that some strings x and y are given such that C(y |x) ~  0 (“all the 
information in y is a part of the information from x”). Then there is an incom­
pressible string x' that is equivalent to x, and some prefix y' of x' that is equivalent 
to y. (This implies that y' is an incompressible string of length about C{y).) More 
specifically, the following holds:

T h e o r e m  222. For every two strings x and y there exist strings x' and y' 
that are equivalent to x and y (respectively) with accuracy 0(C(y\x)  -flog C(x,y)), 
such that y' is a prefix of x' and both x' and y' are incompressible ( with the same 
accuracy).

P r o o f . Let y' be a shortest description of y. Then y' is an incompressible 
string of length C(y) and y' is equivalent to y.

Let z' be a shortest description of x conditional to y. Then z' is an incompress­
ible string of length C{x\y).  Knowing y' and z ' , we can find y and then find x. 
Therefore the complexity of the pair y' ,z' is at least C(x,y).  On the other hand, 
the total length of strings y' and z' equals C(y) + C(x\y) «  C(x,y).  Hence the 
string x' = y'z' is incompressible.

As we have seen, C'(xlx') æ 0. It remains to show that C{x'\x) ~  0. Since 
C'(xlx') «  0, we have C(x,x ') «  C{x') æ C(x,y).  On the other hand, we have 
C(x,y) ~  C(x) with accuracy 0(C(y  |x)). Hence C(x,x') ~  C(x) and the Kolmo- 
gorov-Levin theorem implies that C{x' \x) ~  0. □

By this theorem we can think of every two strings x,y  with C(y\x)  «  0 as a 
string consisting of C(x) almost material bits and its prefix of length C(y).

11.2. Representing mutual information as a string

Is there an analog of Theorem 222 for arbitrary two strings x, yl  Recall that 
any two strings x,y  can be characterized by their complexities C(x), C{y) and the 
complexity C(x, y) of the pair. These values determine both conditional complexi­
ties (with logarithmic accuracy) and the mutual information

C(x\y) = C(x, y) -  C(y),
C(y |x) = C{x,y) -  C(x),
I(x.y) — C(x) + C(y) -  C(x, y)

(cf. Figure 3 on p. 46). We have seen that sometimes Figure 3 can be understood 
almost literally—this happens when x and y are overlapping substrings of a random 
string. One can conjecture that this holds in the general case.

3 0 5

3Ö6
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C o n j e c t u r e .  For every two strings x and y there is an incompressible string 
и of length C(x,y) that is equivalent (with logarithmic accuracy) to the pair (x , y), 
such that the C(x)-bit prefix of и is equivalent to x and the C(y)-bit suffix of и is 
equivalent to у (with the same accuracy).

However this conjecture is wrong. To see this, notice that the conjecture implies 
that for every two strings x and у there exists a string z (the common part of the 
said prefix and suffix) such that

C(z\x) — 0,
C(z\y) = 0,

C(z) = I{x:y)

(up to logarithmic error terms). Informally, these equalities mean that the string 
z represents the common information in x and y. We will show that for some pair 
x, у there is no such z.

307 Show that if for some strings x and у such a 2 exists, then the conjecture
is true for these x and y.

There are several counterexamples to the conjecture. The simplest counterex­
ample (from Muchnik’s paper [134]) is the following one. We will construct two 
strings x and у of complexity 2n that have n bits of mutual information (with 
logarithmic precision). Thus the complexity of the pair (x,y) will be close to 3n. 
Additionally, there will be no string z of complexity n such that C(z | x) and C(z | y) 
are negligible (with accuracy O(logn)).

How can we do this? Let us first rewrite the latter two conditions for z as 
C{x\z) = n and C(y\z) — n. Thus we are looking for strings x and у both of 
complexity 2n that have n bits of mutual information and for which there is no 
string z such that C(z) и  n, C(x\z)  «  n, and C(y\z) «  n. The following theorem 
guarantees the existence of strings x and у with these properties and even with a 
stronger property: There is no z such that C(z), C(x\z),  and C(y\z) are less than 
l.ln .

T h e o r e m  223. For every n there are strings x and у such that
C(x) — 2n + O(logn), C(y) = 2n + O(logn), I(x:y) = n + O(logn), 

and such that there is no z of complexity less than 1.1 n with C(x\z)  < 1.1 n and 
C(y I z) < 1.1 n.

P r o o f .  Let us show that there exists a pair x,y  of strings, each of length 
2n + 2, such that

• C(x) ^  2n,
• C(y) ^  2n,
• C(x, y) ^  3n, and
• there is no z with C(z) < l.ln , C(x\z) < l.ln , C(y\z) < l.ln .

Indeed, the first condition is violated by less than quarter of all pairs (the total 
number of x’s is 22n+2, and only 22n of them have complexity less than 2n). Sim­
ilarly, the second condition is violated by less than quarter of all pairs. The third 
condition is violated by less than 23n pairs, which is a negligible quantity compared 
to the total number 24n+4 of all pairs. Finally, the fourth condition is violated by 
less than 2l ln x 2l ln pairs for every fixed z. As there are less than 2l ln different
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strings z, the total number of such pairs is less than 3.3n, which is again negligible 
compared to the total number of all pairs.

So there are many pairs satisfying all the conditions. Let x, y be the first pair. 
To specify this pair we need to know n and the following three lists:

• the list of all strings of complexity less than 2n,
• the list of all pairs of strings of complexity less than 3n, and
• the list of all pairs of strings (u,v) with C(u) < l .ln  and C(v\u) < l.ln.

Recall that the complexity of the list of all strings of complexity less than к is
at most к + 0 (log&) (the list can be specified by the number к and the size of the 
list, which is less than 2 k and thus can be identified by к bits).

Therefore, the list of all strings of complexity less than 2n has complexity at 
most 2n + O(logn). For the same reasons the complexity of the second list is less 
than 3n + O(logn).

A similar argument can be applied to the list of all pairs of strings (u,v) such 
that C(u) < l.ln  and C(v \ u) < l.ln . The complexity of this list is at most 2.2n + 
O(logn). Indeed, we can find this list from n and the number of such pairs, which 
is less than 22-2n.

What is the joint complexity of three lists, i.e., the complexity of the triple 
made of these three lists? Is is much less than the sum of their complexities and is 
bounded by our maximal bounds, i.e., 3n (with accuracy O(logn)). Indeed, given 
n, each list can be specified by its size. Moreover, we only need to know the sum of 
the sizes. Indeed, we can generate elements from all three lists in parallel until we 
obtain the specified total number of elements. Once we get that many elements, 
we know all the three lists. It remains to notice that the sum of any three binary 
numbers is at most two bits longer than the maximal number. Therefore the joint 
complexity of the three lists is at most 3n + O(logn).

Thus, the complexity of the pair x, у is at most 3n + O(logn). On the other 
hand, its complexity is at least 3n by construction. Again by construction, the 
complexity of each of x, у is at least 2n. As the length of both x, у is 2n + 2, the 
complexity of each of them is at most 2n + 0(1). Finally, by construction there is 
no z with C(z) < l.ln , C(x\z)  < l.ln , C{y\z) < l.ln . □

It is clear that the bound can be improved; let us make more precise estimates. 
Assume that we want to construct strings x and у of complexity 2n (both) with 
mutual information n, but there should be no string z such that

C(z) < a, C(x\z) < ß, and C(y\z)<'y.

What are the conditions on a, ß , and 7 that make our construction possible? The 
list of all pairs u,v such that C(u) < a and C(v\u) < ß has complexity a + ß, so 
we need the condition a + ß < 3n. In the same way, the condition a + 7 < 3n 
appears. Finally, to prove the existence of a pair we need to know that less than 
24n pairs are prohibited, so we add the condition a + ß + 7 < 4n. These conditions 
are sufficient to construct a pair with the required properties.

Moreover, we can prohibit simultaneously all the pairs for different triples 
a, yd, 7 that satisfy these inequalities. There are 0 (n3) triples, so if we require 
the inequalities to be true with an 0 (logn)-margin, we still have pairs that are not 
prohibited; the complexity overhead needed to merge polynomially many enumer­
ations is also O(logn). So we get the following statement:
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T h e o r e m  224. For every n there exist strings x , y of complexity 2n +  O(logn) 
such that C(x,y) = 3n + 0(logn), and for every z at least one of the following three 
inequalities is true:

(a) C(z) + C(x\z)  ^  3n — O(logn);
(b) C(z) + C(y\z) ^  3n — O(logn);
(c) (7(2) + (7(:r | z) + C{y\z) ^ 4  n — O(logn).

To be completely formal, we state the following: For some c and for all n there 
exist strings x and y whose complexities deviate from 2n by at most clogn, the 
complexity of the pair deviates from 3n by at most clogn, and for every string 2 
one of the inequalities (a)-(c) is true with clogn in the right-hand side in place of 
O(logn).

The pair constructed in this theorem is the worst-case pair from the viewpoint 
of common information. This vague statement can be made precise in the following 
way. For each pair x,y  let us consider the set C(x,y) C N3 of triples (a ,/3, 7 ) such 
that there exists a string 2 that makes three conditions

C(z) < a, C(x\z) < ß, and C(y\z)<'y

true. The set C(x,y) is upwards closed (obviously). Note that C(x,y) is not 
determined by complexities of x, y , and the pair x, y: We have seen two pairs that 
that both have C{x) = C(y) = 2n and C(x,y) = 3n but have different C(x,y). 
As we will see, these examples are extreme points: we get a maximal set C(x,y) 
if x and y are (respectively) 2n-bit prefix and 2n-bit suffix of some random 3n-bit 
string, and we get a minimal C(x,y) for the pair provided by Theorem 224.

Let us explain why this happens. Assume that x and y are strings of complexity 
2n with mutual information n (as usual, we allow the deviation of order O(logn) 
without saying this explicitly). Every triple (a ,/5,7 ) G C(x,y) should satisfy the 
obvious inequalities

a + ß ^  2n, a + 7 ^  2n, a + ß + 7 ^  3n

(since C(x) < C(z) + C(x\z)  and so on). This means that C(x,y) is a subset of 
the set Cm of all triples (a, /5,7 ) satisfying these three inequalities. (Again we omit 
O(logn) terms that are needed for the exact statement.)

How can we represent this set of triples in an intuitive way? For each ß and 
7 there is some threshold ao(ß, j )—the triples with a > belong to Cm and the 
triples with a < ao do not belong to Cm - The graph of the function (/3,7) 
ao(/3,7) is the boundary of Cm - It has three faces (corresponding to the three 
inequalities), and can be represented on the plane by drawing for every a the set 
of points where ao(/3,7 ) = a (i.e., the level line of the function ao). This line is а 
boundary of the horizontal (fixed a) section of Cm - See Figure 35.

Using this picture, it is easy to check that for our first example (overlapping 
factors of a random string) the set C(x,y) achieves its upper bound Cm- How  
should we choose 2 for given a , /3,7 in (7m ?  When a  < n, we let 2 be a part of 
the overlap; adding 2 as the condition then decreases the complexities of both x 
and у by a. If a  > n, we let 2 be the overlap plus some parts of x and у (in some 
proportion; the change in the proportion gives different points on a line with slope 
— 1 on the picture.
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F i g u r e  35. The set Cm F i g u r e  36. The set Cm

Theorem 224 provides an example of a pair (x , y ) with smaller C(x, y). Indeed, 
it gives a pair where C(x, y) is contained in the union of the sets

a + ß ^  3n, a + 7 ^  3n, a + ß + 7 > 4n

that correspond to inequalities (a)-(c). Intersecting Cm with this union, we get a 
smaller set that is called Cm in the sequel; it is shown in Figure 36.

In fact, Cm coincides with C(x,y) for this pair, and Cm C C(x,y) for every 
pair x, y where x and y have complexity 2n and the pair has complexity 3n.

To check this, we need to find a suitable z for every point (a, /3,7) G Cm• It-is 
enough to do this for all minimal triples in Cm (since C(x,y) is upwards closed). 
The points on the lines with slope —1 (Figure 36) correspond to a string z that 
combines part of x with part of y in some proportion. For example, the point 
(1.5n, 1.5n) corresponds to z that combines n/2 bits from the shortest description 
of x and n/2 bits from the shortest description of y. The point (n, n) corresponds 
to a string z of length 2n that combines n bits from each of the two shortest 
descriptions. The point (n + h, h) (where 0 ^  h ^  n) corresponds to a string z of 
length 2n — h that is a prefix of the shortest description of y. Then C(y\z) is the 
number of the remaining bits, i.e., h. On the other hand, C(x\z)  is bounded by 
C(x\y)  (i.e., n) plus C(y\z) (i.e., h). Finally, the points (/1,0) (where 0 < h < n) 
correspond to strings z of complexity at most 3n — h that contain all y and n — h 
bits of the shortest description of x given y. So we get the following statement:

T h e o r e m  225. For every pair (x,y) of strings that have complexity 2n and 
mutual information n, the set C(x,y) is (with logarithmic precision) between the 
lower bound Cm and the upper bound Cm ; both bounds are achieved for some pairs.

As soon as the set C(x,y) is known for a pair (x , y ), we can formally derive 
some properties of this pair. Here is one example:

T h e o r e m  226. Assume that C(x,y) — Cm (as it happens for the pair con­
structed in Theorem 224). Then for every z the inequality

C(z) ^  2C(z\x) + 2C(z\y)
holds.

Before proving this inequality, let us comment on its meaning. It says that only 
strings z of small complexity can be simple relative to x and y at the same time. 
Note that if one can extract common information from x and г/, then this common



1 1 .3 . T H E  C O M B IN A T O R IA L  M E A N IN G  O F  C O M M O N  IN F O R M A T IO N 357

information z is simple relative to x and y , so this inequality is a quantitative 
statement that says that common information cannot be extracted.

P r o o f .  We may assume without loss of generality that C(z) =  0{n ) (if the 
complexity of z is big, then C(z\x)  and C(z\y) are greater than C(z)f2).

Let us rewrite the inequality in terms of the quantities that appear in the 
definition of C(x,y): it may be rewritten as

C(z) < 2C(x, z) -  2C(x) + 2C(y, z) -  2C(y),
and then

C(z) ^  2C(z) + 2C(x I z) -  2C(x) + 2C(z) + 2C(y \ z) -  2C(y),
i.e.,

2C{x) + 2C{y) ^  3C(z) + 2C(x \ z) + 2C(y \ z ).
The left-hand side equals 8n; to check that the right-hand side cannot be less, we 
consider each line on Figure 36 (and it is enough to consider points with a minimal 
sum of coordinates). □

308 Prove that for small values of C(z) one can get a better bound 
C(z) ^  C(z\x)  + C(z\y),  

but in general the constant 2 cannot be improved.

11.3. The combinatorial meaning of common information

Theorem 224 gives us an example of a pair of strings that do not have (ex­
tractable) common information in the strongest possible sense. Still it does not 
explain why this happens, what properties of x and y  make mutual information 
non-extractable. This is a rather informal question, and we do not know any state­
ment that answers it completely. Still some observations can be made.

What does it mean that for given x and y  there exists a string z such that 
C{z) < o;, C{ x\ z ) < ß , and C{y\z)  < 7? Let us denote by Um(z) the set of all 
strings whose conditional complexity given z is less than m. The size of this set is 
about 2m. Our condition means that the pair (x,y)  is covered by one of the sets 
Uß(z) x U*y(z)\ there are at most 0(2“) sets of this type (one for each z).

Therefore, the condition (o;,/?,7) £ C(x,y)  means that the pair (x,y)  is cov­
ered by a union of 2“ combinatorial rectangles of size 2  ̂ x 27. (A combinatorial 
rectangle is a product of two arbitrary sets.) On the other hand, if (x, y) is covered 
by an enumerable family of 2“ combinatorial rectangles of size 2  ̂ x 27, then the 
triple (o;, ß , 7 ) (plus the complexity of the enumeration algorithm and logarithmic 
overhead) belongs to C(x,y)\  Let z be the ordinal number of the rectangle that 
covers (x,y).  So one can say that the set C{x, y) is determined if we know which 
(simple enumerable) families of combinatorial rectangles cover the pair (x,y).

Now it is clear how one can construct an example of a pair without common 
information—find a set that is difficult to cover by combinatorial rectangles, and 
take a random element of this set. (This approach also was suggested by An. Much- 
nik).

It is convenient to identify the sets of pairs with binary relations, or bipartite 
graphs—a pair (x, y) is then an edge that connects vertex x in the left part with 
vertex y  in the right part. The combinatorial rectangle is then the set of all edges 
that connect some subset of the left part and some subset of the right part.
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There is a simple property of a bipartite graph that guarantees that it is hard to 
cover this graph by combinatorial rectangles. The graph should not contain cycles 
of length 4 (there are no vertices a, b in one part and c, d in other part such that 
all four edges ac,ad,bc,bd are in the graph). The following combinatorial lemma 
shows that such a graph is difficult to cover:

Lemma. Consider a bipartite graph with I vertices in  the left part and L  vertices 
in  the right part; assume that I ^ L. I f  this graph does not have cycles of length 
4, then the density of edges in  it  ( the number of edges divided by IL) is bounded by 
0 ( m a x ( l / > / Z ,  1 / / ) ) .

In other words, if we place stars in a rectangular table in such a way that no 
four stars form a rectangle with horizontal and vertical sides, then the density of 
stars is bounded either by 0 (l/smaller side) or by 0 (1/д/larger side).

PROOF. For each of I left vertices, consider the set of its right neighbors. The 
condition about cycles says that every two sets of this type (for two different left 
vertices) have at most one common element. The inclusion-exclusion formula then 
allows us to give a lower bound for the size of the union of all these neighbor sets: 
the sum of sizes of all sets (i.e., the total number of edges in the graph) minus the 
number of all possible pairs, at most I2. On the other hand, this union contains at 
most L  elements (the size of the right part).

So we conclude that the total number of edges is bounded by L + I2, and the 
density is bounded by l / l  + l/L. This gives the required bound if the first term 
dominates the second one, i.e., for I ^ \fh .  But for I ^ \/Z, we get the bound 
0 ( l / L ) which is not enough (we want 0 (l/>/Z)); this is OK if I = 0(y/L) ,  but I 
can be bigger.

To get the required bound, let us consider a part of the graph by choosing \ f L  
vertices in the left part (among I) with maximal number of neighbors. Deleting 
all other left vertices, we only increase the density, and for the reduced graph the 
density is bounded by l / y /Z .  The lemma is proven.

Now we need to find a graph without 4-cycles. (Then the lemma guarantees 
that it is difficult to cover by rectangles, and a random edge in this graph gives 
us a pair without common information; see below.) Here is a simple geometric 
construction.

Consider some finite field F and a plane (a two-dimensional vector space) over F. 
The left vertices are points in this plane; the right vertices are lines. Edges connect 
incident points and lines. We do not have 4-cycles thanks to Euclid’s axiom: for 
two given points there is at most one line that goes through them.

How many vertices and edges do we get? If the field contains about 2n elements, 
then we have about 22n vertices on each side and about 23n edges (each line contains 
about 2n points, and for each point there is about 2n lines going through it). So 
for most edges in the graph, the complexities C(x) and C(y) are close to 2n, the 
complexity of the pair is close to 2n, and mutual information I{x\y)  is close to n.

Show that I(x:y)  = n + O(logn) for all edges xy in this graph whose 
complexity exceeds 3n — O(logn).

To finish the alternative proof of Theorem 223, let us see what fraction of the 
edges (in this graph) can be covered by 2l ln rectangles of size 2l ln x 2l ln. (We 
again use 1.1 as a, ß , and 7 .) We can apply the lemma above to each rectangle

309
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and conclude that the density of edges is bounded by 2 0-55n, so the total number 
of edges covered by all the rectangles, is at most

2i . in  ^ 2 l ln  y  X 2 _ 0 .5 5 n  2^-75n <2̂ n

So most of the edges remain uncovered (and most of the edges have required com­
plexities and mutual information), so a random edge in this graph with high prob­
ability provides an example required by Theorem 223.

Show that every edge xy whose complexity is close to 3n can be used as310
an example for Theorem 223).

(Hint: The set of covered edges can be enumerated by a simple algorithm.)
This construction gives a nice alternative proof of Theorem 223, but there is 

one subtle point in it: we need to know that there exists a field of size close to 
2n. (Knowing that such a field exists, we can find it by a brute-force search, so we 
may assume that the field is simple given n .) It is a classical (but not completely 
trivial) result in algebra and number theory. The field of size 2n can be constructed 
by a degree n extension of a field with two elements consisting of all roots of the 
polynomial x2 — x. Also we can use the Bertrand postulate which guarantees that 
for every N  there is a prime number p between N  and 2N  and use residues modulo 
p where p is a prime number close to 2n.

Now we have a concrete example of two strings with non-extractable mutual 
information: a random pair whose first term is a point, the second term is a line, 
and the point and the line are incident. To make this example more symmetric, 
we may consider a projective plane instead of the affine one (the complexity does 
not change much since infinite points form a negligible fraction of all points). We 
may also choose a random pair of orthogonal one-dimensional subspaces in a three- 
dimensional space over a finite field (with scalar product X\y\ + Х2 У2 + жзУз).

It would be nice to construct a similar example using spaces over M (points on 
the sphere in R3). Probably one can take some discrete subset of the sphere with 
reasonable constant density, but there are some problems: If x and у are close, then 
there are many points that are almost orthogonal to both.

Of course, the coefficient 1.1 is not optimal. The same argument can be tried 
for arbitrary a,ß,  7 and is successful (the number of covered edges is less than 3n) 
if they are not too large. Using our lemma (exactly in the form it is stated), one 
can get the following result. The set C(x , y) for a random pair (incident point and 
line) is contained up to 0(logn)-precision in the set S shown in Figure 37. (The 
value a = 3n corresponds to the origin.) For /3 ^ 7  the set 5 is defined by the

F igure 37. The set S
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inequality
a + 7/2  + max{7 / 2, ß} > 3n,

and for 7 ^  ß it is defined by the symmetric inequality

a + ß/2 + max{/3/2,7 } > 3n.

We can also intersect this set with Cm (since C(x,y) C Cm )- In this way we get 
an even more complicated picture (not shown here).

Unlike our previous examples, we have here only an upper bound for the set 
C(x, y)\ the set itself remains unknown. It may happen that C(x, y) for this example 
depends on the choice of the finite field F. This looks weird, but the following 
problem shows that it is not so unbelievable as it could seem at first.

I 311 Assume that F is a field of cardinality q2 (then q = pk for some prime 
p). Let (x , y ) be a random pair of an incident point and line on a plane over F. 
Prove that C(x,y) contains the triple (1.5n,n,n)  where n = log |F| = 2 logg. As 
usual, we ignore logarithmic terms. (This point is on the boundary of the set S 
(see Figure 37). We do not know whether the same is true for an arbitrary field.)

(Hint: The field F contains a subfield G of size q. Every element in F has the 
form t + sa, where t, s £ G, and a is some fixed element in F. Then we can split the 
pairs of an incident point and line into g3 classes, where each class contains at most 
g3 pairs and involves at most g2 points and g2 lines. To get this classification, we 
consider lines of the form y — kx + b (vertical lines are non-random) and represent 
the coefficients in this equation as к = /  + ra  and b = h + sa, where /, r,h,s £ G. 
If a point (x, y) is on this line, let us represent x as x =  g + ta. Then y =  fg + h+ 
( f t+gr  + s)a+ rta2. We may fix r, t, s in q3 different ways; each way corresponds to 
a class of pairs. Each class involves q2 lines (and this is OK) and g3 points (which is 
not OK). To decrease the number of involved points, we can use the following trick. 
Let us represent the coefficients of each line as к — f  + ra, b — h + (s — ft)a,  and 
its points as (g + ta, fg + h + (gr + s)o; + rta2), where all coefficients /,  g, h, s, r, t 
are from G. Now, fixing r, t, s, we get a set that involves q2 lines (parametrized by 
f,  h) and q2 points (parametrized by g, fg  + h).)

Prove that we get the same set C(x,y) for all randomly chosen pairs (x, y)312
in the line-point graph, up to О (log n)-precision: To decide whether a triple (a, ß, 7) 
belongs to this set, we need to know only the maximal possible number of edges 
in a combinatorial rectangle of size 2  ̂ x 27. Namely, it is necessary and sufficient 
that this number times 2 a exceeds the total number of edges (up to a polynomial 
factor).

(Hint (Razenshteyn [151]): For every two edges there exists an affine bijection 
of the plane that maps the first edge into the second one. If there is a rectangle with 
a large number of edges, we may cover the graph by several random images of this 
rectangle. We need an additional factor of polynomial size to cover all the edges 
with positive probability. If all the rectangles are small, there are not enough edges 
to cover the entire graph (or a significant part of it) by small number of them.)

As in the previous section, the upper bound for C(x,y) implies an inequality 
that bounds the unconditional complexity of 2 in terms of conditional complexities 
(given x and y):

T h e o r e m  227. Let x ,y be a random pair of an incident line and point in a 
plane over a finite field of size about 2n. Then for every string z the following
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inequality holds:
C(z) ^  2C(z\x) + 2C(z\y) + O(logn).

P ro o f . As before, we need to prove that

8n ^  3a +  2ß +  2j
for all (a,ß, j )  G C(x,y).  It is enough to check this inequality for all points in 
S  П Cm - We may assume without loss of generality that ß < 7 . If ß exceeds 
7 / 2, then the required inequality is obtained as follows. Multiply the inequality 
<2 + 7/2  + /? ^  3n (from the definition of S ) by 2 and add the inequality <2 + 7 ^  2n 
(from the definition of Cm )- Otherwise (if ß ^  7 / 2), we sum up the inequalities 
<2 + 7 > 3n (definition of 5), <2 + ß ^  2n, and <2 + ß + 7 ^  3n (both taken from the 
definition of См)- □

So now we have two constructions of a pair without (extractable) common 
information. The first construction gives better bounds for the set C(x<y). So 
what are the advantages of the second one? The most important (though informal) 
advantage is that we have found a combinatorial reason (a graph that is difficult to 
cover by rectangles) and a simple sufficient condition for this (no cycles of length 4).

A more formal advantage is that in the second construction we get a stochastic 
example—our pair is an element of maximal complexity in a simple set. Probably 
the first construction does not give us a stochastic example. However, we may prove 
the existence of stochastic pairs with minimal C(x,y): A probabilistic method can 
be used to prove the existence of a graph that is maximally hard to cover by 
combinatorial rectangles (see [151]).

Another advantage of the second construction is that it can be used to prove 
a bit stronger statement using oracle complexity. In fact we have shown that 
for every oracle A there exist two strings x and y of complexity (without oracle) 
2n and mutual information (also without oracle) n such that there is no string 
2 with CA(z) < l.ln , CA(x\z) < 1.1?г, and CA(y\z) < l.ln . Indeed, even a 
very powerful oracle still defines some combinatorial rectangles, they cover only a 
negligible fraction of the edges, and it remains to select an uncovered (and non­
simple) edge. (Of course, the resulting pair depends on the oracle, since every pair 
is simple relative to some oracle.)

313 State and prove a similar result with additional condition и (a string of 
unlimited complexity) instead of the oracle.

What happens with common (extractable) information in two strings if we 
add some oracle? Some results in this direction are obtained in [138]; it is assumed 
there that the oracle is independent with a pair x , у (so the complexities and mutual 
information remain unchanged). Evidently, if some 2 is the common information, 
then adding the oracle does not destroy this. It can be shown that the reverse 
statement is true (however, the existing proof does not give our usual O(logn)- 
precision but a much weaker result).

We can apply similar combinatorial techniques to other algebraic constructions. 
For example, we may consider a pair of orthogonal one-dimensional subspaces in a 
four-dimensional space or, almost equivalently (if we ignore infinitely far points), 
a random pair (a point in a three-dimensional space and a two-dimensional affine 
plane that goes through this point). One cannot apply the lemma about 4-cycles 
any more (there are 4-cycles—for any two one-dimensional subspaces one can find
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a two-dimensional space orthogonal to both and two one-dimensional subspaces in 
it). Still there are only few one-dimensional subspaces in a two-dimensional space, 
so we still can apply a similar argument based on the inclusion-exclusion formula. 
(See the proof of Theorem 5 in [39] for details.)

There are other similar examples. One can consider a pair of two affine lines in 
a three-dimensional space that have a common point. Another series of examples 
can be obtained in the following way. Fix some integer n ^  3 and some integers 
k, I such that 0 < к < I < n. Then in the n-dimensional space over a finite field 
consider a random pair (/c-dimensional subspace, /-dimensional subspace) where 
the first subspace is contained in the second one. Romashchenko has shown [153], 
that one cannot extract common information from this pair. The proof uses the 
following remark: making a short random walk in the resulting bipartite graph, we 
get an almost uniform distribution.

11.4. Conditional independence and common information

In this section we consider one more (quite mysterious) way to obtain strings 
that have mutual information but no extractable common information [112, 153]. 
Let us start by recalling the inequality of Problem 296 (p. 341):

H(t) ^  H ( t \ a ) + H(t \ß)  + I(or.ß),

or, better to say, the corresponding inequality for complexities

C(z) < C(z IX) + C(z I у) + I(x  : у)

(as usual, we omit the logarithmic terms). If I(x:y)  = 0, this inequality implies an 
upper bound for unconditional complexity in terms of conditional ones,

C(z) < C(z \x) + C(z\y).

There is no surprise here—if there is no mutual information, there is no common 
information to extract. It seems that we are not getting anywhere. But a similar 
bound can be obtained for the case when x and у are conditionally independent 
relative to two independent strings, i.e., if there exist strings и and v such that 
I (x:y\u) — 0, I(x:y\v) — 0, and I(u:v) = 0. Namely, the following inequality 
holds:

T h e o r e m  228.

C(z) ^  2C(z I x) + 2C(z I y) + I(x:y\u) + I (x:y\v) + I(u:v) 

for arbitrary strings x, y, z , u, v (with 0(\ogC(x, у, и , z, v))-precision).

This inequality is a consequence of the previous one and Ingleton’s inequality

I(x:y)  ^  I(x:y\u)  + I (x:y\v) + I(u:v),

but, of course, Ingleton’s inequality is not always true. So we need to proceed in a 
different order.

PROOF. Let us consider again the inequality

C(z) ^  C(z |w) + C(z I v) + I(u:v)
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and then bound C(z\u) and C(z\v) using the relativized versions of the same 
inequality:

C(z\u) ^  C(z\x,u) + C(z\y,u)  + I(x:y\u),
C(z\v) < C(z \x,v) + C(z\y,v)  + I(x:y\v).

After that it remains to note that we decrease the complexity when adding another 
condition: C(z\x,  u) ^  C(z \ x). □

This theorem can be used to construct strings with non-extract able mutual 
information. Consider conditionally independent variables that are not independent 
(Theorem 217, p. 342): there exist a and ß that are independent given 7 and also 
independent given <5, where 7 and 5 are independent variables, while a and ß are 
not independent.

Now we may consider N  independent trials of this quadruple and collect the 
outcomes of a into string x, and outcomes of ß into y. These strings x and y with 
high probability will have significant mutual information that cannot be extracted. 
To see this, let us collect the outcomes of 7 and 5 into и and v, and apply the last 
inequality to these four strings. (Note that to construct x and y, we need to make 
N  samples of a and ß alone; the variables 7 and 5 are needed only for the proof of 
non-extract ability.)

For technical reasons, to get a better error term (our usual logarithmic term 
instead of a square root that appears when we compare the frequency and the 
probability), one should consider not the independent trials, but trials with fixed 
frequencies. Let us explain what this means.

Consider a quadruple of strings x, y, u, v of length N  where the frequencies of all 
quadruples of letters are equal to the probabilities for the outcomes of (a,ß, 7 , 5). 
This means that x is a string in the alphabet that is the range of a, у is a string 
whose alphabet is the range of ß, etc., and the number of positions i — 1, . . . ,  N,  
where strings x, y, u, v have letters a, b, c, d, respectively, is equal to

Pr[o: = a, ß = 6,7 = c, (5 = d\ ■ N  + 0(1)

(we need to add 0(1) for rounding—the product of N  and the probability is not 
always an integer).

As we know from Section 7.3 (Theorem 146), for most quadruples of strings with 
these frequencies the complexities of these strings and their combinations deviate 
from N  x (the corresponding entropies) only by O(logAf).1 In this way we get a 
quadruple of strings x , y, u, v such that

I(x:y I и) — О (log Af), I(x:y\v) = O(logAf), I(u:v) — 0(log N),  

and at the same time

I(x:y) = Nl(or.ß) + О (log AT),

while (according to our assumption) I(a:ß) ф 0. It remains to use Theorem 228 
to conclude that for every z the inequality

C(z ) ^2C(z \ x )  + 2C(z\y)

1To see this we should recall the proof of Theorem 146 where we estimated how many strings 
with given frequencies exist.
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holds with 0 (log 7V)-precision, while the complexities of x and y and their mutual 
information is proportional to N  (with the same precision) with non-zero coeffi­
cients.

In this way we get one more construction of strings with non-extractable mutual 
information. They are stochastic (as in the geometric construction), and we (a bit 
mysteriously) avoided any combinatorial considerations.

314 We have already seen (Theorem 217, p. 342) that there exist conditionally 
independent random variables a and ß, both having the uniform distribution in 
{0,1}, such that Pr[a = ß\ = 5/8. Prove that this statement remains true if we 
replace 5/8 by arbitrary c G [3/8, 5/8].

However, if c is close to 0 or 1, a similar statement is not true: one cannot add 
7 and Ö to make these two variables conditionally independent. Nevertheless, for 
eveiy c G (0, 1) we can still prove that the common information is not extractable 
(for most of the strings obtained by N  trials for these a and ß). We split this result 
into the following two problems.

315 Consider an arbitrary c G (0,1). 
random variables ao, a i , . . . ,  otk and ßo,ßi, 
ability space such that

Prove that there exist finite chains of 
..,  ßk defined on some common prob-

• ao and ßo are uniformly distributed in {0, 1};
• Pr[a0 = ßo] -  c;
• O.Q and ßo are independent given an ;
• ao and ßo are independent given ß\ ;
• a i and ßi are independent given 0:2;
• a\ and ßi are independent given Д2;

• ak- 1 and ßk- 1 are independent given ak',
• ak-i and ßk-i are independent given ßk',
• ak and ßk are independent.

(Hint: If this statement is true for some c, it is also true for c' — (c2 + l)/2. 
To show this, we may apply the construction used to prove Theorem 217, using 
the c-construction for 7 and Ö. One should correct the distributions of the pair 
a,ß  under the conditions 7 = 0, Ö — 1 and 7 = 1,5 = 0 in such a way that a 
and ß become independent given 7 and given Ö. Finally, one should check that 
every number between 1/2 and 1 can be obtained from some number in (1/ 2,5/8) 
by several iterations of the function с и  (c2 + l)/2. To prove the statement for 
c < 1/ 2, we invert one of the variables (say, a).)

316 Assume that a and ß satisfy the statement of the previous problem. 
Consider the set of pairs of binary strings x,y  of length n where the frequencies 
of all pairs follow the distribution for (a,ß). Prove that a random (maximally 
complex) pair in this set has significant (proportional to n) mutual information 
but no extractable common information. More precisely, for every г the inequality 
K (z) ^  0 (K(z I x) + K{z  I y) + log n) holds (the constant in О-notation may depend 
on the length к of the chain).

The solution of Problem 315 can be generalized for non-binary alphabets and 
non-uniform distributions. There is a simple criterion to decide whether the random 
variables a, ß (their common distribution) satisfy the statement of Problem 315. 
This happens if and only if one cannot permute the rows and columns of the matrix
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(that defines the common distribution) in such a way that a matrix of the form

appears (here the two zeros stand for zero blocks). In this case the strings obtained 
by n trials of a and ß have no extractable common information. On the other hand, 
if such a permutation (that produces a matrix of this form) exists, some part of the 
mutual information is extractable (indeed, both variables determine the number of 
the block they are in). This argument (see [112] for the details) gives an alternative 
proof of a criterion first obtained by Gåcs and Körner [59].



CHAPTER 12

M ultisource algorithmic information theory

12.1. Inform ation transm ission requests

Multisource information theory deals with information transmission in a net­
work. Such a network includes information sources (one or many), the destinations 
(one or many) where information should be delivered, and channels that are used 
for transmission; some (or all) channels may have limited capacity. The classical 
Shannon approach considers sources as random variables and is well developed. It 
tries to find conditions that make some information transmission requests feasible.

Similar questions could (and should) be asked for algorithmic information the­
ory. Let us explain this setting more formally, following [179]. Consider a directed 
graph whose edges are channels and nodes are processors. Some nodes (called in­
put nodes) get outside information; this information should be processed (in the 
nodes) and transmitted (via the edges) into some other nodes, finally reaching 
output nodes.

More formally, an information transmission request consists of the following 
parts:

• a finite acyclic directed graph;
• a set of input nodes;
• an input string for each input node;
• a set of output nodes;
• a (desired) output string for each output node;
• a non-negative integer capacity for each edge (the value +oo is also allowed 

and means unlimited capacity).

To fulfill this request, one should write on each edge e some string whose length 
does not exceed the capacity of edge e, in such a way that

C(X|Y1, . . . , y t ) « 0

for every node г that has incoming strings Yf, . . . ,  and for every outgoing string 
X  in this node. Here by incoming strings for a node we mean the strings written on 
incoming edges and the input string for the node (if it is an input node); similarly, 
outgoing strings are strings written on outgoing edges, and the output string for 
this node (if it is an output node).

Informally speaking, this condition means that the nodes can only process the 
incoming information and cannot create (a non-negligible amount of) new infor­
mation. As usual, the approximate equality sign (~) means that the complexity in 
question is 0(logN), where N  is the total length of all input and output strings in 
the request. So in fact we consider not one request but a sequence of requests with 
increasing values of N.

367
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1
к I

В

F igure 38. The simplest information transmission request

We are interested in the conditions that make a request (actually, a sequence 
of requests) fulfillable.

Consider a network that has two nodes and one edge (Figure 38). Let us agree 
that all edges are directed top-down, so the direction arrows are omitted. The top 
node is an input node and has input string A; the bottom node is an output node 
and has output string B. The channel has capacity k.

In other words, for given strings A and В  we are looking for a string X  (trans­
mitted message) such that

C ( X \ A ) ^ 0 ,  C(B | X ) « 0 ,  l ( X ) ^ k .
Obviously, it is possible only if C(B \ A) ~  0 and C(B) ^  к (the latter inequality is 
understood also with logarithmic precision). On the other hand, these conditions 
are also sufficient because we may use the shortest description for B as X.

To express this evident idea formally, we (unfortunately) need a rather obscure 
statement. Let An and Bn be sequences of strings, and let kn be a sequence of 
integers. Assume that the lengths of An and Bn as well as the integer kn are 
bounded by a polynomial in n. Then the following two properties are equivalent:

(1) there exists a sequence of strings X n such that l(Xn) ^  kn + O(logn), 
C(Xn \An) = O(logn), and C(Bn \Xn) = O(logn);

(2) C(Bn I An) = O(logn) and C(Bn) O n  + O(logn).
This equivalence follows from two (rather trivial) remarks. First,

C(B I A) ^  C(B IX) + C(X  I A) + О (log C(A, B,X)) ,
C(B) ^  l(X) + C(B IX) + О (log C(B IX))  

for all strings A , B , X  (so (1) implies (2)). Second,
for every A, В  and к there exists a string X  such that 

l(X) ^  C(B) , C(X\A ) ^  C(B\A) + 0(\ogC(B)),  
and C(B\X)  = 0(1)

(let X  be the shortest program for B) and therefore (1) follows from (2).
For the case A = B, the statement has clear intuitive meaning: a string A can 

be transmitted through a communication channel if and only if its complexity does 
not exceed the capacity of the channel.

Let us now switch to more interesting examples.

12.2. Conditional encoding

In the following request we want to transmit some string A assuming that both 
the sender and the receiver know some string В  (Figure 39). We need to encode 
A by a k-bit string, send this string down, and then decode A back; both encoder
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A
В

к

A

Figure 39. Encoding and decoding A when В is known

and decoder have access to В (the capacity of the edges shown as solid lines is 
unlimited, so we may assume without loss of generality that these edges carry the 
entire string B).

This request can be fulfilled if and only if C(A\B)  < k. Indeed, the decoder 
knows В (or some derivative of B) and к additional bits, so it can generate A only 
if C(A\B)  ^  k. On the other hand, if C(A\B)  < к , then the shortest description 
of A given В has at most к bits and can be sent over a restricted channel, while 
two other unrestricted channels transmit B. Note that the complexity of this 
shortest description relative to the pair (A, В ) is bounded by a logarithm of the 
total complexity of A and В , since knowing the length of this description we can 
try all strings of this length in parallel until we find some description.

317 The last argument shows only (but this is enough for us) that some 
shortest description has logarithmic complexity given A and B. Prove that each of 
them has logarithmic complexity since there is only 0 (1) of them.

(Hint: It can be proven in the same way as in Problem 40 on p. 40.)
318 Give the exact statement of the last criterion (for the network in Fig­

ure 39) in terms of sequences A& and Вк, and prove this statement.

12.3. Conditional codes: M uchnik’s theorem

This section is devoted to a remarkable result of Muchnik [135]. It can be 
considered as an algorithmic counterpart of a well-known Slepian-Wolf theorem in 
Shannon information theory. In the language of the previous section, Muchnik’s 
result says that one does not need to use В while encoding A (Figure 39), and 
this edge may be deleted (Figure 40), and the condition when the request can be 
fulfilled remains the same.

This condition is C(A\B)  < k, and it remains necessary for obvious reasons 
(the graph is smaller). It remains sufficient too; here is the exact statement.

A

к

A

FIGURE 40. Sending A when decoder knows В : Muchnik’s theorem
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T h e o r e m  229. Let A and В be arbitrary strings of complexity at most n. Then 
there exists a string X  of length at most C(A\B)  + O(logn) such that C(X\  A) = 
O(logn) and C(A\B,X)  = O(logn).

The hidden constant in O(logn) does not depend on n, A, B.
This statement can be reformulated: For every A and В there exists a program 

that transforms В to A , has logarithmic complexity given A, and has unconditional 
complexity C(A | B) (up to logarithmic precision). In other words, the additional re­
striction saying that the program should be simple relative to A, increases the min­
imal possible (unconditional) complexity of the program only by 0(logC(A, B)).

P r o o f .  Assume that the string A has complexity a. Replace A by its (shortest) 
description of length a. This replacement changes the values of C(A \ В ), C(X  | A), 
and C(A\ B,X)  only by O(logn). So we may assume without loss of generality 
that A has length a. (Complexity of A remains close to a, but this does not matter 
for us.)

Assume that the conditional complexity C(A\B)  equals m. The idea of the 
proof can be explained as follows. Consider some hash function x '■ ®a ~ t h a t  
computes an m-bit hash value (fingerprint) for every а-bit string.

For a given string В we have about 2m strings Z  of length a such that C(Z \ В ) ^
m. Let S ß  C  Ba be the set of these strings. According to our assumption, A is one 
of the elements of Sß.

Imagine that we are extremely lucky, and all the strings in Sß have different 
hash values. Then every string P £ Sß can be uniquely reconstructed if we know 
x(P)  and В (the function x 1S assumed to be fixed). So we can use x{A) as X  
in the statement of the theorem. It has correct length, is simple relative to A (we 
assume that x 1S simple), and, together with B, allows us to reconstruct A—we 
have to enumerate Sß until we find a string with the correct hash value.

Of course this is too good to be true. For every hash function x, if a > m, 
there are at least 2 a~m strings that have the same hash value (and for simple x  we 
can find many simple strings with the same hash values, and they will be in Sß for 
every В ), so we cannot hope to be so lucky.

We need to modify our plan and consider for every Z £ Ma several (poly(n)) 
hash values instead of one. Instead of a hash function, we consider now a bipartite 
graph £ c B a x Bm where each left vertex Z  has at most poly(n) right neighbors. 
These neighbors are called fingerprints of Z.

Proving the theorem, we look for X  among the fingerprints of A. This guar­
antees that C(X\A)  — O(logn), assuming that graph E  is simple (has O(logn) 
complexity). Indeed, to specify X  when A is known, it is enough to specify the 
ordinal number of X  among the fingerprints of A.

If, for a given A £ Sß,  one of its fingerprints X  determines A inside Sß uniquely 
(no other strings in Sß have X  among their fingerprints), then we can reconstruct 
A by enumerating Sß and waiting for a string that has X  among its fingerprints. 
In this case C(A\B,X)  = O(logn); we assume here that E  is simple, i.e., has 
complexity O(logn).

Moreover, the same complexity bound holds if there are polynomially many 
(in n) strings in Sß that have X  among their fingerprints. We need to specify 
additionally the ordinal number of A among these strings (in the order of the 
enumeration of Sß ), and this requires additionally 0 (logn)-bits.
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So our goal is now that A has a right neighbor that has few (polynomially 
many) left neighbors. Here, speaking about neighbors, we consider the restriction 
of E  onto as a bipartite graph with left part Sb and right part ®m. Note that 
this restricted graph has about 2 m vertices both in the left and in the right parts.

In other words, a vertex in the right part is bad if it has many neighbors on 
the left; a vertex in the left part is bad if all its right neighbors are bad. We need 
A to be not bad. How can we achieve this?

The fraction of bad right vertices is small: The number of edges is bounded by 
the size of the left part times the maximal degree of left vertices, and each bad right 
vertex creates a lot of edges. More precisely, we can ensure that this fraction is at 
most l/p{n) for a given polynomial p (the threshold for the number of neighbors 
for bad vertices is determined by p and increases as p increases).

We want to prove then that the fraction of bad left vertices is also small. To 
achieve this, we assume that E  has the following expander-like property: For every 
subset T  in the left part, the set of all right neighbors of T-vertices is at least as 
big as T  itself Having this property, we consider the set T  of bad vertices in 
the left part; all their right neighbors are bad by definition, so the number of left 
bad vertices is bounded by the number of the right bad vertices. (Note that this 
expander property of E  remains valid if E  is restricted on Sb -)

It remains to explain where we get a (simple) graph E  with this property and 
what we do if A falls into a (small) set of bad vertices.

It is well known that the existence of expander-like graphs can be usually proved 
by a rather simple probabilistic arguments. To construct them explicitly is quite a 
different story; it is a very interesting and complicated business where great progress 
has been made during the last decades. However, we can avoid these complications 
using the following simple trick: After the existence of a graph with some property 
is proven, we can generate all the graphs until we find some with this property. We 
assume that the property is decidable, so this is an algorithmic procedure (which 
takes a long time, but we have no time bounds). The first suitable graph has 
logarithmic complexity, since to organize the search we need to know only the sizes 
of sets (we may assume the sizes are powers of 2). In this way we convert the pure 
existence proof into a simple object with the property we need.

The last bit of the proof is why A cannot be bad. Note that bad right strings can 
be enumerated effectively when В (as well as E) is known. As we find new elements 
in Sb,  we generate new left vertices in the restricted graph and new bad strings in 
the right part. Since E  is known, we can also enumerate left bad strings. So every 
bad string can be specified (given В ) by its ordinal number in the enumeration of 
bad left strings, and the number of these strings is significantly less than 2 m. And 
we assumed that the complexity of A given В is m, this was our definition of m. 
So A cannot be bad. (Also we need 0(logn)-bits to specify m, a, and E, but, as 
we will see, the gap is enough to get a contradiction.)

We have described the proof in the top-down mode. Now let us describe the 
details of the argument in the bottom-up direction. First, we need an existence 
proof for expander-like graphs.

L em m a. Let a and m be positive integers, and let a ^  m. Then there exists a 
bipartite graph E с Ш а  x ®m where each vertex in the left side has degree at most 
a + m + 2, with the following property. For every set T e l “ with at most 2m~1
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elements, the set E (T ) of all neighbors of all elements in T  has more elements than 
T itself.

PROOF. Let us prove that a random graph has this property with positive 
probability. Speaking about random graph, we mean that for every left vertex we 
randomly select a+ m +2  neighbors on the right. This choice is made independently 
(for different points and for different neighbors, so some neighbors of a given vertex 
may coincide, and we actually get fewer than a + m + 2 neighbors).

What does it mean that the property stated in the lemma is false? In this case 
we have some non-empty subset T  of the left part and some subset U of the right 
part, such that \U\ — |T|, but all neighbors of T-elements belong to U. We compute 
the probability of this event for fixed T  and U and then show that the sum of these 
probabilities over all T  and U is less than 1.

Assume that T  and U are fixed, and let t be their cardinality. By assumption, 
t < 2rn~1, so the probability for a random right vertex to get inside U is at most 
1/ 2. The probability that this happens t(a + m  + 2) times for t elements of T  (we 
make a + m + 2 trials for each vertex in T) is at most 2~t('a+Tn+2K

Let us sum these probabilities first over all pairs of T  and U of given size t. The 
number of different T  is at most (2°)* (we select one of 2° elements t times, and 
the possible coincidence and permutations make the number of sets even smaller); 
the number of different U is at most (2Tn)t . So the sum over sets of size t does not 
exceed

turrit _ 2 at . 2-*(ш+а+2) __(1/ 4)*

It remains to note the the sum XX1/4)* (over all t ^  1) is less than 1 (it is equal 
to 1/3). The lemma is proven.

Denote by ЕШ)а the first (in some natural order) graph that satisfies the re­
quirements of this lemma. Its complexity is at most 2 log а + 0(1) (it is enough to 
specify a and m using two halves of a 2 log а-bit string).

For a given string В and for given m and a, consider the set Sb of а-bit strings 
that have complexity at most m with condition B. Consider the restriction of the 
graph Em,a to Sb- We get a graph with at most 2 m + 1  • (a + m + 2 ) < а2ш+3 edges 
(each of at most 2m+1 left vertices has at most a + m + 2 neighbors). Call a right 
vertex bad if it has at least a4 neighbors. Then the number of bad right vertices is 
at most к = 2 ш+3/а 3.

A left vertex (a string in Sb) is now called bad if all its right neighbors are bad. 
The properties of Em â guarantee that number of bad left vertices also is bounded 
by к — 2171+ 3/a3. Indeed, we may assume that a is large enough and к < 2Tn~1. If 
there are k + 1 bad left vertices, then the expander property of the graph guarantees 
that the number of their neighbors is at least к + 1. All they are bad (due to the 
definition of bad left vertex).

The bad left vertices can be enumerated (given m, a and B), so every bad 
string can be specified by giving its ordinal number in the enumeration, i.e., by 
m — 31oga + 0 (1) bits, so

C(P | B, m, a) < m — 3 log a + 0(1)

for every bad string P. We see that the gap is larger than 2 log a needed to specify 
m  and a, so all the bad strings have conditional complexity (relative to B) less than 
m, and A cannot appear among them.
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Therefore, A has a good (not bad) right neighbor X.  Then

C{X\A)  (3 + e) log a + 0(1)

(to specify X  we provide m, a, and the ordinal number of X  among the neighbors 
of A; we need some e > 0 to take care of pair encoding). The length of X  is m, 
i.e., C(A\B).  Finally, C{A\B,X)  does not exceed (6 + e)loga (we need 4 log a to 
specify the ordinal number of X  among a4 left neighbors of X , and 2 log a is needed 
to specify m  and a; again we use some e to cover pair encoding).

The Muchnik theorem is proven. □

319 Show that we have proven a bit stronger property that we claimed: 
We assumed that the complexity of В is bounded by n, but we never used this 
assumption.

Let us recall that all the inequalities in Muchnik’s theorem are true with 
0(logn)-precision, where n is the maximal complexity of A and B. Can we 
strengthen the claim by requiring 0 (logm)-precision for m  equal to maximal con­
ditional complexities C(A\B)  and C(B\A)? It turns out that this is not possible; 
see [205, Section 5] (we do not reproduce the proof here).

12.4. Com binatorial in terpreta tion  of M uchnik’s theorem

Many results about Kolmogorov complexity have some combinatorial counter­
part, an equivalent statement of purely combinatorial nature that does not mention 
Kolmogorov complexity. In many cases this statement is about the existence of a 
winning strategy in some game. (See [132] about this effect in general computabil­
ity theory; [136] considers the special case of Kolmogorov complexity.)

Theorem 229 (proven in the previous section) also has some combinatorial 
counterpart. For given values of a, b, m  (we assume that m ^  a), we consider a 
two-player game. The players are called Mathematician (M) and Adversary (A). 
The game also has some parameter c (that corresponds to the constant in O(logn)- 
notation; see below).

M may select for every а-bit string A at most c(a + b)c strings of length m; she 
declares these strings as “simple relative to A”. Also for each pair of strings В (of 
length b) and X  (of length m) she may select at most c(a + b)c strings of length a 
and declare them as “simple relative to В, X ”.

A may select for each fe-bit string В at most 2Tn strings of length a and declare 
them as “simple relative to В ”.

Each player may make the next move (i.e., declare more strings as simple) 
at any moment (whatever the opponent does), seeing the moves of the opponent 
made earlier. We get a game that is essentially finite—the declared strings cannot 
be taken back, so the game reaches some limit position. However, watching the 
game, we may not know whether this limit position is reached, since the players 
keep right to make moves even if they do not exercise this right.

The limit position of the game determines the winner as follows:
M wins if for every string В of length b and for every string A 
of length a declared (by A) simple relative to H, there exists a 
string X  of length m  that is declared (by M) simple relative to 
A , such that A is declared (again by M) simple relative to В 
and X.
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Now we can formulate a combinatorial equivalent of Theorem 229.

T h e o r e m  230. There exists a constant c such that for every positive integer 
a, b, m with m  ^  a the described game with parameters a, b, m, and c has a winning 
strategy for M.

Let us show that this combinatorial statement is indeed equivalent to Theo­
rem 229. Assume that it is true for some c. Consider a blind adversary that does 
not look at M ’s moves and for each В  declares as simple all strings of length a that 
have conditional complexity (given В ) less than m. This behavior is algorithmic, 
and the algorithm is determined by a, b, m. The winning strategy for M can be 
found by a brute-force search (the game is essentially finite, and we assume that 
such a strategy exists), so we may assume that the winning strategy is simple. 
So the strings declared by M as simple are indeed simple, i.e., they have small 
(conditional) complexity. Indeed, to specify such a string, one may specify its or­
dinal number in the list of strings declared simple (for a given condition), using 
loge + clog(a + b) bits, and also specify a, 6, m  (additional 0 (log(a + b)) bits). 
So we get the statement of Theorem 229. (A technical comment: The factor c in 
c(a + b)c is needed for small values of c and corresponds to the 0 (l)-term in the 
complexity bounds that should be added to О (logn) for the case when n — 1 and 
logn — 0.)

In the other direction, assume that the statement of Theorem 229 is true with 
some constant d  in О (logn). We want to prove that for sufficiently large c the 
combinatorial statement is true. Assume it is not the case and for every c there 
exist a, b, m  for which A can win the game. This strategy (together with a, b, c) can 
be found by a search. So if this strategy declares some A as simple with respect 
to B, then indeed the conditional complexity C(A\ B ) is small—it is bounded by 
m + 0(C(c)). We get a contradiction if A plays this strategy against the following 
blind strategy for M: Declare X  as simple for A if C(X\ A) < clog(a + b) + loge, 
and declare A simple for В , X  if C(A \ В, X)  < clog(a + b) + loge.

Playing this strategy, M does not violate the quantitative restrictions (on the 
number of simple strings). To get the desired contradiction, it remains to show 
that M wins the game. Let A, В  be strings of lengths a, b, and assume that A 
is declared simple for В  (by A). Theorem 229 says that there exists a string X'  
of length C(A\ B ) + c'log(a + b) for which the statement of that theorem is true. 
Since C(A IB) is bounded by m + 0(C'(c)), the string X'  is only slightly longer that 
m. Let X  be the first m  bits of X ' . The complexities C{X' \A)  and C(A\B,X' )  
are small as Theorem 229 says, and the number of discarded bits is also small. 
Therefore the complexities C(X\A)  and C(A | В, X)  are also small, and for the 
right choice of c they are less than clog(a + b) + loge, so M wins.

Let is provide the necessary bounds. The conditional complexity C(X \ A) is at 
most

d  log(a + b) + O(logm)
(the complexity of X'  given A plus the length of the prefix-free encoding of m ). 
The conditional complexity C(A\B,X)  does not exceed the sum

d  log(a + b) + 0(C(c))

(the complexity of A given В , X  plus the length of the discarded suffix of X').  Now 
we see that one can choose c of the form 2г in such a way that both sums do not
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exceed clog(a + b) + loge (since c is a power of 2, the complexity of c that appears 
in the upper bound for C(A\B,  X)  is much smaller than loge).

So we have shown that the combinatorial statement of Theorem 230 is indeed 
equivalent to its complexity counterpart, Theorem 229 (and is true, since we proved 
the latter).

In fact, the combinatorial translation is possible not only for the statement of 
Theorem 229, but also for its proof. During the game, M does not exercise her right 
to declare new Л-simple strings during the game; she declares all the neighbors of 
A (according to the expander graph) at once. Then a string A is declared simple 
given X,  В if (1) A is a neighbor of X,  (2) A has been declared simple given В 
by A, (3) at the moment of this declaration the number of neighbors of X  among 
the strings that are already declared simple given В is small. In this way M is 
able to serve, for each B, most of the strings that are declared simple for this B. 
The remaining strings (a small fraction of all strings declared simple for В ) are 
forwarded to the next level of service where the same strategy is used, but for m 
that is smaller by 1, and so on. Finally the number of strings declared simple for 
A is bounded by a sum of a sequence where each term is twice smaller than the 
previous one, so the number of simple strings is multiplied by 2 (not a problem).

The ability to declare all the strings at once also has some algorithmic conse­
quences:

320 Prove that for every string A of length n there exists a string X  of length 
C(A), such that C(A\ X)  = O(logn), and total conditional complexity of X  given 
A (i.e., the minimal complexity of a total program that maps A to X) is O(logn). 
Show that one cannot replace both the complexities C(A | X) and C(X \ A) by total 
conditional complexities.

(Hint: To prove the second part, one may use the existence of non-stochastic 
strings; see Chapter 14 about algorithmic statistics.)

This problem shows that Muchnik’s argument gives us something non-trivial 
even for empty B. For non-empty В we can get a version of Muchnik’s theorem 
where C(X\A)  is replaced by total conditional complexity (and other conditional 
complexities are understood in the usual way); one needs to assume additionally 
that the length of A (not only its complexity) does not exceed n.

12.5. A digression: On-line matching

In this section we modify the combinatorial proof of Theorem 229 to get a 
stronger (and simpler) combinatorial statement.

Consider some bipartite graph E  С A x В with left part A and right part B. 
Given a subset A' c  A, one can look for a matching that selects for each vertex 
a £ A 1 some 5-neighbor in such a way that no vertices in В are selected twice. In 
other words, one can try to find a bijection defined on A', and this bijection should 
be a subset of E. One can consider an on-line version of the same task. Assume 
that the vertices in A are given one by one, and we need to select a neighbor for 
the next vertex not knowing which vertices follow.

More formally, we say that the graph E  С A x В allows on-line matching of size 
к if there is a strategy that selects distinct neighbors for к vertices in A provided 
sequentially by the adversary. (The game consists of к moves: at each move the 
adversary select a vertex in A not used before. In response, we have to select some 
5-neighbor of this vertex. We win if all the selected neighbors are different.)
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Note that this definition is non-symmetric—the adversary selects A-vert ices 
and we have to select 5-vertices. It is clear from the definition that the property 
of the graph “to allow on-line matching of size к” is in PSPACE, i.e., can be 
checked in polynomial space. (It would be interesting to get better upper bounds 
for complexity or some lower bounds.)

Here is the result about on-line matching that somehow explains the combina­
torial root for Muchnik’s theorem.

Theorem 231. For some constant c and for all a and m such that a ^  m, there 
exists a bipartite graph with 2 a vertices in the left part and 2mac vertices in the right 
part and degree at most ac for every left vertex that allows on-line matching of size 
2m .

In other words, one can find a graph with arbitrary sizes of left and right 
parts that has small (polynomial) left degree and allows on-line matching of almost 
maximal size (close to the size of the right part, up to a polynomial factor).

Before proving Theorem 231, let us explain how it implies Theorem 229. As 
before, let us replace A by its shortest description of length a. Let m  be equal 
to C(A\B) + 1. Theorem 231 then guarantees the existence of a bipartite graph 
with 2a left vertices and ac2m right vertices and left degree at most ac that allows 
on-line matching of size 2m. This is a computable property, so the first graph (in 
some order) with this property has small complexity (logarithmic in a). Fix this 
graph and some computable strategy that wins the on-line matching game. For a 
given 5 , let us enumerate a-bit strings that have conditional complexity less than 
m  given B. There are at most 2m of them, and A is among them. Applying the 
matching strategy, we find some right neighbor for each of these strings, including 
A. Now let X  be the selected neighbor of A. This is the string we looked for. 
Indeed, X  (as well as all right neighbors of A) has small complexity given A, since 
A has only few neighbors. On the other hand, knowing В and X  (as well as a and 
m  that determine the graph and the strategy) we can find A—start the process 
described above and wait until X  is assigned to some vertex.

PROOF. Now let us prove Theorem 231. It is enough to prove a weaker state­
ment that allows the matching strategy to skip some elements (whichever it wants), 
but not more than half of them (at most 2 m~1 elements). Indeed, if such a weak 
matching strategy exists, we can start a similar process for skipped elements for­
warding them to another matching strategy (with m  decreased by 1 and a corre­
sponding graph); the elements skipped by this strategy are forwarded to the third 
one, etc. In this way we get a full matching in the graph whose left part is the 
same as before, and the right part is a disjoint union of the right parts of all used 
graphs (for m, m — 1, m  — 2, . . .  up to zero, where the matching task is trivial).

It remains to note that this weaker property is guaranteed if the graph has 
the expansion property used in the proof of Muchnik’s theorem. The matching 
algorithm is straightforward: If a vertex has neighbors not used before, select one 
of them; if not, skip the vertex. Let us show that this strategy serves at least half 
of the vertices (at least 2m~l ones). If it serves less, then at the right part we have 
used less than 2m~1 vertices. On the other hand, for each skipped vertex all its 
neighbors are used (this was the reason to skip it). So we get more than 2 m~1 left 
vertices (skipped ones) whose neighbors are all in the set of used right vertices of 
size less than 2m~1. This is impossible due to the expansion property. □
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It would be interesting to compare this argument with the proof of Slcpian- 
Wolf theorem and find some “common denominator”, a combinatorial fact that 
implies both Muchnik and Slepian-Wolf theorems. It would be also interesting to 
find another proof of Theorem 231 (e.g., a direct probabilistic argument, or, even 
better, some explicit construction of the graph).

One can also prove Muchnik’s theorem using another famous combinatorial 
tool, randomness extractors. This idea was suggested (in a different context and 
before Muchnik’s paper) in [23], and it was applied to Muchnik’s theorem in [145]. 
The advantage of this approach is that one can use known explicit randomness 
extractors and other known techniques (e.g., pseudo-randomness generators, as 
suggested by Romashchenko) to prove the space-bounded version of Muchnik’s the­
orem [143, 144]. (Let us mention that resource-bounded Kolmogorov complexity 
and its relations with computational complexity theory is an important topic that 
is outside the scope of our book.)

12.6. Information distance and simultaneous encoding

Now we consider a request (Figure 41) where the capacity of the dotted line 
is bounded by k, and the k-bit string transmitted along this channel must contain 
enough information to transform A to В  and vice versa.

Obviously, it is possible only if C{A\ В) < к and C(B | A) ^  к (with logarithmic 
precision, as in all our considerations). Indeed, the left output node receives A (or 
some string derived from A) and X  (or some string derived from X ) and produces 
B, so C(B\ A) ^  k. A symmetric argument shows that C(A\B) < k.

We get a necessary condition for the feasibility of this request:

max(C(A\B),C(B\A))  <  A;

(as usual, logarithmic terms are omitted). It was shown by Bennett, Gacs, Li, 
Vitånyi, and Zurek [9] that this necessary condition is at the same time sufficient. 
Here is the exact statement of their result:

T heorem 232. Let A, В be strings such that C{A\B) < к and C(B\A) < k. 
Then there exists a string X  of length к such that

C{A\B ,X) = 0{logk), C{B\A ,X) = O(logfc), and C(X\A, B) — 0(\ogk).

Proof. Consider all pairs (A,B) of strings such that C(A\B) < к and 
C(B I A) < к at the same time. We get an enumerable binary relation on strings; 
all its vertical (A is fixed) and horizontal (В is fixed) sections contain at most 2k

F igure 41. Bennett-Gacs-Li-Vitanyi-Zurek information request
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elements. In other words, we get an (infinite) bipartite graph, and the degree of all 
vertices (in both parts) is bounded by 2 k.

Now we want to split all the pairs into 2k + 1  (or fewer) classes in such a way 
that each class is a one-to-one correspondence (it does not have pairs on the same 
vertical or the same horizontal line). In graph terms, we color all the edges using 
2 k + 1  colors in such a way that every two edges that have a common endpoint have 
different colors.

This is easy—each new edge is colored by a first (in some order) color that 
was not used for other edges with common endpoints. Since fewer than 2k edges 
may share each of the endpoints, we always have a free color. (In other words, we 
number the classes by 0 • • • 2 k+l — 1, and each new pair is put in a class that is 
allowed, i.e., it does not contain pairs with the same first or second coordinates.)

We described an infinite process that depends on к but not on A, B. At some 
moment it assigns some color (class number) to the pair (A, В ) (edge A-В). Let 
X  be this color (=its number in binary). It has at most к + 1 bits instead of к but 
one additional bit does not matter with our precision. Knowing A, k, and X,  we 
can find В : run the process described, and wait for an edge starting at A that is 
colored by X ; its other endpoint is B. For the same reason, knowing B, k, and X, 
we can compute A. Finally, C(X  | A, B, k) = 0(1): knowing k, A, and B, we wait 
until the edge A -В  gets some color; this color is A. □

321 Prove a stronger statement about bipartite graphs. Assume that a finite 
bipartite graph is given, and all vertices (in both parts) have degree at most N. 
Prove that one can color its edges using N  colors in such a way that the edges with 
common endpoint have different colors. Why can we not use this fact in the proof 
of Theorem 232 (and need to prove a weaker version from scratch)?

(Hint: We may assume that the degree is exactly N, and then apply the Ford- 
Fulkerson argument (max-flow=min-cut) or the Hall theorem. However, all this 
does not help us since we obtain the graph edges sequentially and have to assign 
colors on-line.)

One may also note that the color in the last proof can be encoded by a (k + 1)- 
bit string, so it determines k, and we do not need to specify к separately. So the 
complexities C(A\B, X)  and C (B \A ,X )  are in fact 0(1), not 0(\ogk). To put 
the same observation in programming terms, for every two strings A and В  there 
exists a program of complexity max(C(A | B), C(B \ A)) + 0(1) that maps A to В 
and В  to A. Indeed, consider a program that knows the color of the edge A-В  (it 
is used as a constant in the program) and waits for an edge having this color and 
being incident to the input vertex. (Note that a logarithmic amount of information 
is enough to distinguish A and В ; e.g., one may specify the number of positions 
where A and В  differ.)

322 Let A and В  be two independent random n-bit strings (i.e., C(A) «  n, 
C(B) æ n, and C((A,B)) æ 2n). Give an explicit example of a string X  that 
satisfies the requirements of Theorem 232.

(Answer: Take the bit-wise XOR of A and В .)
For the case when the complexity C(A \ В ) and C(B \ A) are different, the fol­

lowing refinement of Theorem 232 is possible. Assume, for example, that C( A \ B) 
is bigger. Then the string X  can be split into two parts: the first part is the infor­
mation needed to transform A into В , it has length C(B\A); the rest has length
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C(A\B) — C(B\A), and together with the first part makes possible the reverse 
transformation.

Here is the formal statement:

T h e o r e m  233. Assume that C(A \B) < k, C(B\ A) < I, and к > I. Then there 
exists a k-bit string X  such that C (X \A ,B ) — 0(\ogk), C (A \B ,X )  = O(logZc), 
and C (B \A ,X ')  = O(logfc) where X ' is an l-bit prefix of X.

P r o o f .  Let us use the same trick with 2l+ 1  colors, still requiring that each 
left vertex has different colors of adjacent edges, but on the right side up to 2 k~l 
adjacent edges of the same color are allowed. Then the color X  of edge A-В  allows 
us to find В given A, and in the other direction we need the color plus the number of 
edge A -В  in the enumeration of all £?-edges of color X  (as they are generated). □

323 Prove the statement of Theorem 233 in the form used in [9]: Under the 
assumptions of Theorem 233, there exist a string Y  of length к — I and a string X  
of length I such that C (B ,Y  \ A ,X )  = 0(\ogk) and C(A\B,Y, X)  = 0(logk).

12.7. Conditional codes for two conditions

Let us now consider an information request that in some sense generalizes the 
two last examples (Figure 42).

For the case A = В  we get the request from Section 12.3 (in two symmetric 
copies). If we let C — (A, В ), we get essentially the same request as in Section 12.6 
(in each of the output vertices one string is known, and to restore the pair means 
to restore the other one).

It is easy to state the necessary conditions for this request to be fulfillable:
C{C\A) < к , C(C\B) < k.

Muchnik [135] has shown that these conditions in fact are also sufficient. Here is 
the exact statement:

T heorem 234. Let A, B, and C be arbitrary strings of complexity at most n, 
and let к be a positive integer such that C(C\ A) < к and C(C \B) ^  k. Then there 
exists a string X  of length at most к + O(logn) such that C(X\C)  = O(logn), 
C(C\A ,X) = O(logn), and C {C \B ,X ) = O(logn).

In programming terms this statement can be rephrased as follows. For every 
three strings А, В, C there exists a program of complexity at most

max(C(C I A), C{C \ B)) + O(logn)

A В
c

к

C ♦ ♦C

F igure 42. Restoring C when A ox В are given
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F igure 43. Additional edges that do not help much

that is (logarithmically) simple given (7, and it maps each of the two strings A and 
В to C. (As before, the program lias some additional part that distinguishes A 
from B; this part has logarithmic complexity.)

Note that this statement remains non-trivial even if we do not require the 
program be simple given C: no other proof even of this weak version is known. In 
other words, the problem does not look simpler if we add two additional edges, as 
shown in Figure 43.

As before, we can also refine the statement of Theorem 234 for the case when 
conditional complexities are different:

T heorem 235. Let A, B, and C be strings of complexity at most n, and-let 
к ^  I be positive integers such that C(C\ A) ^  к and C(C \B ) ^  I. Then there exists 
a string X  of length к such that C{X \C ) = O(logn), C(C\A, X) = O(logn), and 
C(C \B ,X ')  = O(logn), where X ' is the l-bit prefix of X .

324 How can one formulate this statement in terms of some information
request?

(Hint: X  is sent along an edge of capacity k, and another edge of capacity I 
extends the first edge.)

All these statements are proven by Muchnik [135]. We reproduce the proof of 
Theorem 235 given in his paper.

P r o o f . We use the same idea: The string X  is one of the (few) “fingerprints” 
of C. However, the argument needs to be changed. Even for the simple case к = I, 
we have a problem. One can find the fingerprint X  such that C(C\ A, X )  is small, 
as well as some other fingerprint X '  such that C ( C \ B , X ' )  is small, but we need 
the same X  for both cases. How can we achieve this?

We may consider fingerprints X  that generate only few collisions both in Sa 
and Sß (here Sa and Sb stand for the set of strings that are simple relative to A 
and B, respectively). Indeed those universal fingerprints exist (most of the right 
vertices have this property, since Sa U Sb is only twice bigger than each of Sa and 
Sb)- The expansion property now guarantees that for most strings in Sa and for 
most strings in Sb there exists a universal fingerprint. But then we run into a 
problem. We would like to say that the remaining strings have small complexity 
since there are only a few of them, and we can generate them—but to generate 
them we need to know both A  and B, and we have only one of these two strings as 
a condition....

What can we do? Let us consider A  and В  separately, but let us require that 
C  has not only one good fingerprint (neighbor) but that most of the neighbors of
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C are good. If this can be achieved for A and В separately, then some fingerprint 
will be good simultaneously for A and B.

So we need to change many things, starting from the expander-type property 
we use. Let E  с  P  x Q be a bipartite graph with left part P  and right part Q. 
Now we require that for every small enough U C Q, the set of x G P  such that 
most neighbors of x are in U is small. In other words, in our previous argument 
a vertex in P  was bad for us if all its neighbors are bad in Q\ now it is enough if 
most neighbors are bad in Q.

Moreover, to adapt our argument to the case when C(C\A) and C(C\B) are 
different, we consider not only fingerprints but also their prefixes. So the statement 
about the existence of an expander-like graph is now as follows (by [u)m we denote 
the m-bit prefix of и) :

Lemma. Let n and N  be positive integers, and let e > 0 be a real number. 
Assume that

n 2 N + 2 n + l £ N / 2  <  !

Then there exists a family of N  mappings

X i,...,X N :B n ^ ® n
with the following property. For every m G {1,... ,n} and for every non-empty 
subset U C В771 of size at most e2m, the number of x G ®n such that

[Xi(x )]m € U for at least half of i G {1 ,..., N} 
is less than \U\ (the cardinality ofU).

(Some comments: Instead of a graph with left-degree N, we consider a family 
of N  mappings, so we allow multiple edges (xi(x ) — Xj(x ) for i ф j). Now both 
arguments and values of Xi have the same size n, but the statement speaks about 
m-bit prefixes for all m ^  n.)

P r o o f . As usual, let us consider randomly chosen Xi> •••■>Xn (for all i and 
x the values Xi(x ) are independent and uniformly distributed) and show that the 
probability of violating the statement is less than 1. Let us get an upper bound 
for this probability. For each m ^  n, for each t < e2m, and for each pair of sets 
T  C l "  and U C Bm both having cardinality t , we consider the following event. 
For each x G T, at least half of the values [Xi{x )\m (for i — 1,... ,n) are in U. We 
need an upper bound for the probability of this event.

For a fixed i G T  the probability of the event “at least half of x-neighbors is 
in U” is at most 2NeN^2: There are at most 2N subsets X  C {1 ,2 ,..., AT} that 
contain at least N/2  elements, and for each X  the probability that all Xi(x ) axe in 
U (for all i G X)  is at most eNl 2 . (Recall that [Xi(x )]m is uniformly distributed 
in Bm and U occupies only an e-fraction of Bm.) This event should happen for all 
iG T  (this gives exponent t). In this way we get the following bound for the total 
probability (that should be less than 1):

t i  e2Tn

E E E E (2We"/2)L
77i=l t= 1 TcBn,|T|=i UCBm

The number of different T  is bounded by 2nt (the number of sequences of t elements 
of Bn). For the same reason the number of different U is bounded by 2mt. For the
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entire sum we get an upper bound
n e2mE E 21 n 21 m 2t̂ N £ Nt /  2

^  ^ ( 2 n2 m2 N£N/2Y .
m= 1 1= 1

The internal sum is a geometric sequence. Our assumptions guarantee that its 
common ratio is less than 1/ 2, so the sum is bounded by 2 times the first term, 
and this term does not depend on t. So we get the upper bound

2П ■ (2N+n+m£N/ 2) ^  n2N+2n+l£N/2̂

and it is less than 1 according to our assumption. The lemma is proven.
We will use this lemma for e = 1/8. In this case the condition can be rewritten

as
n2N+2n+i < 8 n / 2

or
logn + N  + 2n + 1 < 2>N/2.

We can let N  — 6n, and this guarantees that the condition of the lemma is true for 
all sufficiently large n.

Now we are ready to continue the proof of Theorem 235. As before, we replace 
C by its shortest (unconditional) description, so we assume that C is an n-bit 
string. (The complexity of A and В is irrelevant; in particular, these complexities 
may exceed n.) Let us apply the lemma with N  = 6n and e = 1/8; it provides 6n 
mappings Хь • • • ,Хбп: with specified properties. As usual, we can take
the first (in some natural ordering) family with these properties (for a given value 
of n), so we may assume that the complexity of the family x?: is O(logn).

Assume that C(C\ A) = к and C(C\B) = I. (The assumption only guarantees 
the inequalities C(C\A ) ^  к and C{C\B ) ^  I. But we can decrease к and I if 
needed, and the statement becomes only stronger.) Taking к (or I) first bits of the 
hash values, we get N  (= 6n) mappings Bn —> (the same for I). These families 
define bipartite graphs in Шп x Шк and x Ш1 where each left vertex has degree N  
(including multiple edges). Then we restrict these graphs on Sa and Sb, where Sa 
consists of n-bit strings that have complexity at most к given A, and Sb consists 
of n-bit strings that have complexity at most I given B. In Шк we note bad vertices 
that have more than nc neighbors in Sa ; in Ш1 we note bad vertices that have more 
than nc neighbors in Sb- (The value of a sufficiently large constant c will be chosen 
later.)

In both cases the number of bad vertices in bounded by
2N ■ 2k/n c (for Efc) and 2N ■ 2l/n c(îor В4),

since (a) the degree of a bad vertex exceeds nc; (b) the total number of edges in the 
restricted graphs is bounded by |£/i| • N  and \Sb \ • N, respectively; (c) |£/i| < 2 • 2 k 
and \SB\ < 2 - 2 l.

Now, implementing our plan, we say that a vertex in Sa is bad if at least half 
of its neighbors in the graph in Sa x  Шк (multiple edges are counted several times) 
are bad. The lemma guarantees that the number of bad vertices in Sa is less than 
2N • 2k/n c (we assume that c is large enough, so the bound for the number of bad
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vertices is less than e2 k, where e = 1/8; recall than N  = 6n). Since the bad vertices 
in Sa can be enumerated (given n, k, and A ), the conditional complexity of each 
of them given A is at most

log(2iV • 2k/n c) + O(logn) < к — clogn + О (log гг).

Therefore, for large enough c all bad vertices have conditional complexity (with 
condition A) less than k, and C is not bad (its complexity is exactly k). This 
means that most values [xi{Ç)]k (more than N j2) are good in Шк.

A similar argument for the other graph shows that most of the values [ X i { C ) \ i  

are good in Bh Therefore there exists i which leads to good vertices in both cases. 
Then X  = [ X i { C ) ] k  and X '  = [ x i { C ) \ i  have the required properties. □

325 State and prove a similar result for three conditions (or polynomially
many conditions).

After these remarkable results are proven, one may want to go farther and 
ask: Is it possible to find for a given A one string of length к that can be used to 
reconstruct A starting from m'bitrary В  such that C (A \B ) < к? It is easy to see, 
however, that it is too good to be true.

Let к = n j2, and let AT be a string of length n j2 that satisfies this property 
(i.e., C(A IX, B) æ 0 for every В  such that C(A \ В ) < n/2). Then C(A \ X)  should 
be at most n/2, since we can take the half of the n-bit description of A for B. Now 
we can take X  for B\ then the complexity of the pair (X, B) is at most n/2, and A 
cannot be reconstructed.

326 Show that not only is one fingerprint not enough, but any fixed number 
of fingerprints is not enough.

(Hint: Assume that d strings are enough. We can assume without loss of 
generality that all these strings are incompressible. For some i, let us concatenate 
г-bit prefixes of all fingerprints and denote this string by Bi. For some i — io 
the conditional complexity C(A\Bi) is close to n/2 since it decreases continuously 
from n to some value not exceeding n /2  (the latter because it is true even for one 
fingerprint). This io is at least n/2/c; none of the fingerprints can serve Bi0, since 
each of them has some common information with Bi0 and the total amount of 
information is not enough.)

12.8. Information flow and network cuts

We have considered several types of information requests; for each type we have 
found necessary and sufficient conditions for the request to be fulfillable. In all our 
examples these conditions can be obtained in some uniform way using network 
cuts. Let us describe this technique explicitly. Consider an information request 
(a directed acyclic graph with capacities, input and output vertices, and input 
and output strings). Let us formulate a necessary condition for this request to be 
fulfillable.

Choose some cut of the request graph, i.e., some set I  of the graph nodes. We 
are interested in the information flow that goes inside I. Consider all the graph 
edges that cross I  in this direction (start outside I  and end in I). If there is some 
unlimited capacity edge among them, we do not get any non-trivial conditions for 
our /. Assume that this is not the case and that all capacities u \ , . . . ,  Uk are finite. 
Let Vi,. . . ,  Vi be the input strings for all input vertices in /, and let W\ , . . . ,  Wm
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F igure 44. A cut for Bennett-Gâcs-Li-Vitânyi-Zurek theorem

be the output strings for all vertices in 7. Then the following condition is necessary 
for the request to be fulfillable:

C(WU. . . , w m \ v l , . . . , v l) ^ u l + --- + uk.

(As always, all the inequalities are understood with logarithmic precision). Indeed, 
if we know all V\ , . . . ,  Vi and also all the messages along the edges going into 7 from 
outside, we can reconstruct (with logarithmic advice) all the outgoing messages 
for all vertices in 7, including W\ , . . . ,  Wm. This can be done by considering the 
vertices of 7 in a topologically sorted ordering (the starting point of every edge 
should be considered before its endpoint; recall that the graph is acyclic according 
to our assumption).

In fact this is just the standard argument about flows and cuts, adapted to 
information flow. Let us explain how this general scheme gives the necessary con­
ditions for the requests in one of our previous examples. Consider the request from 
Section 12.6, and let 7 be the set of three vertices inside the dotted line (Figure 44).

The incoming information consists of A and some string of length к (along the 
edge with capacity k). Two other edges of the graph go in the opposite direction 
(recall that all edges are assumed to be in the top-down direction). So we get 
exactly the condition C(B | A) ^  к that we used.

327 Show that for all our examples the conditions we considered can be
obtained as cut-flow conditions for suitable chosen cuts.

12.9. Networks with one source

In the previous section we explained a general method to obtain necessary 
conditions for the information requests to be fulfillable. A natural question arises: 
Are they (taken for all possible cuts) sufficient? In all previous examples this was 
indeed the case. In general, as we will see later in this chapter, this is not true. In 
this section we show that it is true for the special case where there exists one input 
node with input string A and several output nodes with (the same) output strings 
A. In other words, if we want to transmit some information without change and 
have only one source node, the cut-flow conditions are not only necessary but also 
sufficient.

For Shannon information theory this problem was studied in [1, 104]. Our 
argument follows the scheme used there (with some changes needed to adapt it to 
the complexity framework).
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Let us start with an example. Assume that we want to transmit a string A of 
length 2к to three destination nodes (Figure 45); all the channels have unlimited 
capacity except for the first three that have capacity k. Can we achieve this?

A

/о

A A A

F igure 45. Splitting information into pieces

There is no problem to deliver A into each destination separately. For example, 
to deliver it into the left destination vertex, we split it into two halves A\ and A 2 , 
each containing к bits, and send these halves using two left channels. They have 
capacity k, so this is possible. (The third channel is useless for this destination.)

The same trick can be used for two other destinations. The problem appears 
when we want to send A to all three destinations at the same time. For this we 
would like to cut A into “three halves” in such a way that every two of them are 
enough to reconstruct A. A standard secret sharing scheme can be used—we send 
strings Ai, A 2 and A\ ® A 2 (bitwise XOR, or sum modulo 2) along three channels.

It turns out that one may do something similar in the general case and prove 
the following result:

T heorem  236. Consider an information transmission request with integer ca­
pacities, a single input vertex and an input string A of length n, and the same 
output strings A in several places. Assume that all the cut-flow conditions are true: 
For every J  that does not contain the input vertex and contains at least one output 
vertex, the sum of capacities of all incoming edges ( that start outside J  and arrive 
to J ) is at least n. Then this request is fulfillable with О (log n) -precision: One 
can find strings for all edges in such a way that for every vertex the conditional 
complexity of outgoing information given the incoming information is O(logn).

(The constant hidden in O(logn) depends on the graph but not on n, capacities 
and A.)

P ro o f . Consider first the case when there is only one output node t. In this 
case we need to send n bits of information from source node s to the destination 
node t along the edges. Let us imagine that each bit is packed into an envelope 
(the position is also written inside the envelope). We get n envelopes in the source 
node. We want to bring them to the output node with the restriction that if an 
edge has capacity k, at most к envelopes could be carried along this edge.

This envelope-moving problem is solvable due to the Ford-Fulkerson theorem 
(min-cut equals max-flow (see, e.g., [45], since all capacities are integers, an integer 
flow exists). Now we write on each edge the bits that were carried along this edge. 
More precisely, Ford and Fulkerson provide a set of envelopes for each edge; consider
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the numbers (positions) of bits sent in these envelopes, in non-decreasing order, and 
write on the edge the subsequence of bits in these positions.

Let us show that bounds for conditional complexities are satisfied. Consider 
some node and the output and input strings for this node. The output strings are 
made by combining the bits obtained from the input string. The scheme (which 
bits go where) does not depend on A and can be computed if n is known, so this 
scheme has complexity O(logn), and it is enough to know it to transform incoming 
strings into outgoing strings.

This finishes the proof for the case of one output node.
To prove the same result in the general case, we use random linear codes. In the 

previous argument we just moved bits from incoming strings to outgoing strings. 
Now we use a more general tool—we apply some linear operator in each vertex. 
Imagine for now that bits are elements of the two-element field F2 (it consists of 0 
and 1, and 1 + 1 = 0). Then /-bit strings are vectors in the /-dimensional vector 
space over this field.

Consider a node that has incoming edges of capacities i \ , . . . ,  ip, and outgoing 
edges of capacities (We replace all infinite capacities by n: since we
send only n bits, we never will need to send more than n bits along an edge.) 
Then the linear transformation in the node can be specified by a matrix of size 
(ii + • • • + jq) X (?’i + • • • + ip), and we multiply the incoming bits vector by this 
matrix to get the outgoing bits vector. Note that we send exactly к bits along an 
edge of capacity к (even if this edge looks useless).

(It is easy to see that our solution for the three outputs example has exactly 
this form.)

Assume that for some vertex such a transformation matrix is chosen. Then we 
get for each output some linear transformation (from input n-dimensional space to 
output n-dimensional space) over the field F2. We want to make all these linear 
operators invertible. This would guarantee that the output string contains full 
information (up to a fixed linear transformation) about the input string. So if we 
can find some matrices in the nodes that make all the input-output transformations 
invertible, we are done.

There is one subtle point here: The mere existence of good transformation 
matrices for all nodes is not enough. We need these matrices to be simple. However, 
a standard trick helps. If good matrices exist, we can use the first example in some 
ordering, and it has complexity O(logn); recall that the graph is fixed.

A more serious problem is that in some cases it is not possible to make these 
matrices invertible for each output.

328 Consider the information request from Figure 46. Assume that the input 
string consists of two bits and the capacities of all edges are equal to 1. Show 
that no linear transformations in the nodes make all six input-output mappings 
invertible.

(Hint: There are only three non-linear functionals on two-dimensional space, 
so two of the intermediate vertices will carry the same information.)

Note that for each output it is possible to find transformations in the ver­
tices that make the transformation for this output invertible; indeed, we have seen 
that we do not even need arbitrary linear transformations—repackaging the bits 
(from envelopes to envelopes) is enough. The problem is that we cannot make the 
transformation for all output nodes invertible simultaneously.
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A

F igure 46. Field F2 is not enough.

Let us change our setting and consider elements of an arbitrary field F instead 
of bits (elements of F2). The input is now a vector from F n ; an edge of capacity 
к carries an element of F k, and transformations in the nodes are F-linear, i.e., 
determined by matrices with elements from F.

Let us show that for a large enough field F one can find the transformations 
in the nodes that make all the output mappings invertible at the same time. Let 
us consider the matrix elements as F-valued variables. Then the elements of the 
resulting input-output matrices are polynomials in these variables. The determi­
nants of these matrices are also polynomials. The degree of a determinant as a 
polynomial in matrix elements is bounded by n E , where E  is the number of edges 
in the graph (going from input to output, we increase the degree of the polynomial 
by 1, and by computing the determinant we multiply the degree at most by n). So 
for each output we have a polynomial of a limited degree (the determinant of the 
corresponding matrix), and we know that this polynomial is not equal to 0 (since 
we can make the matrix invertible for each output separately). It remains to use 
the following simple algebraic result:

Lemma . A polynomial of degree d inm  variables or over a field F is either equal 
to 0 (has zero coefficients) or is equal to zero in a random point with probability at 
most d/\F\.

Here by degree we mean total degree (exponents for all variable are added), |F| 
stands for the cardinality of F, and the probability is taken over uniform distribu­
tion in F m.

P ro o f . We use induction over m. For m =  1 the claim says that the number of 
roots of a univariate polynomial is bounded by its degree (factorization argument). 
For m > 1, we represent the given polynomial as a polynomial in one variable 
whose coefficients are polynomials in the remaining variables. Let d\ be the degree 
of this univariate polynomial (the maximal exponent for the selected variable), and 
let d2 be the degree of its leading coefficient (as a polynomial in the remaining 
variables). This leading coefficient may be zero or not depending on the values of 
the remaining variables. The probability for it to be zero is bounded by d2 /\F\ 
due to the induction assumption, and if the leading coefficient is not zero, the 
probability to bump into a root of the non-zero univariate polynomial of degree d\ 
is bounded by d\/\F\. In total we get (0Î2 +d\)/\F\ ^  d/\F\. The lemma is proven.
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Now we note that if the probability of getting a zero determinant at each given 
output is less than 1/ (number of output nodes), then there exist some values of 
the variables that make all the determinants non-zero simultaneously. We have 
the degree bounded by nE, the number of outputs is also bounded by E, so the 
condition nE 2 < |F| is enough to guarantee the existence of matrices that make 
all input-output transformations invertible. (And these matrices can be found by 
search, so they are simple matrices with this property.)

How can we use all this in a situation where we have n bits (and not n elements 
of a big finite field)? As usual for coding theory, let us split the n-bit string into 
blocks of some size k. We get (approximately) n/k  blocks and interpret each block 
as an element of a field of size 2 k (such a field exists for all /с, as explained in algebra 
textbooks). If it turns out that the number n and all capacities are multiples of k, 
and that 2 k > (n/k )E 2, then we are done.

In general, we need some adjustments. First we choose some value of к such 
that 2k > nE2 (we ignore the 1/k factor, but it is in our favor). This gives us 
к = O(logn). Then we round n and the capacities making them multiples of к (n 
is rounded downwards and capacities are rounded upwards, so the inequalities for 
cuts remain true). The rounding error is O(logn), so it does not matter with our 
precision, and it remains to use the statement we proved. □

Using random linear transformations, construct a probabilistic algorithm 
that finds the maximal flow in a directed acyclic graph with integer capacities.

(Hint: For a given n we may find whether a flow of size n exists by assigning 
random matrices to each vertex and checking whether the resulting n x n matrix 
is invertible.)

In the rest of the chapter we consider examples of the opposite type, where 
cut-flow conditions are only necessary, but not sufficient.

12.10. Common information as an information request

We have already considered one example where necessary cut-flow conditions 
turn out to be insufficient—this was the common information problem from Chap­
ter 11. In Section 11.2 we asked (for given strings x, у and for given integers a , ß, 7 ) 
whether there exists a string 2: such that

C{z) < a , C{x I z) < ß, C{y I z) < 7 .

This problem, considered up to logarithmic precision, can be reformulated as an 
information transmission request (Figure 47). Indeed, if a string 2: with required 
properties exists, it can be sent along the middle edge (of capacity a); two other 
edges should transmit conditional descriptions of x and у given 2:. (Both 2: and these 
conditional descriptions can be found by search with logarithmic advice if x and у 
are given, so there is no new information in the top vertex.) O11 the other hand, if 
this information transmission request is fulfillable, then the string 2: sent along the 
middle edge satisfies the required inequalities (with logarithmic precision).

The cut-flow conditions give the inequalities
C(x)^oc + ß, C ( y ) ^ a  + 7 , C{x, y) ^  a  + ß + 7 ,

and we have seen in Chapter 11 many different examples of strings x and у where 
these inequalities turn out to be insufficient for the existence of string 2: (common 
information) with required properties.

329
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12.11. Simplifying a program

In the previous section we have seen an example of an information request that 
can be not fulfillable even if all the cut-flow conditions are satisfied. This request is 
rather complicated, and it is interesting to find a simpler example. In this section 
we mention one of these examples—it turns out that the statement of Theorem 229 
is quite close to the boundary line, and just a slightly more general setting makes 
the cut-flow conditions insufficient.

Consider an information request suggested by Vyugin (Figure 48). The differ­
ence with Muchnik’s theorem is that now instead of reconstructing one of the input 
strings (P in the current notation), we have to obtain some third string (В ). The 
cut-flow conditions for this problem are C(B\A)  ^  к and C(B\A,P)  = 0 (consid­
ered with logarithmic precision). They are (as always) necessary, but one can show 
that they are not sufficient.

This request can be described informally as “simplification of a program”. Since 
C(B\A,P)  = 0, the string P  can be considered as a program (or information 
sufficient for a program) that transforms A into B\ however, the complexity of P 
is bigger than strictly necessary, i.e., it exceeds к =  C(B \ A). Can we find another 
program, of minimal possible complexity C(B\A),  that transforms A to В and at 
the same time is a “simplification” of the first one (i.e., has no new information 
compared to Р)?

The detailed explanation of the negative answer (even several explanations, 
using game, probabilistic, and combinatorial arguments) is given in [140].

F ig u r e  47. Common information request

P 

к 

В

FIGURE 48. Simplification of a program
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A

P 

A

F ig u r e  49. Two channels of bounded capacity

12.12. Minimal sufficient statistics

Tn this section we consider another request where cut-flow conditions are not 
sufficient (Figure 49). Here the output string is again (like in Muchnik’s theorem) 
one of the input strings, but now both capacities are limited. In addition, we allow 
use of the full information about В  when encoding A.

This problem is related to the notion of minimal sufficient statistics in probabil­
ity theory. Let us explain this connection (though it is not important for the proofs, 
so one may skip these explanations). Consider a pair of two random variables 9 
and X  with some joint distribution. The variable 9 is considered a parameter, and 
for each value of 9 we consider the conditional distribution of X. For example, we 
may first choose 9 uniformly distributed in [0,1], and then choose an n-bit string X  
according to the Bernoulli distribution on n-bit strings with parameter 9. In this 
way we get a joint distribution of 9 and X.

Assume that we observe X  in a pair (9, X) generated according to this distri­
bution, and want to guess 9. (As usual, we assume that some a priori distribution 
on the space [0,1] of parameters is given.) Not all information in X  is really useful 
for that—it is enough to know how many ones are among the outcomes, and it does 
not matter what their positions are. More formally, the random variable N(X), 
the number of ones in X , extracts all information about 9 that is in X,

I(N(X):9) = I(X:9).

For an arbitrary function N  the left-hand side does not exceed the right-hand side; 
the functions N  that transform this inequality into an equality are called sufficient 
statistics. The same condition can be formulated in a different way: 9 and X  and 
independent given N(X). One more reformulation is H (9 \N (X )) = H(9\X).

By definition, the random variable X  itself is a sufficient statistic; our example 
shows that it may contain a lot of irrelevant information. A sufficient statistic is 
called a minimal sufficient statistic if it is a function of all other sufficient statistics. 
For the random variables with finitely many values, a minimal sufficient statistic 
always exists (and is unique up to permutations): one should identify those values 
of X  that lead to the same conditional distributions on 9. The minimal sufficient 
statistic has minimal entropy among all sufficient statistics.

330 Assume that all values of 9 have positive probabilities. Prove that the 
notion of sufficient statistics depends only on the values of conditional probabil­
ities P[X = X  I 9 = t] for all pairs x ,t  (so the distribution for 9 itself is not 
important).
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(Hint: For each x consider a vector containing all P[X = x \ в = t] for all values 
t of the random variable в. Then iV is a sufficient statistic if and only if every two 
arguments with the same values of N  correspond to proportional vectors.)

The search for minimal sufficient statistics can be described as follows: We 
consider random variables X '  such that H { X '\X ) — 0 (i.e., functions of X)  and 
select those for which the value H{B\X') is minimal. Then we minimize H(X') 
among the selected random variables.

Now we try to find an algorithmic information counterpart of this procedure. 
Let us consider two strings A (which corresponds to в) and В (which corresponds 
to X). We want to select some part В ' of information in В for which C{A\B') 
reaches the minimal possible value C(A\B). Among those B' we then want to 
select one with minimal C(B') so it can be considered as an algorithmic version of 
minimal sufficient statistics.

This setting can be explained in terms of information transmission using Fig­
ure 49. Here B' (a function of В ) is sent via a channel of capacity g, and the 
conditional description of A given B' is sent via a channel of capacity p. The 
minimal statistics problem can be now stated as follows—minimize q for minimal 
possible p «  C(A \ В ).

Let us consider some more general questions. For which p and q is the informa­
tion transmission request (for given A and В ) fulfillable? The necessary cut-flow 
conditions are (with logarithmic precision) C( A) ^  p + q and C( A | B) ^  p.

331 Find cuts that give these conditions.

For some pairs A, В these necessary conditions turn out to be sufficient.

332 Show that if A and В have extractable common information (e.g., A and 
В are overlapping substrings of some incompressible string), then these necessary 
conditions are also sufficient.

{Hint: The condition C(A\B) ^  p guarantees that we can send the part of A 
outside В along the left channel, plus some other part of A, and the rest can be 
sent along the right channel—the condition C(A) ^  p + q guarantees that there is 
enough capacity.)

However, as we will see, in the general case the necessary conditions are not 
sufficient. To provide an example in which this happens, let us fix the complexities 
and conditional complexities of A and B. We agree that A and В have complexity 
2n, and the pair (A. В ) has complexity 3n. (So the conditional complexities C(A | В ) 
and C(B\ A) are about n.) Figure 50 shows necessary conditions p + q ^  2n and 
p ^  n for this case.

Now let us try to find some values of p and q when the request is guaranteed 
to be fulfillable (whatever A and В are, assuming they have complexities as we 
agreed). We can send the string A along the left channel, so the request is feasible 
for p — 2n and q = 0 (and, of course, for all bigger p and q). Another possibility is 
to send В completely along the right channel, so the request is feasible for p = n, 
q = 2n (and for bigger p and q). In this way we get two quadrants with vertices 
(2n,0) and (n, 2n). Moreover, if we delete (say, the last) к bits from В (which we 
assume to be incompressible), then the conditional complexity C(A\B)  increases 
at most by к , so the request is feasible for q = 2n — k, p — n + k. So in the dark 
grey region on Figure 51 (denoted there by G) the request is always feasible.
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Q

2 n

V

F ig u r e  50 . N ecessary  (cu t-flow ) con d ition s

As in the case of common information (Chapter 11), we may say that the profile 
of a pair (A, В ) (the set of all pairs (p , q) that make the request feasible) is not 
determined by complexities and conditional complexities of A and В —for different 
pairs with the same complexities the profiles could be different. Problem 332 shows 
that for some pairs the profile coincides with the upper bound provided by cut-flow 
inequalities. Theorem 237 shows that for some pairs the profile coincides with the 
lower bound (it equals G; see Figure 51).

However, we need to be careful to formulate the statement correctly. One would 
like to claim that for every B' that is simple relative to B, the pair (C(A \ B'), l(B')) 
is in an 0(logn)-neighborhood of G, and the hidden constant in O(logn) does not 
depend on n and B 1. However, the assumption “В ' is simple relative to needs to 
be formulated in some exact way. We should choose some threshold r and require 
that C(B'\B) < r. As r increases, the distance between (C(A\B/),l(B/)) and G 
may increase, and we should make an exact statement about it. In fact, the distance 
is bounded by O(r). Here is the exact statement:

T h e o r e m  237. For every n there exist strings A, В of complexity 2n+0(logn) 
such that C (A ,B ) = 3n + O(logn), and for every В ’ the pair (C(A \ B ’), 1{B')) 
belongs to the 0(logn + C(B' \ B))-neighborhood of the set G.

F ig u r e  51. Sufficient conditions
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P r o o f . A s in  m any other cases, w e w ill prove th is  resu lt u sing  a g a m e .1 F irst 
w e d escribe th e  gam e, th en  show  th e  w in n in g  strategy , and finally  w e exp la in  how  
th is im plies th e  sta tem en t o f th e  theorem .

The game has parameter n. We (being one of the players) may, for each 2n-bit 
string B, choose at most 2n strings of length 2n, calling them “simple given B ”. 
Our adversary, on the other hand, for each triple (p, q, r) (taken from some set M  
of admissible triples, see below) may do the following:

• for every string В of length 2n, choose at most 2r strings of length q and 
call them “r-simple given В ” ;

• for every string B' of length q, choose at most 2P strings of length 2n and 
call them “p-simple given В .

This is done independently for each triple (p, q, r) from M. Imagine that we play 
against a team. For each (p, q, r) there is a team member who makes his own 
announcements (obeying his own cardinality restrictions, as described), but they 
play as a team against us.

The adversary team includes two more members. The first one may choose up 
to 22'1“ 1 strings of length 2n (i.e., not more than half) and call them “bad”. The 
second one may for every string В of length 2n choose up to 2n-2 strings of length 
2n (in a different way for each В ) and call them “bad for this FT’.

Later we will play with the adversary who marks as “bad” all 2n-bit strings of 
complexity less than 2n — 1, and for each В marks as “bad for В ” all 2n-bit strings 
A such that C(A\B) < n — 2. But the game rules do not say anything about this 
specific choice of bad strings. Note that we use threshold n — 2 (and not, say, n — 1) 
since we need some reserve; see below.

Both we and the adversary make the declarations gradually—at any moment 
each player may extend the lists of simple/bad strings (if the cardinality restrictions 
are not violated by this extension). The declarations cannot be retracted. Since the 
total number of positions is finite, the game (though being formally infinite) has 
some limit position, but the players do not declare whether they will make more 
moves or not.

The winner in the game is determined by the limit position. The adversary 
wins if for every pair of 2n-bit strings A and B, where A is n-simple given B, and 
A and В are not bad, and A is not bad for B, there exists an admissible triple 
(p, q, r) and a q-bit string B' such that

• B' is r-simple given B\
• A is p-simple given B ' .

According to our plan, we first show a simple computable strategy that wins this 
game (for some set of admissible triples (p, q,r)), and we then derive the statement 
of the theorem. This strategy replies to each move of the adversary (made by some 
team member who declares a new “bad” or a new “simple” string) by one move. 
We add (for some string В of length 2n) one n-simple string A of length 2n that 
prevents the adversary from winning, if no new moves are made. To achieve this, 
we need the following:

• the chosen strings A and В are not yet declared bad;
• A is not yet declared bad for B\

1We have already seen several game arguments; for a survey of game techniques for Kol­
mogorov complexity see [198, 136].
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• there is no admissible triple (p, q, r) for which two things happen: (1) there 
exists sonie B' of length q that was declared r-simple given В by (p, q, r)- 
player of the adversary’s team, and (2) at the same time A was declared 
p-simple given B' by the same player.2

Why is this possible? At every step of the game there is at least 22n-1 strings 
not declared bad. If we select one of them, we may declare every string as n-simple 
given В unless we exhausted the quota, i.e., we have already declared 2n strings to 
be n-simple given this B. But if this happens for all non-bad B, this means that 
we have already made 22n_1 • 2n = 23n_1 moves. Recall that we make one move 
after each move of the adversary, and we will see that the adversary cannot make 
so many moves. So we can choose some B.

After В is chosen in such a way that we have not exhausted the quota for n- 
simple strings given B, we start to select A. Let us consider some admissible triple 
(p, q, r) and count the strings A that do not make the position winning because of 
this triple. There is at most 2T strings B' of length q declared as r-simple given B. 
For each of these B' there is at most 2P strings of length 2n declared as p-simple 
given B' (for the same triple = by the same team member). So we have to avoid 
2p+r strings for each triple (p, q, r) from the set M  of admissible triples. In total 
we have to avoid 2p+r • |M| strings. Also we have to avoid strings that are declared 
bad, at most 22n_1, as well as strings declared bad for В , at most 2 n ~ 2 of them. 
So we can make the move we want, assuming that
(*) 2p+r ■ \M\ + 22 n ~ 1 + 2n' 2 < 22"'.

Now we need to count how many moves the adversary can make. Each of M  
players of his team takes care of one admissible triple (p, q, r) and makes at most 
22n+r moves, declaring r-simple strings, and 2 qJtp moves, declaring p-simple strings. 
So the total number of moves for all players is bounded by

\M\ • (2max(2n+r) + 2max(<?+P))
(maximal values of 2n + r an q+p are taken over all elements in M). We should also 
add 22n~1 moves that the adversary can make declaring bad strings and 2 2n -2 n ~ 2 = 
23n—2 moves he can make declaring bad strings for 22n strings of length 2n. So we 
can ensure the required upper bound for the number of the adversary’s moves if

\M\ • (2max(2n+r) -\- 2max(<?+p)) _|_ 22n_1 -\- 23n~2 < 23n_1

Taking into account that 2k + 2/ is close to 2max{fc,/}, it is easy to see that the 
conditions (*) and (**) are guaranteed to be true if all the triples (p,q,r) G M  
satisfy the inequalities

p + r < 2 n — 3 logn — 0 (1),
2n + r < 3n — 31ogn — 0(1), 
p + q < 3n — 31ogn — 0(1).

Note that there are 0 (n 3) triples satisfying these inequalities, and to compensate 
for the factor |M|, we subtracted 31ogn + 0(1), the upper bound for log|M|. In 
these inequalities we write 0(1), but some small value, like 10, will work. Now

2 Note that according to our agreement different players on the adversary team may make 
different declarations, so the term “r-simple” has a different meaning for the {p, q, r )-player and
(p 1, q ' , r)-player even when r is the same for both. (In fact, this freedom is not used by the 
adversary, with whom we really play to prove the theorem.)
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let M  be the set of all triples that satisfy these inequalities: we know then that a 
winning strategy in our game exists. (Note that for small r we get the conditions 
p < 2n and p + q < 3n that are true for points in G.)

Now we apply this winning strategy against the following blind strategy for 
the adversary (blind means that he does not look at our moves). He declares 
a 2n-bit string of complexity less than 2n — 1 to be bad; for each 2n-bit string 
В all the strings that have conditional complexity less than n — 2 given В are 
declared bad for B. Also for each triple (p,q,r) the corresponding player from the 
adversary team declares strings of small conditional complexity as r- or p-simple 
for the corresponding threshold r or p.

Then both players follow some computable strategies, so the game is com­
putable, and we need only to know n to start its simulation. We cannot effectively 
find when the limit state is reached, but it will happen at some moment. In this 
state there is a pair (A , В ) of strings guaranteed by the winning condition. Let us 
show that these two strings satisfy the statement of the theorem.

The length of both strings A and В is 2?г; the complexity is 271 + 0(1) (it cannot 
be less since otherwise the string would be declared bad). Since we declare at most 
2n different strings A as simple given В , we have C{A\B) ^  n + 0 (log77.). On 
the other hand, the complexity C(A \ B) cannot be less than n — 0(1), otherwise A 
would be declared bad for B.

Let B' be a ç-bit string such that C(B'\B) < r. We may assume that r is 
much smaller than n, say, r < n /2  (otherwise the term 0 (r) in the right-hand 
side makes the statement of the theorem trivial). So the inequality for 2n + r on 
the previous page (the second one in the list of three inequalities after (**)) is 
true. Therefore, for every p that satisfies the first and the third inequalities, the 
complexity C(A\B') exceeds p. So for every pair (p, q) from the light-grey area 
(Figure 51) that is 0 (r  + log7r)-far from O, there is no B' of length q such that 
C(B' IB) <C t and C{A I 7T ) <C p. That is exactly what we needed to show.

Theorem 237 is proven. □

Let us now give another proof of the same statement using a probabilistic 
argument. It follows almost the same scheme as the game proof above, but has 
several important differences. First, we do not wait until our adversary makes his 
moves, but we make all our moves at the beginning of the game. Second, we do not 
describe the winning moves explicitly—we just show that a random choice provides 
a winning strategy with positive probability.

Let us first make a technical remark: Under these assumptions we may as­
sume without loss of generality that both players always fully use their quotas for 
bad/simple strings (adding strings is always to the player’s advantage).

Now we can start the argument, explaining its relation to the game version in 
parentheses. Our strategy is now represented by some mapping

U : B2n x B M  B2n

(the values of U (В , X ) for a given В and all possible X  correspond to strings simple 
for В in the game argument). Assume that some finite set M  of integer triples is 
fixed and for each triple (p, q, r) e PI two mappings

Vp.q,r : B2n xBr ^ B ?
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and
Wp,q,r : Ш4 X Bp -+ B2n 

are given. Moreover, assume that a mapping
S: B2n-2 -a B2”

and another mapping
T: B2n X Bn-21ogn E 2n 

are given. (The mappings Vp q̂̂r and Wp q̂,r correspond to the moves of the (p, q, r)- 
player on the adversary team. Namely, strings Vp<q̂T(B, X)  for all possible X are 
y-simple for В ; strings Wp q̂̂T{B',X) for all possible X are p-simple for B '. The 
mappings S' and T  correspond to the moves of two additional players. Namely, 
S(X)  are bad strings (there are 22n“ 2 of them), and T (B ,X ) are bad for В (there 
are 2n-21ogn of them). The bounds for the number of bad strings are now more 
strict than in the game argument; this is needed to obtain the bounds below.)

We say that a mapping U is covered by a quadruple V, W, S, T  (which consists 
of two families of mappings and two mappings) if for every string B G B2n and for 
every string A that is equal to U(B,X)  for some X G Bn (for every string В and 
for every string A that is declared by us as n-simple for В ), the pair (A , В ) satisfies 
one of four conditions:

(1) В belongs to the range of S  (i.e., В — S(Y) for some Y  G B2n~2). (The 
string В is declared bad by the adversary.)

(2) A belongs to the range of S  (i.e., A = S(Y) for some Y  G B2n~2). (The 
string A is declared bad by the adversary.)

(3) A equals T(B ,Y)  for some Y  G Bn-21ogn. (The string A is declared bad 
for В by the adversary.)

(4) There exists a triple (p, q, r) G M  and some ç-bit string B' such that the 
following two conditions (a) and (b) are both true:
(a) B' = Vp q̂,r(B,Y)  for some Y  G Br ((p, ç, r)-player declared B' to be 

y-simple given B)\
(b) A = Wp^ r(B', Z) for some Z  G Bp ((p, ç, y)-player declared A to be 

p-simple given В').
We will prove (under some conditions on the set M, see below) that there exists 

some mapping U that is not covered by any quadruple V, W, S, T. This proof will 
use a probabilistic argument: For each quadruple we count how many mappings 
are covered by it (i.e., we compute the probability for a random mapping to be 
covered by a given quadruple), then we multiply this probability by the number of 
quadruples and show that the product is less than 1.

The counting for one quadruple goes as follows. Assume that V. W, S, T  are 
fixed. There are at least 22n_1 strings В of length 2n that violate condition (1). 
For the set U to be covered, it is needed that for each of these В each of the 2n 
values A = U(B,X)  (for all n-bit X) is covered by one of the conditions (2)-(4). 
We will show that for a given В and X the probability of this event is at most 
1/ 2. Then, by independence, we conclude that for a random U the probability to 
be covered is at most (1/2 ) 22" - 1* 2'1 = (1/2 ) 23" " 1 

Let us check the estimate for given В and X. Unsuitable A include the following:
• strings covered by (2), at most 22n-2 of them;
• strings covered by (3), at most 2n-21ogn of them;
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• strings in WPtq̂r(VPjq̂r(B,Y), Z) covered by (4), at most 2r x 2P of them 
for each triple (p, q, r) € M.

In total we get
2л п ~ л  +  2 n ~ * l o g n  + 2 +р • M 

unsuitable strings, and this number is bounded by 2 2n~l (half of all strings) if

(*) r + p + log\M\ < 2n — 3
for all (p,q,r) G M  (this is our first requirement for M).

Now we estimate the number of all quadruples V, W, S, T. For given p, q, r there 
are at most

(29)з271><2Г = 2 я'2,2т'+г 
possibilities for VPiqjr and at most

(22n)2" X 2P 2 2 n-2 q+p

possibilities for Wp^ r. There are at most
ß 2 n ^ 2 2n~ 2 — 2 2 n 2 2 n ~ 2

possibilities for 5 and at most
^22n^22Tlx 2 n- 21o6n _  2 (2 3n/n )  +  l

possibilities for T. The first two bounds appear with exponent \M\ (to get the 
bound for the total number of possibilities for V and W)\ in total we get the 
following bound for the number of quadruples:

2<j-22n+rx |M |  , 2 2 n -2g+pX\M \ . 2 2 n '22n~ 2 . 2 ( 23n/ n )+1

The binary logarithm of this number does not exceed
q ■ 22n+r x |M| + 2n • 29+p x \M\ + 2n • 22n" 2 + (23n/n) + 1, 

and this is smaller than 23n (as we need to finish the proof) if 
(**) 2n + r + logg + log\M\ < 3n — 0(1)
and
(***) q + p + logn + log\M\ < 3n — 0(1).
(We use that 2a + 2b is equal to 2max(a’6) up to an 0(l)-factor; two other conditions 
2n — 2 + log2n < 3n — 0(1) and log(23n/n  + 1) < 3n — 0(1) are guaranteed to be 
true.)

All three conditions (*)-(***) are true if
p + r <2n — 31ogn — 0(1),

2n + r < 3n — 4 logn — 0(1), 
p + q < 3n — 41ogn — 0(1)

for all (p , q, r) G M, since \M\ — 0 (n 3) in this case. Let us now define M  as the set 
of triples satisfying these three inequalities. We know now that (for this M) there 
exists a mapping U not covered by any quadruple V, W, S, T. Now the standard 
argument shows that there exists a mapping U of logarithmic complexity (first in 
some order) not covered by any quadruple.

Take this U and consider the following quadruple V, W,S, T. Let {5(-)} (the 
range of 5) be the set of all 2n-bit strings whose complexity is less than 2n — 2.
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For every B € B2n let the set {T(B, •)} be the set of all 2?r-bit strings that have 
conditional complexity given В less than n — 2 log n. Let (for given p.q.r) the set 
VPiQ,r(B,-) be the set of all g-bit strings of conditional complexity (given В ) less 
than r. And let (for given p, g, r) the set Wp,q,r (B', •) be the set of all 2n-bit strings 
of conditional complexity (given В ') less than p. (We specify only the range of 
these mappings, the order can be arbitrary. Also, the number of strings with a 
given property may be less than the number of slots, so we fill the remaining slots 
in an arbitrary way.)

We know that U is not covered by this quadruple. This means that there exist 
strings A and В of length 2n that do not satisfy any of the properties (l)-(4). Then 
C(A) = 2n + 0(1) (because A has length 2n and cannot have smaller complexity, 
otherwise it would be covered by S ). For the same reasons C(B ) = 2n + 0(1). 
The conditional complexity C(A\B) equals n + 0(logn): it cannot be bigger since 
A = U (B ,X ) for some string X  of length n, and the complexity of U is O(logn), 
and it cannot be smaller, since otherwise the property (3) would be true. Finally, 
there is no triple (p,g,r) in the set M  such that C(B'\B) < r and C(A\B') < p, 
otherwise (4) would be true.

The rest of the proof is the same as in the game argument, and this finishes 
the probabilistic proof.

Finally, one can provide a geometric construction that gives strings A, В with 
the required property. (Unlike the case of common information, here the geometric 
construction gives almost the same complexity bound, not weaker ones.)

Consider the field with 2n elements (or a field of approximately this size, if we 
want to consider integers modulo p for some prime p), and a two-dimensional plane 
over this field. Let (A, B) be a random pair that consists of a point and a line going 
through this point. Then we get complexities as required by Theorem 237. Let us 
show that such a pair has the required properties.

Assume that a string B' is given and

(*) C(B' \B) ^  r, C (B ')^ q ,  C ( A \B ' ) ^ p

for some p, g, r. We want to prove that the pair (p, g) is in an 0(r) + 0(\ogn)- 
neighborhood of the set G by showing that otherwise the pair (A, B) would have 
smaller complexity. Let us estimate the number of pairs (A, В ) such that (*) is 
satisfied for some B '. Each of the 2q strings B' determines two sets:

• the set Ub> of 2n-bit strings A such that C(A \ B' ) ;
• the set V b > of 2n-bit strings В such that C(B'\B)  ^  r.

The set Ub ' has cardinality 2P (in fact, 0(2P), but we ignore bounded factors). The 
set Vb> may have different sizes depending on the choice of В ', but we know that 
the family Vb< for all B' covers the set B2n in at most 2r layers (for each В there 
are at most 2r strings B' that are r-simple given B).

We want to show that the union of the combinatorial rectangles Ub' x Vb> 
over all B' covers only a small fraction of all pairs of incident point and lines. To 
bound the number of pairs covered by these rectangles, we use the same technique 
as before: the incidence graph does not have cycles of length 4, so we can apply 
the combinatorial lemma (p. 358). Let us recall the statement of this lemma. If a 
rectangular table I x L has stars in some cells and one cannot find two rows and 
two columns that have stars at all four intersections, then the total number of stars
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is bounded by
• 0{L) for I ^  y/L-
• 0(lVZ) for I ^  y/L

(this is the bound obtained in the proof). Now we have to consider separately 
the case of large and small Vb>. If Vb> is large and contains more than \J \U b>\  

(i.e., more than 2p/2) elements, then the number of covered pairs for this B' is 
at most 2p/2|Vß'|. The sum over all B' of this type is bounded by 0 (2 p/ 22 2n2 r) 
(since the set of size 22n is covered by at most 2 r layers). Now consider small Vb>'s 
that contain at most л/Щв11 elements. For them Ub> x  Vb> covers at most 0(2P) 
elements, and for 2 q different B' we have in total 0 (2 p+q) pairs.

Therefore, if p + q < 2>n — O(logn) and (p/2) + 2n + r < 3n — О (log n), then a 
random pair (A, В ) cannot be served by any of B '. (We should note also that the 
set of pairs that are served can be enumerated if we know n,p,q,r, i.e., O(logn) 
bits of advice.) The second inequality can be rewritten as p + 2r < 2n; it is a bit 
worse than the bound p + r < 2 n that appeared in our first argument, but we still 
get the bound 0 (r), as the theorem claims.

This finishes the third proof of Theorem 237.

R e m a r k . The geometric proof provides a simple set of pairs where most of the 
pairs satisfy the statement of the theorem. So it gives a stochastic (in the sense of 
Section 14.2) pair with required properties.

The same result can be achieved by some modification of the second (proba­
bilistic) proof. We have said that a mapping is covered if something is true for all 
pairs (of certain type). Let us weaken this restriction and say that U is covered if 
the same condition is true at least for the half of the pairs. To prove the existence 
of U that is not covered, we can use the following (trivial) probability bound. If 
each of 2 k independent events has probability less than 1/16, then more than 2 k~l 
events happen with probability at most 22 • (1/16)2 / 2 = 2“ 2 . So we may replace 
1/2 by 1/16 in the argument and continue the proof as before. In this way we get 
a simple set U where half of the elements have the required properties.

(Another approach is also possible. Instead of considering S', T  and all the 
admissible triples in parallel, one can prove that with high probability for a random 
U the fraction of pairs when (4) is true is small. These small fractions and small 
probabilities are then added for all triples from M.)



CHAPTER 13

Information and logic

13.1. Problems, operations, complexity

In this chapter we define a problem as an arbitrary (finite or infinite) set of 
binary strings. The elements of this set are called solutions to that problem.

Why such strange terminology? Generally speaking, having a problem, we need 
to solve it, i.e., to find its solution. We assume that a solution can be represented 
by text (written in some formal language), i.e., by a binary string (assuming some 
natural encoding is used). We will measure the amount of information in the 
solutions ignoring all other aspects, so we identify the problem with the set of its 
solutions.

By complexity of a problem A we mean the minimal complexity of its solutions, 

C (X ) =  min{C(i) I X G X}.

As usual, the empty set, i.e., the unsolvable problem, has complexity +oo.
For example, the complexity of a singleton {x} is just the complexity of the 

string x. For a less trivial example, recall that in Section 1.2, we considered (for 
a given n) the problem “find a natural number к ^  n”. The complexity of this 
problem was denoted by С^(п). Now we can say that we consider the problem

n”, whose solutions are natural numbers к ^  n, and its complexity. (Formally, 
we have to speak about binary representations of those numbers.)

Let X  and У be two problems. We can consider the problem “solve both 
problems X  and У”, as well as the problem “choose one of the problems X  and 
Y  and solve it”. The solutions for the first problem ( “X  and У” ) are pairs (w, v) 
where и is a solution to X  and v is a solution to Y . The solutions to the second 
problem (“X  or Y ”) are solutions to one of the problems X, Y  plus a special tag 
that says which of the two problems we are trying to solve. So we come to the 
following formal definitions:

X A Y  = {[x,y] \ x e X , y e Y } ,
X  У Y  = {[0, ж] I ж G A} U {[1,у] I у G Y}.

Since we want the problems to be sets of strings, we use some (computable one-to- 
one) encoding [x,y] for the pair (x.y).

At first glance, these definitions do not look interesting. Indeed, the complexity 
of {æ} A {y} is just the complexity of the pair (x, y), and the complexity of {x} V {y} 
equals min(C(x),C(y)) + 0(1). In general, the complexity C(X  V Y) is equal to 
min(C(A), С(У)) + 0(1) for every two problems X  and Y  (not only for singletons). 
More interesting examples will appear later.

The problem А Л У is called the conjunction of problems A and Y  while the 
problem A V У is called the disjunction of A and У.

401
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One may define disjunction in a different way. Imagine a teacher who gives an 
exam with two questions and says that for a passing grade it is enough to answer 
one of them. Assume that the teacher gets a student’s paper where both questions 
are answered, but only one answer is correct. Usually it is still enough to pass the 
exam. This corresponds to the following formal definition:

X VY = {[x, y] I x G X  or y G Y } .

We call this operation pseudo-disjunction. Its complexity is the same as for dis­
junction (up to 0 (1), as usual), but these two problems are essentially different (see 
below).

Prove that C (X vY) = C(X  V Y) + 0(1).
Yet another (intermediate) interpretation of disjunction will be the union of X  

and Y  ; in this version we are required to give a correct answer but are not obliged 
to specify which question we are trying to answer.

The conditional complexity C{y\x) can also be understood as the complexity 
of some problem. Informally, we consider the problem “transform x to y". More 
formally, this problem can be defined as {x} —> {г/}, where X  —ï Y  (for any two 
problems X  and Y) is the set of all programs that convert every solution to X  into 
some solution to Y .

Here we fix some programming language where programs (as well as their inputs 
and outputs) are binary strings. Let us denote by \p]{x) the output of program p on 
input x. If the computation of p on x does not terminate, then \p](x) is undefined. 
We assume that the programming language is universal (every computable function 
can be represented as a program). Moreover, we assume that it allows a computable 
translation from any other programming language (this property is called the Gödel 
property, see [184]). Then we let

X  —> Y  = {p I Vx (x G X  =Ф- [p](x) is defined and [p](x) G Y)}.

In fact we have already used this approach. In section 6.4 we defined C(x n) 
as the minimal complexity of a program that produces x on every input к such 
that к ^  n. In our new notation, C(x n) = C({m G N | m ^  n) -» {x}). Our 
initial example, the complexity of {x} —> {y}, is equal to the conditional complexity 
C(y |x) + 0 (1).

Some theorems of Chapter 12 can be now stated in terms of problem complexity.
For example, the solutions to (x —> y) A (y —> x) (we write {x} as x to sim­

plify notation) are pairs [гг, г;] where program и transforms x to у and program v 
transforms у to x. As we have seen, the complexity of this problem is equal to 
max(C(x|y), C(y\x)) + 0(logO(x,y)).

Here is one more example. The solutions for the problem (x —> z) A (y —> z ) 
are pairs of programs [гг, v] such that и maps x to z and v maps у to 2. We have 
shown that the minimal possible complexity of such a pair is

333

max(C(z\x),C(z\y)) + 0(logC(x, y, z)).

334 Find the complexity of the problem а —> (b —ï c) where a, b, c are strings
(singletons).

(Hint: This problem is equivalent to (a Ab) c.)
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335 Find the complexity of a A (b —» c) (with logarithmic precision).
(Answer: C(a) + C(c\a, b). Hint4. Given a and a program that maps [a. b] to 

c, we can convert b to c. In the opposite direction, let us add to the (supposed) 
answer the value of C(b\a). Then we get C(a,b,c). So it is enough to show that 
the triple a, b, c can be reconstructed from the set of the following objects: a, the 
program that converts a to 6, and the program that converts b to c.)

Prove that the complexity of (x V y)336 (zVy) is 0(1), but the reverse 
implication (x\/y) —> (x V y) has the same complexity as x V y, up to an O(logn) 
additive term, if x and y are strings of length at most n.

(Hint: Let p be a solution to (xVy) —> (x V y). We say that a pair (u, v) is 
compatible with p if и and v are strings of length at most n and for all strings w of 
length at most n both values [p]([w, w\) and [p]([tu, u]) are solutions to u V r. Then 
for every pair (w, v) compatible with p, we have either и = x or v = y.)

Show that the problem337

((zVy) (x V y)) -> (xVy)
has complexity O(logn) if x and у are strings of length at most n.

The last two problems show the difference between disjunction and pseudo­
disjunction. They show, in particular, that problems xVx and x V x differ substan­
tially (although their complexities are close). The latter problem xV x  is equivalent 
to x. On the other hand, the problem x\/x is not equivalent to x, as the complexity 
of the problem (x\/x) —> x is close to the complexity of x itself and thus can be 
arbitrarily large. (In the next section, we will define formally what it means that 
the two problems are equivalent.)

Historical remarks. The study of operations Л, V, —> on problems goes back 
to Kolmogorov [76] and Kleene [75]. The complexity of problems obtained from 
singletons by these operations was studied in [182] and [142]. The formula con­
sidered in Problem 335 is from [142]. Problem 336, although inspired by [182], is 
presumably new.

13.2. Problem  com plexity and intuitionistic logic

The problem X  —> Y  has the following property: If both problems X  and 
X  —»• Y  are simple, then Y  is simple, too. Moreover,

C{Y) < C(X) + C{X  -+У).

This inequality is true with precision 0(logC(X)) (or 0(\ogC{X —> Y))). It 
generalizes the inequality

C(y) < C(x) + C(yjx)
(which is true for all strings x and y, with logarithmic precision). Moreover, we 
can add Y  in the left-hand side:

C(X A Y ) ^  C{X ) + C(X  ^  Y).

Note, however, that the reverse inequality is not true anymore (recall that reverse 
inequality holds for singleton sets X, Y, i.e., for strings).

338 Find problems (sets) X  and Y  such that C(X A Y) is significantly less
than C(X) + C(X Y).
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(Hint: Let X  be the set of all random (incompressible) strings of length n, and 
let Y be the set of all random strings of length 2n.)

As we have said, the idea to consider Л, V, —» as operations on problems (instead 
of statements) goes back to Kolmogorov [76] and Kleene [75]. They used it to 
construct an interpretation for intuitionistic propositional calculus (IPC); see, e.g., 
the textbook [200] for more information about IPC. In this chapter we consider 
the relation between provability of a formula in IPC and the maximal possible 
complexity of problems generated by that formula.

Let Ф(p, q, ...) be a propositional formula with connectives Л, V, —> and with 
variables p,q ,.... Let X, Y , ... be arbitrary problems (=sets of strings). Substitute 
X ,Y , . . .  for variables p, q, ..., and let Ф(Х, Y , ...) denote the resulting problem.

There exists the following subtle problem regarding this definition. Actually, 
operations on problems depend on the choice of a pairing function x, y —> [x,y\ (con­
junction and disjunction), on the choice of a programming language (implication), 
and, finally, on the choice of the tags 0, 1 (disjunction). However, this dependence 
is quite weak: Different choices lead to the problems whose complexities differ only 
by 0 (1).

More formally, let Ф(р, ç , ...) be an arbitrary propositional formula, and let 
X, Y,... be arbitrary problems (sets). Let Ф'(Х, Y,...) and Ф"(Х, Y , ...) be two 
problems obtained from Ф and X, Y,... by using different pairing functions ([x,y]', 
[x,y]”), different programming languages (U'(p,x) = [p]'(x), U"(p,x) = \p]"(x))., 
and, finally, different tags (a',b' and a",b") in the definition of disjunction. Then 
the difference between the complexities of problems Ф'(Х, Y,...) and Ф"(Х, Y,...) is 
0(1). (Recall that we assume that pairing functions are computable bijections and 
programming languages are universal and have the Gödel property, in particular, 
translation algorithms in both directions exist.)

This claim is easily proved by induction. More specifically, for every formula Ф 
we construct by induction two computable functions: f f 2 that maps every solution 
for the problem Ф'(Х, Y,...) to some solution for Ф"(Х, Y,...); and f 21 that maPs 
every solution for Ф"(Х, Y,...) to some solution for Ф'(Х, Y,...).

For the propositional variable Ф both functions f ®2 and f 21 are identity func­
tions. If Ф is Ф Л 0, and for Ф and 0  both functions are already constructed, we 
define f i 2 as follows. The input string s is represented as s = [u, v]', then f ^ 2 and 
f ®2 are applied to и and v, respectively. Finally, we apply the other pairing function 
to the resulting strings. The function f 2l is defined similarly.

The case of disjunction is entirely similar.
Now assume that Ф = Ф —> 0. Then the function f ®2 can be defined as follows. 

Consider the (computable) function V(s,b) = f^([s]'(f2 1 (b))). If s is a solution to 
Ф'(Х, Y,...) —> 0'(X,  Y,...) and & is a solution to Ф"(Х, Y,...), then V(s, b) is a 
solution to 0"(X, Y,...). Consider Y as an interpreter of a programming language. 
As U" has the Gödel property, there exists a translation algorithm that converts 
Y-programs to [/"-programs. Therefore there exists a total computable function 
t: £ —> £ such that [t(s)]//(&) = V(s,b) for all s,b. This function t can be used as
гф
J12-

339 Provide details to this argument.

Now we can relate the complexity of problems expressed by formulas to IPC: 
If a formula Ф(p,q...) is provable in IPC, then the complexity of the problem
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Ф(Х, Y,...) is bounded by a constant (depending on Ф but not on X ,7 ,...) . More­
over, there exists a string s that is a solution to the problem Ф(Х, Y,...) for all 
X, Y,.... This was shown essentially by Kleene by simple induction on the length of 
the derivation of Ф(р, q ...). For example, assume that Ф (p,q...) is the IPC axiom 
p —> (q —»■ p). Then s is the program “transform a given string x into a program 
that outputs x for every input”.

340 Complete this argument, and show that for each formula Ф(p, q ...) prov­
able in IPC there exists a string s that solves Ф(Х, Y,...) for all problems X, Y,....

Surprisingly, a kind of reverse statement is also true: If a formula Ф(p, q, . . .) 
without negations is not provable in IPC, then the complexity of Ф(Х, Y , ...) is not 
bounded (and grows linearly, as the following theorem states):

T heorem 238. Let Ф ( t i , . . . , tk )  be a propositional formula with connectives 
Л, V, —> (no negations and no logical constant _L ). Assume that Ф is not provable 
in IPC. Then there exists e > 0 and a sequence of finite non-empty sets X ™,. . . ,  X \? 
(for n = 1, 2, . . . ) that contain only strings of length at most n, such that the com­
plexity of Ф(Х^ , . . . ,  X£) is at least en for all sufficiently large n.

This is the main result of this chapter. We will prove it modulo some result 
about formulas that are not provable in IPC.

Historical remark. The first non-constant lower bound for Ф(Хр,... ,Х%) for 
formulas that are not derivable in IPC was shown in [42]. The linear lower bound, 
as in Theorem 238, is due to A. Chernov [38].

13.3. Some formulas and their complexity

In the proof of Theorem 238, we use as a tool some bounds for complexities 
of problems obtained by substituting singletons in non-provable formulas. Some of 
these bounds are of independent interest (e.g., the bounds we already mentioned). 
Let us start with more examples of this type.

First, let us consider Peirce’s law,

((p q) p) p.
Peirce’s law is provable in classical propositional logic (it is true for all Boolean 
values of its variables), but it cannot be proved in IPC. Thus, by Theorem 238, for 
all n we can find non-empty sets X, Y  of strings of length at most n such that the 
complexity of the problem ((A —»• Y) —»• X) X  is higher than en. However, it 
turns out that the complexity of the problem ((x —* y) —* x) —> x (as usual, we 
write just x for singleton {x}) is O(logn) for all strings x, y of length at most n 
(Theorem 239 below).

There is no contradiction here: The complexity of ((A —»• Y) —»• X)  —> X  is 
small for all singletons X  and Y. However, it may be large for arbitrary finite 
non-empty sets X  and Y.

Theorem 239. The complexity of the problem ((x —> y) —> x) —> x is O(logn) 
for all strings x,y of length at most n.

PROOF. It is enough to provide an algorithm that gets n and a solution to 
(x —> y) —> x and outputs x. This algorithm works as follows. Let p be a solution 
to (x —> y) —> x. Let 5 denote the set of all strings of length at most n. For 
every total function r :  5 —* 5 (there are finitely many of them), let us fix some
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program lT that computes r. We say that a pair (u,v) £ S x S  is compatible with 
p if \р]{1т) = и for all t :  S' —> S  such that t (u) — v. By assumption, the pair (x, y) 
is compatible with p. Given p and n, we can enumerate all pairs compatible with 
p. We claim that the first component и of the first (in fact, every) compatible pair 
(u,v) is equal to x. (So we can find x given p and n, as we promised.) Indeed, 
assume that u / i .  There exists a function т such that т(х) = у and t (u) — v. 
Then p should produce both и and x for the input lT, a contradiction. □

A careful reader might notice that this argument is not entirely complete. We 
have used implicitly that for any given finite function т (presented as the table 
of its values) one may effectively find its program lT. This is a corollary of our 
assumption about programming language (the list of values can be considered as a 
program in some other language, and that program can be effectively translated to 
our language).

Note also that we could restrict ourselves to a smaller class of functions (e.g., 
linear functions ax + b if S  is enriched with a field structure). We only need that 
for every two different points, and for every two prescribed values in these points, 
there is a function in the class that has the required values in those points.

Prove that in the statement of the previous theorem we can replace341
O(logn) by 0(\ogk), where к — max(C (x), С (y)).

(Hint: Consider the shortest programs for x and у instead of x and у them­
selves. Then S  can be replaced by the set of all strings of length at most k. The 
program lT works as follows: for input и it searches for the first program p of length 
at most к that produces u, applies т to p, and then decompresses the result.)

This theorem, together with the inequality

C(Y) < C(X) + C(X  —► Y) + 0(logC(X)),

implies that C(x) < C((x —> y) —> x) + O(logn) for all strings x and у of length at 
most n (and hence, C((x —> y) —> x) — C(x) + O(logn), as the reverse inequality 
is trivial).

It is worth noting that there exist formulas A(p,q) and B(p,q) such that the 
complexity of B(x,y) never exceeds significantly the complexity of A(x,y) (for all 
strings x and y), but the implication A(x, y) —> B (x , y) has rather high complexity.

An example of this kind is a pair of formulas (x —> у) —> у and x V y. (By 
the way, they are classically equivalent.) As we will show, their complexities can 
differ at most by O(logn) for n-bit strings, but the complexity of the problem 
((x —У у) —У у) —ï {x V y) could be as high as n.

To show this, consider first the problem (x —> y) —> y.

Theorem 240. The complexity of the problem (x —>• y) —»■ y is equal to the 
complexity of the problem х \/  y (up to О (log n)-additive terms, for strings x and у 
of length at most n).

(Recall that the complexity of x V у is min(C'(a:), C(y)) + 0(1).)

P roof. To prove this, we present (1) an algorithm that transforms every so­
lution to ж V у into some solution to (x —> у) —> у , and (2) an algorithm that gets a 
solution to (x —> у) —> у and O(logn) bits of additional information and produces 
some solution to x V y.
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The first algorithm gets [0, x] or [1 ,y\ and should produce a program that maps 
every solution to (x —>■ y) to y. If the input is [1, y], we generate the program that 
outputs y (without even reading its input). If the input is [0,x], we produce the 
following program: apply the solution to (x —>■ y) (given as input) to x, and output 
the result y.

The second algorithm is more interesting. Given a solution to (x —> y) —>■ y, 
a number n (an upper bound for lengths of x and y), and one additional bit of 
information (see below), the algorithm outputs some solution to x V y.

Let p be a given solution to (x —> y) -A y. Let S  stand for the set of all strings 
of length at most n. For every function r  : S  —> S, we can effectively find a program 
Ij- that computes r. This time we say that a pair (u,v) £ S x S  is compatible with 
p if \p](lT) = v for all r  such that t (u) = v.

By definition, the pair (x, y) is compatible with p. However, other pairs could 
be compatible with p also. The main point is that for every two compatible pairs 
{u'jv') and (u,,,v"), we have either u' = u" or v' — v". Indeed, assume that 
и' Ф u". Then there exists a function r  such that t{u') = v' and r(u") — v". By 
definition p(lT) should be equal both to v' and v". So v' = v" unless u' — u".

Knowing p and n, we can enumerate all pairs compatible with p. Consider the 
first pair in this enumeration. As we have shown, either и = x or v — y, but we do 
not know which of these two cases happens. This is why we need an additional bit: 
we output и or v depending on the value of that bit. □

This argument can be generalized to prove the following statement:
Theorem 241. The complexity of the problem (x —»• y) -a z  (with O(logn)- 

precision for strings x, y, z of length at most n) coincides with the complexity of the 
problem z V (x Л (y —> z)).

As we have seen in Problem 335, the complexity of the latter problem is equal 
to min(C(,z), C(x) + C(z |x, y)).

PROOF. It is enough to provide two algorithms. The first one converts every 
solution for the second problem into a solution for the first problem. The sec­
ond algorithm gets a solution to the first problem and additional 0(\ogn)-bits of 
information, and it produces a solution to the second problem.

We start with the first algorithm. By definition a solution to the first problem 
is a program that maps every solution for x —> у to z. And a solution for the 
second problem, which is given to the algorithm, is either z or a pair (x, program 
that converts у to z). If it is z, we produce a program that maps everything to z. 
And if it is x and a program p that converts у to z, then we output the following 
program that is a solution to the first problem: apply the given solution for x —> у 
to x and get у ; then apply p to у and get z; output z.

The second algorithm gets a solution to the first problem, the number n and 
one auxiliary bit of advice, and produces a solution to the second problem.

Let p denote the given solution to (x -A y) —> z. Let S  stand for the set of 
strings of length at most n. For every function r  : S  —>■ S, we fix some program lT 
that computes that function. We say that a triple (u,v,w) £ S x  S x S  is compatible 
with p if \p](lT) = w for all r  such that t (u) = v.

By definition the triple (x, y, z) is compatible with p. Given p and n, we can 
enumerate all compatible triples; let (u,v,w ) be the first triple in the order of this 
enumeration.
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It may happen that w — z. In this case we know z (if we get an advice bit that 
says that this indeed the case).

If w ф z, then we can find both x and a solution to y —> z as follows. First, 
let us show that x — u. Indeed, if it were not the case, then there would exist a 
function r  that maps both x to y and и to v. Both triples (x, y, z) and (и , v, w) are 
compatible with p, therefore p(lT) would be equal to both w and z, contradicting 
to the assumption w Ф z.

It remains to show how to find z given у in the second case (w ф z). This is 
easy: in general, the problem у —> z is easier than (x —> y) —> z, since every у can 
be considered as a (constant) function that is a solution to x —» y. □

Historical remark. All the examples in this section are taken from [182] except 
for Theorem 241, which was taken from [142].

13.4. More examples and the proof of Theorem  238

Theorem 242. The complexity of the problem ((x —» y) —» y) —> (x V y) is 
equal to min(C(x |y), C(y\x)) + O(logn) for strings x and у of length at most n.

In particular, if x, у are independent random strings of length n, the complexity 
of this problem is close to n.

P roof. First, it is easy to see that the complexity of ((x —> y) —> y) —> (x V y) 
does not exceed C(y |x) + 0(1). Indeed, if p maps x to у and g is a solution .to 
(x —> y) —> y , then y equals \p](q).

Now let us prove that the complexity of ((x —» y) —» y) —» (x V y) is also 
bounded by C(x\y) + O(logn). It is enough to show that given a program p that 
maps y to x, a solution q to (x —> y) —> y and the number n, we can find x or y. 
Consider again the set S  of all strings of length at most n. Call a pair (u, v) G S  x S 
compatible with q if q(lr ) — v for all r : S —> S  such that t (u ) =  v. Obviously, the 
pair (x, y) is compatible with q.

We have seen that any two pairs compatible with q have either the same first 
components or the same second components. This implies that either all compatible 
pairs have first component x or all compatible pairs have second component y (or 
both). Indeed, assume that there is a pair whose first component x' is different 
from x. Then its second component is y, so the pair is (x ',y ). For the sake of 
contradiction, assume that there is a pair whose second component y' is different 
from y, and thus that pair is (x,y'). Now the pairs (x ,y ') and (x ',y ) violate the 
requirement mentioned above.

So let us assume that n, p, and q are given. We search for pairs compatible 
with q until the first such pair (и , v) is found. Then we do two things in parallel: 
(1) we look for other pairs compatible with q, and (2) we run p on v and verify 
the equality p(v) = u. One of these two things will happen: if p(v) is undefined or 
p(v) Ф u, then (и , v) ф (x, y) so another pair will appear. If we find another pair 
(u',v') compatible with q, then we know either x (if v ф v', then и — x) or y (if 
и ф и' , then v = у). And if we know that p(v) = u, we can be sure that и — x (if 
и Ф x, then v = y, hence и = p(v) = p(y) — x).

It remains to show that the complexity of ((x —> y) —> y) —> (x V y) cannot be 
much less than min{C(y | x), C(x \ y)}. We do this in the following way. We present 
a way to convert any program p that solves ((x —> y) —> y) —> (x V y) into a pair 
of programs (гх,гъ) such that either rq maps x to у or Г2 maps у to x. However,
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there is no indication which of these two possibilities happens, so in fact we exhibit 
a solution to the problem

(((.t - * y ) ^ y ) ^  (X V y)) -»> {(x ->• y)V(y -> x)).

This is enough to get the required bound for the complexity.
Here is the idea. Let p  be a solution to ((x —>■ y ) —> y) —>■ (x V y). We need to 

convert either x to y or y to x. Both x and y can be used to construct a solution 
for (x —> y) —> y; indeed, y  can be converted into a program that maps everything 
to y,  and x can be used to convert (x —> y) to y. Then we can apply p  to this 
solution and get a solution to ж V y, i.e., x or y. If it happens that we get the other 
string (not the one we started with), we succeed in transformation of x to у or vice 
versa. But why may we hope to be so lucky?

We apply a tool from computability theory. Fix a pair of disjoint coinputably 
enumerable sets А, В  C N that cannot be separated by a decidable (=computable) 
set. The latter means that every decidable set that contains A has a non-empty 
intersection with В  (and vice versa).

For every natural i and for every two strings u,v,  we consider the program 
qi(u,v)  that works as follows (its input s is considered as a program):

qi(u,v) on input s:
i £ A: output v,
i £ B: output [s](w);
[s](u) — v: output v — [s](w).

This means that g?(u, v) enumerates A, В  and applies s to м in parallel, waiting 
until one of the three events (listed before the colons) happens, and then performs 
the described action. Note that the first and second conditions are disjoint (since 
A and В  are disjoint); the third condition is not disjoint with the first two, but the 
action is the same anyway.

The construction guarantees the following properties:
(1) if i £ A,  then for every и the program qi(u, y) is a solution to (x —> y) —> y\
(2) if г £ В, then for every v the program qi(x, v) is a solution to (x —>■ y) —> y.
(3) for every i the program qi(x, y) is a solution to (x —»■ y) —»■ у .

Therefore, in all three cases \p](qi(u, v)) is a solution to x V у  (by our assumption
on p).

Now we can present programs rq and Г2  and prove that either rq maps x  to 
у or Г2 maps у to x.  The program rq applies p  to qi(x,v)  for all i £ В  and for 
all strings v in parallel, and waits until p  produces an output of the form [1, z] for 
some z] then rq outputs 2. Similarly, Г2 applies p  to qi(u,y)  for a lii £ A and for
all u, and waits until p  gives output [0, z] for some 2; then Г2  outputs 2.

The properties of qi mentioned above guarantee the correctness of the output; 
it remains to show that at least one of the events will happen. Assume that it is 
not the case and [p](qi{x,v)) always starts with 0 (for all i £ В  and for all v ) and 
\p](qi(u,y)) always starts with 1 (for all i £ A and for all u). In particular, this 
happens for v = у  and и = x. Recall that \p](qi(x,y)) is defined for all i, and in 
this way we can compute a separator for A and B,  a contradiction. □

The formula used in this theorem already looks quite complicated. However, 
for Theorem 238 we need to go even farther and consider some generalizations of 
the problem ((x —» £/) —» y) —»• (x V y).
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Consider arbitrary strings where к ^  2, and two arbitrary non­
empty disjoint sets I . J  c  {1,. . . ,  к}. Then consider the problem

((X - t  Y) Y) Z,

where X is the conjunction of singletons {uj} for i e I  (i.e., the /с-tuple), Y  is the 
disjunction of all Uj for i € J, and Z  is the disjunction of all singletons их, . . . ,  Uk- 
For example, for к = 2, I  = {1}, J  = {2}, we get the problem ((щ щ ) —>
( u i  V щ )  considered above. In another example we use different letters for the sake 
of readability:

{{xi A x 2 -»• yi V y2) -»■ У\  V y2) -»• x x V x 2 V yi V y2 V z.

T h e o r e m  243. The complexity of the problem ((X —> Y) —> Y) —> Z is lower 
bounded (with 0(1)-precision) by the minimal conditional complexity of щ given 
all other strings u i , . . . ,

P roof. This theorem generalizes Theorem 242, and its proof is also similar. 
We construct a tuple of к algorithms that has the following property. For every 
program p that solves ((X —ï Y ) —> Y ) —ï Z ,  there exists rn such that the mth 
algorithm, given p, reconstructs um from all other щ.

As before, the mth algorithm uses all other щ (with t ф m) to construct 
solutions to (X —y Y) —>• Y; then p is applied to these solutions. Note that if we 
know all ut except um, we either know all strings in X (and can construct a solution 
to X) or all strings in Y  (and can construct a solution to T; in fact, we get several 
solutions for Y, since Y  is a disjunction of singletons, but this is not important). It 
may even happen that we can find solutions to both X and Y  (e.g., if the missing 
string appears neither in X nor in Y). Having a solution to X or 7 , we may (as 
before) construct a solution to (X —> Y) —> Y  and apply p to it. If we are lucky 
enough to get pair [£, ut\ with t — m as the output of p (recall that m  is the number 
of the missing string we want to reconstruct), we know urn. (A technical note: we 
assume that solutions to Y  and Z  are pairs of the form [t,ut]; it is not exactly the 
case since we have not defined disjunction of many problems and should consider 
(■их V ( 112 V (• • • {uk- 1 V Uk) •••))) instead, but this is inessential.)

The only problem is to ensure that (for some m) this will indeed work, i.e., 
that we will obtain a pair [t, щ\ with t — m. This is done again using computability 
theory. Instead of computably inseparable sets, we now use a more general con­
struction, a computable diagonal function d. A function d from the set of natural 
numbers to its subset S  is called diagonal if for every partial computable function 
и of the same type there exists i such that d(i) ~  u(i). (Here a ~  b means that 
either both a and b are undefined or both are defined and a = b.) A computable 
diagonal function can be constructed as follows: Let d{i) be the value of the zth 
computable function on i.

For S = {0,1}, i.e., for Boolean-valued functions, such a function is determined 
by two disjoint enumerable sets (preimages of 0 and 1); the diagonal property 
implies that no total Boolean function can be different from d everywhere, so these 
enumerable sets are inseparable.

In the proof, we will use a computable diagonal function from the set of natural 
numbers to the set S = {1,. . . ,  A:}. More specifically, for every к strings vx, . . . ,  Vk 
and for every natural number i, we will construct a program qi(vx, • ■ ■ ,Vk) that has 
the following properties:
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(1) for original strings щ , ... ,Uk and every i, the program qi(u\ , . . . ,  мд,) solves 
(A -> Y) -> У;

(2) if d(i) = m, then qi(ui, . . . ,  щ)  remains a solution to (X  —> Y) —> Y  even 
after we replace um by any other string vm (i.e., ql(ul , . . . ,  um_] , vm,um+b . . . ,  uk) 
is a solution to (X  —> Y) —> Y  for every vm ).

Let us finish the argument assuming that we can construct such a program 
qi{v i , . .. ,Vk). The algorithm that reconstructs urn from the rest of the ut 's works 
as follows. We start (in parallel) the computations of d(i) for all inputs i. As soon 
as an i with d(i) — m is found, we apply the given program p to all the solutions 
to (X —>• Y) —> Y  of the form qi{u\ , . . . ,  wm_i, *, um+i , . . . ,  мд.) where * stands for 
arbitrary strings (all these programs are solutions due to (2)). As soon as one of 
p’s outputs is of type [m, *], we halt: the second component of the resulting pair is 
V>m-

As we said, property (2) implies the correctness of this algorithm (assuming it 
terminates). However we still need to show that this algorithm terminates for some 
m  (we do not wait forever). To this end we use the diagonal property of d. Assume 
that for all m  the computation does not terminate. This means, in particular, that 
this happens for <p(wb • • •, и к ) for all i. Property (1) guarantees, however, that in 
this case we apply p to a solution for (X —> Y) —> Y . Therefore, [p](çi(ui,. . . ,  мд)) 
is defined and is a solution to Z  for all i. Thus the computations do not terminate 
because the first component t of the output pairs never coincides with d(i) (for all i 
such that d(i) is defined). But this first component is a total computable function 
of г, so we get a contradiction with the diagonal property.

It remains to construct the program qi(v\,. . . ,  v^) (for arbitrary г and for arbi­
trary strings t»i,. . . ,  Vk). Given s as input, this program does two things in parallel:

(1) it runs the computation of d(i)\
(2) it uses vt for t G I  to construct a potential solution to A, and it applies 

s to that solution and checks whether the output of s equals [t) vt] for some t € J  
(the second coordinate coincides with the the tth element of the original tuple

As soon as one of these events happens (including the coincidence in (2)), the 
program performs the following actions:

• In case (1), when d{i) is defined and equals some m:
— if m  ^ / ,  we use vt (with t G I) to construct a tentative solution to 

X  and apply s to this solution; the output of s is returned as the 
output of qi(vi,. . . ,  Vk) on input s;

— if m € /  (and therefore m  ^ J), we return the pair [t,vt\ for some 
t G J  (to be precise, let us agree that we use minimal t G J); note 
that in this case output does not depend on s.

• In case (2), the program outputs the pair [t,vt] produced by s.
Why does this work? If V\, . . . , vд, coincides with щ , ... ,Uk, and s is a solution 

to (X  —> Y) —> Y, then the second event always happens unless the first event 
happens earlier; in both cases the output of дДиъ • • •, Wfc) is a solution to Z. So in 
this case the program qi(ui,... ,Uk) is a solution for ((A —ï Y) —> Y) —> Z.

Now assume that d(i) = m, that each vt , except for (maybe) vrn, coincides with 
ut, and that s is a solution to (A —> Y) —>• Y . In this case we do not know which 
of the two parallel computations will stop first. But in both cases the output of 
qi(vi , . . . ,  Vk) is guaranteed to be a solution to Z. Indeed, in case (1) we do not use
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the value of v.in at all. In case (2) we do use um, but we have two reasons to believe 
that the answer is correct (since the output of s coincides with [t. vt}), and one of 
these two reasons still works. □

To prove Theorem 238, we need to make one more step and consider slightly 
more general formulas. Again let i q , . . . ,  Uk be a tuple of strings. Consider several 
(N) pairs of disjoint set of indices:

h n j t = 0 , 1 = 1 , . . . ,N .
For each I we define problems Xi and Yi as before, i.e., let Xi be the conjunction of 
singletons щ for t G //, while Yi is the disjunction of singletons yt for t € J). Finally, 
let Z  be the disjunction of all singletons Ui,... ,Uk- Now consider the problem

( ( №  —» n )  -» у ,)  л • • • л ( (xN -> yn ) -> yn )) -4  2 .

T h e o r e m  244. The complexity of this problem is not less than the minimal 
conditional complexity of some ut relative to the tuple of all other i q , . . . ,  Uk (with 
0(1) -precision).

P r o o f .  The proof mainly repeats the previous argument. For each I, for each 
natural number г, and for each tuple v = (vi, ... ,Vk) that coincides with щ , ... ,Uk 
except for one component, we construct a program qu(v) that solves the problem

{ X ^ Y i ) ^ Y h
if d(i) is defined and is equal to the coordinate where и and v differ, or if v = и (in 
the latter case it is not important whether d(i) is defined or not and what is the 
value of d(i)).

For every m we consider the following algorithm that tries to reconstruct um 
given any solution p to the problem

( ( №  -4 U ) -> П )  Л • • • Л (№ v  -4 Yn ) -4 В Д ) -4 z

and given all the other components of u. We apply p to tuples (qu(v), . . . ,  qNi(v)) 
for all the tuples v that differ from и only in mth coordinate and all the i such that 
d(i) = m. If we are lucky and for some v,i the program p terminates and outputs 
a pair [m, *] with the first component m, then the second component is um (as we 
wanted).

As before, the diagonal property of d is needed to show that such a lucky 
coincidence will indeed happen for some m. More specifically, it will happen for v = 
и and for i such that d(i) coincides with the first component of \p](qu(v), ■ ■ ■ > qNi(v)) 
(by the diagonal property such an i does exist). □

The propositional formulas used in this theorem are called critical implications. 
Namely, a critical implication is a formula of the type

(((Pi —> Q \ )  —>■ Qi) Л • ■ • A ((P/v —> Q n ) —> Q n )) P?

where R  is the disjunction of certain variables s \ . ...  ,Sk, for each I formula P i is a 
conjunction of some of these variables and Q i  is a disjunction of some other variables 
( P i  and Q i  have no common variables and are not empty). Critical implications are 
not provable in IPC; this can be easily shown using Kripke models and also follows 
from the previous theorem (recall that provable formulas have low complexity). 
It turns out that critical implications are universal non-provable formulas. More 
precisely, the following statement is true:
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T h e o r e m  245. Let Ф(£ь . . . ,  tm) be a propositional formula with connectives 
Л, V, —» that is not provable in IPC. Then there exists a number k, propositional 
formulas Ti , . . . ,  Tm using new variables s i , . . . ,  s^ with connectives A and V, and 
a critical implication J(s \ , . . . ,  Sk) such that the formula

*{Tu . . . ,T m) ^ J
is provable in IPC.

Note that formulas Ti do not use implication.
This result (due to Yu. T. Medvedev) belongs to logic and proof theory, so we 

do not include its proof in our book. Interested readers may refer to the paper [42] 
where the proof is given. This statement will be used in the proof of Theorem 238.

P r o o f .  Let Ф( t \ , ... , tm) be a formula which is not provable in IPC. The­
orem 245 guarantees that there exist a number к and formulas T\ , . . . ,  Tm with 
variables s \ , . . . ,  Sk and a critical implication J(s i , . . . ,  st) such that the formula

Ф(ТЬ . . . ,  Tm) —> J
is provable in IPC.

Let us take к independent random strings щ , . . . ,  Uk of length n/c (the constant 
c will be chosen later). Let us substitute corresponding к singletons for variables 
in T \ . . . . ,  Tm and denote the resulting non-empty sets by X i , . . . ,  X m. Those sets 
are finite, since formulas Ti in Theorem 245 do not contain implication. As the 
implication Ф(Ть ...  ,Tm) —> J  is provable in IPC, the complexity of the problem

Ф(ХЬ .. . ,  X m) —> J K , . . . ,  Uk)
is 0(1). By Theorem 244 the complexity of the problem J(wi, ... ,Uk) is at least 
n/c — 0(1). Therefore, the complexity of the problem Ф(Хь. . . ,  X m) is at least 
n/c — 0(1), too. This bound exceeds n/(2c) for all sufficiently large n.

Now we need to choose c in such a way that all the elements in X i , . . . ,  X m are 
strings of length at most n. Recall that every element of X i , ... ,Х Ш is obtained 
from singletons щ , . . . ,  ut by a fixed number of conjunctions and disjunctions. This 
means that we use pairing operations 0(1) times (starting from variables and tags 
0, 1). If we choose a pairing function in a natural way, it does not increase the size 
of strings more than linearly, so an 0(l)-iteration of pairing operations will give 
only a linear increase in size, and for suitable c we get strings of length at most
n. It remains to note that the statement of the theorem is invariant and does not 
depend on the choice of the pairing function. □

Historical remark. Theorem 242 is taken from [182]. Theorem 244 is due to 
A. Chernov [38].

13.5. P roof of a result similar to Theorem  238 using Kripke models

In the proof of Theorem 238, we used the statement of Theorem 245 (without 
proof). Muchnik showed that a similar statement can be proved directly using only 
the completeness theorem for Kripke models and IPC.

T h e o r e m  246. Let Ф( t i , . . . , tk )  be a propositional formula with connectives 
Л, V, —> not provable in IPC. Then for every n there exist problems X ” , . . . ,  X£ 
of complexity 0(n) such that the complexity of Ф ( Х ” , . . . ,  X £ )  is at least n for all 
sufficiently large n.
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This statement is weaker than Theorem 238 because now the sets Х г may be 
(and actually will be) infinite, and only their complexity (not the length of the 
elements) is 0(n). It would be nice to find a direct proof of the full version of 
Theorem 238.

PROOF. Let a finite Kripke model be given such that Ф(^,.. .  , t k )  Is false (in 
the root). For every integer n, using this model, we construct sets Xx,...,X*,. 
(We omit the superscript n since n is fixed in the sequel.) Let (K, ^) denote the 
underlying Kripke structure (a finite partially ordered set having the least element, 
which is called the ro o t- , the elements of К  are called w o r l d s ).

Let us fix some set L of non-negative integers including zero; we assume that 
every two different elements of L differ significantly (say, at least ten times). We 
also assume that all non-zero elements of L are much bigger than n. The elements 
of L are called lengths in the sequel (we will consider strings whose lengths are in 
L ). The elements of L are split between worlds in such a way that every world и 
gets infinitely many lengths, and this subset of L is decidable. We assume also that 
zero length is assigned to the root world. The lengths assigned to a world и are 
called и-lengths and all strings of such lengths are said to belong to the world u.

It is easy to see that all these requirements can be satisfied (in many ways). Now 
we can explain the construction of the set X* that corresponds to the variable ti. 
This set is a (disjoint) union of two parts. The first part contains all random strings 
from worlds where ti is true (in the Kripke model). The second part (denoted by 
C in the sequel) consists of all pairs (x, у) where x and у are random strings from 
incomparable (in К ) worlds. The second part is the same for all variables.

Here we need a technical clarification. A string is called random in this argu­
ment if its complexity is not too small compared to its length. Let us choose some 
threshold and say that a string is random if its complexity is not less than length/10. 
To be technically correct, we should replace pairs (x ,y ) by their encodings [x,y\, 
and use tags to distinguish between elements of different types:

С = {[x,y\ I x,y  are random strings from incomparable worlds},
Xi = {Ox \ U is true at some world v, and x is a random string from v} 

U { l y \ y e  C}.

Note that strings from different worlds have different lengths, so for every element 
of Xi we can reconstruct where it came from.

Now we prove by induction on the length of the formula Ф(£ь . . . ,  tk) the prop­
erties of the problem Ф(Х1?. . . ,  X^). Essentially, we prove that this problem can be 
described in the same way as was done for variables. More precisely, let us consider 
the set Хф defined as follows: it is the set of all random strings from worlds where 
Ф is true (in the model), plus all elements of C (added with the same precautions 
as before, with tags, pairs, etc.). We prove that the problem Ф(Х1?... ,Xfc) is 
algorithmically equivalent to the set Хф. This means that for every formula Ф 
there exist two computable functions f, g such that /  transforms every solution to 
Ф(Хх,. . . ,  Xk) into some element of Хф and g transforms every element of Xq, into 
some solution to Ф(Хх,. . . ,  Xk).

The base of induction (Ф is a variable U) is trivial: by definition Хф coincides 
with Xi, so we let /  and g be the identity function. For the induction step, we need 
to prove the following equivalences:
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(A) the set Хф V X© is algorithmically equivalent to the set ХфУ©;
(B) the set Хф Л X© is algorithmically equivalent to the set ХфЛ©;
(C) the set Хф —> X© is algorithmically equivalent to the set Хф_>©

We also use that the operations on problems are stable with respect to algo­
rithmic equivalence. This means that if U and V are algorithmically equivalent to 
U' and V , respectively, then the set U V V (U A V, U —> V) is algorithmically 
equivalent to the set U' V V  (resp. U' A V7, U' —> V ).  This is a straightforward 
consequence of the definition.

(A) By definition, ХфУ© is the union of the sets Хф and X©. So, given an 
element of Хф or X©, it is easy to produce an element of ХфУ©. On the other 
hand, if we get an element in the union of Хф and X©, we can find out which 
world it comes from (because the lengths are different) and construct a solution to 
Хф V X©.

(B) By definition, ХфЛ© is the intersection of the sets Хф and X©, and ХфАХ© 
is their Cartesian product. Having some element x in the intersection, we can easily 
produce an element of the Cartesian product, namely, [x,x]. On the other hand, 
assume that we get some element [x, у] of the Cartesian product of Хф and X©. If 
at least one of x, у belongs to C (which can be decided looking at the structure of x 
and y), then this element belongs to the intersection of Хф and X© (both contain 
C). If not, then x and у are random strings from the worlds where Ф and О are 
true (in the model). Looking at the lengths, we can find these two worlds, say, и 
and v. Now we distinguish two cases:

(1) The worlds и and v are not comparable in K. Then we produce the pair 
[x, y] which belongs to C by definition (and therefore belongs to the intersection of 
Хф and X©).

(2) The worlds и and v are comparable, e.g., и precedes v. Then (due to 
monotonicity) the formula Ф is true also in v, so the element у belongs to the 
intersection of Хф and X©.

(C) This is the central part of the proof. We have to show that, given some 
element of Хф_>©, we can find an element of Хф -©• X© and vice versa. We start 
with the first claim.

Assume that a string x 6 Хф_>© is given. We need to find some solution to 
Хф —»■ X©. In other words, given x and some element y G Хф, we need to find an 
element of X©. If either x or у belong to C, we output this element of C (recall 
that C is a part of X©). Now assume that both x and у do not belong to C. Then 
x is a random string from some world и where Ф —»■ 0  is true, and у is a random 
string from some world v where Ф is true (and both worlds can be reconstructed 
from the lengths of x and y). Then three cases are possible:

(1) If v precedes u, then Ф is true in и also. Therefore, 0  is true in и (since 
the implication Ф —> 0  is true in и). So x belongs to X© (and we may output x).

(2) If и precedes v, then 0  is true in v, since both Ф is true in v and Ф —> 0  
is true in v (monotonicity). Therefore у belongs to X© (and we may output y).

(3) If и and v are incomparable, then the pair [x, y] belongs to C (and, therefore, 
X©), so we output [u,v].

It remains to show that, given an element r of Хф —> X©, we can construct 
some element of Хф_>©. So we assume that a program r is given that transforms 
every string in Хф into some string in X©.
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If the formula Ф —>• 0  is true in the root world, the empty string A belongs to 
АГФ_>.© and we output Л.

Now let us assume that Ф —> 0  is false in the root world. Then (by the 
definition of implication in Kripke models) there exists some world и where Ф is 
true and 0  is false. Let us choose some big length / (much bigger than the length 
of r) assigned to u. We know that program r on every random string of length 
/ terminates and produces some element of X q . However, we do not know which 
strings of length / are random and which are not. So we apply r (concurrently) to 
all strings of length /. If some string s appears more that 2Z/2 times as r ’s output, 
then we can be sure that s belongs to X q . Indeed, the number of non-random 
strings of length / is much smaller than 2Z/2, so s should be also an output of r for 
some random input. Therefore, s belongs to X q C Xp^©.

Let us try to prove that there is a string s that has many (more than 2Z/2) 
preimages. Let x be a random string of length /, and let s be the output of r on 
input x. The complexity of s does not exceed (up to a logarithmic term) the sum 
of lengths of x and r, so it is significantly less than 21. Moreover, s belongs to X q , 
so s equals either 0£ or l[y,z] where t ,y ,z  are random strings of allowed lengths. 
Therefore, the lengths of t,y, z cannot exceed /. (If these strings are longer than /, 
they should be much longer due to the choice of lengths and, being random, they 
should have large complexity compared to /.) For t (if the output has form 0£) we 
know more: the length of t should be strictly less than I, since t comes from a world 
where 0  is true, and this world differs from и (recall that 0  is false in и). So the 
length of t does not exceed //10. For у and z (if the output has form 1 [y, z]) we also 
have additional information: у and z come from incomparable worlds, so they have 
different lengths. Therefore, at most one of them can have length I, and the other 
one should be short: either the length of у or the length of z does not exceed //10. 
If we knew that both у and z always have lengths at most //10, we could conclude 
that the set of all outputs of p on random inputs of length / has cardinality much 
less than 2Z/2, so some element has a lot of preimages (more than 2Z/2).

Since we cannot guarantee this (that one of strings у and z can have length 
/), this argument does not work. Still we can save something from our reasoning. 
There are two possibilities: either (1) some s has more that 2Ч2 preimages, or 
(2) there exists у such that for more than 2 1! 2 inputs x of length / the program 
r outputs an element of the form 1 [y,z\ or 1 [z,y\ for that у and some z of length 
/. (The values of z can be different for different inputs.) In the second case the 
string у must be a random string from some world incomparable with u. Indeed, 
at least one of the inputs that are transformed by r into 1 [y, z] or 1 [z, y] is random, 
so the output should belong to AT©. That is, у and z are random and belong to 
incomparable worlds. The string z comes from world и (because z has length /); 
therefore у comes from some world incomparable with u.

Let us summarize our findings. We apply r to all strings of length / and find 
either s or у with the properties described. In the first case (some s has a lot of 
preimages) we know what to do: s belongs to X q С Хф_».©. In the second case we 
obtain a random string у from some world v that is incomparable with u. It may 
happen that Ф —> 0  is true in v; then we are done. If not, there exists a world 
щ above v where Ф is true and 0  is false. We can repeat our argument for щ 
and get either some element of X q or a random string from some worlds Vi that is 
incomparable with щ. Note that v\ cannot be below v , since in this case it would
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be below щ. Therefore, either vi is incomparable with v (and we have a pair of 
random strings from incomparable worlds) or is strictly above v. In the latter case 
either Ф —> 0  is true in v\ , or we can repeat our arguments for tq and so on. This 
process cannot be infinite since model К  is finite and cannot contain an infinite 
increasing sequence of worlds.

We have finished our induction argument showing that the set Ф (^1, . . . ,  Xk) is 
algorithmically equivalent to Х ф .  By assumption, Ф is false in the root world, so all 
strings in Х Ф have length much bigger than n, and the complexity of Ф(Ах,. . . ,  Xk) 
exceeds n. However, we need to guarantee also that complexities of all Xi are 0(n). 
To achieve this, we need to adjust our argument: We may assume without loss of 
generality that К  has maximal element where all variables are true (this does not 
change the truth values in other worlds). Also we may assume that length 2n is 
assigned to this maximal world. Then every random string of length 2n belongs to 
all Xi. □

Historical remark. The proof of Theorem 246 (due to An. A. Muchnik) is 
published here for the first time.

13.6. A problem whose complexity is not expressible 
in term s of the complexities of tuples

We have found (with logarithmic accuracy) complexities of several problems 
that can be obtained from singletons using the operations Л, V, —>. The reader 
can wrongly deduce that complexity of every problem obtained from singletons 
{x},{y},. . .  using these three operations can be expressed through complexities 
of x ,y , ..., their pairs, triples, etc. (with some decent, say logarithmic, accuracy). 
This is not the case. The problem (x —> z) A (y —> z) (whose complexity equals 
the maximum of C(z\x) and C(z\y), with logarithmic accuracy) is already close 
to the border of the area where this is possible. It turns out that the complexity 
of a slightly general problem (a —> c) A (b —> d) cannot be expressed through the 
complexities of a, b, c, d, their pairs, triples, etc. This is stated in Theorem 247 
below.

We start with several simple observations on the complexity of this problem.
342 Prove that for all strings a, b,

logarithmic accuracy) :
c, d the following inequalities hold (with

C({a —► c) A (6 —► d)) ^  C(c\a) + C(d\b),
C((a —> c) A (6 —> d)) ^  C(d\b, c) + C(c),
C((a —>■ c) A (& —>• d)) ^  C(c\a, d) + C(d),
C((a —> c) A (b —>• d)) ^  C(b,c,d\a) — C(b\a,c), 
C((a —> c) A (6 — d)) > C(a, c,d\b) -  C(a \b,d).

343 Problem 342 establishes three upper bounds and two lower bounds for 
the complexity of the problem (a —> c)A (b —> d). Prove that there exists a sequence 
of quadruples (an, &n, cn, dn) of strings of lengths 0 (n) such that for all n each of 
the upper bounds is larger than each of the above lower bounds by n — 0(1).

(Hint: Let a — d and b = c where a,b are independent random strings of 
length n .)
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T heorem  247. For some positive 5 there exist two sequences of quadruples 
än,bn,cn,dn and an,bn,cn,dn of strings of lengths 0 (n) such that the complexity 
of the problem (än —>■ cn) Л (bn —> dn) exceeds the complexity of the problem 
(an —> c„)A (bn —>■ dn) at least by 5n. On the other hand, the difference between the 
complexities of strings än,bn,cn,dn and the complexities of strings an,bn,cn,dn is 
at most O(logn), and the same thing holds not only for strings themselves but also 
for all their pairs, triples, and the quadruple.

P r o o f . Geometric version. We start with the following observation. For the 
quadruple än,bn,cn, dn (from the statement of the theorem) both lower bounds from 
Problem 342 for complexity of (a —> c) A (b —> d) must be strict: The difference 
between the complexity of (ân —> cn) A (bn —>■ dn) and both lower bounds must be 
more than 6 n. We will first exhibit such a quadruple. Then we will find another 
quadruple with the same complexities (of its components, their pairs, etc.), for 
which this difference is o(n).

We use the same geometric arguments as in the construction of words whose 
mutual information cannot be represented as a string (see page 357). Consider 
the three-dimensional affine linear space over the field of cardinality 2n. We will 
consider lines and planes in that space. The number of points in the space is 23n, 
the number of lines is about 24n: every line can be identified by its arbitrary two 
different points, there are about 26n of pairs of different points and every line can 
be represented in about 22n different ways by a pair of its points. The number 
of planes is about 23n: every plane can be identified by three different points, the 
number of triples of different points is about 29n, and every plane has 22n points 
and hence has about 26n triples of different points. Let (a, b) be any random pair of 
intersecting lines, c their common point, and d the (unique) plane containing both 
lines à, b.

Then C(ä, b) — 7n (with logarithmic accuracy). It is not hard to check that for 
the quadruple à, b, c, d both lower bounds from Problem 342 are equal to n (with 
accuracy O(logn)).

Let us show that
C((ä —>■ с) Л (b —>■ d)) ^  1.5n

(with precision O(logn)).
Let 7 be a solution to the problem (â —> c) A (b -> d). Then 7 is a pair of 

programs {a, ß) such that a transforms ä into c and ß transforms b into d. Let S 
stand for the set of all pairs of different intersecting lines a, b such that the program 
a transforms a into the common point of a and b and the program ß transforms b 
into the plane containing both a and b. For any given triple (a, ß , n) we are able 
to generate all elements of S. Since the pair (à, b) is in S, we can deduce that

7n ^  C(ä, b) < C(7) + log IS I
(with accuracy O(logn)). Thus it suffices to show the upper bound 0(25,5n) for 
the cardinality of S. This bound is a direct corollary from the following lemma.

L e m m a . Assume that we are given a pair of functions (/, g) such that the first 
function maps every line to a point on that line and the second function maps every 
line to a plane containing that line. Let the set S consist of all pairs of lines (a, b) 
such that the point f(a) belongs also to b, and the plane g(b) also contains a. Then 
S contains at most 0(25,5n) pairs.
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P r o o f . Directly from the definition we can derive the upper bound \S\ — 
0 (26n). Indeed, for every line b there are about 22n lines a in the plane g(b), thus 
the cardinality of S  exceeds the number of lines (2 4n) at most 22n times. This 
bound can also be derived by counting, for every line a, the number of lines b 
passing through the point /(a). Notice that in the first argument we did not take 
into account that b should pass through the point /(a), and in the second argument 
we did not take into account that the line a should lie on the plane g{b).

We will modify the first argument as follows. We used the fact that for every 
line b there are at most 22n lines a such that the pair (a, b) is in S. Now we will show 
that on average for every line b there are 0(21-5n) lines a such that the pair (a, b) 
is in S. To prove this, we will certainly take into account the condition /(a) G b. 
(We could also modify the second argument and show that on average for every 
line a the set S  has 0(21-5n) pairs of the form (a, *).)

To this end we partition S  into slices. Each slice is identified by a plane d and 
consists of all pairs (a, b) with g{b) — d. Thus both lines from all pairs from the 
same slice lie on the same plane. We will upper bound the cardinality of each slice, 
and then we will sum up the obtained bounds.

Let us fix a plane d and bound the number of pairs in the slice corresponding 
to d. To this end fix a point c on the plane d and let Ac denote the set of all lines a 
on the plane d with /(a) = c. Similarly, let Bc stand for the set of all lines b passing 
through c with g(b) — d (the conditions imply that the line a passes through c and 
the line b lies on d). It is clear that the cardinality of the slice is at most

EHciibc| < / e i ^ e i ^ i 2
с V е C

(we have applied the Cauchy-Schwarz inequality). It is easy to bound both sums in 
the right-hand side of the displayed inequality, as each of them has a clear meaning. 
More specifically, the sum Y^c I Ac 12 is proportional to the probability of the follow­
ing event: For a randomly chosen (w.r.t. the uniform probability distribution) pair 
of lines (a', a") on the plane d, it holds that f{a') = f{a"). Indeed, this probability 
equals the sum over all c of the probability of the intersection of independent events 
f{a') = c and f{a") — c. The probability of each of these two events is equal to the 
ratio of I Ac I and the total number of lines on d, which is about 22n. On the other 
hand, the probability of event f(a') = /(a") is at most 2 ~n (for every fixed a' the 
probability of event f{a') = f{a") does not exceed the probability that a" passes 
through the point /(a '), which is about 2~n). Hence the sum l^ e |2 does not 
exceed

( 22n)2 • 2~n =  23 n .

This inequality holds up to a constant factor.
The second sum | Bc | 2 is related to the average number of points shared 

by independent lines 6', b" chosen at random (w.r.t. uniform distribution) from the 
set Md which consists of all lines b with g(b) = d (thus all lines from Md lie on 
the plane d). Indeed, the average cardinality of intersection of b' and b" is equal 
to the sum, over all points c G d, of probability of the event c G b' П b". This 
event is the intersection of independent events c G b' and c G b". The probability 
of each of these events equals the ratio of \BC\ and | Md \ ■ Hence the average 
number of common points in b' and b" is equal to the ratio of the sum | Bc |2 to 
the square of | Add I • On the other hand, any two different lines have at most one
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common point, and two coinciding lines have 2n common points. The lines b' and 
b" coincide with probability 1 / 1 Md |, thus the average number of common points 
in b' and b" does not exceed 1 + 2n/1 Md | . Hence

£ | B C|2 < \Md\2(l + 2n/ \M d\)=  \Md \ 2 +  (I Mi I + 2n)2.
c

Recall that the number of pairs (a, b) in the slice identified by the plane d is at 
most I Ac 12 J2c I Be 12 • Therefore it does not exceed

y/23n(\Md \ + 2 n ) 2 = 21,5n( I Md I + 2 n)

(up to a constant factor).
It remains to sum up the resulting upper bounds of slice’s cardinalities over 

all d:

| S |  <  2l*nY,(.\Md\ + 2 n ) =  2 1 5 n ( ^ \Md\+J22n
d \  d d

The families Md are disjoint and hence the sum of their cardinalities is equal to the 
total number of lines (about 24n). The number of planes is about 23n and therefore 
the second sum is also about 24n. This completes the proofs of both the lemma 
and of the lower bound for the complexity of the problem (a —> c) A (b —> d).

To complete the proof of the theorem it remains to find another quadruple 
(a, b, c, d) that has the same complexities as (a, b, c, d) and such that the complexity 
of the problem (ä —> c) A (b —> d) is close to n.

To achieve this, we pick a random word of length In  and chop it into seven 
pieces u,v,w,p,q,r, s, each of length n. Then let ä — uvws, b — pqrs, c = ups, 
d = vqs. A simple counting reveals that the complexities of words from both 
quadruples, their pairs, etc., are equal to

C(a) = C(b) = An, C(c) = C(d) = 3 n,
C(a, b) = 7n,

C(a, c) = C(a, d) — C(b, c) — C(b, d) — C(c, d) — 5n,
C(a, c, d) — C(b, c, d) — 6n,

C(a, b, c) = C(a, b, d) = C(a, b, c, d) = In.

The complexity of the problem (ä —> c) A (b —> d) is close to n, since given bitwise 
XOR of p and v we can transform ä to c, and b to d.

Probabilistic version. Again we start with exhibiting a quadruple än,bn,cn, dn 
such that the difference between complexity of (än —> cn) A (bn —> dn) and both 
lower bounds from Problem 342 is linear in n.

Fix a natural n. We will find a quadruple of strings (à, b, c, d), each of length 
n and complexity close to n, such that complexities of all pairs of those strings are 
close to 2n and complexities of all triples and of the quadruple itself are close to 
3n. This implies that both lower bounds from Problem 342 for that quadruple are 
close to n. Besides, the complexity of the problem (a —> c) A (b —> d) will be close 
to 2n.

On the top level the construction is the following. Consider functions Q that 
map triples of words of length n to words of length n.



13.6. COMPLEXITY NOT REDUCIBLE TO COMPLEXITIES OF TUPLES 421

Lemma. For all sufficiently large n there is a function Q of complexity at most 
logn + 0(1) such that for at least half of triples (a, b, c) of words of length n the 
complexity of the problem (a -А с) Л (b —> Q(a, b, c)) is at least 2n — O(logn).

Before proving the lemma, let us explain how it implies Theorem 247. Let Q 
be a function satisfying the lemma. The number of triples (a, b, c) that satisfy the 
inequality C((a -А с) Л (b —> Q(a,b,c))) ^  2n — O(logn) is at least 23n“ 1. Hence 
there is such a triple with complexity at least 3n — 1. Let (ä,b,c) be any such 
triple, and let d = Q(a,b,c). Then the complexity of the quadruple (a,b,c, d) and 
the complexity of the triple (â, b, c) are close to 3n, as claimed before. This implies 
that all the pairs of strings a, b, c, and the strings à, b, c themselves have claimed 
complexities.

Moreover, the triple (b, c, d) is also random. Indeed, the complexity of the 
problem (a —> с) Л (b —» d) is at least 2n and at the same time it is bounded 
from above by the sum C(c) + C(d\b, c) < 2n. Therefore both terms in the sum 
should be close to n. Thus the word d is independent from the pair (b, c). Since 
the pair (b, c) is random, the triple (b, c, d) is also random. The only requirements 
that are not guaranteed by the lemma are the randomness of the triple (a, b, d) and 
the randomness of the triple (ä,c,d). We will explain later how we will guarantee 
them.

P r o o f . To prove the lemma, we define a decidable property of functions Q 
that guarantees the statement of the lemma. Then we will show that for all large 
enough n a randomly chosen function has that property with positive probability 
(hence the property is not empty). By an exhaustive search, for any given n we 
are able to find a function Q with that property. Hence the graph of the first 
found such function Q can be computed from n and thus its complexity is less than 
logn + 0(1).

Let S  denote the set of all words of length n. Let M  be a set of (total) functions 
from S  to S. We say that the set M serves a quadruple (a, b, c, d) € S'4, if /(a) — c 
and g(b) — d for some pair (/, g) € M. The property of a function Q we spoke 
about above is the following:

every set M  consisting of less than 2k pairs of functions 
(from S  to S) serves less than 1/8 of the quadruples of the form 
(a,b,c,Q(a,b, c)).

We will specify the parameter к later; it will be a little less than 2n. The property 
guarantees that for at least 7/8 of the triples (a, b, c) the complexity of the problem 
(a —> с) Л (b —> Q(a,b,c)) is larger than k. Indeed, every solution to the problem 
(a —> с) Л (b —> d) is a pair of programs (p, q) with [p](a) = c and [ç](b) = d. 
For every pair (p, q) of programs of complexity less than к , we can extend in an 
arbitrary way the mappings a ^  [p](a) and b ha [g](6) onto the entire set S. We get 
a set M  of pairs of functions of cardinality less than 2k. Hence M  serves less than 
23n-3 quadruples (a,b,c,Q(a,b,c)). On the other hand M  serves all quadruples 
(a, b, c, d) such that the complexity of the problem (a —> c) A (b —> d) is less than k. 
(The reader certainly noticed that to prove the lemma we need the property with 
the threshold 1/2 in place of 1/8. It will become clear later why we have chosen 
1/8 as the threshold.)
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Let Q be chosen with a uniform probability distribution among all functions 
from S3 to S. In other words, the values Q(a,b,c) are independent (for different 
triples (a,b,c)) and uniformly distributed in S. We have to choose the parameter 
к = n — O(logn) so that with positive probability a random function Q has the 
property specified above.

We fix first a set M  consisting of 2k pairs of functions from 5 to 5 and bound 
from above the probability that it serves more than 23n-3 quadruples of the form 
(a, b, c, Q(a, b, c)). To this end let us divide triples (a,b,c) into “bad” and “good” 
ones. The number of bad triples will be less than 23n-4. And for good triples 
(a, b, c) only a fraction of at most 1/32 of quadruples (a, b, c, d) will be served by M. 
By the Chernoff inequality with high probability the number of served quadruples 
(a, b, c, Q(a, b, c)) with good (a, b, c) will be also less than 23n-4.

More specifically, a triple (a,b,c) (and also the quadruple (a,b,c,d)) is bad if 
the number of (/, g) from M  with /(a) — c is more than \M  |2“n+4 (this property 
depends on a and c only). Since for each pair (/, g) there are only 22n triples of the 
form (a, 6,/(a)), the number of bad triples is less than \M\ • 22n/ ( | M | 2 “n+4) = 
23n-4; the remaining triples are good.

We claim that if к < 2n — 9, then for every good triple (a, b, c) the probability 
of the event “M serves the quadruple (a,b,c,Q(a,b,c))” is less than 1/32. Indeed, 
if M  serves the quadruple (a,b,c,d), then d falls into the set that consists of all 
strings g(b) such that for some /  the pair (/, g) belongs to M  and /(a) = c. As 
(a, b, c) is good, this set has at most | M 12-n+4 =  2k ~ n + 4  strings. If к is chosen to 
be less than 2n — 9, then this set contains a fraction at most 1/32 of all strings of 
length n.

We will use now Chernoff inequality in the following form. Assume that we 
are given N  independent events, and the probability of each event equals p. Then 
for any £ with probability at least 1 — e“2e N the number of events that have 
occurred is fewer than (p + e)N. In particular, this holds for e — p: the number of 
events that have occurred is fewer than 2pN with probability at least 1 — e~2p N. 
Obviously, the same bound holds in the case when the probability of each event 
is at most p (maybe less than p). In our case each event is specified by a good 
triple (a,b,c) and thus (15/16)23n < N  < 23n: the event occurs if M  serves the 
triple (a, b, c, Q(a, b, c)). The probability of each event is at most p = 1/32. By the 
Chernoff bound with probability at least 1 — e“n 2̂ the number of good triples 
(a, b, c) such that M  serves (a, b, c, Q(a, b, c)) is at most N / 16 < 23n~4.

If at most 1/16 of good quadruples are served by M, then (even if all bad 
quadruples are served) the fraction of served quadruples is at most 1/16 + 1/16 = 
1/8. Hence M  serves more than 1/8 of quadruples (a, b, c, Q{a, b, c)) with probabil­
ity at most e-n ^ 3

It remains to verify that the probability e“n 2̂ is less than 1 even after being 
multiplied by the number of sets M  of cardinality 2k. The number of such sets is 
fewer than the square of the number of functions from S' to S' (that number equals 
2n2n ) raised to the power of 2 k :

2 2 n2 n2 k _  ^2 п+к+1оя n + 1

Let us compare this value to the probability
2 _ n ( 2 3n)
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of the event “M serves more than 1/8 of quadruples of the form (a, 6, c, Q(a, b, c))”. 
The product of displayed numbers is equal to 2 raised to the power which is the dif­
ference of two numbers: 2n+/c+logn+1 and f2(23n). We need that the latter number 
be bigger than the former one. This happens when к = 2 n — logn — 0(1). (Recall 
that the number of bad triples is small under the condition к ^  2n — 9, thus all our 
calculations remain valid.) The lemma is proven.

It remains to explain how to guarantee the randomness of the remaining triples 
{ä, b, d) and (â, c, d). The simplest solution is to guarantee this in exactly the same 
way we guaranteed the randomness of the triple (b,c,d). That is, we will modify 
the lemma by requiring that for half of triples (a, b, c) not only does the problem 
(a —> c) A (b —> Q(a,b,c)) have large complexity but that the symmetric problems 
(c —̂ 6) A {a —У Q(a, b, c)) and (b —> a) A (c —>• Q(a, 6, c)) have large complexity also.

L e m m a . For all sufficiently large n there is a function Q of complexity at most 
logn + 0(1) such that for more than half of triples (a, b, c) of words of length n the 
complexity of each of the problems

(a—>c) Л  (b^Q(a, b, c ) ) ,  ( c —>b) Л  (a^Q(a, b, c ) ) ,  and ( 6 —» а )  Л  (c^Q(a,b,c)) 

is at least 2 n — О (logn).

P r o o f . Recall that the previous lemma was proven by the probabilistic 
method: We have exhibited a property of a function and have shown that a ran­
domly chosen function does not have that property with exponentially small prob­
ability. Now, instead of one property of a function Q, we have three symmetric 
properties. Each of the three properties does not hold with exponentially small 
probability. Thus for all large enough n there is a function Q that has all the three 
properties. For such a function the number of triples served in at least one of the 
three ways is at most 1/8 + 1 /8 + 1/8 < 1/2. The lemma is proven.

It remains to exhibit another quadruple (a, 6, c, d) of strings that have the same 
complexities (as well as their pairs, triples, and the quadruple) as (â, b, c, d) and 
such that the complexity of the problem C((a —> c) A (b —> d)) is much less than 2n. 
To this end pick a random string of length 3n and chop it into three parts a, b, c, 
each of length n. Then let d = a 0  b ® c. Given a 0  c, we can transform a to c and 
b to d. Hence C((a —> c) A (b —> d)) ^ n  (up to an additive constant). □

344 Show that the complexity of the problem (p V q) —> (г V s) also cannot be 
expressed through complexities of p, q, r, s , their pairs, triples, and the quadruple.

{Hint: Let p = a, q = b, r = ac, s = bd where (a, 6, c, d) is either of the two 
quadruples used in the above proof (say, in the first one). The complexity of the 
resulting problem depends on which of the two quadruples we have chosen. On the 
other hand, the complexities of p, q, r, s, their pairs, triples, and the quadruple does 
not depend on this choice.)

It is instructive to compare the geometric proof with the probabilistic one. The 
geometric proof is more constructive than the probabilistic one: the first quadru­
ple is identified more explicitly in the geometric proof than in the probabilistic 
one. On the other hand, in the probabilistic proof, the complexity of the problem 
(a —>• с) Л (b —>• d) equals the upper bounds from Problem 342, which are all equal 
to 2n. For the quadruple (à —> c) A (b —> d) from the geometric proof, the upper 
bounds from Problem 342 are still equal to 2n; however, we were able to show only
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the lower bound of 1.5n for the complexity of the problem (ä —> c) A (b —> d). We 
do not know whether a better lower bound holds.

Historical remark. Theorem 247 was established in [142].



CHAPTER 14

Algorithmic statistics

14.1. T he fram ework and random ness deficiency

Generally speaking, mathematical statistics deals with the following problem: 
there are some experimental data, and we look for a reasonable theory that explains 
these data (is consistent with these data). It turns out that the notion of complexity 
is helpful in understanding this problem. This is a topic of algorithmic statistics. 1

Consider the following (simplified) example. A “black box”, switched on, has 
produced a sequence of bits, say, of length 106. (This sequence could also be 
considered as a number between 0 and 21-000,000 — 1.) What information about the 
internal structure of the black box could we get by analyzing this sequence? Or, 
at least, what conjectures about this internal structure look compatible with these 
data?

Classical statistics is not well suited to this situation. If we had information 
from several independent copies of our device, or if we could switch on the device 
many times (and have good reason to believe that the results are independent), or 
if we had some probabilistic distribution that depends on a parameter and needed 
to choose the most suitable value of this parameter—in all these cases the statistic 
would know what to do. But if our experiment cannot be repeated (which is not 
uncommon in practice, by the way) and we have no a priori information about the 
family of possible distributions, statistics does not tell us what to do. Indeed, we 
have a set of all 21,000,000 possible outcomes, and no structure on this set, so what 
can we say about one specific outcome?

Common sense nevertheless supports some conclusions even in this case. For 
example, if our device produced 106 zeros, then many people would think that the 
device is indeed very simple and can produce only zeros. Similarly, if the sequence 
was 010101 •• • (alternating zeros and ones), people would probably believe that 
the black box is a simple mechanism of a flip-flop type. And if the sequence had 
no visible regularities, people would probably think that the device is some kind of 
random bit generator. So the conclusions could be quite different, and it would be 
interesting to give some more formal support for our common sense reasoning.

In the first example (a zero string) the “explanation” (hypothesis) is a singleton: 
we think that perhaps the device can produce only this string. In the second 
example (and in all similar situations when the device produces a binary string x of 
a very small complexity) the same explanation looks reasonable: we believe that the 
device is made just for producing this specific string x. So the set of possibilities

1An alternative short introduction to this topic can be found in [201] (without proofs). A 
more detailed exposition that contains some material of this chapter but puts it in a different 
perspective can be found in a recent survey paper [202].

425
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is a singleton {x}. On the other hand, in the third example (a random-looking 
sequence) the “explanation set” is the set of all strings.

There are some intermediate examples. Imagine that our device produced a 
sequence of length 106 where the first 500,000 bits are zeros and the second half 
is a random-looking sequence of length 500,000 without any visible regularities. 
Then we may guess that the device first produces 500,000 zeros and then switches 
to another mode and produces 500,000 random bits. Here the explanation set has 
cardinality 2500,000 and consists of all strings of length 1,000,000 that start with 
500,000 zeros.

The general framework that covers all our examples, can be explained as follows: 
given a string x, we suggest some finite set A that contains x and can be considered 
as a reasonable explanation for x. What do we mean by “reasonable”? Here are 
two natural requirements:

• the set A should be simple (its Kolmogorov complexity C(A) should be 
small);

• the string x should be a “typical” element of A.
More specifically, Kolmogorov complexity C(A) of a finite set A is the complex­

ity of the list of its elements (written in some fixed order, e.g., sorted in alphabetic 
order, and encoded by a binary string). It does not depend on the specific ordering 
(lexicographical or any other computable total ordering) and on the encoding (up 
to a constant).

The notion of a “typical representative of a set” can also be made more precise 
using Kolmogorov complexity. Recall that if a set A consists of N  elements, then 
the conditional complexity C(x\A) of every x in A does not exceed logiV + 0(1) 
(each element can be described by its ordinal number in A—assuming that A is 
known). For most x in A the complexity C(x\ A) is close to logiV, since only very 
few elements have smaller complexity. Informally speaking, an element x is typical 
in A if d(x I A) is negligible.

Let us reformulate this in the following way. Consider a finite set A, an element 
x e A, and the difference

d(x\ A) = log|A| — C{x\ A).

As we have seen, this difference is non-negative (up to 0(1)). We call it the ran­
domness deficiency of x as an element of A. Note that we do not use this formula 
to define d(x \ A) if x is not in A; in this case d(x | A) is undefined. (It is also natural 
to let d(x I A) be +oo when x £ A, since in this case the explanation A is completely 
unsuitable for x.)

An element x is typical in A if d(x \ A) is negligible.

345 Prove that for a given A the probability of the event “a randomly chosen 
element x 6 A has deficiency greater than k” does not exceed 2~k.

(Here probability means just the fraction of elements with given property in A.) 
In fact, to make this statement true, we need to replace log|A| by [bgAJ; since 
complexity is defined up to a constant anyway, we are not that pedantic.

Let us note also that the function d (with two arguments x and A) is lower 
semicomputable (enumerable from below): We can effectively provide more and 
more precise lower bounds for it, but we cannot say when its value was achieved. 
(Indeed, function C is upper semicomputable.)
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346 Assume that a function 5(x\A) is given, where x is a string and A is 
a set containing that string and 5 has the following properties: (a) 5 is lower 
semicomputable; (b) for every finite set A and for every natural number к the 
fraction of strings in A with S(x \ A) > к is less than 2 ~k. Then S(x \ A) < d(x \ A) + 
0 ( 1).

This statement is a direct corollary of a similar statement for conditional Kol­
mogorov complexity (see Theorem 19 on p. 36). Its meaning is the following. There 
are different opinions about which elements of a given set are typical and which are 
not. That is, there exist different methods to measure non-typicality. Assume that 
we normalize each method so that, after normalization, in each set the fraction of 
/с-non-typical element is less than 2 ~k. Assume also that we can reveal non­
typicality of a given string in a given set provided we have enough time for that 
(that time can be quite long and not bounded by any total computable function). 
Then there is the best such method in the sense that the deficiency it reveals is not 
less than the deficiency revealed by any other method (up to an additive constant).

Randomness deficiency in a finite set is similar to randomness deficiency of an 
infinite sequence with respect to a probability measure (see Section 3.5). More 
specifically, it is similar to the maximal probability bounded randomness test. One 
can also define an analogue of an expectationally bounded randomness test.

347 Let the prefix randomness deficiency of a string x in a finite set A be 
defined as dp(x\ A) = log2 \A\ — K(x\ A). Show that dp(x\ A) is a maximal lower 
semicomputable function S of x and A such that (1/|A|) J2xeA 2<5(z |A)

is at most 1
for all finite sets A.

(Hint: Recall that prefix complexity coincides with the negative logarithm of 
the a priori probability.)

Thus a finite set A is considered a good explanation for x if it is simple and 
the randomness deficiency d(x\ A) of x in A is small. Those strings having such an 
explanation are called stochastic. Are there non-stochastic strings? This question 
will be answered in the next section.

Notice that we consider only statistical hypotheses that are uniform distribu­
tions over finite sets. In a more general framework one can consider also arbitrary 
probability distributions over strings (say, with finite supports and rational values 
to avoid technical problems). For such distributions the randomness deficiency of 
a string x with respect to a distribution P is defined as — log2 P(x) — C(x \ P ) (if 
P(x) = 0, then the deficiency is infinite: for such strings x the hypothesis P is 
completely unsatisfactory).

For uniform distributions (all elements of a finite set A have probability 1/|A|), 
the generalized definition of randomness deficiency coincides with the previous one. 
Notice that the general case is not very different from the case of uniform distribu­
tions:

348 Assume that x is a string of length n and P is a probability distribution 
(not necessarily uniform) of complexity к such that the randomness deficiency of 
x with respect to P is at most I. Then there is a set A of complexity at most к + 
0(log(/ + n)) containing x such that the randomness deficiency of x in A is at 
most I + 0(log(/ + n)).

(Hint: Let A = {y \ P(y) ^  p] where p is the probability of x with respect 
to P rounded to the nearest integer power of 2.)
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This problem explains why we are considering uniform distributions only. Let 
us stress that in the definition of Kolmogorov complexity of a finite set of strings 
we consider the set as a finite object represented by the list of all its elements in the 
lexicographical order. An alternative approach is to measure the complexity of a set 
as the minimal length of a program enumerating the set. With this approach the 
definition of stochastic strings becomes trivial: all strings are stochastic. Indeed 
for every string x of complexity к one can consider the set Sk of all strings of 
complexity at most к as an explanation for x. It has 0(2k) elements and hence 
the randomness deficiency of x in Sk is negligible. On the other hand, we can 
enumerate this set given к and hence Sk can be enumerated by a program of length 
log к + 0(1). However, intuitively Sk is not a good “explanation” for x.

In the case of general probability distributions (not only uniform), we also 
consider a distribution as a finite object represented by the list of all pairs (x , P(x)) 
for x in the support of P  and arranged lexicographically. This is why we need the 
support to be finite and the values to be rational. Alternatively, we could consider 
infinite supports and uniformly computable values—in that case the explanation 
would be a program computing the function x i+ P{x). It is essential that we do 
not allow lower semicomputable semimeasures represented by programs that lower 
semicompute them. If we did, then any string would obtain a perfect explanation— 
the maximal lower semicomputable semimeasure.

Historical remark. The first definition of randomness deficiency was given by 
Kolmogorov, who used the formula log|A| — C(x). The formula log|A| — C(x\A) 
used throughout the book is due to [60] (note that in [60] the prefix complexity is 
used instead of the plain one, the difference is 0(log(deficiency))). Kolmogorov’s 
randomness deficiency log |A| — C(x) is less than or equal to the randomness defi­
ciency log I A\ — C(x I A), and they differ by at most C(A). The two deficiencies may 
differ that much, e.g., for A — {x}. Perhaps Kolmogorov was interested only in 
sets A with negligible complexity, in which case these two deficiencies are close. For 
sets with large complexity the expression log |A| — C(x) may have large negative 
value and hardly makes any sense.

14.2. S tochastic ob jects

A string x is called (a, /3)-stochastic if there is a finite set A containing x with 
C(A) ^  a and d(x\A) ^  ß.

A natural question arises. Consider all strings x of length n and consider a 
and ß of order О (log/г) or o(n), making the complexity of explanations for x much 
smaller than the length of x. For such a,ß, are there non-stochastic strings (i.e., 
“non-explainable” objects)? An affirmative answer to this question is provided by 
the following theorem.

Theorem 248. Assume that 2a + ß < n — O(logn). Then there is a string of 
length n that is not (a, ß)-stochastic.

(The accurate statement is that there is a c such that for all large enough n 
and all a,ß  with 2 a + ß < n — clogn there is a string of length n that is not 
(a, /3)-stochastic.)

PROOF. Consider the list of all finite sets of complexity at most a. The Kol­
mogorov complexity of this list is at most a + O(loga) = a + O(logn) (see p. 25).
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Ignoring additive error terms of order O(logn) (here and also further) we will as­
sume that the complexity of the list is less than a.

Remove from the list all sets of cardinality more than 2a+l3. The Kolmogorov 
complexity of the resulting list is also less than a. By construction it has at most 
2a sets and each of them has at most 2a+@ elements. Thus the union of all sets in 
the list has less than 22 a + l 3 < 2n strings. Hence there is a string of length n that 
does not appear in any set from the list. Let t be the lexicographically first such 
string. Its complexity is at most a, as it can be found given n and the list.

Let us show that this string (denoted by t in the sequel) is not (a, /3)-stochastic. 
Indeed, assume that it is contained in some set A of complexity at most a. The 
cardinality of A exceeds 2Q+/3 since all smaller sets were taken into account by 
construction. Therefore

d(t I A) — log # A  -  C(t I A) > (a + ß) — C{t) > (a + ß) — a ^  ß
(one should also add a reserve of size clogn to compensate for logarithmic terms 
that we ignore). □

In the other direction we have the following trivial bound:

T h e o r e m  249. If a + ß > n + O (lo g n ) , all the strings of length n are (a,ß)- 
stochastic.

P r o o f . Indeed, we can split all n-bit strings into 2a sets of size 2^. □

As we will see later, the reality is closer to this bound than to the bound of the 
previous theorem. See Problem 365 on p. 449.

It is natural to ask how often non-stochastic objects appear. For example, what 
is the fraction of non-stochastic objects among all n-bit strings? It is immediately 
clear that this fraction does not exceed 2"^: Let A be the set of all n-bit strings, 
and note that strings with deficiency ß or more form only a 2“^-fraction of A.

On the other hand, if 2a + ß n, we can extend the reasoning used to prove 
Theorem 248. Namely, for some h we consider all sets of complexity at most a 
and cardinality at most 2 a+@+h. Then we take the first 2 h elements not covered 
by these sets; it is possible if 2a + ß + h < n. The complexity of those elements is 
bounded by a  + /i, so its deficiency in any set of size greater than 2 a+@+h exceeds ß. 
These arguments (with 0(logn)-corrections needed) prove the following statement:

T h e o r e m  250. If2a + ß < n — O (lo g n ) , then the fraction of n-bit strings that 
are not (a, ß)-stochastic is at least 2 ~2 a~P~°^ogn\

Instead of a fraction of non-stochastic strings (i.e., the probability of obtaining 
such a string by tossing a fair coin), one can ask about their total a priori prob­
ability (i.e., the probability of obtaining such a string by a universal randomized 
algorithm). More formally, let m(x) be the discrete a priori probability of x as de­
fined in Chapter 4: m(:r) = 2~K(xï+°(1h Then we consider the sum of m(:r) over 
all x of length n that are not (a, /5)-stochastic. The following theorem estimates 
this sum:

T h e o r e m  251. If2a  + ß < n  — O(logn) and a < ß — O(logn), then this sum 
equals 2 ~a+° ^ n\

P r o o f . We need to prove both lower and upper bounds for this sum. The lower 
bound easily follows from the proof of Theorem 248. Indeed, a non-stochastic string
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constructed in that proof had complexity a and therefore its a priori probability is 
2 ~a (as usual, we ignore O(logn) corrections needed, now in the exponent).

To get an upper bound, consider the sum of m(x) over all strings of length n. 
That sum is a real number ш ^  1. Let ш be the number represented by first a bits 
in the binary representation of w.

Consider the following measure P  on strings of length n associated with Q. 
Start lower semicomputation of m(x) for all strings x of length n and continue 
until the sum of all obtained lower bounds for m{x) reaches Q. Let P{x) be the 
lower bound for m(x) we get at that time. If Q and n are given, we can compute 
P(x) for all x of length n. Therefore the complexity of P is at most a. The sum of 
differences between m(x) and P(x) over all strings of length n is bounded by 2~a.

As we saw in Problem 348, one can use arbitrary finite probabilistic distribution 
in the definition of stochasticity (with an 0(logn)-change in the parameters), not 
only the uniform ones. It remains to be shown that the total a priori probability 
of all strings x that have d(x\P) > ß is bounded by 2~a. Indeed, for those strings 
we have

log P(x) — C(x IP) > ß.
The complexity of P is bounded by a and therefore C{x) exceeds C(x\P) at most 
by a. Thus we have

— logP(x) — C(x) > ß — a.
We ignore 0(logn)-terms, so we can replace plain complexity by prefix complexity:

— log P(x) — К (x) > ß — a.
Prefix complexity can be defined in terms of a priori probability, so we get

log(m(x)/P(x)) > ß — a
for all x that have deficiency exceeding ß with respect to P. By assumption, 
a < ß with some safety margin (enough to compensate all the simplifications 
we made), so we may assume that for all those x we have P(x) < m(x)/2, or 
(m(x) — P(x)) > m(x)/2. Recall that the sum of m(x) — P(x) over all x of length 
n does not exceed 2~Q by construction of ш. Hence the sum of m(x) over all strings 
of deficiency (with respect to P) exceeding ß is at most 2”a+1, and this is what we 
wanted to prove. □

The notion of a stochastic object can be considered as a finite analog of the 
notion of an ML-random sequence with respect to a computable measure. The 
following problem expresses this similarity in more formal terms.

349 Assume that a sequence ш is ML-random with respect to some com­
putable measure. Prove that for all n the n-bit prefix of the sequence ш is an 
(O(logn), 0(logn))-stochastic string. (Hint: Use Problem 348.) Conclude that 
there is an infinite sequence that is not ML-random with respect to any computable 
measure. (Hint: Adding a short prefix does not affect non-stochasticity.)

Historical remarks. The first definition of (a, /3)-stochasticity was given by Kol­
mogorov (the authors learned it from his talk given in 1981 [83], but most probably 
it was formulated earlier in 1970s; the definition appeared in print in [174]). Kol­
mogorov and Shen ([174]) used the formula log |A| —C(x) for randomness deficiency.

The existence of non-stochastic objects (Theorem 248) was noted in [174]. The 
first estimates of the a priori measure for the set of non-stochastic objects appeared 
in [210].  The first tight bound 2 Q for the a priori measure of (a, /3)-non-stochastic
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objects is due to Muchnik [139, Theorem 10.10], who established it for all (a,/3) 
with 3a + ß < n. Both papers [210] and [139] used the Kolmogorov formula 
log \A\ — C(x) for randomness deficiency.

Theorem 251 appears to be new. Note that this theorem and Muchnik’s re­
sult use incomparable assumptions on the parameters a, ß. Besides, Theorem 251 
estimates the a priori measure of a larger set than Muchnik’s result.

14.3. Two-part descriptions

There is another natural way to estimate the quality of statistical hypotheses. 
Let us start with the following remark. If a string x belongs to some finite set A, 
we can specify x in two steps:

• first, we specify A;
• then we specify the ordinal number of x in A (in some natural ordering, 

say, the lexicographic one).
Therefore, we get C(x) ^  C(A) + log фА for every element x of an arbitrary finite 
set A (again with logarithmic precision).

There can be many two-part descriptions of the same string x (with different 
sets A). Which of them are better? Naturally, we would like to make both parts 
smaller (by finding a simpler and smaller set A): if we can decrease one of the 
parameters while not increasing the other one, this is an improvement. But which 
is better: simple A or small complex A? We can compare the lengths of the resulting 
two-part descriptions and choose a set A which gives the shorter one. This approach 
is often called the Minimum Description Length principle (MDL).

The following simple observation shows that we can move the information from 
the first part of the description into its second part (leaving the total length almost 
unchanged). In this way we make the set smaller (the price we pay is that its 
complexity increases).

Theorem 252. Let x be a string, and let A be a finite set that contains x. Let 
i be a non-negative integer such that i < log фА. Then there exists a finite set A' 
containing x such that # A! < фА/2г andC(A') < C(A) + i + 0(logmin{i, C(A)}).

P roof. List all the elements of A in some (say, lexicographic) order. Then 
split the list into 2* parts (first фА/2г elements, next фА/2г elements etc.; we omit 
evident precautions for the case when фА is not a multiple of 2г). Then let A' be 
the part with x. To specify A', it is enough to specify A and the part number, 
which requires at most i bits. (The logarithmic term at the end is needed to form 
a pair of these two descriptions; it is enough to specify the length of the shorter 
description.) □

We will use the following convenient (though non-standard) terminology: a set 
A is called а (к * I)-description (of every its element) if C(A) ^  к and log фА ^  I. 
Theorem 252 can now be formulated as follows: if some x has a (k* ^-description, 
then for every i 6 [0,1] it also has ((k + i + 0(logmin(i, к))) * (I — i))-description.

For a  g iven  str in g  x let us consider th e  set Px of all pairs (k,l) such  th a t x 
has а (к * ^ -d escrip tion , i.e ., th ere ex ists  a  se t A con ta in in g  x w ith  C(A) ^  к and  
log  фА ^  1. O bviously, th is  se t is closed  upwnrds and con ta ins W4th each  p o in t all 
p o in ts  on  th e  right (w ith  th e  b igger к) and on  th e  to p  (w ith  b igger I). T h e  last 
theorem  says th a t w e can  also m ove dow n-right adding  (г, —i) (w ith  logarithm ic  
precision).
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F ig u r e  52 . T h e  se t Px

We will see that movement in the opposite direction is not always possible. 
So, having two-part descriptions with the same total length, we should prefer the 
one with the bigger set (since it always can be converted into others, but not vice 
versa).

Let us look again at the set Px for some n-bit string x\ see Figure 52. It contains 
the point (0,n) that corresponds to A = Bn, the set of all n-bit strings (with 
logarithmic precision). On the other side the set Px contains the point (C(x),0) 
that corresponds to the singleton A — {x}. The boundary of Px is some curve 
connecting these two points, and this curve never gets into the triangle k + s ^  C(x) 
and always goes down (when moving from left to right) with slope at least —1 or 
more, as Theorem 252 says.

This picture raises a natural question: Which boundary curves are possible and 
which are not? Is it possible, for example, that the boundary goes along the dotted 
line on Figure 52? The answer is positive: take a random string of the desired 
complexity and add trailing zeros to achieve the desired length. Then the point 
(0, C(x)) (the left end of the dotted line) corresponds to the set A of all strings of 
the same length having the same trailing zeros. We know that the boundary curve 
cannot go down slower than with slope —1 and that it should end at (C(x),0), 
therefore it follows the dotted line (with logarithmic precision).

There is a more difficult question: Is it possible that the boundary curve starts 
from (0, n) and goes with the slope —1 to the very end and then goes down rapidly 
to (C(x),0)? (See Figure 53.) Such a string x, informally speaking, would have 
essentially only two types of statistical explanations: a set of all strings of length n 
(and its parts obtained by Theorem 252) and the exact description, the singleton 
{x}.

350 Show that such x is not (a, ß )-stochastic if a, ß are smaller than C(x) 
and n — 2C(x), respectively.

It turns out that not only are these two opposite cases possible, but also all 
intermediate curves are possible (assuming they have a bounded slope and are 
simple enough), if we allow a logarithmic deviation from the prescribed curve.
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logsize

F i g u r e  53. Two opposite possibilities for a boundary curve

T h e o r e m  253. Let к < n be two integers, and let to > t\ > • • • > tk be a strictly 
decreasing sequence of integers such that to ^  n and tk — 0; let m be the complexity 
of this sequence. Then there exists a string x of complexity к + О (log n) + 0(m) and 
length n+0(logn)+0(m) for which the boundary curve of Px coincides with the line 
(0, to)-(l,ti)— ■ ■ -(k,tk) with O(logn) + О(m)-precision: the distance between the 
set Px and the set T  =  {{i,j) \ (i < k) => (j  > t{)} is bounded by O(logn) + 0(m).

(We say that the distance between two sets P and Q is at most e if P is 
contained in e-neighborhood of Q and vice versa.)

P r o o f .  For every i in the range 0 ■■■ к we list all the sets of complexity at 
most i and size at most 2ti. For a given i the union of all these sets is denoted by 
Si. It contains at most 2l+ti elements. (Here and later we omit constant factors 
and factors polynomial in n when estimating cardinalities, since they correspond 
to O(logn) additive terms for lengths and complexities.) Since the sequence t{ 
strictly decreases (this corresponds to slope —1 in the picture), the sums i + U 
do not increase, therefore each Si has at most 2to — 2n elements. Therefore, the 
union of all Si also has at most 2n elements (up to a polynomial factor, see above). 
Therefore, we can find a string of length n (actually n + O(logn)) that does not 
belong to any Si. Let x be a first such string in some order (e.g., in lexicographic 
order).

By construction, the set Px lies above the curve determined by ti. So we need 
to estimate the complexity of x and prove that Px follows the curve (i.e., that T is 
contained in the neighborhood of Px).

Let us start with the upper bound for the complexity of x. The list of all objects 
of complexity at most к plus the full table of their complexities have complexity 
k + O(logfc), since it is enough to know к and the number of terminating programs 
of length at most к. Except for this list, we need to know the sequence to,... ,tk 
whose complexity is m.

For the lower bound, the complexity of x cannot be less than к since all the 
singletons of this complexity were excluded (via Tk).

It remains to be shown that for every i ^  к we can put x into a set A of com­
plexity i (or slightly bigger) and size 2li (or slightly bigger). For this we enumerate
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a sequence of sets of correct size and show that one of the sets will have the required 
properties. If this sequence of sets is not very long, the complexity of its elements 
is bounded. Here are the details.

We start by taking the first 2tj strings of length n as our first set A. Then we 
start enumerating all finite sets of complexity at most j  and of size at most 2*-» for 
all j  — 0, . . . ,  k, and get an enumeration of all Sj. Recall that x is the first element 
that does not belong to all such Sj. So, when a new set of complexity at most j  and 
of size at most 2tj appears, all its elements are included in Sj and removed from A. 
Until all elements of A are deleted, we have nothing to worry about, since A covers 
the minimal remaining element. If (and when) all elements of A are deleted, we 
replace A by a new set that consists of first 2li undeleted (yet) strings of length n. 
Then we wait again until all the elements of this new A are deleted. If (and when) 
this happens, we take 2li first undeleted elements as new A, etc.

The construction guarantees the correct size of the sets and that one of them 
covers x (the minimal non-deleted element). It remains to estimate the complexity 
of the sets we construct in this way.

First, to start the process that generates these sets, we need to know the length 
n (actually something logarithmically close to n) and the sequence to,...,tk-  In 
total we need m  + O(logn) bits. To specify each version of A, we need to add its 
version number. So we need to show that the number of different A’s that appear 
in the process is at most 2 г or slightly bigger.

A new set A is created when all the elements of the old A are deleted. Let us 
distinguish two types of changes of A: the first changes after a new set of complexity 
j  appears with j  ^  i and the remaining changes. The changes of the first type can 
happen only 0 (2 г) times since there are at most 0 (2 г) sets of complexity at most 
i. Thus it suffices to bound the number of changes of the second type. For those 
changes all the elements of A are removed due to elements of Sj with j  > i. We 
have at most 2J+L elements in Sj. Since tj + j  ^  U + i, the total number of deleted 
elements only slightly exceeds 2ti+l, and each set A consists of 2li elements, so we 
get about 2 г changes of A. □

351 Prove that we cannot strengthen Theorem 253 by requiring the distance 
between the sets Px and T  be O(logn) (and not O(logn) + 0{m)).

(Hint: The number of strings of length n + O(logn) is much smaller than the 
number of sets T  that satisfy the conditions of the theorem.)

Prove that there is no algorithm that, given any x, will find the boundary352
of the set Px with accuracy 0(\ogl(x)).

Stronger results on non-computability of the boundary of Px can be found in 
the paper [203].

Theorem 253 shows that the value of the complexity C(x) does not completely 
describe the properties of x\ different strings x of the same complexity can have dif­
ferent boundary curves of Px. This curve can be considered an infinite-dimensional 
characterization of x.

To understand this characteristic better, the following notation is useful. The 
classification of strings according to their complexity can be represented by an 
increasing sequence of sets So C S\ C S2 ■ ■ ■, where Si is the set of all strings 
having complexity at most i. The sets Si are enumerable (uniformly in г); the size 
of Si is 0(2г).
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Now, instead of this linear classification, we have a two-dimensional family Sij  
where Sij  is the union of all finite sets A with C(A) ^  i and log фА ^  j  (these sets 
were called the (î*j)-descriptions of their elements). We get a two-dimensional table 
formed by S i j ; note that it is monotone along both coordinates, i.e., Sij  increases 
when i or j  increases. Theorem 252 says that this table is (almost) increasing along 
the diagonal:

Sij C Si+k^j — k'
(As usual, we ignore logarithmic corrections: one should write

Sij  C *S'i+A:+0(logk),j — к
instead.)

To understand better the meaning of this two-dimensional stratification, let us 
look at the equivalent definitions of Sij. As usual, we ignore the logarithmic terms 
and consider as identical two families S and S' if Sij C S'i+0^ogl  ̂j+o(\ogi) where 
I = i + j.

By an enumerated list in the following theorem we mean an algorithm that 
(from time to time) emits binary strings (perhaps, with repetitions); the length 
of such a list is defined as the number of strings emitted (each string is counted 
as many times as it was emitted). Condition (c) assumes that the algorithm can 
produce strings in groups of arbitrary size (different groups produced by the same 
algorithm may have different sizes).

T h e o r e m  254. The following properties of a string x are equivalent in this 
sense (each of them implies the others with logarithmic change in the parameters):

(a) x belongs to S ij  (has an (i * j)-description);
(b) there exists a simple (—of complexity 0(log(i + j))) enumerated list of size 

at most 2*+J where x appears (for the first time) at least 2J steps before the end of 
the list;

(c) there exists a simple (= of complexity 0(log(i + j))) enumerated list of size 
at most 2*+J that includes x where strings are produced in at most 2 l groups;

(d) in every simple (—of complexity 0(log(i+j))) enumerated list that includes 
all the strings of complexity at most i + j ,  the string x appears (for the first time) 
at least 2J steps before the end of the list.

P r o o f .  To show that (a) implies (c), assume that (a) is true. Enumerate all 
sets of complexity at most i and of size at most 2J . When a new set appears, it 
forms a new group added to the list. In this way we get at most 2l groups of size at 
most 2J , so the total length of the enumerated list is at most 2*+J . The complexity 
of the enumeration algorithm is logarithmic since only i and j  should be specified.

To get (b) from (a), we should modify the construction slightly and add 2J 
arbitrary elements after each portion. The total number of elements increases then 
by 2l+J and is still acceptable.

On the other hand, (b) easily implies (a): we need to split the list in groups of 
size 2J . Then we get at most 2г groups, and only 2J last elements are left outside 
the groups. Therefore, x is covered by some group. Each group is determined by its 
ordinal number and therefore has complexity i (plus logarithmic term that covers 
the complexity of the list).

To get (a) from (c), we split each group into pieces of size 2J (except for one 
last piece that can be smaller). The number of full pieces is at most 2г, since the 
length of the list is at most 2*+J . The same is true for the number of non-full pieces.
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So every piece can be specified by its ordinal number, so its complexity does not 
exceed i.

So the properties (a)-(c) are equivalent (modulo logarithmic change in parame­
ters), and it remains to show that they are equivalent to (d). Evidently, (d) implies 
(b), so it is enough to show that (a) implies (d).

So let us assume that x is an element of some finite set A that has complexity 
at most i and size at most . All elements of A have complexity at most i + j  + 
0(log(i + j)). As usual, we ignore the logarithmic term and hope that the reader 
can make the necessary corrections.

Assume also that an enumerated list is given that includes all the strings of 
complexity at most i + j. We want to show that x will appear in this list not too 
close to the end and at least strings will follow it. Knowing the set A, we may 
perform the enumeration until all the elements of A appear in the list. Let В be the 
part of the list enumerated at that moment. The set В is a finite set of complexity 
at most i (since it is determined by A and the enumerating algorithm, which is 
assumed to be simple). Now consider the (lexicographically) first 2J strings outside 
B. Each of these strings is determined by В (of complexity i) and ordinal number 
(at most j  bits), so they have complexity at most i + j. And all these strings should 
appear in the enumeration after x. □

One could say that we have introduced an additional classification of strings of 
complexity at most I by measuring the distance to the end of the list. In terms of 
our two-dimensional stratification, we can speak of an increasing sequence of sets 
Sij  on the diagonal i+ j — I. (Strictly speaking, the increasing sequence is obtained 
only after logarithmic corrections.) Random strings of length n ^  I — 0(\ogl) (i.e., 
the strings of length n and complexity n) are at the beginning of this classification, 
having (I * 0)-descriptions. At the other end we have (few) strings that have only 
(0 * ^-descriptions.

353 Show that all strings at the end of the enumerated list of strings of 
complexity at most n (that are followed only by poly(n) strings) are almost equal 
in the sense that the conditional complexity of one of them given the other one is 
O(logn).

One might say that the difference between I and the logarithm of the number of 
strings after x in the enumerated list of all strings of complexity at most I measures 
how strange x is. (The equivalence of (b) and (d) guarantees that this measure 
does not depend significantly on the choice of enumeration.) Random strings of 
length at most I — O(logZ) are not strange at all, while the strings that are close to 
the end of the list, have maximal strangeness (close to I). But one should keep in 
mind the following:

• The strangeness of a given string x of complexity к (that is determined 
by its position in the enumerated list of all strings of complexity at most 
к) can decrease significantly if we consider the same x as an element of 
the list of all strings of complexity at most I for some I > k. In fact, 
each string x determines a function that maps I ^  C(x) to the number 
of strings after x in the enumeration of strings of complexity at most I. 
It is essentially the same curve we considered before (the boundary curve 
for Px) but transformed into other coordinates: for every I we look at the 
moment when the diagonal line i + j  — I gets inside Px.
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• The strangeness of strings x and y can be very different even if C(x\ у) «  0 
and C(y\x) ~  0 at the same time. (Indeed, if Z > C(x) + 0(\ogC(x)), 
then the shortest description for a string x is random and is not strange 
even if x were.)

However, if x and y correspond to each other under a simple com­
putable bijection, this is not possible (see the next problem).

354 Assume that x and y correspond to each other under a bijection computed 
by a program of complexity t. Prove that if x G Sij, then y G Si+o(t)j-

Recall that there is a simple computable bijection that maps a string x to a 
string y if and only if the total complexity of each of those strings conditional to 
the other one is negligible (see Problem 31 on p. 36).

By very similar arguments as those used to prove Theorem 254, we can show 
that kn (and also mn from Theorem 15 (p. 25)) for different n are closely related:

355 Prove that for all n' < n the string kn> (i.e., the binary expansion of the 
number kn> ) is equivalent to the length n' prefix of the string kn. (Two strings x,y  
are called equivalent if both conditional complexities C(x | y), C(y \ x) are O(logn)). 
Show that strings mn have a similar property.

(Hint: (See[203].) For kn we have to show that given any number T  larger 
than B(n  — s) we are able to find all strings of complexity at most n except fewer 
than 2s such strings, and the other way around. Given such a T, start an enu­
meration of strings of complexity at most n and output them in portions of size 
2s. After T  steps all the complete portions will appear. Indeed, the number of 
steps needed to output all complete portions can be computed from the number of 
complete portions which has at most n — s bits. The number of remaining strings 
is fewer than 2s. In the opposite direction, given a list of strings of complexity at 
most n except fewer than 2 s such strings, we again start an enumeration of strings 
of complexity at most n and wait until all the given strings appear in that enumer­
ation. Let T  denote the number of steps when it happens. Then any number t > T  
has complexity at least n — s. Indeed, if C(t) < n — s, then consider 2s first strings 
outside the list. Each of them has complexity at most n, a contradiction. For mn 
the arguments are entirely similar.)

The next result generalizes the statement of Problem 39 on p. 40: If a string x 
has many descriptions of size k, it has shorter descriptions. Now we speak about 
(i * ^-descriptions of x, i.e., finite sets containing x that have complexity at most 
i and cardinality at most 2À

T h e o r e m  255. Assume that a string x has at least 2k sets as (i*j)-descriptions. 
Then x has some (i * (j  — k))-description and even some ((г — к) * j)-description.

In this statement we omit (as usual) the logarithmic error terms (the parameters 
should be increased by 0(log(? + j  + k))). The word “even” reminds us about 
Theorem 252 that allows us to convert (г—fc)*j-descriptions to i*(j—̂ -descriptions.

PROOF. The first (simpler) statement is an easy consequence of the arguments 
used in the proof of Theorem 254. Let us enumerate all sets A of complexity at 
most i and size at most 2J and see which strings belong to 2 k or more sets (are 
covered with multiplicity at least 2k). We have at most 2*+J)2k such elements, i.e., 
2г+j-k^ ancj these elements can be enumerated in at most 2l groups (each new set A 
may create one new group). So it remains to recall statement (c) of Theorem 254.
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To get a stronger second statement, we need to decrease the number of groups 
in this argument to 2 г~к (keeping the number of elements approximately at the 
same level). It can be done as follows. Again we enumerate sets of complexity at 
most i and size at most 2 J and look at the strings that are covered many times. But 
now we also consider the strings that are covered with multiplicity 2 k~x (half of 
the full multiplicity considered before); we call them candidates. When an element 
with full multiplicity appears, we output this element together with all candidates 
that exist at that moment.

In this way we may output elements that will never reach the full multiplicity, 
but this is not a problem since the total number of emitted elements can increase at 
most twice compared to our count. The advantage is that the number of groups is 
now much smaller: after all candidates are emitted, we need at least 2fc_1 new sets 
to get a new element with full multiplicity (its multiplicity should increase from 
2 k ~ 1 to 2 k). □

This result has the following important corollary:

T heorem  256. If a string x has an (i*j)~ description A such that C(A\x) ^  k, 
then x has also an (i * (j  — k))-description and even an ((г — к) * j)-description.

Again we omit the logarithmic corrections needed for the exact formulation.

PROOF. Knowing x and the values of г and j  (the latter information is of 
logarithmic size), we can enumerate all (i * ^-descriptions of x. Therefore, the 
complexity of each (г * j)-description given x does not exceed the logarithm of the 
number of descriptions, and if there is an (i*j)-description A with large C(A \ x), this 
means that there are many descriptions, and we can apply the previous theorem. □

This statement shows that the descriptions with optimal parameters (on the 
boundary of Px for a given x) are simple relative to x. Which, intuitively speaking, 
is not surprising at all: If a description contains some irrelevant information (not 
related to x), it hardly could be optimal.

Historical remarks. The idea of considering two-part descriptions with optimal 
parameters goes back to Kolmogorov. Theorem 252 was mentioned by Kolmogorov 
in his talk in 1974 [82]. It appeared in print in [60, 178]. Possible shapes of 
the set Px (Theorem 253) were found in [203]. The enumerations of all objects of 
bounded complexity and their relation to two-part descriptions were studied in [60, 
Section III, Е]. Theorem 254, although inspired by [60] and [203], is presumably 
new. Theorems 255 and 256 appeared in [203].

14.4. Hypotheses of restric ted  type

In this section we consider the restricted case: the sets (considered as de­
scriptions, or statistical hypotheses) are taken from some family A  that is fixed in 
advance. (Elements of A  are finite sets of binary strings.) Informally speaking, this 
means that we have some a priori information about the black box that produces a 
given string: This string is obtained by a random choice in one of the Л-sets, but 
we do not know in which one.

Before we had no restrictions (the family A  was the family of all finite sets). 
It turns out that the results obtained so far can be extended (with weaker bounds) 
to other families that satisfy some natural conditions. Let us formulate these con­
ditions.



14.4. HYPOTHESES OF RESTRICTED TYPE 439

(1) The family A  is enumerable. This means that there exists an algorithm 
that prints elements of A  as lists, with some separators (saying where one element 
of A  ends and another one begins).

(2) For every n the family A  contains the set Bn of all n-bit strings.
(3) The exists some polynomial p with the following property: for every A G A, 

for every natural n, and for every natural c < # A  the set of all n-bit strings in A 
can be covered by at most p(n) ■ фА/с sets of cardinality at most c from A.

For a string x we denote by the set of pairs (i,j) such that x has (i * j)~ 
description that belongs to A. The set is a subset of Px defined earlier; the 
bigger A  is, the bigger is P^.  The full set Px is P^ for the family A  that contains 
all finite sets.

Assume that the family A  has properties (l)-(3). Then for every string x the 
set P£  has properties close to the properties of Px proved earlier. Namely, for every 
string x of length n the following is true:

• The set P ^  contains a pair that is 0(logn)-close to (0,n). Indeed, prop­
erty (2) guarantees that the family A  contains the set Bn that is an 
(O(logn) * n)-description of x.

• The set P ^  contains a pair that is 0(l)-close to (C(æ),0). Indeed, con­
dition (3) applied to c = 1 and A = Bn says that every singleton belongs 
to A, therefore each string has a ((C(x) + 0(1)) * 0)-description.

• The adaptation of Theorem 252 is true: if (i . j) G P^,  then
(г + к + O(logn), j  — к) e P

for every к ^  j. (Recall that n is the length of x.) Indeed, assume that 
x has an (i * j)-description A G A. For a given к we enumerate A  until 
we find a family of p(n)2 k sets of size 2~кфА (or less) in A  that covers 
all strings of length n in A. Such a family exists due to (3), and p is 
the polynomial from (3). The complexity of the set that covers x does 
not exceed г + к + 0(logn + log A:), since this set is determined by A, 
n, к and the ordinal number of the set in the cover. We may assume 
without loss of generality that к ^  n, otherwise {x} can be used as an 
((г + к + O(logn)) * (j  — A;))-description of x. So the term 0(log k) can be 
omitted.

Example. Consider the family A  formed by all balls in Hamming’s sense, 
i.e., the sets By r̂ — {x | l(x) — l(y),d(x,y) < r} (here l(u) is the length of 
binary string и and d(x, y) is the Hamming distance between two strings x and у 
of the same length). The parameter r is called the radius of the ball and у is its 
center. Informally speaking, this means that the experimental data were obtained 
by changing at most r bits in some string у (and all possible changes are equally 
probable). This assumption could be reasonable if some string у is sent via an 
unreliable channel. Both parameters у and r are not known to us in advance.

356 Prove that for r ^  n the set ®n of n-bit strings can be covered by 
poly(n)2n/V Hamming balls of radius r, where N  stands for the cardinality of such 
a ball (i.e.,V = l + n + •■•+ (;)).

(Hint: Consider N  balls of radius r whose centers are randomly chosen in 
Bn. For a given x, the probability of not being covered by any of them equals 
(1 — V/2n)N < e~VJV/2" . For N  = n In 2 • 2n/V  this upper bound is 2~n, so for this 
N  the probability of leaving some x uncovered is less than 1.)
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357 Prove that this family (of all Hamming balls) satisfies conditions (l)-(3)
above.

(Hint for (3): Let A be a ball of radius a, and let c be a number less than #A. 
We need to cover A by balls of cardinality c or less. Without loss of generality we 
may assume that a ^  n/2. Indeed, if a > n/2, then we can cover A by two balls 
Ao, A\ of radius n/2 (the set of all n-bit strings can be covered by two balls of radius 
n/2, whose centers are the all-zero sequence and all-one sequence). Assuming that 
the statement holds for A q and A\, we cover both Ao and A\ and then join the 
obtained families of balls. As the cardinality of both Ao,Ai is not more than that 
of A, we are done.

Let b be the maximal integer in the interval 0 • • • n/2 such that the cardinality 
|H| of a ball of radius b does not exceed c. We will cover A by Hamming balls 
of radius b. When we increase the radius of the ball by one, its size increases at 
most n + 1 times. Therefore, \B\ ^  c/(n + 1), and it suffices to cover A by at most 
poly(n)|A|/|F?| balls of radius b.

Cover all the strings that are at distance at most b from the center of A by one 
ball of radius b that has the same center as A. Partition the remaining points into 
spheres of radii d — b + 1, . . . ,  a: the sphere of radius d consists of all strings at 
Hamming distance exactly d from the center of A. As the number of those spheres 
is at most n, it suffices, for every d € (b, n/2], to cover a sphere of radius d by at 
most poly(n)|S'|/|H| balls of radius b.

Fix d and a sphere S  of radius d 6 (b, n/2]. We will show that for some f  a 
small family of balls whose centers are at distance /  from the center of S  covers S. 
Let /  be the solution to the equation b + f ( l  — 2b/n) = d rounded to the nearest 
integer. Consider any ball В  of radius b whose center is a distance /  from the center 
of S.

We claim that a fraction at least 1/ poly(n) of points in В  belong to S. Indeed, 
let X and у denote the centers of S  and В , respectively. Let P denote the set of 
all indexes i from 1 to n where у coincides with x (i.e., Xi = yi), and let Q stand 
for the complement of P. Choose a set of (b/n)\P\ indexes from P and another 
set of (b/n)\Q\ indexes from Q. Then flip the bits of у with chosen indexes. The 
resulting string y' is at distance (b/n)\P\ + (b/n)\Q\ — b from у and at distance 
f  — (b/n)f + (n—f)(b/n) — d from x. Thus y' belongs to the intersection of В  and S. 
The number of strings y' that can be obtained in this way equals ( f ^ n )̂ ((n-^b/n)) • 
Up to a factor poly(n) this number equals

2 f h ( b / n , l  — b/n)  +  ( n—f ) h ( b / n , l —b/n)    ^ n h ( b / n , l —b/n)

On the other hand, the cardinality |i?| of a ball of radius b is equal to this number 
as well, up to a factor poly(n).

Thus every ball В  of radius b with center at distance /  from x covers at least 
\B \/poly(n) of points from S. Choose such a ball В  at random. All points z € S 
have the same probability of being covered by B. As each ball В  covers \B\ /  poly(n) 
of points from S, this probability is at least |^|/(|*5'| poly(77.)). Hence there is a 
polynomial p such that p(n)\S\/\B\ random balls of radius b with centers at distance 
/  from x cover S  with positive probability.

358 Consider the family A  that consists of all Hamming balls. Prove that 
there exists a string x for which the set P'£■ is much smaller than the set Px. (The
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exact statement is for some positive e and for all sufficiently large n there exists a 
string X of length n such that the distance between and Px exceeds en.)

(Hint: Fix some a in (0,1/2) and let V be the cardinality of the Hamming 
ball of radius an. Find a set E  of cardinality N  — 2n/V  such that every Hamming 
ball of radius an contains at most n points from E. (This property is related to 
list decoding in coding theory. The existence of such a set can be proved by a 
probabilistic argument: N  randomly chosen n-bit strings have this property with 
positive probability. Indeed, the probability of a random point being in E  is an 
inverse of the number of points, so the distribution is close to Poisson distribution 
with parameter 1, and tails decrease much faster than 2~n needed.) Since E  can be 
found by an exhaustive search, we can assume that its complexity is О (logn) and 
ignore it (and other O(logn)-terms) in the sequel. Now let x be a random element 
in E , i.e., a string x G E  of complexity about log фЕ. The complexity of a ball A of 
radius an that contains x is at least C(x), since knowing such a ball and an ordinal 
number of x in A D E, we can find x. Therefore x does not have (log фЕ, log V)- 
descriptions in A. On the other hand, x does have a (0, log #  .^-description if we do 
not require it to be in A ; the set E  is such a description. The point (log фЕ, log V) 
is above the line C(A) + logфА — logфЕ, so P£  is significantly smaller than Px.)

Describe the set P ^  for x constructed in the preceding problem.
(Hint: The border of the set P consists of a vertical segment C(A) = n —log V, 

where log фА ^  log V, and the segment of slope —1 defined by C(A) + log фА — n, 
where log V ^  log#A )

Let A  be a family that has properties (l)-(3). We now prove a (weaker) version 
of Theorem 253 where the precision is only 0(\Jn  logn) instead of О (logn). Note 
that with this precision the term 0(m) in Theorem 253 (which is proportional to 
the complexity of the boundary curve) is not needed. Indeed, if we draw a curve on 
a cell paper with cell size 0 (yjn) or larger, the curve goes through 0 (^/n) cells and 
can be described by O(yjn) bits, so we may assume without loss of generality that 
the complexity of the curve (the sequence U in the statement below) is 0 (\/n).

Theorem  257. Let к ^  n be two integers, and let to > t i  > • • • > tk be a 
strictly decreasing sequence of integers such that to ^  n and t-k — 0. Then there 
exists a string x of complexity к + 0 ( \/n logn) and length n + O(logn) for which 
the distance between the set P a n d  the set T  = {(г, j) \ (i ^  k) (j ^  ti)} is at 
most 0 (\Jn logn).

P r o o f . The proof is similar to the proof of Theorem 253. Let us first recall 
that proof. We consider the string x that is the lexicographically first string (of 
suitable length n’) that is not covered by any bad set, i.e., by any set of complexity 
at most i and size at most 2J, where the pair (г, j)  is at the boundary of the set 
T. The length n7 is chosen in such a way that the total number of strings in all 
bad sets is strictly less than 2n . On the other hand, we need good sets that cover 
x. For every boundary point (i,j) we construct a set A ,j that contains x and has 
complexity close to i and size 2À The set A .j is constructed in several attempts. 
Initially A ij is the set of lexicographically first 2J strings of length n '. Then we 
enumerate bad sets and delete all their elements from A,j- At some step, A ,j may 
become empty. We then fill it with 2J lexicographically first strings that are not 
in the bad sets (at the moment). By construction the final A j  contains the first 
x that is not in a bad set (since it is the case all the time). And the set A ,j can
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be described by the number of changes (plus some small information describing the 
process as a whole and the value of j). So it is crucial to have an upper bound 
for the number of changes. How do we get this bound? We note that when A ij 
becomes empty, it is filled again, and all the new elements should be covered by 
bad sets before the new change could happen. Two types of bad sets may appear: 
small ones (of size less than 2? ) and large ones (of size at least 2J ). The slope of the 
boundary line for T  guarantees that the total number of elements in all small bad 
sets does not exceed 2г+? (up to a poly(n)-factor), so they may make A ij empty 
only 2г times. And the number of large bad sets is 0 (2г), since the complexity of 
each is bounded by i. (More precisely, we count separately the number of changes 
for A ij that are first changes after a large bad set appears, and the number of other 
changes.)

Can we use the same argument in the new situation? We can generate bad sets 
as before and have the same bounds for their sizes and the total number of their 
elements. So the length n' of x can be the same (in fact, almost the same, as we 
will need now that the union of all bad sets is less than half of all strings of length 
n'\ see below). Note that we now may enumerate only bad sets in A, since A  is 
enumerable, but we do not even need this condition. What we cannot do is let A ij 
be the set of the first non-deleted elements: we need A ij to be a set from A.

So we now go in the other direction. Instead of choosing x first and then finding 
a suitable good A ij that contains x, we construct the sets A ij G A  that change 
in time in such a way that (1) their intersection always contains some non-deleted 
element (an element that is not yet covered by bad sets) and (2) each A ij has not 
too many versions. The non-deleted element in their intersection (in the final state) 
is then chosen as x.

Unfortunately, we cannot do this for all points (г, j)  along the boundary curve. 
(This explains the loss of precision in the statement of the theorem.) Instead, we 
construct good sets only for some values of j. These values go down from n to 0 
with step л/nTögn. We select N  = \Jn f logn points (z'i, ji), • •., (гдг, Jn ) on the 
boundary of T; the first coordinates i i , ... An form a non-decreasing sequence, and 
the second coordinates j i , . . . ,  Jn split the range n ■ ■ • 0 into (almost) equal intervals 
(ji = n, jjH =0).  Then we construct good sets of sizes at most 2J1, . . . ,  2JJV, and 
denote them by A \ , . . . ,  A n - All these sets belong to the family A. We also let Ao 
be the set of all strings of length n' — n + O(logn); the choice of the constant in 
O(logn) will be discussed later.

Let us first describe the construction of A i , ... ,A n assuming that the set of 
deleted elements is fixed. (Then we discuss what to do when more elements are 
deleted.) We construct As inductively (first Ai, then A<i etc.). As we have said, 
# A S ^  2Js (in particular, A n is a singleton), and we keep track of the ratio

(the number of non-deleted strings in Ao П A\ П • • • П As)/2Js.
For s — 0 this ratio is at least 1/2; this is obtained by a suitable choice of n' 
(the union of all bad sets should cover at most half of all n'-bit strings). When 
constructing the next As, we ensure that this ratio decreases only by a poly(n)- 
factor. How? Assume that As_i is already constructed; its size is at most 2Js~1. 
Condition (3) for A  guarantees that As_i can be covered by Л-sets of size at most 
2Js, and we need about 2Js- 1-J'5 covering sets (up to a poly(n)-factor). Now we let 
As be the covering set that contains the maximal number of non-deleted elements 
in Aq П • • • П A s- \.  The ratio can decrease only by the same poly(n)-factor. In this
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way we get
(the number of non-deleted strings in Ao П A\ П • ■ ■ П As) ^  a >s2Ja'/2,

where a stands for the poly(n)-factor mentioned above.2
Up to now we assumed that the set of deleted elements is fixed. What happens 

when more strings are deleted? The number of the non-deleted elements in Aq П 
•••rij4s can decrease, and at some point and for some s it can become less than the 
declared threshold vs =  a " s2J“/2. Then we can find minimal s where this happens 
and rebuild all the sets As, .As+ i , ... (for As the threshold is not crossed due to the 
minimality of s). In this way we update the sets As from time to time, replacing 
them (and all the consequent ones) by new versions when needed.

The problem with this construction is that the number of updates (different 
versions of each As) can be too big. Imagine that after an update some element 
is deleted, and the threshold is crossed again. Then a new update is necessary, 
and after this update the next deletion can trigger a new update, etc. To keep the 
number of updates reasonable, we will ensure that after the update for all the new 
sets Ai (starting from As) the number of non-deleted elements in Aq П • • • П A\, is 
twice bigger than the threshold щ =  a~l2v /2. This can be achieved if we make the 
factor a twice as big: since for As_\ we have not crossed the threshold, for As we 
can guarantee the inequality with additional factor 2.

Now let us prove the bound for the number of updates for some As. These 
updates can be of two types: first, when As itself starts the update (being the 
minimal s where the threshold is crossed); second, when the update is induced by 
one of the previous sets. Let us estimate the number of the updates of the first 
type. This update happens when the number of non-deleted elements (that was 
at least 2 us immediately after the previous update of any kind) becomes less than 
vs. This means that at least us elements were deleted. How can this happen? One 
possibility is that a new bad set of complexity at most is (a large bad set) appears 
after the last update. This can happen at most 0(2îs)-times, since there are at most 
0(2?)-objects of complexity at most i. The other possibility is the accumulation 
of elements deleted due to small bad sets, of complexity at least is and of size at 
most 2Js. The total number of such elements is bounded by nO(2îs+j4), since the 
sum ii + ji may only decrease as I increases. So the number of updates of As not 
caused by large bad sets is bounded by

nO(2is+j* ) /4
0 {п21«+э°)

a~s2 i°
0 (nas2 is) = 2 is+N°(lo&n') — 2*s+°(v/nlogrd

(recall that s < N, a = poly(n), and N  «  ^Jn/ logn). This bound remains valid 
if we take into account the induced updates (when the threshold is crossed for the 
preceding sets: there are at most N  ^  n these sets, and an additional factor n is 
absorbed by O-notation).

We conclude that all the versions of As have complexity at most

is + 0 (y/n\ogn),
since each of them can be described by the version number plus the parameters 
of the generating process (we need to know n and the boundary curve, whose

2Note that for the values of s  close to N ,  the right-hand side can be less than 1; the inequality 
then claims just the existence of non-deleted elements. The induction step is still possible: the 
non-deleted element is contained in one of the covering sets.
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complexity is 0 ( y / n )  according to our assumption, see the discussion before the 
statement of the theorem). The same is true for the final version. It remains to 
take X in the intersection of the final As. (Recall that An  is a singleton, so the final 
An  is {a:}.) Indeed, by construction, this x has no bad (г * j)-descriptions where 
(i , j ) is on the boundary of T. On the other hand, x has good descriptions that are 
0 (\/^logn)-close to this boundary and whose vertical coordinates are y/n log n- 
apart. (Recall that the slope of the boundary guarantees that horizontal distance 
is less than the vertical distance.) Therefore the position of the boundary curve for 
P'£■ is determined with precision 0 {y/n\ogn), as required.3 □

R e m a r k . In this proof we may use bad sets not only from A. Therefore, the 
set P® is close to T  for every family В that contains A, and it is not even needed 
that В satisfies requirements (l)-(3) itself.

Provide the missing details in this argument.
(1) Let i  be a string of length n and let r be a natural number not 

exceeding n j2. By CT(x) we denote the minimal (plain) complexity of a string у 
of the same length n that differs from x in at most r positions. Prove that (with 
О (logn) precision) the value of Cr(x) is the minimal i such that x has (i*logF(r))- 
description that is a Hamming ball. (Here V(r) is the cardinality of a Hamming 
ball of radius r in B71.)

(2) Describe all the possible shapes of the function Cr{x) as a function of r 
(that appear for different x) with precision 0 ( y / n  logn).

(Hint: For every x in Bn we have C q ( x )  = C(x) and Cn(x) = O(logn). Also 
we have

0 ^  Ca(x) -  Cb{x) ^  log{V{b)/V{a)) + O(logn) 
for every a < b ^  n j2. On the other hand, for every к ^  n and for every function 
t: {0, 1, . . . ,  n / 2} such that
t(0) = k, t(n /2 ) — 0 and 0 ^  t(a) — t(b) ^  log(V(b)/V (a)) for every a < b ^  n /2, 

there exists a string x of length n and complexity k+ 0(y/n  logn) such that Ca(x) = 
t(a) + 0 (y/n logn) for all a = 0, 1, . . .  n /2.)

We can again look at the error-correcting codes: If a (Kolmogorov-) simple 
set of codewords has distance d, then for a codeword x in this set the function 
Cr(x) does not significantly decrease when r increases from 0 to d/2 (indeed, the 
codeword can be reconstructed from the approximate version of it).

Complexity measure Cr(x) was introduced in the paper [69]. In [54], this 
notion was generalized to conditional complexity. There are two natural gener­
alizations, uniform and non-uniform ones. The uniform conditional complexity 
CrS(x I y) is defined as the minimal length of a program that given any string y' 
at Hamming distance at most s from у outputs a string x' at Hamming distance 
at most r from x. It is important that x' may depend on y '. The non-uniform 
conditional complexity Crs(x\y) is defined as maxy/ m kv C(x' \ y') where x',y ' are 
at Hamming distance at most r, s from x, у , respectively. The difference between 
the uniform and the non-uniform definitions is the following. In the non-uniform 
definition the program to transform y' to x' may depend on y' while in the uniform

3Now we see why N  was chosen to be у/ n /  logn: the bigger N  is, the more points on the 
curve we have, but then the number of versions of the good sets and their complexity increases, 
so we have some trade-offs. The chosen value of N  balances these two sources of errors.

360
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definition the same short program must transform every y' to an x '. This implies 
that the non-uniform complexity cannot exceed the uniform one. The non-uniform 
complexity can by much less than the uniform one (see [54] for details).

Theorem 254 provided a criterion saying whether a given string has а (г * j)- 
description (unrestricted). It is not clear whether similar criterion could be found 
for an arbitrary class A  of allowed descriptions. On the other hand, Theorem 255 
is (with minimal changes) valid for an arbitrary enumerable family of descriptions; 
see conditions (l)-(3) on p. 439.

T heorem  258. Let A  be an enumerable family of finite sets. Assume that x is 
a string of length n that has at least 2 k different (i * j)-descriptions from A. (Recall 
that the (i* j)-description of x is a finite set of complexity at mosti and cardinality 
at most 2J containing x.) Then x has some ((г — к) * j)-description from A.

Therefore, if A  satisfies also the requirement (3), the string x in this theorem 
also has an (г * (j — fc))-description. (See above about the version of Theorem 252 
for restricted descriptions.)

As usual, these statements need logarithmic terms to be exact (this means that 
0 (log(n+i+j+fc))-terms should be added to the description parameters).

P ro o f . Let us enumerate all (i * j)-descriptions from A, i.e., finite sets that 
belong to A, and have cardinality at most 2J and complexity at most i. For a 
fixed n, we start a selection process: some of the generated descriptions are marked 
(=selected) immediately after their generation. This process should satisfy the fol­
lowing requirements: (1) at any moment every уг-bit string x that has at least 2 k 
descriptions (among enumerated ones) belongs to one of the marked descriptions; 
(2) the total number of marked sets does not exceed 2г~кр(п, k ,i,j)  for some poly­
nomial p. So we need to construct a selection strategy (of logarithmic complexity). 
We present two proofs: a probabilistic one and an explicit construction.

P robabilistic pr o o f . First we consider a finite game that corresponds to 
our situation. The game is played by two players, whose turn to move alternates. 
Each player makes 2г moves. At each move the first player presents some set of 
n-bit strings, and the second player replies saying whether it marks this set or not. 
The second player loses, if after some moves the number of marked sets exceeds 
2г-/с+1(п _|_ i) in 2 (this specific value follows from the argument below) or if there 
exists a string x that belongs to 2 k sets of the first player but does not belong to 
any marked set.

Since this is a finite game with full information, one of the players has a winning 
strategy. We claim that the second player can win. If it is not the case, the first 
player has a winning strategy. We get a contradiction by showing that the second 
player has a probabilistic strategy that wins with positive probability against any 
strategy of the first player. So we assume that some (deterministic) strategy of the 
first player is fixed and consider the following simple probabilistic strategy of the 
second player: every set A presented by the first player is marked with probability 
p = 2 ~k(n + 1) In2.

The expected number of marked sets is р2г = 2г~к(п + 1) ln 2. By Chebyshev’s 
inequality, the number of marked set exceeds the expectation by a factor 2 with 
probability less than 1/ 2. So it is enough to show that the second bad case (after 
some move there exists x that belongs to 2 k sets of the first player but does not 
belong to any marked set) happens with probability at most 1/ 2.
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For that, it is enough to show that for every fixed x the probability of this bad 
event is at most 2“ ^ +1l  The intuitive explanation is simple: if x belongs to 2 k 
sets, the second player had (at least) 2 k chances to mark a set containing x (when 
these 2 k sets were presented by the first player), and the probability of missing all 
these chances is at most (1 — p ) 2 ; the choice of p guarantees that this probability 
is less than l / 2 ~(n+x\  Indeed, using the bound (1 — l /x ) x < 1/e, it is easy to show 
that

(1 — p)2k < e- ln2(n+l) — 2~(n+l).
A meticulous reader would say that this argument is not technically correct 

since the behavior of the first player (and the moment when the next set containing 
x is produced) depends on the moves of the second player, so we do not have inde­
pendent events with probability 1 — p each (as it is assumed in the computation).4 
The formal argument considers for each t the event Rt “after some move of the 
second player, the string x belongs to at least t sets provided by the first player, 
but it does not belong to any selected set”. Then we prove by induction (over t) 
that the probability of Rt does not exceed (1 —p)l. Indeed, it is easy to see that 
Rt is a union of several disjoint subsets (depending on the events happening until 
the first player provides t + 1st set containing x), and Rt+i is obtained by taking a 
(1 — p)-fraction in each of them.

C onstructive p r o o f . We consider the same game, but now we allow more 
sets to be selected (replacing the bound 2 г~к+1(п + l ) l n 2 by a bigger bound 
2 l~ki2 n \n 2 ), and we also allow the second player to select sets that were pro­
duced earlier (not necessarily upon the preceding move of the first player). The 
explicit winning strategy for the second players performs simultaneously i — к + log i 
substrategies (indexed by the numbers log(2fc/ 2), log(2fc/ 2) + 1, . . . ,  i).

The substrategy number s wakes up once in 2s moves (when the number of 
moves already made by the first player is a multiple of 2s). It forms a family S  that 
consists of 2s last sets produced by the first player, and the set T  that consists of 
all strings x covered by at least 2k/i  sets from S. Then it selects some elements in 
S  in such a way that all x G T  are covered by one of the selected sets. It is done 
by a greedy algorithm: first take a set from S  that covers a maximal part of T, 
then take the set that covers a maximal number of non-covered elements, etc. How 
many steps do we need to cover the entire T? Let us show that

( i/2 k)n2 s In 2

steps are enough. Indeed, every element of T  is covered by at least 2k/i  sets from 
S. Therefore, some set from S  covers at least #T 2k/(i2s) elements, i.e., 2k~s/i- 
fraction of T. At the next step the non-covered part is multiplied by (1 — 2k~s/г) 
again, and after m 2s-fcln2 steps the number of non-covered elements is bounded 
by

# I ( l - 2fc- 7 f r t l n 2  < 2n(l /e )nln2 -  1,

4The same problem appears if we observe a sequence of independent trials. Each of them is 
successful with probability p , and then we select some trials (before they are actually performed, 
based on the information obtained so far) and ask what is the probability of the event “f first 
selected trials were all unsuccessful”. This probability does not exceed (1 — p)4; it can be smaller 
if the total number of selected trials is fewer than t  with positive probability. This scheme was 
considered by von Mises when he defined random sequences using selection rules.
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therefore all elements of T are covered. (Instead of a greedy algorithm one may 
use a probabilistic argument and show that randomly chosen in 2 s~k In 2 sets from 
S  cover T  with positive probability; however, our goal is to construct an explicit 
strategy.)

Anyway, the number of sets selected by a substrategy number s does not exceed 

т 2 8 - к(\п2 )2 1- 8 = in 2 i~k \n 2 ,

and we get at most i2 n 2 l~k In 2 for all substrategies.
It remains to prove that after each move of the second player every string x 

that belongs to 2 k or more sets of the first player also belongs to some selected set. 
For the tth move we consider the binary representation of t,

t = 2Sl + 2 S2 + • ■ • , where si > S2 > 1 • • •

Since x does not belong to the sets selected by substrategies number si, S2 , ■.., the 
multiplicity of x among the first 2Sl sets is less than 2k/i, the multiplicity of x 
among the next 2S2 sets is also less than 2k/i, etc. For those j  with 2Sj < 2k/i, the 
multiplicity of x among the respective portion of 2 si sets is obviously less than 2k ji. 
Therefore, we conclude that the total multiplicity of x is less than i ■ 2k/i  = 2k, 
and the second player does not need to care about x. This finishes the explicit 
construction of the winning strategy.

Now we can assume without loss of generality that the winning strategy has 
complexity at most 0(log(n + к + i + j)). (In the probabilistic argument we have 
proved the existence of a winning strategy, but then we can perform the exhaustive 
search until we find one; the first strategy found will have small complexity.) Then 
we use this simple strategy to play against the strategy of the second player which 
enumerates all .Д-sets of complexity less than i and size 2  ̂ (or less). The selected 
sets can be described by their ordinal numbers (among the selected sets), so their 
complexity is bounded by i — к (with logarithmic precision). Every string that has 
2 k different (г*^-descriptions in A  will also have one among the selected sets, and 
that is what we need. □

As before (for arbitrary sets), this result implies that explanation with minimal 
parameters are simple with respect to the explaining object:

T heorem  259. Let A  be an enumerable family of finite sets. If a string x has 
an (i * j)-description A € A  such that C (A \x) < k, then x has an ((г — к) * j)- 
description in A. If the family A  satisfies condition (3) on p. 439, then x has also 
an (i * (j  — k))-description in A.

As usual, we omit the logarithmic corrections needed in the exact statement of 
this result.

Historical remark. All the results from this section, including non-trivial exer­
cises, are from [204]. The probabilistic proof of Theorem 258 was independently 
proposed by Michal Kouckÿ and Andrei Muchnik.

14.5. Optimality and randomness deficiency

We have considered two ways to measure how bad a finite A is as an explanation 
for a given object x: the first is the randomness deficiency that was defined as

d{x\A) = log #  A — C{x I A) ;
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the second one, which can be called the optimality deficiency and is defined as
ö(x\A) = log#A  + C (A )-C (x ) ,

shows how far the two-part description of x using A is from the optimum. How are 
these two numbers related? First let us make an easy observation.

T heorem  260. The randomness deficiency of a string x of a finite set A does 
not exceed its optimality deficiency (with logarithmic precision, as usual; here l(x) 
stands for the length of x) :

d(x\ A) < 5{x\ A) + 0(log/(x)).

P ro o f . We need to prove that

logФА -  C(x\A) < logфА + C(A) -  C(x) + 0(logl(x)).
Canceling the term log фА, we get an inequality

C(x) ^  C(A) + C(x\A) + 0(logl(x)).

Its right-hand side is the complexity of the pair (x, A) with accuracy О (log C(x, A)), 
and it is larger than C(x) with accuracy О (log C(x | A)). Note that the bound we are 
proving should hold with 0(log/(x))-precision, and 0(logC'(x| A)) — 0(log/(x)).

□

This argument shows that the difference between these two deficiencies is close 
to C(x, A) — C(x), i.e., to C (A \x) with precision 0(\ogl(x) + logC(A)), and this is 
0(log/(x)) if C(A) = 0(C(x)). (There is no sense in considering the explanations 
that are much more complex than the object they try to explain, so we will always 
assume that C(A) = 0(C(x)).)

It is easy to give an example of a hypothesis whose optimality deficiency exceeds 
significantly its randomness deficiency. Let x be a random string of length n, and 
let В  be the set of all strings of length n plus some random string у of length 
n — 1 that is independent of x. Then C(B\x) is close to n, and the optimality 
deficiency is about n, while the randomness deficiency is still small (including у in 
the set of all strings of length n does not much change the randomness deficiency 
of x in that set). In this example, the hypothesis В  looks bad from the intuitive 
viewpoint: It contains an irrelevant element у which has nothing in common with 
the x that we try to explain. Eliminating this y, we improve the hypothesis and 
make its optimality deficiency close to its randomness deficiency (which is small in 
both cases).

Recall that we have proved Theorem 256 which shows that the situation in this 
example is general: If for a given hypothesis В  for a string x the difference between 
the optimality deficiency 5{x\B) and randomness deficiency d(x\B) is large (this 
difference is about C(B\x), as we have seen), then one can find another hypothesis 
A of the same size and of the same (and even smaller by C (B \x )) complexity such 
that S(x\ A) does not exceed d(x\B).

Therefore, the question whether for a given string x there exists a set A with 
C(A) < a and d(x\A) < ß (asked in the definition of (a, /3)-stochasticity), is 
equivalent (with logarithmic precision) to the question of whether there exists a 
set A with C(A) < a and S(x\A ) < ß. That is, the set Px contains the same 
information about x as the set Qx of pairs (a, ß) for which x is (a,/3)-stochastic, 
but using different coordinates.
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362 Let X be an n-bit string of complexity k.  Show that the set Px (see
Theorem 253) determines for which a and ß the string x is (a, /3)-stochastic: this 
happens iff the pair (a, C(x) — a + ß) is in Px or a > C(x) (with logarithmic 
accuracy).

363 Prove the claim from p. 429: the first inequality of Theorem 249 can be 
replaced by a weaker inequality a + ß < n — O(logn).

[Hint: Consider the first string of length n that has no a * (n ~  a) descriptions 
(to be precise we need to subtract O(logn) from the parameters). Its complexity 
is close to a. The previous problem implies that x is not (a, /3)-stochastic.)

364 Prove that if a + ß < n — O(logn), then the fraction of non~(a, ß)- 
stochastic strings is at least 2 ~a~^~°^ogn\

(Hint: Consider the first 2n~a~13 strings of length n (in lexicographic order) 
that do not have [a * (n — a))-descriptions (we omit logarithmic corrections in the 
parameters). Each of them has complexity at least a and at most a + n — a — ß = 
n — ß. The latter implies that for every x in this set the point (a, C(x) — a + ß) 
does not belong to Px.)

365 Prove that the first inequality of Theorem 251 can be replaced by the
weaker inequality a + ß < n — O(logn).

(Hint: The proof of the upper bound remains almost the same: the a priori 
probability of a string provided by Problem 363 is at least 2~a. The proof of the 
lower bound used only the inequality a < ß — O(logn).)

366 For every x consider the set Qx of all pairs (a,ß) such that x is (a,ß)- 
stochastic. Characterize possible behaviors of Qx.

[Hint: Let x be an n-bit string of complexity k. Then the set Qx is upward 
closed (i.e., (a,ß) G Qx implies (a', ft)  G Qx for all a' ^  a, ß' ^  ß) and contains 
pairs (0, n — k) and (к, 0) with logarithmic precision (this means that Qx contains 
some pairs (0(logn),n — к + O(logn)) and (k + 0(1), 0)). On the other hand, let 
к and n be some numbers, к ^  n, and let so,. . . ,  s& be a sequence of integers such 
that n — к ^  so ^  si ^  ^  = 0. Let m  be the complexity of this sequence.
Then there exists a string x of length n and complexity к + O(logn) + 0(m) such 
that Qx is O(logn) + O(m) close to the set S = {(a, ß) | (a ^  k) => (ß ^  sa )}.)

367 Assume that for a string x and some a there exists a hypothesis that
achieves minimal randomness deficiency among hypotheses of complexity at most 
a, and its optimality deficiency exceeds its randomness deficiency by 7 . Then the 
boundary of Px contains a segment of slope —1 that covers the interval (a — 7 , a) 
on the horizontal axis.

(Hint: Use the stronger statement of Theorem 256.)

368 Let A  be a family of finite sets that satisfies conditions (l)-(3) on p. 439. 
Prove that for any x and any a ^  C(x) the following are equivalent with logarithmic 
precision:

• there exists a set A G A  of complexity at most a with d(x | A) ^  ß;
• there exists a set A G A  of complexity at most a with S(x | A) ^  ß\
• the point (a, C(x) — a + ß) belongs to P^.

369 Let A  be an arbitrary family of finite sets enumerated by program p. 
Prove that for every x of length at most n the following statements are equivalent
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up to an 0(C(p) + logC'(vl) + logn + log log #A)-change in the parameters:
• there exists a set A G A  such that d(x\ A) ^  ß\
• there exists a set A E A  such that S(x\ A) ^  ß.

Historical remarks. The existence of strings of length n and complexity about к 
that are not (к, n — к + 0(logn))-stochastic was first proved in [60, Theorem IV.2]. 
The study of possible shapes of the set Qx was initiated by V. V’yugin [211, 212] 
using direct arguments (and not the relation between Qx and Px). The descriptions 
of possible shapes of Qx with accuracy О (logn) (Problem 366) is due to [203], where 
reduction to the set Px is used. Problems 367, 368, and 369 go back to [203, 204].

14.6. M inimal hypotheses

Fix a string x. We have associated with x the set Px consisting of all pairs 
(a,ß) such that x has an (a*/^-description. Those descriptions were considered as 
“statistical hypotheses to explain x”. What do they look like? It turns out that we 
can identify a more or less explicit class of models such that every model reduces in 
a sense to a model from that class. This class arises from the proof of Theorem 254.

Let I be some number greater than C(x). Then the list of all strings of com­
plexity at most I contains x. Fix some enumeration of this list (an algorithm that 
generates all these strings; each appears only once). We assume that this algorithm 
is simple: its complexity is O(logZ). Let Ni be the number of elements in the list. 
Consider the binary representation of Ni, i.e., the sum

Ni = 2Sl + 2S2 + • • • + 2s*, where s\ > S2 > ■ • ■ > st .
According to this decomposition, we may split the list itself into groups: first 2Sl 
elements, next 2S2 elements, etc. The string x belongs to one of these groups. This 
group (the corresponding finite set) can be considered as a hypothesis for x. In 
this way we get a family of models for x: each I > C(x) produces some hypothesis, 
denoted BXii in the sequel.

The following two theorems prove the promised properties of these models. 
First, they are minimal, i.e., they lie on the border of the set Px. Second, each 
model for x reduces in a sense to one of them.

T heorem 261. Assume that x belongs to the part Bxj of size 2s in this con­
struction. Then this part is an ((I — s) * s)-description of x and the point (I — s, s) 
is on the boundary of Px . (As usual, the exact statement needs a logarithmic cor­
rection: this part is an ((I — s + 0 (\ogl)) *s)-description of x and the corresponding 
point is in the О (log /)-neighborhood of the boundary of Px.)

P roof. To specify this part, it is enough to know its size and the number of 
elements enumerated before it, i.e., it is enough to know s, I and all bits of Ni 
except s last bits (i.e., I — s bits). Also we need to know the enumerating algorithm 
itself, but it has logarithmic complexity (as we assumed). Therefore the complexity 
of the part is I — s + O(logZ), and the number of elements is 2 s, as we have claimed.

If the point (I — s,s) were far from the boundary and were in Px together with 
more than logarithmic neighborhood, then the string x would have much better 
two-part descriptions (with the same or even smaller total length and with larger 
size), so Theorem 254(d) would imply that the string x appears in the list earlier 
(more than 2 s elements follow x in the enumeration), which is impossible in our 
construction. □
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The next result explains in which sense these descriptions are universal. Let 
X be an arbitrary string, and let A be some finite set that contains x .  Let I be 
the maximal complexity of the elements of A. As before, let us split the strings of 
complexity at most I (there are Ni of them) into parts corresponding to ones in the 
binary representation of TV/. Let В be the part that contains x, and let 2s be its 
size.

T heorem 262. The hypothesis В = Bxy (considered as an explanation for x) 
is not worse than A in terms of complexity and optimality deficiency:

(a) C {B)K C {A) + 0{\ogl);
(b) 5{x IB ) ^  S(x I A) + O(logZ);
(c) C(B\A) ^  О (log/) (the hypothesis В is simple given A).

Proof. Knowing A and /, we can enumerate all strings of complexity at most I 
until we see all the elements of A. At that moment the string x already appears, and 
it belongs to the part of size 2s, so there are only О(2s) strings yet to be discovered 
(from this part and the smaller parts). Therefore, we know N[ with precision О(2s), 
and therefore we know its first I — s bits (with O(l)-advice). And this information, 
together with I and s, determines B. Therefore, C(B\A) ^  O(logZ), so we have 
proved (c) and therefore (a).

The statement (b) follows directly from the construction. Indeed, if C(A) = a 
and log фА — ß, then all the strings in A have an (a*/3)-description and complexity 
at most a + ß + O(loga), so their maximal complexity I does not exceed a + ß + 
O(loga). The two-part description we have constructed is an ((/ — s)*s)-description 
(as the previous theorem shows), so its total length and optimality deficiency do 
not exceed those of A. □

The relation between parameters of descriptions A and В is illustrated by 
Figure 54: the dot corresponds to the parameters of A, and the gray area shows 
the possible parameters of B.

What happens if the initial hypothesis A is already on the boundary of Px? 
Does it mean that В  has the same parameters as A? Generally, no: the model В 
may lie on the dashed part of the boundary of the grey area shown in Figure 54. 
(It is not possible that В is inside the grey area, since in this case A will correspond 
to the internal point of Px.)

In other words, assume that the boundary of Px consists of vertical lines and 
non-vertical lines with slope —1.

ß

Then the left-upper endpoints of non-vertical

a

Figure 54. The parameters of the hypothesis A and its simplification В
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segments correspond to the hypotheses of described type (since for such A the grey 
area where В  resides has only one common point with Px).

Notice that the information that is contained in these hypotheses, does not 
really depend on x: the hypothesis В contains the same information as the (I — s)- 
bit prefix of the string JV). As we have seen in Problem 355 (p. 437), this prefix 
can be replaced by N i-S, which has the same information as the first I — s bits 
of Chaitin’s number. Thus the larger the complexity of our model is, the more 
information about it has. This is discouraging, since the number does not 
depend on x.

It might be that other parameters (than complexity and cardinality) help to 
distinguish models of the same size and complexity, as explanations for x. The 
paper [199] suggests one such parameter, namely the total complexity A condi­
tional to x. In all our examples intuitively right models for x have small total 
complexity conditional to x. On the other hand, one can show that models from 
the universal family from Theorem 261 have large total complexity conditional to 
some of their members. We omit the proof of this claim, which may be found 
in [199].

Note also that this observation (saying that different hypotheses contain almost 
the same information) is applicable only to hypotheses of our special type and not 
to arbitrary hypotheses on the boundary of Px, as the following example shows. 
Let x be a random n-bit string. Consider two hypotheses: the set of n-bit strings 
у that have the same first half as x and the set of n-bit strings у that have the 
same second half as x. Both hypotheses have small optimality deficiency, but the 
information contained in them is completely different. (This does not contradict 
our results above, since the set of all n-bit strings as В has better parameters than 
both.)

Historical remarks. Cutting the list of all strings of complexity at most к into 
portions according to the binary expansion of JV* was introduced in [60], where 
it was noticed that for к = C(x) we obtain in this way a model for x with small 
optimality deficiency. Later in [203] models of this type were considered also for 
к > C(x), and Theorems 261 and 262 were proven.

14.7. A bit of philosophy

There are several philosophical questions related to the task of finding a good 
two-part description for a given string x. For instance, we can let x be the sequence 
of all observations about the world made by mankind (encoded in binary) and then 
consider scientific theories as models A for x. Among those theories we want do 
identify the right ones. Our criteria are the simplicity of the theory in question 
(measured by the Kolmogorov complexity of A—the less the complexity is the 
better), and the “concreteness” or the “explanatory capability” (measured by the 
size of A—the less the size is, the more concrete the model is, hence the better). 
One can also recall the ancient philosopher Occam and his razor ( “entities must not 
be multiplied beyond necessity”), which advises choosing the simplest explanation. 
Or we can look for a scientific theory A such that the randomness deficiency of the 
data x with respect to A is small (“a good theory should explain all the regularities 
in the data” ).

There are also more practical issues related to algorithmic statistics. Kol­
mogorov complexity can be considered as a theory of “ultimate compression” : the
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complexity of a string x is the lower bound for its compressed size for compressors 
without loss of information. The closer to this bound the compressed size is the 
better the compression method is (for files from a practically important family of 
files).

This applies to lossy data compression. What about loss compression? Nowa­
days many compression techniques are used that discard certain not important 
parts of the information that is being encoded. Such methods allow us to decrease 
the compressed size below Kolmogorov complexity.

For instance, assume that we are given an old phonograph record that has 
scratches in random places on the record. These scratches produce peaks on the 
waveform of the sound (the two-dimensional plot of sound pressure as a function of 
time). Thus the original information has been distorted. Due to this distortion the 
Kolmogorov complexity of the record has been much increased (if there are many 
scratches). However, if we care only about the general impression of playing the 
record, the exact spots of the scratches are not important. It is enough to store in 
the compressed file only the general character of the scratches.

In other words, our phonograph record is an element of a large family that 
consists of all the records with about the same number of scratches of the same 
type. In this way we obtain a two-part description of the record: the first part is 
the description of this set (the clean record and statistical parameters of the noise) 
and the second part identifies the exact spots of the scratches. If our method of 
compression discards the second part, then after decompression we will get another 
record. That record will be obtained from the original clean record by adding 
another noise with the same statistical parameters. One can hope that the audience 
will not notice the change. Besides, if the decompressing program does not add any 
noise at all to the clean record, thus “de-noising” the record, then we obtain an 
even better result (unless of course we are interested in listening to an ancient 
phonograph instead of listening to music).

The statement of Problem 369 can be interpreted as follows using this analogy. 
Assume that a string x was obtained from an unknown string y of the same length 
by adding a noise. That is, for some known natural number r the string x was 
obtained by a random sampling in a radius-r Hamming ball with the center y. We 
want to de-noise x and to this end we are looking for a Hamming ball of radius r 
that provides the minimal length two-part description for x (that is, the Hamming 
ball of minimal complexity). Assume that we have succeeded and such a ball is 
found. With high probability the randomness deficiency of x in the original ball 
is small. By Problem 369 (for the family of all Hamming balls of radius r) the 
randomness deficiency of x in the ball we have found is small as well. Thus the 
second part in the found two-part description for x has no useful information. In 
other words, the center of the ball we have found is a de-noised version of x (in 
particular, we have also removed the noise present in y).

Here is another example of lossy compression via Kolmogorov complexity. Kol­
mogorov complexity of a high-resolution picture of a sand-dune is very large, as it 
identifies the locations of all individual grains of sand, which are random. For a 
person who looks at that picture, the picture is just a typical element of the set of 
all similar pictures, where the sand-dune is at the same place, has the same form, 
and consists of the sand of the same type, while individual sand grains may oc­
cupy arbitrary spots. If our compressor stores only the description of this large set
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and the decompressing program finds any typical element of that set, the person 
contemplating the picture will hardly notice any difference.

We should remember that this is just an analogy and we should not expect that 
mathematical theorems on Kolmogorov complexity of two-part descriptions will be 
directly applied in practice. One of the reasons for that is our ignoring the compu­
tational complexity of decompressing programs and ignoring compressing programs 
at all. It might be that it is this ignoring that implies paradoxical independence of 
some minimal models on the string x mentioned earlier.



APPENDIX 1

Com plexity and foundations of probability

In this section there are no theorems and no proofs. Instead, we discuss the 
foundations of probability theory (the connection between probability theory as a 
part of mathematics, and its applications to the real world), especially the role of 
the algorithmic information theory, following [180].

Probability  theory paradox

One often describes the natural sciences framework as follows: A hypothesis is 
used to predict something, and the prediction is then checked against the observed 
actual behavior of the system. If there is a contradiction, the hypothesis needs to 
be changed.

Can we include probability theory in this framework? A statistical hypothesis 
(say, the assumption of a fair coin) should be then checked against the experimental 
data (results of coin tossing) and rejected if some discrepancy is found. However, 
there is an obvious problem: The fair coin assumption says that in a series of, 
say, 1000 coin tossings all of the 21000 possible outcomes (all 21000 bit strings of 
length 1000) have the same probability 2“ 1000. How can we say that some of them 
contradict the assumption while other do not?

The same paradox can be explained in a different way. Consider a casino that 
wants to outsource the task of card shuffling to a special factory that produced 
shrink-wrapped well-shuffled decks of cards. This factory would need a quality 
control department. It looks at the deck before shipping it to the customer, blocks 
some badly shuffled decks, and approves some others as well shuffled. But how is 
it possible if all n! orderings of n cards have the same probability?

Here is a modernized version of the same paradox. Imagine that a company 
that runs a multiple-choice test for millions of students decided to make for each 
participant an individual version of the test by random permutation of possible 
answers to each question. Imagine that in one of the copies all the correct answers 
turn out to be labeled as “A”. Should they discard this copy?

C urrent best practice

Whatever the philosophers say, statisticians have to perform their duties. Let 
us try to provide a description of their current best practice (see [194, 175, 180]).

A. How a statistical hypothesis is applied. First of all, we have to admit that 
probability theory makes no predictions but only gives recommendations: If the 
probability (computed on the basis of the statistical hypothesis) of an event A 
is much smaller than the probability of an event B, then the possibility of the 
event В must be taken into consideration to a greater extent than the possibility 
of the event A (assuming the consequences are equally grave). For example, if the
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probability of A is smaller than the probability of being killed on the street by a 
meteorite, we usually ignore A completely (since we have to ignore event В  anyway 
in our everyday life).

Borel [22, pp. 232-233] describes this principle as follows:
... Il y a à Paris moins d’un million d’hommes adultes ; El’s jour­
naux rapportent chaque jour des accidents ou incidents bizarres 
arrivés à l’un d’eux ; la vie serait impossible si chacun craignait 
continuellement pour lui-même toutes les aventures qu’on peut 
lire dans le faits divers cela revient à dire qu’on doit négliger 
pratiquement les probabilités inférieures à un millionième. (...)

Souvent la peur d’un mal fait tomber dans un pire.
Pour savoir distinguer le pire, il est bon de connaître les 

probabilités des diverses éventualités— 1 2 
B. How a statistical hypothesis is tested. Here we cannot say naively that if we 

observe some event that has negligible probability according to our hypothesis, we 
reject this hypothesis. Indeed, this would mean that any 1000-bit sequence of the 
outcomes would make the fair coin assumption rejected (since this specific sequence 
has negligible probability 2" 1000).

Here algorithmic information theory comes into play: We reject the hypoth­
esis if we observe a simple event that has negligible probability according to this 
hypothesis. For example, if coin tossing produces a thousand tails, this event is 
simple and has negligible probability, so we do not believe the coin is fair. Both 
conditions (simple and negligible probability) are important: the event “the first 
bit is a tail” is simple but has probability 1/2, so it does not discredit the coin. On 
the other hand, every sequence of outcomes has negligible probability 2“ 1000, but 
if it is not simple, its appearance does not discredit the fair coin assumption.

Often both parts of this scheme are combined into a statement “events with 
small probabilities do not happen”. For example, Borel writes: “.. .je suis arrivé 
à la conclusion qu’on ne devrait pas craindre d’employer le mot de certitude pour 
désigner une probabilité qui différé de l’unité d’une quantité suffisamment petite” 
([22, p. 5]).2 Sometimes this statement is called the “Cournot principle”. But 
we prefer to distinguish between these two stages, because for the hypothesis test­
ing the existence of a simple description of an event with negligible probability is 
important, and for application of the hypothesis it seems unimportant. (We can 
expect, however, that events interesting to us have simple descriptions because of 
their interest.)

Sim ple events and events specified in advance

Unfortunately, this scheme remains not very precise: the Kolmogorov complex­
ity of an object x (defined as the minimal length of the program that produces x) 
depends on the choice of programming language. We need also to fix some way to

1 Fewer than a million people live in Paris. Newspapers daily inform us about the strange 
events or accidents that happen to some of them. Our life would be impossible if we were afraid 
of all adventures we read about. So one can say that from a practical viewpoint we can ignore 
events with probability less that one millionth. . . O fte n  b y  tr y in g  to  a v o id  s o m e th in g  bad  w e  are  
c o n fro n te d  w ith  e v e n  w o r s e . . .  To avoid this, it is good to know the probabilities of different 
events.

21 came to the conclusion that one must not be afraid to use the word c e r ta in ty  to describe 
a probability that falls short of unity by a sufficiently small quantity.
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describe the events in question. Both choices lead only to an 0(l)-change asymp­
totically; however, strictly speaking, due to this uncertainty we cannot say that one 
event has smaller complexity than the other one. (The word “negligible” is also not 
very precise.) On the other hand, the scheme described, while very vague, seems 
to be the best approximation to the current practice.

One of the possible ways to eliminate complexity in this picture is to say that a 
hypothesis is discredited if we observe a very improbable event that was specified in 
advance (before the experiment). Here we come to the following question. Imagine 
that you make some experiment and get a sequence of a thousand bits that looks 
random at first. Then somebody comes and says, “Look, if we consider every third 
bit in this sequence, the zeros and ones alternate.” Will you still believe in the 
fair coin hypothesis? Probably not, even if you haven’t thought about this event 
before while looking at the sequence: the event is so simple that one could think 
about it. In fact, one may consider the union of all simple events that have small 
probability, and it still has small probability (if the bound for the complexity of a 
simple event is small compared to the number of coin tossings involved, which is a 
reasonable condition anyway). And this union can be considered as specified before 
the experiment (e.g., it is described in this book).

On the other hand, if the sequence repeats some other sequence observed earlier, 
we probably will not believe it is obtained by coin tossing even if this earlier sequence 
had high complexity. One may explain this opinion saying the the entire sequence 
of observations is simple since it contains repetitions; however, the first observation 
may not be covered by any probabilistic assumption. This could be taken into 
account by considering the conditional complexity of the event (with respect to all 
information available before the experiment).

The conclusion is that we may remove one problematic requirement (being 
simple in some vague sense) and replace it by another problematic one (being 
specified before the observation). Borel comments on the situation [21 , pp. 111- 
112]:

Disons un mot de la réflexion de Bertrand relativement au tri­
angle équilatéral que formeraient trois étoiles ; elle se rattache 
à la question du nombre rond. Si l’on considère un nombre 
pris au hasard entre 1.000.000 et 2.000.000 la probabilité pour 
qu’il soit égal à 1.342.517 est égale à un millionième; la prob­
abilité pour qu’il soit égal à 1.500.000 est aussi égale à un mil­
lionième. On considérera cependant volontiers cette dernière 
éventualité comme moins probable que la première ; cela tient 
à ce qu’on ne se représente jamais individuellement un nom­
bre tel que 1.542.317 ; on le regarde comme le type de nombres 
d’apparences analogues et si, en le transcrivant, on modifie un 
chiffre, on s’en aperçoit à peine et l’on ne distingue pas 1.324.519 
de 1.324.517 : le lecteur a besoin de faire un effort pour s’assurer 
que les quatre nombres écrits dans le lignes précédentes sont tous 
différents.

Lorsque l’on a observé un nombre tel que le précédent comme 
évaluation d’un angle en dixiémes de secondes centésimales, on 
ne songe pas à se poser la question de savoir qu’elle était la prob­
abilité pour que cet angle fût précisément égal a 13°42/51/(7 car
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on ne se serait jamais posé cette question précise avant d’avoir 
mesuré l’angle. Il faut bien que cet angle ait une valeur et, 
qu’elle que soit sa valeur à un dixième de seconde près, on pour­
rait, après l’avoir mesurée, dire que la probabilité a priori, pour 
que cette valeur soit précisément telle qu’elle est, est un dix- 
millionième, et que c’est là un fait bien extraordinaire. {...)

La question est de savoir si l’on doit faire ces mêmes réserves 
dans le cas où l’on constate qu’un des angles du triangle formé 
par trois étoiles a une valeur remarquable et est, par exemple, 
égal à l’angle du triangle équilatéral {...) ou à un demi-angle 
droit {...) Voici ce que l’on peut dire à se sujet : on doit se 
défier beaucoup de la tendance que l’on a à regarder comme re­
marquable une circonstance que l’on n’avait pas précisée avant 
l ’expérience, car le nombre des circonstances qui peuvent ap­
paraître comme remarquables, à divers points de vue, est très 
considérable.3

Frequency approach

The most natural and common explanation of the notion of probability says 
that probability is the limit value of frequencies observed when the number of 
repetitions tends to infinity. (This approach was advocated as the only possible 
basis for probability theory by Richard von Mises.)

However, we cannot observe infinite sequences, so the actual application of 
this definition should somehow deal with finite number of repetitions. And for 
a finite number of repetitions our claim is not so strong: We do not guarantee 
that frequency of tails for a fair coin is exactly 1/2. We say only that it is highly 
improbable that it deviates significantly from 1/ 2. Since the words highly improbable 
need to be interpreted, this leads to some kind of logical circle that makes the 
frequency approach much less convincing; to get out of this logical circle we need 
some version of the Cournot principle.

3Let us comment on Bertrand’s observation (about an equilateral triangle formed by three 
stars); it is related to the idea of a “round number”. Consider a random integer between 1 000000 
and 2 000 000. The probability that it is equal to 1 342 517 is one over million; the probability that 
it is equal to 1 500 000, is also one over million. However, the second event is often considered 
as something less likely than the first one. This is because nobody considers individually a 
number like 1 542 317. It is considered as an example of some type of numbers, and if we change 
accidentally one digit when copying such a number, it is hardly noticeable: 1 324 519 looks very 
similar to 1 324 517. A special effort is needed to check that the four numbers mentioned above 
are different.

When a number like this appears as an angle measured in centesimal seconds, we do not ask 
ourselves what is the probability that this angle is exactly 13°42/51/(7 because we never would 
be interested in such a question before the measurement. Of course, the angle should have some 
value, and whatever this value is (up to a tenth of a second), we may measure it and say that 
the a p r io r i  probability to get this value is one in ten million, so an extraordinary event has 
happened...

The question is whether the same reservations apply if one of the angles formed by three 
starts has a re m a rk a b le  value, for example, is equal to the angle in the equilateral triangle... or 
the half of the right angle... What can we say about that? One should try hard to avoid the 
temptation to consider some event not fixed before th e  e x p e r im e n t , as a re m a rk a b le  one, because 
a lot of events could look remarkable from some viewpoint.
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Technically, the frequency approach can be related to the principles explained 
above. Indeed, the event “the number of tails in 1000 000 coin tossings deviates 
from 500000 more than by 100 000” has a simple description and very small prob­
ability, so we reject the fair coin assumption if such an event happens (and ignore 
the dangers related to this event if we accept the fair coin assumption). In this way 
the belief that frequency should be close to probability (if the statistical hypothesis 
is chosen correctly) can be treated as the consequence of the principles explained 
above.

Dynamical and statistical laws

We have described how probability theory is usually applied. But the funda­
mental question remains: Probability theory describes (to some extent) the behav­
ior of a symmetric coin or die and turns out to be practically useful in many cases. 
But is it a new law of nature or some consequence of the known dynamical laws 
of classical mechanics? Can we somehow prove that a symmetric die indeed has 
the same probabilities for all faces (if the starting point is high enough and initial 
linear and rotation speeds are high enough)?

Since it is not clear what kind of “proof” we would like to have, let us put the 
question in a more practical way. Assume that we have a die that is not symmetric 
and we know exactly the position of its center of gravity. Can we use the laws of 
mechanics to find the probabilities of different outcomes?

It seems that this is possible, at least in principle. The laws of mechanics 
determine the behavior of a die (and therefore the outcome) if we know the initial 
point in the phase space (initial position and velocity) precisely. The phase space, 
therefore, is split into six parts that correspond to six outcomes. In this sense there 
is no uncertainty or probabilities up to now. But these six parts are well mixed 
since very small modifications affect the result, so if we consider a small (but not 
very small) part of the phase space around the initial conditions and any probability 
distribution on this part whose density does not change drastically, the measures 
of the six parts will follow the same proportion.

The last sentence can be transformed into a rigorous mathematical statement 
if we introduce specific assumptions about the size of the starting region in the 
phase space and variations of the density of the probability distribution on it. It 
then can be proved. Probably it is a rather difficult mathematical problem not yet 
solved, but at least theoretically the laws of mechanics allow us to compute the 
probabilities of different outcomes for a non-symmetric die.

Are “real-life” sequences complex?

The argument in the preceding section would not convince a philosophically 
minded person. Well, we can (in principle) compute some numbers that can be 
interpreted as probabilities of the outcomes for a die, and if we do not need to fix the 
distribution on the initial condition, it is enough to assume that this distribution 
is smooth enough. But still we speak about probability distributions that are 
somehow externally imposed in addition to dynamical laws.

Essentially the same question can be reformulated as follows. Make 106 coin 
tosses and try to compress the resulting sequence of zeros and ones by a standard 
compression program, say, gzip. (Technically, you need first to convert a bit se­
quence into a byte sequence.) Repeat this experiment (coin tossing plus gzipping)
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as many times as you want, and this will never give you more than 1% compression. 
(Such a compression is possible for less than a 2“ 10000-fraction of all sequences.) 
This statement deserves to be called a law of nature: it can be checked experimen­
tally in the same way as other laws. So the question is, Does this law of nature 
follow from dynamical laws we know?

To see where the problem is, it is convenient to simplify the situation. Imagine 
for a while that we have discrete time, phase space is [0, 1), and the dynamical law 
is

X i—̂ T(x) = if 2a; < 1 then 2x else 2x — 1.
So we get a sequence of states xq,x\ = T(xo),X2 = T (x i), . . .; at each step we 
observe where the current state is—writing 0 if xn is in [0, 1/ 2) and 1 if xn is in 
(1/ 2 . 1).

This transformation T  has the mixing property we spoke about: If for some 
large t we look at the set of points that after t iterations are in the left half of the 
interval, we see that it is just the set of reals where tth bit of the binary representa­
tion is zero, and these reals occupy about a half in every (not too short) interval. In 
other words, we see that a sequence of bits obtained is just the binary representa­
tion of the initial condition. So our process just reveals the initial condition bit by 
bit, and any statement about the resulting bit sequence (e.g., its incompressibility) 
is just a statement about the initial condition.

So what? Do we need to add to the dynamical laws just one more metaphys­
ical law saying that the world was created at a random (incompressible) state? 
Indeed, algorithmic transformations (including dynamical laws) cannot increase sig­
nificantly the Kolmogorov complexity of the state, so if objects of high complexity 
exist in the (otherwise deterministic, as we assume for now) real world now, they 
should be there at the very beginning. (Note that it is difficult to explain the 
randomness observed saying that we just observe the world at random time or in 
a random place. The number of bits needed to encode the time and place in the 
world is not enough to explain an incompressible string of length, say 106, if we 
use standard estimates for the size and age of the world. The logarithms of the 
ratios of the maximal and minimal lengths (or time intervals) that exist in nature 
are negligible compared to 106, and therefore the position in space-time cannot 
determine a string of this complexity.)

Should we conclude then that instead of playing dice (as Einstein could put it), 
God provided “concentrated randomness” (a state of high Kolmogorov complexity) 
while creating the world?

Randomness as ignorance: B lum -M icali-Y ao pseudo-randomness

This discussion becomes too philosophical to continue it seriously. However, 
there are important mathematical results that could influence the opinion of the 
philosophers discussing the notions of probability and randomness if they knew 
these results. In this book we did not touch complexity with bounded resources 
(an important but not well-studied topic) and instead stayed in the realm of general 
computability theory, but we cannot avoid this topic when discussing the philosoph­
ical aspects of the notion of probability.

This result is the existence of pseudo-random number generators (as defined 
by Blum, Micali and Yao; they are standard tools in computational cryptography; 
see, e.g., the Goldreich textbook [61]). Their existence has been proven using
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some complexity assumptions (the existence of one-way functions) that are widely 
believed though not yet proven.

Let us explain what a pseudo-random number generator (in the Blum-Micali- 
Yao sense) is. Here we use rather vague terms and oversimplify the matter, but there 
is rigorous mathematics behind it. Imagine a simple and fast algorithmic procedure 
that gets a seed, a binary string of moderate size, say, 1000 bits, and produces a very 
long sequence of bits out of it, say, of length 1010. By necessity the output string 
has small complexity compared to its length (complexity is bounded by the seed size 
plus the length of the processing program, which we assume to be rather short). 
However, it may happen that the output sequences will be “indistinguishable” 
from truly random sequences of length 1010, and in this case the transformation 
procedure is called a pseudo-random number generator.

It sounds like a contradiction: as we have said, output sequences have small 
Kolmogorov complexity, and this property distinguishes them from most of the 
sequences of length 1010. So how they can be indistinguishable? The explanation is 
that the difference becomes obvious only when we know the seed used for producing 
the sequence, but there is no way to find out what seed is by looking at the sequence 
itself. The formal statement is quite technical, but its idea is simple: Consider any 
simple test that looks at a 1010-bit string and says yes or no (by whatever reason; 
any simple and fast program could be a test). Then consider two ratios: (1) the 
fraction of bit strings of length 1010 that pass the test (among all bit strings of this 
length) and (2) the fraction of seeds that lead to a 1010-bit string that passes the 
test (among all seeds). The pseudo-random number generator property guarantees 
that these two numbers are very close.

This implies that if some test rejects most of the pseudo-random strings (pro­
duced by the generator), then it would also reject most of the strings of the same 
length, so there is no way to find out whether somebody has given us random or 
pseudo-random strings.

In a more vague language, this example shows us that randomness may be 
in the eye of the beholder, i.e., the randomness of an observed sequence could 
be the consequence of our limited computational abilities which prevent us from 
discovering non-randomness. (However, if somebody shows us the seed, our eyes 
are immediately opened, and we see that the sequence has very small complexity.)

So we should not exclude the possibility that the world is governed by simple 
dynamical laws and its initial state can be also described by several thousands of 
bits. In this case “true” randomness does not exist in the world, and every sequence 
of 106 coin tossings that happened or will happen in the foreseeable future produces 
a string that has Kolmogorov complexity much smaller than its length. However, 
a computationally limited observer (like ourselves) would never discover this fact.

A digression: Thermodynamics

The connection between statistical and dynamical laws was discussed a lot 
in the context of thermodynamics while discussing the second law. However, one 
should be very careful with exact definition and statements. For example, it is often 
said that the second law of thermodynamics cannot be derived from dynamical laws 
because they are time-reversible while the second law is not. On the other hand, 
it is often said that the second law has many equivalent formulations, and one of 
them claims that the perpetual motion machine of the second kind is impossible,
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i.e., no device can operate on a cycle to receive heat from a single reservoir and 
produce a net amount of work.

However, as Nikita Markaryan explained (personal communication), in this 
formulation the second law of thermodynamics is a consequence of dynamic laws. 
Here is a sketch of this argument. Imagine that a perpetual motion machine of 
the second kind exists. Assume this machine is attached to a long cylinder that 
contains warm gas. Fluctuations of gas pressure provide a heat exchange between 
gas and machine. On the other side the machine has a rotating spindle and a rope 
to lift some weight (due to rotation).

When the machine works, the gas temperature (energy) goes down and the 
weight goes up. This is not enough to call the machine a perpetual motion machine 
of the second kind (indeed, it can contain some amount of cold substance to cool' 
the gas and some spring to lift the weight). So we assume that the rotation angle 
(and the height change) can be made arbitrarily large by increasing the amount of 
the gas and the length of the cylinder. We also need to specify the initial conditions 
of the gas; here the natural requirement is that the machine works (as described) 
for most initial conditions (according to the natural probability distribution in the 
gas phase space).

Why is such a machine impossible? The phase space of the entire system can be 
considered as a product of two components: the phase space of the machine itself 
and the phase space of the gas. The components interact, and the total energy 
is constant. Since the machine itself has some fixed number of components, the 
dimension of its component (or the number of degrees of freedom in the machine) 
is negligible compared to the dimension of the gas component (resp. the number of 
degrees of freedom in the gas). The phase space of the gas is split into layers corre­
sponding to different levels of energy; the higher the energy is, the more volume in 
the phase space is used. This dependence outweighs the similar dependence for the 
machine since the gas has many more degrees of freedom. Since the transformation 
of the phase space of the entire system is measure-preserving, it is impossible that 
a trajectory started from a large set with high probability ends in a small set: the 
probability of this event does not exceed the ratio of a measures of destination and 
source sets in the phase space. So the machine that (with high probability) cools 
the gas in a random state and produces mechanical energy (=is a perpetual mobile 
of the second kind) is impossible.

This argument is. quite informal and ignores many important points. For ex­
ample, the measure on the phase space of the entire system is not exactly a product 
of measures on the gas and machine coordinates; the source set of the trajectory 
can have small measure if the initial state of the machine is fixed with very high 
precision, etc. (The latter case does not contradict the laws of thermodynamics: if

gas machine

t
□
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the machine uses a fixed amount of cooling substance of very low temperature, the 
amount of work produced can be very large.) But at least these informal arguments 
make plausible that dynamic laws make impossible the perpetual motion machine 
of the second kind (if the latter is defined properly).

Another digression: Quantum mechanics

Another physics topic often discussed is quantum mechanics as a source of 
randomness. There were many philosophical debates around quantum mechanics. 
However, it seems that the relation between quantum mechanical models and obser­
vations resembles the situation with probability theory and statistical mechanics. 
The difference is that in quantum mechanics the model assigns amplitudes (instead 
of probabilities) to different outcomes (or events). The amplitudes are complex 
numbers and the quantum Cournot principle says that if the (absolute value) of 
the amplitude of event A is smaller than for event B, then the possibility of event В 
must be taken into consideration to a greater extent than the possibility of event A 
(assuming the consequences are equally grave). Again this implies that we can 
(practically) ignore events with very small amplitudes.

The interpretation of the square of amplitude as probability can be then derived 
is the same way as in the case of the frequency approach. If a system is made of N  
independent identical systems with two outcomes 0 and 1 and the outcome 1 has 
amplitude z in each system, then for the entire system the amplitude of the event 
“the number of l ’s among the outcomes deviates significantly from N\z\2” is very 
small (it is just the classical law of large numbers in disguise).

One can then try to analyze measurement devices from the quantum mechan­
ical viewpoint and prove (using the same quantum Cournot principle) that the 
frequency of some outcome of measurement is close to the square of the length of 
the projection of the initial state to a corresponding subspace outside some event 
of small amplitude, etc.



APPENDIX 2

Four algorithmic faces of randomness

V. U s p e n s k y

This appendix is a translation of the brochure “Four algorithmic 
faces of randomness” (2nd corrected edition, MCCME Publish­
ers, Moscow, 2009; the first edition was published in 2006) that 
is based on a lecture delivered by Uspensky during the sum­
mer school “Modern Mathematics” (Dubna near Moscow, Rus­
sia, July 23, 2005). The terminology used in this brochure1 is 
somewhat different from that used in the rest of the book; in 
particular, the terms chaotic, typical, and unpredictable are used 
to stress specific properties of random objects that appear in the 
corresponding definition. Chaoticness means that the complex­
ity is high (no regularities can be used to give a short descrip­
tion); typicalness is based on measure theory; unpredictability 
guarantees that no strategy can win in a prediction game against 
this sequence. There are rigorous definitions for these notions 
that can be considered possible definitions of true randomness. 
And it is remarkable that natural definitions of chaoticness and 
typicalness turn out to be equivalent (Levin-Schnorr theorem).

Introduction

If somebody tells us that she tossed a “fair” coin twenty times and got the 
string
(I) 10001011101111010000 
(where 0 and 1 denote head and tail), or the string
(II) 01111011001101110001,
this would not surprise us. However, if somebody claims to obtain
(III) 00000000000000000000 
or
(IV) 01010101010101010101,
we start to doubt that the experiment was really performed in a proper way. But 
why?

1The same terminology was approved by Kolmogorov and used in the opening talk “Al­
gorithms and randomness” at the First World Congress of the Bernoulli Society (written by 
Kolmogorov and Uspensky, delivered by Uspensky), and in [84, 208, 194, 139]
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Somehow the strings (I) and (II) are perceived as “random” while (III) and 
(IV) are not.

But what does it mean to be “perceived as random”? Classical probability 
theory says nothing about this natural question. Sometimes they say that the 
outcomes (III) and (IV) have very small probability 2~ 2 0  to appear in a fair coin 
tossing, so the chances to get them are less than one in a million. Still, (I) and (II) 
have exactly the same probability!

Let us start with three important remarks.
• First, the intuitive idea of randomness depends on the assumed probability 

distribution. If the coin is very asymmetric and one side is much heavier, 
or if it is tossed in a very special way, (III) or (IV) may not surprise 
us. So, for simplicity, we will speak mostly about fair coin tossing, i.e., 
independent trials with success probability 1/ 2.

• Second, the intuitive idea of randomness has sense only if the string is 
long enough. It would be stupid to ask which of four strings 00, 01, 10, 
11 looks more random than the others.

• Finally, there is no sharp boundary between (intuitively) random and non- 
random strings. Indeed, changing one bit in a random string, we get a 
string that is random, too. But in several steps we can obtain (III) or 
(IV) from any string. This well-known effect is sometimes called “heap 
paradox”.

So, trying to define randomness, one should consider very long strings, or, 
even better, infinite bit sequences (in general infinite objects are “approximations 
from above” for large finite objects). For infinite sequences one may try to draw a 
meaningful sharp division between random and non-random objects, i.e., to define 
rigorously a mathematical notion of a random bit sequence. In this survey we 
describe several attempts to provide such a definition, made by different authors. 
However, a general disclaimer is needed: for all practical purposes only finite se­
quences (strings) matter, so these definitions are necessarily far from “real life”. In 
fact, even very long finite sequences never appear in real life, so it is hard to extend 
our intuition of randomness even to long finite strings. This said, we now switch to 
mathematical definitions.

Let us start with some useful notation and terminology.
We consider finite bit strings, i.e., finite sequences of zeros and ones. (They are 

also called binary words.) A string x = x \ . ... ,x n has length n, denoted also by 
\x\? A string may have zero length, i.e., may contain no bits; it is then called an 
empty string and is denoted by A.

The set of all binary strings is denoted by H. The set of all infinite bit sequences 
is denoted by fi. An infinite sequence ai, й2, аз, •.. has finite string ai, a2, . . . ,  an 
as its n-bit prefix. For every string x we consider the set Qx C fl of all infinite 
sequences that have prefix x. This set is called a ball, and the volume of this ball 
is defined as 2“^  and denoted by v(x ) . 2 3

Each sequence from Q is considered as a record of an (infinite) coin tossing. Let 
us repeat that for now we assume that the coin is fair. Mathematically speaking, it

2 We used the notation l { x )  for the length of x  in the main part of the book.
3In the rest of the book we call Clx an interval, not a ball, and speak about its length, not 

volume.
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means that we consider a uniform probability distribution on ft where for each ball 
Qx the probability to get an element of Qx is equal to its volume.

Our goal is to specify a well-defined subset of Q that could be considered as 
the set of all random sequences. Traditional probability theory cannot help here; 
even the question can hardly be stated in its language. In a paradoxical way, the 
notion of algorithm helps. It may sound strange: the notion of randomness is 
defined in terms of the notion of algorithm, which is a deterministic procedure that 
has nothing to do with randomness, but it is the case. All known definitions of 
randomness for individual objects (in our case—individual binary sequences) are 
based on the theory of algorithms in some way.

We may start by trying to identify a characteristic property that intuitively 
should be possessed by all random sequences, and then use this property (specified 
rigorously) as a formal definition of randomness.

So, what properties could be reasonably expected from a randomly chosen bit 
sequence?

First of all, the limit frequency should exist in such a sequence. For the simplest 
case of a fair coin this means that the fraction of zeros (as well as the fraction of ones) 
in the n-bit prefix of the sequence should converge to 1/2 as n goes to infinity. This 
property can be called frequency stability. Moreover, the same property should hold 
not only for the sequence itself, but also for every its reasonably chosen subsequence.

Second, a randomly chosen sequence is expected to be chaotic. This means 
that it has a complex structure and cannot have a reasonable description. The 
psychological difference between the perception of strings (I), (II) and (III), (IV) 
can be explained, as Kolmogorov suggested, by the fact that strings (I) and (II) 
have no short description while (III) and (IV) have a regular structure and can be 
described easily.

Third, a randomly chosen sequence should be typical, in the sense that it be­
longs to any reasonable majority.

Finally, it should be unpredictable. This means that making bets against this 
sequence, trying to guess its terms, we cannot win systematically, and no clever 
strategy could help us.

Of course, these wordings are vague. One should specify the meaning of word 
“reasonable” that occurs in the explanations of frequency stability, chaoticness, 
and typicalness, as well of the words “description” and “strategy”. Theory of 
algorithms can be used to convert these descriptions into formal definitions, and we 
get four rigorously defined properties: frequency stability, chaoticness, typicalness, 
and unpredictability. Each of them can be considered as some “algorithmic face of 
randomness” and can to some extent pretend to be a mathematical definition of 
randomness. In this way we get four well-defined classes of sequences that could 
compete for the title of the “true class of random sequences” though each has its 
strong and weak points.

In the following exposition our goal is two-fold: (1) to give rigorous definitions 
for the four properties mentioned above and therefore to define four classes of 
sequences; (2) to state (currently known) relations between these properties (and, 
therefore, between the corresponding classes of sequences).
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Face one: Frequency stability and stochasticness

The idea to define the notion of an individual random sequence goes back to 
Richard von Mises, a well-known German mathematician; it seems that he was the 
first who tried to give such a definition. This happened in the beginning of the 
twentieth century, in 1919. At least it was he who suggested a reasonable approach 
to this definition (though he did not give a rigorous mathematical one).

Von Mises started by requiring frequency stability, i.e., the existence of limit 
frequency: the fraction of ones among the first n terms should converge (for the case 
of fair coin) to 1/2 as n tends to infinity. Of course, this property is not sufficient. 
For example, this is true for the (definitely non-random) sequence

0 , 1, 0 , 1, 0 , 1, 0 , 1, . . . .

Evidently, we should require that not only the sequence itself, but also its sub­
sequences satisfy the frequency stability property. But we cannot expect all the 
subsequences to be stable in this sense: indeed, even a perfectly random sequence 
has a zero subsequence, we may select just the terms that are equal to zero. So we 
have to restrict ourselves and consider only “reasonable chosen”, or “admissible” 
subsequences.

It is nice to consider any subsequence of a given sequence as the result of 
selection procedure applied to the terms of the original sequence: the subsequence 
consists just of those terms which are selected. Any selection procedure is based on 
some selection rule. To obtain a reasonable, or admissible, subsequence, one needs 
to use a reasonable (admissible) selection rule. For example, a reasonable selection 
rule may select all terms ai where г is a prime number, or all terms that follow 
zeros (i.e., all terms a^+i such that = 0). In this way we get two admissible 
subsequences.

Kolmogorov at some point suggested the name stochastic for a sequence whose 
admissible subsequences all have the frequency stability property.

The scheme suggested by von Mises was rather vague; it was turned to a rig­
orous definition of randomness when the theory of algorithms was developed. One 
of its inventors, an American mathematician Alonzo Church suggested in 1940 to 
define the admissible selection rule as algorithms of special type. The sequences 
where all Church-admissible subsequences satisfy the frequency stability property 
are called Church stochastic sequences.4 This definition, however, looks too broad: 
for example, there exists a Church stochastic sequence that becomes non-Church- 
stochastic after a computable permutation of its terms.5

In 1963 Kolmogorov modified the definition given by Church and suggested a 
broader class of admissible selection rules, thus defining a broader (in fact, strictly 
broader) class of admissible subsequences. In particular, Kolmogorov’s definition 
does not require that the selected terms keep the ordering they had in the orig­
inal sequence. A corresponding class of sequences, called Kolmogorov stochastic 
sequences,6 appears: they are sequences such that all Kolmogorov-admissible sub- 
sequences satisfy the frequency stability property. By definition, this class is a

4In the main part of the book they are called M is e s -C h u r c h  ra n d o m  sequences.
5See Theorem 203(d), p. 307.
6They are called M is e s - K o lm o g o r o v  r a n d o m  se q u e n c es  in the main part of the book. The 

most standard name used nowadays is K o lm o g o r o v -L o v e la n d  s to c h a s t ic  seq u en ces.
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subclass (in fact, a proper subclass) of the class of Church stochastic sequences. In 
the sequel we denote the class of stochastic sequences by S.

Soon it turned out that the class S was also too broad. For example, one 
may construct a Kolmogorov stochastic sequence where each prefix has more zeros 
than ones.7 It contradicts our intuition (supported by some theorems of probability 
theory: a one-dimensional random walk returns to the starting point with proba­
bility 1). So even the strictest version of the von Mises approach currently known 
does not provide an intuitively satisfactory notion of randomness, though it is an 
interesting object to study that reflects some aspects of randomness.

To be precise, let us reproduce the definitions suggested by Church and Kol­
mogorov. In both cases we define some class of admissible selection rules used to 
form subsequences of a given sequence.

Imagine that the terms of the sequence (zeros and ones) are written on paper 
cards that are put on the table, face down, so we do not see what is written on the 
cards. Our goal is to select some of the cards and form another sequence made of the 
bits on the selected cards. This subsequence (in the case of Kolmogorov’s definition 
this term is used in a broad sense, the order of terms in the subsequence may differ 
from their order in the original sequence) is called an admissible subsequence. An 
admissible selection rule is an algorithm that decides on each step (1) which bit 
should be revealed (corresponding card turned over) next and (2) whether this bit 
should be included in the subsequence or not. The algorithm has access to the bits 
already revealed (those bits form its input). It may well happen that the algorithm 
selects only finitely many bits (it may hang or reveal more and more bits without 
selecting any of them), in this case we say that no admissible subsequence is formed. 
(Anyway, the frequency stability property makes sense only for infinite sequences.) 
If for every admissible selection rule we get a sequence that satisfies the frequency 
stability property, the original sequence is called stochastic.

To give a more precise description, let us recall some terminology. A function is 
called computable if there is an algorithm that computes this function. This means, 
for some function / ,  that (1) the algorithm terminates on every input x such that 
f(x )  is defined, and produces f(x), and (2) the algorithm does not terminate on 
all inputs where /  is undefined.

Assume that a sequence a\,a 2 , ... is given, so the nth card contains bit an. 
A Church admissible selection rule is an arbitrary computable function G defined 
on all binary strings and has True and False as values. The cards are turned over 
sequentially (first the card that carries a\, then a2 , etc.); before the next card is 
turned over, the selection rule decides whether that card is selected or not. This 
is done in the following way. Assume that n cards, carrying bits a i, ...  ,an, have 
been turned over. If G (ai,. . . ,  an) equals True, then the next card, carrying an+1, 
is included in the subsequence; otherwise, it is not. At the first step we include a\ 
in the subsequence depending on the value of G(A). In other words, the selected 
subsequence consists of terms

®n( 1)) ® n (2))  ® n (3))  • • • )

where n(l),n(2),n(3),...  are all numbers n such that G{a\ , . . . ,  an- i)  = True, 
assuming that there are infinitely many numbers with this property. Otherwise, we 
get a finite sequence, and it is not considered as admissible subsequence.

7 See Theorem 203(b), p. 307.
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This was Church’s definition. Before we explain Kolmorogov’s version, let us 
explain what we mean by a generalized subsequence of some sequence ai, <22, .. . .  It 
is a sequence of the form

Q'<p( 1) ) <̂£>(2) ) ■ • • ) ) • • • )
where

* < 3 => Ф )  ^  4>(j)-
In the usual definition of subsequence the last condition is stronger: we require that 
subsequence is monotone, i.e., <p(i) < <p(j) for i < j.

Each Kolmogorov admissible selection rule attempts to select some generalized 
subsequence of the given sequence. Here we say “attempts” since this attempt may 
be unsuccessful: in this case instead of an infinite subsequence we get a tuple (finite 
sequence) that consists of some terms taken from the original sequence. We say that 
our original sequence is Kolmogorov stochastic if all infinite subsequences obtained 
from it by Kolmogorov admissible rules have the frequency stability property.

It remains to explain what is a Kolmogorov admissible selection rule. To specify 
such a rule, we consider two computable functions F and G. The first one (F) is 
used to construct some intermediate generalized subsequence; the final subsequence 
is a (monotone) subsequence of that intermediate sequence. Both functions F and 
G are defined on (some) binary strings, so their domains are subsets of E (may 
be, different ones). The values of F  are positive integers, and the values of G are 
Boolean values True and False. We start by constructing a sequence of natural 
numbers

77(1) .F(A), n(2) .Е(а.п(1)), . . . ,  n(k T 1) F{an(ip • • • > ^n(k))-
This construction is stopped and gives a finite sequence in the following three cases:

• the value F(an(i),. . . ,  an^ )  is undefined;
• the value G(an^ , . . . ,  an^ )  is undefined;
• the value F(an^ , . . .,an^ )  coincides with one of the n ( l ) , . . . ,  n(k).

If none of these three events happens, we get an infinite sequence of indices
n(l),n(2),n(3),. . . ,

and a generalized subsequence an^ ,  an(2), an(3)j • • • • Now, and this is the last step, 
we select a (monotone) subsequence of these subsequence by choosing all terms 
an(fc) such that G(an(i),. . . ,  an(*._i)) — True, in the order of increasing k.

Face two: C haoticness

Let us return to strings (I)-(IV) that we started with. According to Kol­
mogorov’s explanation, strings (I) and (II) look random because they are complex, 
while (III) and (IV) look non-random because they are simple. It seems that intu­
itively we expect the result of a random process be complex, and we suspect some 
cheating when it turns out to be simple.

There are many ways to compare objects around us: we can distinguish big and 
small objects, or heavy and light objects. Also we can speak about complex and 
simple objects. In the 1960s Kolmogorov8 observed that mathematics can be used

8Kolmogorov’s paper of 1965 [78] became most well known, but he was not alone: many 
people independently came to similar ideas. As Kolmogorov notes in his paper [79], the first 
publication in this direction was written by Ray Solomonoff [187]; Gregory Chaitin [28] also 
developed this idea a bit later.
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for such a classification. Now the corresponding mathematical theory is usually 
called Kolmogorov complexity theory.

The main idea is simple and natural: com plexity o f an object can be m ea­
sured by the length o f its shortest description. Each object has a long 
description, however a complex object cannot have a short description.

Let Y  be the set of all objects we consider, and let X  be a set of all possible 
descriptions of those objects. Let us recall that \x\ stands for the length of x. 
According to what we said, the complexity of an object y, denoted by Comp(t/), is 
defined by the formula

Comply) = min{|x| : x is a description of y}.
X

If an object y has no description at all, its complexity is infinite (the minimum of 
the empty set is defined as infinity).

Of course, we need some uniform way to measure the length of a description, it 
would be unfair to say that something can be easily described in Chinese because 
only one glyph is needed, and has only a complicated English description that 
consists of several dozen letters. So we assume that all descriptions are presented 
as binary strings. In other words, we assume in the sequel that X  = E.

The set of all pairs (x,y) where x describes y, can be called a language of 
descriptions or a description language. Note that (for some description language) 
some object y may have many descriptions. We may also consider description lan­
guages where the same x can describe several objects. For example, the expression 
“a string of zeros” can be considered as a description of all such strings, and we may 
even consider an expression “a bit string” as a description of all binary strings.9

What has been discussed above was a preparation for the following formal 
definition. Consider an arbitrary subset E in the Cartesian product E x Y, called 
a description language. If (x, y) G E, we say that the string x is a description of 
the object y. The complexity Compfî of an object y with respect to the description 
language E  is defined as

Comp E(y) = min {| ж I : (x,y) G E}.
X

(Again, the minimum of the empty set is infinite.)
For a language E — E x Y  where every string ж is a description of every object 

y, the complexity of all objects equals zero, since the empty string is a description 
of every object. Such a description language is formally allowed but will not appear 
in the classes of description languages considered in the sequel.

Imagine two description languages with the following property: to get a descrip­
tion of some object у for the second language, we take its description for the first 
language and repeat it twice. Evidently the second description language is worse, 
since it provides descriptions that are twice as long, and we want the descriptions 
to be short.

Formally speaking, we say that a description language A is not worse than a 
description language В and write A ^  B, if there exists some constant c such that 
CompA(t/) < CompB(y) + c for all y.

Consider natural languages as description languages. Assume that for any pair 
of natural languages there is a translation algorithm that converts any given text

9However, we should not go too far in this direction; otherwise, the notion of complexity will 
be trivial.
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in the first language into an equivalent text in the second language. We then 
can conclude that description language corresponding to the second language is 
not worse than that corresponding to the first language. For example, a Turkish- 
language description of an object may consist of two parts: a Japanese-language 
description and a Japanese-Turkish translation algorithm. In this way we get a 
Turkish description that is longer than a Japanese description at most by a constant 
(the length of the Japanese-Turkish translation algorithm). This constant does not 
depend on the choice of the object described. Taking the shortest possible Japanese 
description, we conclude that the Turkish language is not worse than the Japanese 
language if we consider both as description languages.

Let us call a language family any family of description languages. Having some 
language family C, we may ask whether there exists an optimal language in this 
family. A language A from L is optimal (for C) if it is not worse than any other 
description language in the family, i.e., if

(VR e C) (A < B).
An optimal description language, if it exists for some family, should be used 

to measure complexity. The complexity of an object with respect to some fixed 
optimal description language can be called algorithmic entropy of this object.10 
Entropy is the final version of the measure of complexity (when some family of 
description languages is fixed).

For some language families one can prove the existence of an optimal description 
language. For those families the notion of entropy is well defined. The statements 
of this type are usually called Solomonoff-Kolmogorov theorems, since they were 
first to discover such statements.

A given family may contain (and usually contains) many optimal description 
languages. Each of them gives some entropy function. However, due to the op­
timality definition, every two entropies (corresponding to two optimal description 
languages for some family) differ by at most an additive constant. In other words, 
if A and В are two optimal description languages in the family C, then there exists 
a constant c such that

I Com ply) -  Compß (y) I < c
for all y.

R e m a r k . Of course, one can rightfully complain that the notion of entropy 
that pretends to be a complexity measure for individual objects is still defined only 
up to some bounded additive term, and one would like to select some true entropy 
function among different ones. However, attempts of this type have not succeeded 
up to now.

We use the letter К  to denote algorithmic entropy (as a tribute to Kolmo­
gorov)11 and sometimes add another letter to specify the family of description 
languages used. If K' and K" are two entropy functions for the same family of 
description languages, then

I К ' -  К" I < c
(as we have noted).

10In the main part of the book we keep the name c o m p le x ity  for this notion, and we use the 
word e n tr o p y  for Shannon entropy only.

11 In the main part of the book the letter К  is used for prefix version of complexity (entropy).
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Kolmogorov not only gave a definition of algorithmic entropy, but also realized 
its connection with randomness. He observed that for a random sequence the 
entropy of its n-bit prefix grows fast as n tends to infinity. Notice that a random 
sequence can start with, say, a million zeros, and the entropy of this prefix is very 
low, but asymptotically it still grows fast.

When speaking about prefixes of binary sequences, we use binary strings (such 
as (I), (II), (III), (IV)) as objects whose complexity is measured. So we assume 
that Y  = E in the sequel.

If a description language contains a pair (2, 2), this means that 2 is its own 
description. Consider a description language D that consists of all such pairs; this 
D can be called a diagonal language (as mathematicians would say); linguists could 
call it an antonymous description language. Evidently, C om ply) = \y\. Let us 
consider only language families that include D (the family of monotone description 
languages defined in the sequel, has this property). Then for every entropy function 
К  for this family there exists some c such that

K(v)  < \ y \ +c
for all y. So, up to an additive constant, the maximal possible value of entropy 
for an n-bit string is n. Kolmogorov conjectured that for a random sequence this 
upper bound for its 71-bit prefixes is tight (again up to a constant). This is how 
Kolmogorov interpreted the chaoticness property.

So let us fix some language family (that contains an optimal language), and let 
К  be one of the corresponding entropy functions. A sequence

t t l  ■> & 2  5 • • • 1 O ' 111 • • •

is then called chaotic if there exists a constant c such that
K(ai,  a2, .. •, an) > n -  c

for all n. Evidently, this definition does not depend on the choice of specific entropy 
function in the family, but may depend on the choice of the family.

It turned out that for some natural language family the notion of chaoticness 
defined in this way gives a reasonable formalization of the intuitive idea of random­
ness.

In Kolmogorov complexity theory the relations between descriptions and ob­
jects have an algorithmic nature. Following Kolmogorov, we restrict ourselves to 
enumerable12 sets. The notion of an enumerable set is one of the main notions in 
the theory of computability (and in mathematics in general). It can be explained 
intuitively in the following way. Imagine a printing device that prints binary strings 
sequentially; printed strings are separated by spaces. The time intervals between 
printing consecutive strings may be arbitrary (but each string should be printed 
completely without delays, and infinite sequences of bits are not allowed). It may 
happen that the device hangs (and does not print anything) after finitely many 
strings have been printed, then the set of strings printed by the device is finite. 
In particular, the device may print nothing at all, then we get an empty set of 
output strings. For such a device, the set of all printed strings is enumerable—and 
every enumerable set can be obtained in this way, if the device is equipped with a

12What we call en u m era b le  is usually called c o m p u ta b ly  e n u m era b le , or re c u r s iv e ly  e n u m e r ­
able. The word enumerable usually refers to countable sets. In our exposition, we use the term 
en u m era b le  s e ts  to refer to computably enumerable sets; see footnote 13 below.
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suitable program. For example, for every formal theory (like set theory, or formal 
arithmetic) the set of all theorems (provable statements) is enumerable. The intro­
duction of a formal computational model or of a general notion of a formal theory 
falls beyond our scope. However we will describe the notion of an enumerable set 
in more detail.

Let us start with countable sets. This term is used in two different ways. One 
more narrow definition says that countable sets are those sets for which there exists 
a one-to-one correspondence with the set N of all natural numbers. The other more 
liberal definition says that countable sets are those sets for which there exists a one- 
to-one correspondence with some initial segment of N. Here by initial segment of N 
we mean a subset M  of N that is downward-closed, i.e., every natural number that 
is smaller than some element of M  also belongs to M. For example, the entire N 
and the empty set 0  are both initial segments of N, and all finite sets are countable 
in this more liberal interpretation. We use this interpretation; then one can say that 
a set is countable if it is either empty or can be represented as a set of terms of an 
infinite sequence. For example, the finite set {a, 6, c} is the set of terms of infinite 
sequence a, 6, c, c, c, c, .... If we additionally require that this infinite sequence is 
computable, we get the definition of an enumerable set. It remains to explain what 
a computable sequence is.

A sequence w\, w2, . . . ,  wn, ... is called computable if there exists an algorithm 
that for any given n computes its nth term wn. One may say that the notion of a 
computable sequence is an effective (algorithmic) version of the notion of sequence, 
and the notion of an enumerable set is an effective (algorithmic) version of the 
notion of a countable set.13 Let us repeat the definition: a set is enumerable if it 
is empty or it is a set of terms of some computable sequence.

All the description languages we consider are subsets of E x E and therefore are 
all countable. Kolmogorov suggested considering enumerable description languages 
only. The final step in the definition of chaoticness was made by Leonid Levin, a 
student of Kolmogorov; in 1973 he published a paper in which a class of monotone 
description languages was introduced, and the corresponding notion of chaoticness 
was studied.14 Let us provide the corresponding definitions.

We say that strings и and v are compatible and write и ~  v if one of these 
strings is a prefix of the other one.

A description language E  is called monotone if E  is enumerable and the fol­
lowing requirement is satisfied:

{(xi,yi) e E к  {x2 ,y2) € E к  (xi «  x2)) =>• (yi «  y2).
It can be shown that there exists a monotone description language that is optimal 
for the family of monotone description languages. So the notion of entropy for this 
family is well defined; the corresponding entropy function is called the monotone 
entropy15 and is denoted by KM.

13To stress the difference between algorithmic and non-algorithmic notions, enumerable sets 
are usually called r e c u r s iv e ly  e n u m e ra b le  or c o m p u ta b ly  en u m era b le  (computable functions were 
traditionally called “recursive functions” for historical reasons). The word “enumerable” is often 
used as a synonym for “countable”.

14A similar notion was introduced by Claus-Peter Schnorr in his publication of 1972; see the 
footnote on p. 482.

15In the main part of the book this function is called m o n o to n e  c o m p le x ity , it is defined in 
Section 6.2.
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A sequence that is chaotic for monotone description languages is called just 
chaotic in the sequel.16 The chaoticness requirement can be written as follows:

3c Vn Й2, . . . ,  an) > n — c).

We denote the class of all chaotic sequences by C.
It seems that the definition of chaoticness is a good approximation to the in­

tuitive notion of randomness. There are two reasons for this.
First, every chaotic sequences satisfies the standard laws of probability theory 

(such as the strong law of large numbers, the law of iterated logarithm etc.).
Second, the class C of chaotic sequences coincides with another natural candi­

date for the randomness definition, the class T of typical sequences (see below):

C = T.

One could even use the names typical-chaotic or chaotic-typical for the sequences 
in C (=T) and denote this class by CT or TC. This class is a proper subclass 
of the class S of all Kolmogorov stochastic sequences (as we said, the definition of 
stochasticity seems to be too liberal to reflect our intuition of randomness):

TC C S, ТС ф S.

Face three: Typicalness

What do we mean by saying that some object is “typical” for some category? 
This means that it belongs to every reasonable majority of objects selected from 
this category. For example, a typical human being has height less than 2 meters 
(i.e., belongs to the majority of people who have height less than 2 meters), has 
age at least 3 (i.e., belongs to the majority of people who are at least 3 years old), 
etc. The adjective “reasonable” is important here, since every object x is doomed 
to fall outside the overwhelming majority of objects that differ from x.

Our intuition says that every random object is typical. But how can we clarify 
the latter notion? Let us give a mathematical definition of typicalness for a bit 
sequence (assuming the uniform distribution on infinite bit sequences that corre­
sponds to a fair coin tossing). As we have said, for that we need to specify what 
an “overwhelming majority” is in the set of all sequences and when that majority 
is “reasonable”. Then the class of typical sequences is defined as the intersection 
of all reasonable overwhelming majorities.

A set of sequences forms an overwhelming majority if its complement is small, 
so we need to define the notion of a small set. Using the language of probability 
theory, we can say that some set Q is small if the event “randomly chosen sequence 
is in Q” has probability zero. In terms of measure theory small sets are just sets of 
measure 0. However, we want to have a more explicit definition. It can be given in 
the following way.

A set Q is small if it can be covered by a countable family of balls whose total 
volume is arbitrarily small. In other terms, Q is small if for every natural m  there 
exists a sequence of binary strings

(x( l) ,x ( 2  ) , . . . , z(n),.. .)

16Since this property is equivalent to Martin-Löf randomness (called typicalness in this ap­
pendix), we do not use a different name in the main text of the book.
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such that

Q C

£ vM»)) = £ 2Hx(" ,i <_L-
n  n

Evidently, each sequence forms a small set (a singleton), so the intersection of all sets 
with small complements is empty, and we need to define “reasonable overwhelming 
majority” in a more restrictive way.

This can be done by considering the following effective version of the definition 
of a small set.

First, we require the sequence (x(l),x(2),. . . ,  x(n) ,...) in the definition to be 
computable. In other words, some algorithm should compute x{n) given n as input.

Second, we require not only the computability of this sequence, but uniform 
computability: the sequence (x(l), x(2),. . . ,  x(n) , ...) with required properties can 
be constructed by som e algorithm  given m. We need to explain what it means: 
this sequence is an infinite object, and algorithms deal with finite objects only. 
We require that there exists some algorithm that, given m, produces an algorithm 
(=a program) that computes some sequence (x(l), x (2),  . . . ,  x(n) , . . .) with required 
properties.17

These two changes in the definition of a small set give us a definition of a more 
restricted notion, that of an effectively small set. 18 The complements of effectively 
small sets could be called effectively large sets. Now the intersection of all effectively 
large sets is not empty; moreover, this intersection itself is an effectively large set. 
This smallest effectively large set is our goal: we denote it by T and call it the set 
of all typical sequences.

Typical sequences are usually called Martin-Löf random sequences, since this 
definition was suggested (as a definition of randomness) in 1966 by Per Martin- 
Löf, an eminent Swedish mathematician, who in 1964 and 1965 studied at Moscow 
University under the supervision of Kolmogorov.

As we have said already, the class T of all typical sequences coincides with the 
class C of all chaotic sequences,

T = C,
and the elements of this class can be called chaotic-typical or typical-chaotic se­
quences (and the class may be denoted by CT or TC).

As we have already mentioned,
CT c  S, CT Ф s.

Face four: Unpredictability

Any random sequence is unpredictable in the following sense: if we know the 
values of some its terms, it does not give us any information about the terms not 
revealed yet. So if a Casino prepares a random sequence and then allows a Player 
to make bets on the values of the terms she does not know, the Casino is safe; 
more precisely, there is no strategy for the Player that allows her to make Casino 
bankrupt independent of the initial amount of money Casino has.

17An equivalent definition requires that, given m  and n, an algorithm computes the nth term 
of a sequence that satisfies the requirements for the given m .

18In the main part of the book those sets are called e ffe c tiv e ly  n u ll sets.
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In other words, we define the unpredictability of some sequence in terms of a 
game where Casino uses that sequence and Player makes bets against that sequence, 
i.e., on the values of terms of that sequence not yet revealed. Player and Casino 
initially have some amount of money. Casino also has some bit sequence, and Player 
does not know it. Player can then make bets about some bits of that sequence, not 
necessarily in the monotone order and not necessarily about all bits; some terms of 
the sequence may be skipped.

We can imagine that bits are written on cards that lie on an infinite table face 
down, so Player does not see the bits: she sees only an infinite sequence of card 
backs. At each move, Player points to some card, makes a prediction about the bit 
on that card and declares the amount of her bet. Then the card is turned over. If 
the prediction is correct, Casino pays that amount to Player; if the prediction is 
wrong, Player loses her money (i.e., pays that amount to Casino). Player wins if 
she managed to make Casino bankrupt. Of course, if Player has unlimited credit 
resources, she can always win by doubling the bets until her guess becomes correct. 
But we assume that Player has no credit line, so the amount of the bet should not 
exceed her current capital.

A sequence is called predictable if there is a strategy for Player that allows her 
to win against that sequence. This means that for the arbitrarily large initial capital 
of Casino, Casino will nevertheless become bankrupt if Player uses this strategy. A 
sequence is called unpredictable if it is not predictable.

More formally the game may be described as follows. We consider an infinite 
sequence of zeros and ones:

a =  (ai, й2 , а з , . . .).

At each move Player creates a triple

(п,г,и),

where
n e  N, г G {0,1}, u G Q, v ^  0;

here, as usual, N is the set of natural numbers,19 and Q is the set of rational 
numbers. The meaning of this triple is the following: n is the number of the bit 
on which the bet is made, i is the predicted value of that bit, and the non-negative 
rational number v is the amount of the bet. The moves are performed sequentially, 
starting from the first one; the triple that represents the kth move is denoted by 
(n(k),i(k),v(k)). (More formally, moves are triples of the described form.)

Player’s capital before the kth. move is denoted by V(k — 1). Without loss of 
generality we may assume that the initial capital of Player equals 1, i.e., P(0) = 1.

After each move, Player’s capital changes according to the following rules:
• if i(k) = an(fc) (Player made a correct guess), then 

V(k) = V ( k - l ) + v ( k ) ;
• if i{k) Ф an(k) (Player made an incorrect guess), then 

V{k) = V { k - l ) - v { k ) .
Two additional remarks are needed.

19Sometimes 0 is considered as a natural number (logicians and computability experts usually 
do this), sometimes not—in this appendix we follow the second convention and do not consider 0 
as a natural number.
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First, moves may be valid or invalid, and the game continues only if the move 
is valid. By definition, a valid move should satisfy two requirements:

1) the number of the bit on which bet is made is valid: this means that this 
bit was not used earlier, i.e., n(k) does not appear among n ( l ) , , n(k —
i ) ;

2) the bet itself is valid: its size is less than the current capital, i.e., v(k) < 
V{k -  1).

The game stops when Player makes an incorrect move. In this case she keeps 
the current capital forever, and cannot win.

It is also possible that Player refrains from making any move (she may even 
refrain from making the first move); in this case she also keeps the current capital 
forever and cannot win. However, we do not say in this case that the game is 
stopped. Player can think for an arbitrarily long time before making her next 
move; the time for thinking is not limited, so it is possible that she thinks forever, 
i.e., never makes any move. While thinking, the capital remains unchanged, so in 
this case the capital remains unchanged forever. We do not say, however, that the 
game is stopped, since Player never explicitly declares that she will not make any 
move. So three scenarios are possible: (1) Player makes infinitely many moves; 
(2) Player attempts to make an invalid move and the game is stopped; (3) Player 
at some point starts thinking but never makes a move.

Of course, this is only an illustration, and the formal definition goes as follows. 
By definition, Player wins against the sequence a if

sup V(k) = + 00, 
к

i.e.,
VW 3k V{k) > W.

This means that Player can cause the bankruptcy of Casino independently of its 
initial capital. This is possible only if game is infinite, that is, at each turn Player 
makes a valid move.

The game is described now, and we define the notion of strategy. A strategy 
is a rule that tells Player what she should do, i.e., prescribes the next move based 
on the history of the game. The strategy is not required to be total, its output 
may be undefined because Player makes no move: the strategy produces an output 
exactly in the cases when Player makes some move. The input to the strategy is 
the history of the game, that is, the sequence of all the moves made so far and the 
values of the bits revealed so far. (One could add to the history the information 
about the capital at every moment, but this is redundant, since this information 
can be easily computed.)

Here is the history before the kth move can be represented as a table:

n(l) n(2) n(k — 1)
г(1) i( 2) i(k -  1)
v{l) v(2 ) v(k — 1)
®n( 1) O'n( 2 ) an(k-1)

(for к = 1 the table is empty).
A strategy therefore is a function that maps every table of this kind to a move 

(n, i , v), or it may be undefined (on some tables). Here “table of this kind” means an
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arbitrary table with positive integers in the first row, non-negative rational numbers 
in the third row, and bits in the second and fourth rows.

Assume that we are given a strategy and a table that can appear during the 
game of that strategy against some sequence. Then the first three rows of that table 
can be uniquely reconstructed from the last row. Indeed, we reconstruct the first 
move (n(l), i(l), г>(1)) applying the strategy to the empty table. Then (assuming 
that the fourth row is known) we know the history of the game before the second 
move, i.e., the table

n(l)
i( 1)
u(l)
®n( 1) •

Then we apply the strategy again to find the second move (n(2), i(2),v{2)) and 
hence the table

n(l) n(2)
i(l) H 2)
u(l) «(2)
®n( 1) ^n( 2)

and so on.
So, when defining strategies, we may assume that only the fourth line of the 

table is given to the strategy. This line is a binary string (an element of E). Given 
a binary string, the strategy may have no output or provide the next move, an 
element of N x {0,1} x Q+, as an output. (Here Q+ stands for the set of all 
non-negative rational numbers.)

So we can now give the final definition of a strategy: it is a partial mapping of 
type

E ->• N x {0,1} x <Q>+.
We are interested in strategies that are computable, i.e., that can be computed 

by an algorithm. Let us specify what that means. Assume that an algorithm A 
gets elements of a set X  as input and produces elements of a set Y  as output. 
Consider the subset of X  that consists of all inputs for which A provides some 
output, and the function from this subset of X  to Y  that maps each input value 
to the corresponding output value. We say that A computes that function, and a 
function is computable if some algorithm computes it.

We will consider strategies that are computable in this sense. (If the algorithm 
does not terminate for an input history, then the strategy is undefined on that 
history, in which case we may imagine that Player is thinking about her move but 
never comes to any decision.)

We say that a sequence a is predictable if there exists a computable strategy 
that wins against a (i.e., Player wins if she uses this strategy against a). Otherwise, 
a is unpredictable. 2 0  The class of all unpredictable sequences is denoted by U.

It is known that every unpredictable sequence is Kolmogorov stochastic (it 
belongs to the class S) and that every typical-chaotic sequence is unpredictable:

CT C U C S.

20In the main text unpredictable sequences are called “Kolmogorov-Loveland random”; see 
the discussion on p. 310.
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It is also known that the class of Kolmogorov stochastic sequences is signifi­
cantly larger than the class of unpredictable sequences:

S + U.

But the question whether the classes of chaotic (=typical) and unpredictable 
sequences coincide, is still open:

C T - U .
This is an important problem; several people tried to solve it but got only 

partial results.

Strategies that avoid invalid moves. Defining unpredictable sequences, 
we may restrict ourselves to strategies that never make invalid moves. Indeed, we 
can modify an algorithm A that computes the winning strategy, and get another 
algorithm В that does not terminate when A attempts to make an invalid move. 
One has to check whether the move is valid, and this can be done algorithmically: 
knowing the input for A, we reconstruct the history of the game, including the 
numbers of bits revealed and the current capital of Player, so we can check the 
validity of the move recommended by A and cancel an invalid attempt.21

Generalization for arbitrary computable distributions

Up to now we considered only the case of uniform distribution on the space 
fl of binary sequences; all the main ideas can be illustrated in this special case. 
Now, to complete the picture, we consider the general case of arbitrary computable 
probability distribution on fl. (See the definition below.) Let us make some com­
ments for readers who are not yet familiar with the general notion of a probability 
distribution {measure).

We say that a set M  is equipped with a measure p if (1) some class of subsets of 
M  is chosen and its elements are called measurable subsets-, (2) for each measurable 
subset A some number p{A) is chosen and this number is called the measure of A. 
There are some requirements (axioms of measure theory); we do not go into detail 
here and note only that this requirement implies the following fact: any finite 
or countable union of disjoint measurable subsets is measurable and its measure 
is equal to the sum of the measures of the parts. For probability measures, or 
probability distributions, we require also that p{M) = 1. The intuitive meaning 
of p{A) is the probability of the event “a randomly chosen element of M  belongs 
to Ä \

A measure on Q. is determined by the measures of balls. For the uniform 
distribution (and only for it) we have

(VzeE) МПх) = 2"м ).
It corresponds to the case where zeros and ones are équiprobable and trials are 
independent. A slightly more general case is Bernoulli distribution, also called a 
binomial distribution. Here the trials are also independent, but in each trial the 
probabilities of 1 and 0 are p and 1 —p, respectively. This number p is a parameter;

21A more complicated argument shows that the class of unpredictable sequences does not 
change if we consider only total computable strategies, i.e., the strategies defined on all inputs; 
see the discussion on p. 310.
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for p = 1/2, we get uniform distribution. Formally, for the Bernoulli distribution 
with parameter p we have

where к is the number of ones in x.
The next step is to consider quasi-Bernoulli distributions where trials are still 

independent, but the probability of success may depend on the number of the 
trial: in the kth trial the outcome 1 appears with probability p(k). More formally, 
consider a sequence of reals

P = (pt1)»^2). • • -,p(k) , ...), 0 < p(k) < 1.
Then the quasi-Bernoulli distribution with parameter p is defined by the formula

71
pifix) —  1 1  q ,

;-i
where r./ = p(i) if ж* = 1 and г* = 1 — p(i) if Xi = 0. If p = (p,p, ... ,p , ...), we get 
Bernoulli distributions as a special case.

In this section we show how the definitions of stochasticness, chaoticness, typ­
icalness, and unpredictability can be extended to the case of arbitrary computable 
probability distribution p (see the definition below). Let us tell in advance that for 
this more general case the same relationships hold:

сад  = т ы  с и м  c s m , 
s ( a O  Ф и м

(the last inequality is true assuming that all balls have positive measure).
Here C(p), T(p),  U(/r), S(p) denote (respectively) the classes of chaotic, typ­

ical, unpredictable, and Kolmogorov stochastic sequences with respect to the dis­
tribution p\ these classes are defined below. Our old classes now can be written 
as C = C(?7), T = T(rj), U = U(?7), and S = S(77) for the uniform distribution rj 
on ST

Let us warn the reader that this section is addressed to people who like gen­
eralizations. It is a bit more difficult than the previous exposition. Moreover, our 
task, that is the search for a natural definition of randomness, is less clear for gen­
eral distributions. The intuitive meaning of an individual random sequence as a 
plausible outcome of some natural physical process like coin tossing becomes less 
and less clear as we switch from the simple example of fair coin tossing and the 
uniform distribution to more and more general classes of distributions.

Com putable measures (distributions). One may attempt to call a mea­
sure on Q computable if there exists an algorithm that for each binary string x 
computes a measure p(£lx) of the ball Qx. However, we have to be cautious: the 
output of an algorithm may be an integer or rational number (to be more precise, 
its name or representation as a string over a finite alphabet), and we cannot name 
all the real numbers since we have only countably many names. So we require 
that the algorithm computes not a real number (the measure of the ball) but its 
approximation.

Here is the definition. A measure p is computable if there exists an algorithm 
that for any given pair (a binary string x, a positive rational e) computes a rational 
number that differs from p(flx) at most by e.
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One could add a requirement that there is an algorithm that for a given x says 
whether the equality p(Qx) — 0 holds or not. That requirement gives a strictly 
smaller class of measures that are called strongly computable measures in the sequel.

An important subclass of the class of computable measures is the class of 
computable-rational measures where the measure of each ball 0  is a rational number 
that can be computed (the corresponding fraction presented) given x. Note that it 
is not the same as a computable measure whose values (on balls) are rational num­
bers: in the latter case we are only able to provide arbitrarily close approximations 
to the rational number which is the measure of the ball, and this is not enough to 
produce this number entirely (as a fraction of two integers).

Recalling that probability distributions are those measures for which the mea­
sure of Q equals 1, we may speak about computable probability distributions on 
Q,. Many definitions and statements about randomness for the uniform distribution 
can be generalized naturally to arbitrary computable probability distributions. In 
particular, one can prove a general version of Martin-Löf’s theorem (saying that 
the intersection of all effectively large sets is an effectively large set itself), and 
Levin’s theorem (saying that typicalness is equivalent to chaoticness defined using 
monotone complexity).22

Stochasticness. Recall our notation: the kth term of some sequence e is 
denoted by ek or (to avoid subscripts) by e(k).

For the case of uniform distribution, stochasticness was understood as global 
frequency stability, i.e., the stability of frequencies in all admissible subsequences. 
Those subsequences were obtained by application of Kolmogorov-admissible selec­
tion rules. For the general case of an arbitrary computable measure this scheme 
remains the same, but frequency stability should be replaced by some more general 
property derived from the strong law of large numbers in probability theory.

For the Bernoulli distribution with parameter p 6 (0,1) the definition is clear: 
we require that every admissible subsequence has the frequency stability property 
with limit frequency p. In other words, for every admissible subsequence the fraction 
of ones in its n-bit prefixes tends to p as n —> oo. We also treat the cases p = 0 and 
p — 1 in a special way: only the sequence that contains only zeros (respectively, 
ones) is stochastic.

Can we consider an even more general case of non-Bernoulli distribution? This 
definitely goes beyond the original idea of von Mises: he tries to define the notion 
of probability as limit frequency in random sequences. Still one can try to follow 
this path, starting with quasi-Bernoulli sequences.

One could not expect the existence of limit frequency in the subsequences of 
a quasi-Bernoulli sequence (and different subsequences may have different limit 
frequencies even if they exist). So the stochasticity requirement should take into 
account the selection rules (which terms were selected). But first let us exclude 
the case when a bit appears that has probability zero: we declare a sequence a 
non-stochastic if there exists some к such that a(k) = 0 and p(k) = 1, or a(k) = 1 
and p(k) = 0. Assuming this does not happen, we call a sequence a stochastic with

22In the main part of the book this result is called the “Levin-Schnorr theorem”; Schnorr’s 
paper was published earlier and considered some special notion of complexity called “process 
complexity”. It can differ significantly from monotone complexity (see the section about history 
below and the bibliography at the end of this appendix), but the underlying ideas are similar and 
the proof for one of them can be easily adapted for the other one.
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respect to a selection rule © if its generalized subsequence
b = a(m2) , ... ,a(mk),...),

obtained by this rule, satisfies the following requirement taken from the strong law 
of large numbers for quasi-Bernoulli distributions:

a{mx) + ---- V a{mk) _  p{mi) + • • • + p{mk)
к к

as к —> oo. Now we can define a stochastic sequence with respect to a given quasi- 
Bernoulli measure by requiring that for every Kolmogorov-admissible selection rule 
that produces an infinite generalized subsequence this subsequence is stochastic 
with respect to this rule.

R e m a r k . By definition, generalized subsequences are always infinite, so the 
word “infinite” in the last sentence can be omitted. However, we use it to stress 
that we really are interested only in the infinite sequences, not tuples.

Now we want to extend the notion of Kolmogorov-stochasticness to a wider 
class of probability distribution. First, let us introduce some notation.

Let n(l), n(2),. .. ,  n(k) be some natural numbers, and let г(1), i(2),. .. ,  i(k) be 
some bits. By A1̂ '  we denote the set of all sequences a G Г2 such that

(*) ®n(l) — *(!)> ®n(2) — ■ i Q’n(k) — i{k~).
The ratio

ип(1)- ■■■> n(k), m\ 
l),...,i(fc), 1 )

is denoted in the sequel by

ß
m
1

n(l), . . . ,  n(k)\
i{1), • • •, i{k)J

since it is the conditional probability of the event “the mth term of a equals 1” 
under condition (*). That probability is undefined when the denominator equals 
zero.

Let us fix an arbitrarily sequence a e f i  and some Kolmogorov-admissible se­
lection rule 0. Our goal is to define the notion “a is stochastic with respect to 0 ”. 
Recall that © was applied to select a subsequence of a in two steps. First, we select 
an auxiliary generalized subsequence c; then the resulting subsequence is obtained 
by omitting some terms in c. More precisely,

C (® n( 1) ; ® n (2) ) • • • j Q‘n ( k )  ) • • • ) )

where the number n(k) is computed algorithmically given the tuple

(® n( 1) i ® n (2) ) • • • j Q"n(k—l ) )  •

Then, using the same tuple as input, the rule © decides whether the term an .̂) 
should be included in the final subsequence b. Therefore,

b = (a(n(ki)),a(n(k2 )), . . . ,a{n{kj)), . . .).
At both stages it may happen that 0  (the corresponding algorithm) does not pro­
duce any output (the number in the first case, and the decision bit in the second 
case). Then b is finite and we do not require anything, hence the sequence a is
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declared to be stochastic with respect to 0. But if b is infinite, then some require­
ment should be fulfilled to make a stochastic with respect to 0. Let us describe 
that requirement.

By rj we denote the conditional probability

ß
n(kj) n{ 1), n(2), n(kj -  1) \

a(n(l)), a(n(2)), . . . ,  a(n(kj -  1 ))J'

Consider the difference

s _ r 1+ r 2 H------ b rj a(n(ki)) + a(n(k2)) H------ b a(n(kj))
Oj — : : •

3 J

Here ôj is defined only if all rq, . . . ,  rj are defined.
We say that b satisfies the strong law of large numbers if all ôj are defined and 

Sj —> 0 as j  —> oo. A sequence a is then called stochastic with respect to 0  if the 
generalized subsequence obtained from a according to 0  satisfies the strong law of 
large numbers.

Finally, a sequence a is called Kolmogorov stochastic with respect to a given 
probability distribution if a is stochastic with respect to every Kolmogorov-admis­
sible selection rule that selects an infinite generalized subsequence from a.

This definition by itself does not use the computability of the measure. How­
ever, to compare it with other randomness notions, we need to assume that the 
measure (the probability distribution in question) is computable.

Chaoticness. A sequence a = (a\, a2, аз , ...) is chaotic with respect to a com­
putable measure ß if there exists a constant c such that

KM(ai ,a2, • ■ •, an) > -  logß(ß

for all n (here log stands, as usual, for the binary logarithm).
For arbitrary computable measures, the motivation for this definition is the 

same as it was for the uniform measure. One can prove that for every computable 
measure ß there exists some c such that

KM(x ) < -  log ß(üx) + c

for all strings X.  Informally speaking, for every computable measure ß we can find 
some monotone description language that fits that measure in the following sense: 
it provides short descriptions for strings x that have big values of ß(f tx) (as the 
inequality above specifies). The sequence is chaotic if those descriptions cannot be 
significantly shortened (more than by a constant).

Typicalness. The definition of typicalness can be naturally extended to arbi­
trary measures: we used the volume (=the uniform measure) of balls when defining 
small sets, and now we should use their measure instead.

As before, we start by defining effectively small sets. A set Q C 0, is effectively 
small with respect to measure ß if there exists an algorithm A with the following 
property. Given any positive integer m  and input, the algorithm A produces as 
output an algorithm for the computing a sequence (x(l), x(2),... ,x(n) ,...) such
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that

Q  C  ^ x ( n )  )
11

П
Then a set is considered effectively large with respect to p if its complement is 
effectively small.

For every computable measure p the following Martin-Löf theorem holds: the 
union of all effectively small sets is effectively small, and therefore the intersection 
of all effectively large sets is effectively large. This result provides the smallest 
effectively large set which is called the constructive support of measure p. The 
elements of this constructive support are called typical with respect to p, so the set 
T (p) is defined as the constructive support of the distribution p.

U npredictability. Let us explain how the definition of unpredictability (given 
above for the uniform distribution) should be changed for the case of arbitrary dis­
tributions. Two changes are necessary for that: some auxiliary factor (that equals 
1 for the uniform distribution and was therefore omitted), and some additional rule 
that tells us when to stop the game (for the uniform distribution it is not needed 
since the corresponding situation cannot happen).

The payoff for bets depends on the probability distribution. If Player makes a 
wrong guess, her bet is lost, i.e., the capital decreases by the size of the bet. But if 
she makes a correct guess, the increase is proportional to the bet, and the coefficient 
depends on the probability of the correctly predicted outcome. The coefficient is 
large if this outcome has small probability, and is small if it has large probability. 
For uniform distribution the probability is always 1/2 and the coefficient is always 1. 
The exact value of the coefficient for an arbitrary distribution is determined as 
follows.

Recall that ад- denotes the kth. term of a sequence a; similarly, alk is the kth 
term of a', etc. Player’s j th move is a triple (n(j), i(j), v(j)).

Let a be the sequence used by Casino for the game. Let

A(k — 1) = ja ' G Г2: a'n^  = an^  for all j  — 1,2 . . . ,  к -  1}

(so A(0) = Г2) and

Ai{k) = ja ' G A(k — 1) : a'n^  = i} for i = 0,1.

This notation makes sense if all the numbers n{l) appearing in it are defined. Note 
that

(1) Г2 = A(0) D A{ 1) D A(2) D • • • ,

( 2) 1 = p{A{0)) ÿ  д(Л(1)) ÿ  ß(A(2)) > • • • .
If Player’s fcth guess was correct, then

(3) i(k) dn(fc)) - î(fc)( 0̂ — ^(^)i
otherwise

(4) i(k) ф an{k), Ai _ i ^ (k )  = A(k).
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Note also that

(5) A { k - l )  = A 0 {k)UAl {k).

If i(k) = ап(̂ ) (i.e., the kth guess was correct), Player’s capital increases ac­
cording to the formula

(6) V{k) = V(k -  1) + v{k) • ß{Ai(k){k))
This formula guarantees that the game is fair, i.e., the expected change of the 
capital at the fcth step equals zero. However, an unpleasant surprise is possible 
when we apply this rule: the value р(Ацкфк)) in the denominator may be equal 
to 0. In this case (which was not possible for the uniform distribution nor for any 
positive distribution where all balls have positive measures) a special additional 
stopping rule is used.

Additional stopping rule. This is used when it happens (for the first time) 
that p,(A(k)) — 0 (cf. equation (2) above). Assume that p(A(k — 1)) ф 0, p(A(k)) — 
0. The last move made was the kth move, when Player made a prediction i(k). If 
the prediction turns out to be correct (i.e., i(k) = an^ ) ,  then the game is stopped 
and Player’s capital is declared to be infinite V(k) = +oo, and Player wins the 
game. If the prediction turns to be incorrect, i.e., i(k) ф an(/ф then the game is 
also stopped, but in this case the capital of Player remains unchanged (and fixed), 
so Player does not win the game.

This rule takes care of the problem of a zero denominator in (6). Indeed, (6) 
is applied only if i(k) = an(ky In this case А^ кфк) = A(k), according to (3). So if 
we get a zero denominator, it means that p(A(k)) = 0. But in this case we apply 
the additional stopping rule instead of (6). (Or we could say that we apply (6) and 
declare that we get +oo when dividing positive number ß{Ai_i^(k))  by zero.)

The definitions of a strategy, a computable strategy, a strategy that performs 
only valid moves remain (up to these changes) the same as for the special case of 
the uniform distribution.
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Verlag, 1993, xx+546 pp., 38 illustrations; third ed., 2008, xxiii+790 pp., 50 illustrations.

Of course, this list is not complete in any sense. However, in these publications 
(especially in [5]) one can find further references to get a more complete picture. In 
[2 ], in Section 2.6 (Applications to probability theory) different definitions of ran­
dom sequence are given (pp. 166-178). Note that the terminology in [2] is different; 
what we call chaotic sequences is called there Kolmogorov random sequences, what 
we call typical sequences is called there Martin-Löf random sequences; Church 
stochastic sequences are called there Mises-Church random sequences, and Kol­
mogorov stochastic sequences are called there Mises-Kolmogorov-Loveland random 
sequences, and in [5] they are called Kolmogorov-Loveland stochastic sequences. 
D. Loveland independently discovered this class later, in 1966, while Kolmogorov’s 
paper appeared in 1963. The unpredictable sequences (as defined by us) do not 
appear in [2 ] since they were introduced only later (in 1998, see [5]).

An example of a Church stochastic sequence that becomes not Church stochas­
tic after a computable permutation of its terms was published by D. Loveland in 
1966. That example is important not only because it shows a flaw in Church’s 
definition, but also because it stresses an important property of randomness that is 
intuitively obvious but was not taken into account earlier: conservation after every 
computable permutation.

Description complexity theory, i.e., the theory of complexity of objects, should 
not be mixed with computational complexity theory, i.e., the theory of complexity 
of computations. Description complexity theory forms the basis for algorithmic 
information theory. Both theories, closely related, were founded by Kolmogorov 
in his seminar talks at Lomonosov Moscow State University in the beginning of 
the 1960s; Kolmogorov’s main goal was to create a new foundation for information 
theory based on the idea that the more complex an object is, the greater is the 
information carried by that object. That new foundation should avoid the notion 
of probability replacing it by the notion of algorithm, and also should be applied 
to the definition of an individual random object. In his 1969 paper (the English 
version was published in 1968) Kolmogorov wrote:

(1) Basic information theory concepts must and can be founded 
without recourse to probability theory, and in such a man­
ner that “entropy” and “mutual information” concepts are 
applicable to individual values.

(2) Thus introduced, information theory concepts can form the 
basis of the term random, which naturally suggests that 
randomness is the absence of regularities.23

The idea of measuring the complexity of an object by the length of its short­
est description was proposed by Kolmogorov in his paper of 1965;24 a year earlier 
similar ideas were published in the U.S. by Ray Solomonoff (Kolmogorov learned

23The published English version of this paper says “random is the absence of periodicity”, 
but this is evidently a translation error, and we correct the text following the Russian version.

24See item [78] in the main list of references.
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about Solomonoff’s work when publishing his 1969 paper,25 and he cited it). So 
we called the statement about existence of an optimal description language the 
Solomonoff-Kolmogorov theorem. At the same time (the middle of 1960s) Kol­
mogorov suggested in his seminar talks that the growth of complexity of prefixes 
can be used to define randomness for individual infinite sequences. However, the 
family of description languages introduced by Kolmogorov turned out to be unsuit­
able for this, and (as we have said before) a suitable family was found in 1973 by 
Leonid Levin who defined the notion of monotone entropy.

Typical sequences were defined (and called “random”) by Per Martin-Löf in 
1966, as we have said earlier.

The existence of a Kolmogorov stochastic sequence that is not typical (= not 
chaotic) was proven by Alexander Shen (see [6 ] or [2, Section 6.2.4]).26

Let К  be one of the entropy functions (many of them were studied, includ­
ing plain, a priori, monotone, process, prefix, and decision entropies; the versions 
mentioned are different in the sense that the difference between any two of these 
entropy functions is not bounded). We may try to define chaotic sequences (with 
respect to the uniform distribution) using К  by requiring that

3c Mn (K(ai, a2, a3, . . . ,  an) > n -  c).

(Just for the record: for plain and decision entropy no sequences with this property 
exist, and for four other versions we get a definition that is equivalent to typical­
ness.) The equivalence of chaoticness for monotone entropy and typicalness was 
shown by Levin in the same paper where monotone entropy was introduced. In­
dependently Claus-Peter Schnorr in his 1973 paper27 (the conference version was 
published in 1972) introduced another version of entropy, process entropy (Schnorr 
used the name “process complexity”) and proved (by a similar argument) that 
the corresponding notion of chaoticness is equivalent to typicalness. Process en­
tropy and monotone entropy differ significantly (their difference is unbounded, as 
Vladimir Vyugin showed in [7]); later Schnorr switched to monotone entropy, and 
the equivalence between chaoticness based on monotone entropy and typicalness is 
sometimes called the Levin-Schnorr theorem.

Prefix entropy was introduced by Levin in his Ph.D. thesis submitted in 1971, 
but the thesis was rejected28 and the definition was published only in 1974.29 Later 
Gregory J. Chaitin independently discovered the same definition (see his paper “A 
theory of program size formally identical to information theory”, Journal of the 
Association of Computing Machinery, 1975, v. 22, no. 3, 329-340) where he also 
introduced chaoticness definition using prefix entropy and claimed (without proof) 
that this version of chaoticness is equivalent to typicalness; the proof was first 
published in Vyugin’s paper [7, Corollary 3.2]. Prefix entropy can be defined as

25See item [79] in the main list of references.
26The main idea of this proof was invented by M. van Lambalgen for monotone selection 

rules and can be easily generalized to non-monotone ones. — A . S h en .
27See item [169] in the main list of references.
28Levin was a USSR citizen. The rejection of his thesis, having been approved by Kolmogorov 

who was the thesis advisor and all the reviewers, took place for political reasons. He emigrated 
in 1978 and earned a Ph.D. at the Massachusetts Institute of Technology (MIT) in 1979.

29See item [94] in the main list of references, where the prefix entropy was called p re fix  
c o m p le x ity , we use the same name in the main part of this book.
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entropy for the family of prefix description languages. A set E  is a prefix description 
language if E  is enumerable and the following condition holds:

((xi,yi) e E  & (x2 ,y2) G E  & (xi «  x2)) => (yi = y2).
Note also that the term “complexity” is normally used for what we call “en­

tropy” (i.e., complexity with respect to an optimal description language).
Unpredictable sequences (as defined above) appeared (spring 1991) in the joint 

talk “Randomness and Lawlessness” given by Andrei Muchnik, Alexey Semenov, 
and Vladimir Uspensky at the conference in California devoted to the foundations 
of randomness (March 4-7, Institute for Mathematical Studies in the Social Sci­
ences, Stanford University). The paper [5] published in 1998 is based on that talk, 
and it contained the results about relations between unpredictability and other 
randomness notions.30

Note that the definition of unpredictability given in the present exposition 
slightly differs from the definition in [5]. Namely, in [5] the bet was called valid if 
a weaker inequality v(k) ^  V(k — 1) holds, while we require the strict inequality 
v(k) < V(k — 1). Both definitions are equivalent (i.e., lead to the same class 
of unpredictable sequences), but still our current definition looks somehow more 
thoughtful. There are two reasons to prefer the new version. First, the game 
looks more natural: if Player bets all her capital and makes a wrong guess, then 
no money is left and the rest of the game is trivial (only zero bets are possible). 
Second, we need strict inequality to make the game realistic from the algorithmic 
viewpoint for arbitrarily computable measures (only computable-rational measures 
were considered in [5]). Indeed, before a bet is made, Player should check that the 
bet is valid. She can check the strict inequality v(k) < V(k — 1) before making 
the bet (checking algorithm terminates and confirms the inequality if it holds, and 
does not terminate otherwise), but one cannot construct a similar algorithm for the 
inequality v(k) ^  V(k — 1) and the arbitrary computable measure.

The game approach to randomness was mentioned already by von Mises who 
spoke about the non-existence of a winning strategy (without formal definitions) 
when playing against Casino. Later several formal definitions were suggested, but 
the version from [5] (with a cosmetic change mentioned above) seems to be more 
adequate. Indeed, in the previous versions either the computability requirement for 
the strategy was replaced by a requirement of another kind (still of an algorithmic 
nature, but less natural) or the resulting class of sequences was known to be different 
from the class of chaotic-typical sequences. For the definition from [5] there is still 
some hope that it is equivalent to chaoticness and typicalness; if it is indeed the 
case, this equivalence will be another reason to believe that this class (of chaotic- 
typical sequences) is a good approximation for our intuitive notion of a random 
sequence.

30For the case when the bets are made from left to right, as the sequence terms appears, the 
game approach to randomness and the corresponding notion of a martingale was introduced in 
the 1930s by Jean Ville [206] as an alternative to von Mises’ approach.
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injective, 213 
prefix, 213 
prefix-free, 213 
uniquely decodable, 213 

codes for two conditions, 379 
codewords, 213
combinatorial amount of information, 317 
combinatorial interpretation, 332 
combinatorial interpretation of inequalities, 
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common information, 351, 388 

combinatorial meaning, 357 
relativized, 104 

compatible strings, 197, 474 
completeness deficiency, 160 
complex subsequences, 251 
complexity, 198, 471 

a priori, 122 
axiomatic definition, 19 
combinatorial interpretation, 328 
conditional, 7, 34, 200, 402 

relativized, 204 
decision, 193, 194 

conditional, 200 
Kolmogorov, 2, 4 
monotone, 9, 130, 132, 227 

conditional, 200 
of a pair, 352 
of finite object, 16 
of functions, 201 
of large numbers, 22 
of natural numbers, 16 
of pairs, 31, 48, 97, 318 

prefix, 85, 105 
of texts, 145 
of triples, 32, 48, 318 
plain, 15 
prefix, 83, 96 

conditional, 102, 200 
of pairs, 97 
of triples, 106, 109 

relativized, 27, 203, 361 
total, 35, 375, 437
with respect to description mode, 15

complexity of a problem, 401 
complexity vector, 326, 333 
computable function, 1, 15, 469 
computable mapping, 91, 193, 201 
computable martingale, 278 
computable measure, 60, 61 
computable number, 60 
computable sequence, 42 
computable series, 159 
computable set, 21 
condition, 34
conditional probability, 275 
conditional complexity, 7, 200, 402 

prefix, 102 
relativized, 204 

conditional decompressor, 34 
conditional entropy, 219 
conditional independence, 51, 223, 342, 362 
conditional probability, 219 
conjunction, 401
constructive support of measure, 485 
continuity of measure, 54 
continuous mapping, 193 

E —» E, 127 
coset, 323
Cournot principle, 456 
criterion of Martin-Löf randomness, 125, 

146, 164 
plain complexity, 151 
Solovay, 162 

critical implication, 412 
cut, 383

decidable set, 21 
decompressor, 1, 15, 129, 193 

for functions, 201 
optimal, 83, 130, 195, 200 
prefix-free, 91, 98 
prefix-stable, 91, 131 

description, 15, 34, 471 
self-delimiting, 82 
shortest, 352 

description language, 471 
description mode, 1, 15, 193, 198 

optimal, 3, 15 
discrete a priori probability, 157 
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distance

Besicovitch, 259 
distance between sequences, 53 
distance Kullback-Leibler, 215 
distribution 

marginal, 187 
Doob inequality, 271 
Doob theorem, 274

effective Hausdorff dimension, 174 
effectively null set, 58, 59, 147 
effectively open set, 70, 178
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empty string, 2, 466 
encoding, 213 
entropy, 314 

algorithmic, 472 
conditional, 217, 219 
monotone (algorithmic), 474 
of a pair, 217, 218 
prefix (algorithmic), 488 
Shannon, 7, 56, 213, 214, 217, 226 
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equivalence with accuracy c, 351 
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extractor, 121, 377
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enumerable, 17 
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finite automaton, 236 
finite field, 386 
forbidden sequence, 248, 249 
forbidden string, 247 
Ford-Fulkerson theorem, 385 
Ford-Fulkerson theorem, 378 
formula

propositional, 404 
fractals, 172 
frequency, 11, 209 

lower, 209 
frequency of a letter, 214 
frequency stability, 261, 467 
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function 

basic, 72
computable, 1, 15, 469 
hash, 370
lower semicomputable, 278 
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prefix-stable, 82
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Solovay, 165, 166 
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game, 373, 375, 393, 445 
game argument, 41 
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Gibbs inequality, 215 
graph, 357

bipartite, 357, 371 
cut, 383 
expander, 371 
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random, 372

group, 323, 341 
group action, 323

Hall theorem, 378 
halting probability, 76 
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cardinality, 441 
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hash function, 370 
Hausdorff dimension, 172, 284 

effective, 174, 286 
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image measure, 181 
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critical, 412 
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independence

conditional, 51, 342, 362 
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inequality
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basic, 223, 318, 338 
Cauchy-Schwarz, 257 
Chebyshev, 101, 445 
Doob, 271 
Fano, 224
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Gibbs, 215 
Ingleton, 339, 362 
Kolmogorov, 271 
Kraft, 214
Kraft-McMillan, 217 
non-Shannon, 343 

information 
mutual, 45 

information common for three strings, 50 
information flow, 384 
Ingleton inequality, 339, 362 
injective code, 213 
input node, 367 
input tape, 86 
inseparable sets, 28 
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intuitionistic logic, 404 
IPC, 404

König lemma, 243 
Kakutani theorem, 297 
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Kolmogorov admissible selection rule, 470 
Kolmogorov complexity, 2, 4 

conditional, 34
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monotone, 130 
of pairs, 31, 48 
of triples, 32, 48 
prefix, 83 
relativized, 203 

Kolmogorov complexity 
plain, 15 

Kolmogorov inequality, 271 
Kolmogorov stochastic sequence, 468 
Kolmogorov stochastic sequence, 470, 475, 

479, 483, 484 
Kolmogorov-Levin theorem, 37, 39 
Kraft inequality, 214 
Kraft-Chaitin lemma, 94 
Kraft-McMillan inequality, 217 
Kripke model, 412, 413 
Kullback-Leibler distance, 215, 276 
Kurtz randomness, 70

Lambalgen theorem, 185 
language recognized by the automaton, 236 
law of iterated logarithm, 239, 269 
law of large numbers, 55, 65 

for variable probabilities, 302 
strong, 179, 303, 304 

layerwise computable mapping, 182 
lemma
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Borel-Cantelli, 57 
Levin, 241 
Lovåsz, 252 

length of a string, 466 
Levin lemma, 241 
Levin-Schnorr theorem, 146, 148 
Lipschitz mapping, 258 
Lipschitz property, 16 
local lemma, Lovåsz, 246 
Lovåsz lemma, 245 
Lovåsz local lemma, 246 
low for Martin-Löf randomness, 180 
low set, 180
lower bounds for complexity, 9 
lower graph of mapping, 127 
lower semicomputable, 72 
lower semicomputable function, 116 
lower semicomputable martingale, 278 
lower semicomputable real, 68, 76, 158 
lower semicomputable semimeasure, 79 
lower semicomputable series, 80

map
computable, 15 

mapping
computable, 91, 127, 193, 201 
continuous, 90, 193 
continuous E —> E, 127 
covering, 396 
Lipschitz, 258 
lower graph, 127

marginal distribution, 187 
Markov chain, 51, 223 
Martin-Löf random sequence, 476 
martingale, 271, 276, 310 

computable, 174, 278, 279 
lower semicomputable, 278 
partial, 290
strongly winning on a sequence, 273 
winning on a sequence, 273, 290 
with respect to distribution, 274 

matching, 375 
on-line, 375 

mathematical statistics, 425 
matroid, 339
maximal semimeasure, 79 
McMillan inequality, 217, 222 
MDL (minimal description length), 431 
measurable set, 54 
measure, 54, 172 
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Bernoulli, 11, 55, 66, 75 
computable, 60, 61, 119 
uniform, 55 

Miller-Yu theorem, 154 
minimal hypothesis, 450 
minimal sufficient statistics, 390 
ML-random point, 68 
ML-random real, 68 
ML-randomness, 63 
modulus of convergence, 22 
Moivre-Laplace theorem, 230 
monotone complexity, 9, 130, 132 
monotone machine, 128 
Muchnik theorem, 369 

combinatorial version, 374 
Muchnik’s theorem

combinatorial interpretation, 374 
mutual information, 45, 222, 352

non-computability of complexity, 9 
non-Shannon inequality, 343 
non-stochastic string, 428 
normal real, 265 
normal sequence, 265 
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modes, 2 
null set, 11, 54, 263 
number

Solovay complete, 160 
numbering, 202 

computable, 202 
Gödel, 202 
optimal, 202

Occam’s razor, 10, 452 
open subset, 53
optimal conditional decompressor, 34 
optimal decompressor, 83, 130, 200 

prefix-free, 169
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prefix-stable, 103 
optimal description language, 472 
optimal description mode, 3, 15 
optimal numbering, 202 
optimality deficiency, 448 
oracle, 27, 202 

O', 203
non-comp utable, 180 

orbit of the point, 323 
output node, 367

paradox 
Berry’s, 9 
heap, 466 

partial martingale, 290 
Peirce’s law, 405
Peirce, Charles Sanders (1839-1914), 405 
plane Kolmogorov complexity, 15 
prefix, 466 
prefix code, 213 
prefix complexity, 83, 148 

of pairs, 105 
of triples, 106, 109 

prefix randomness deficiency, 427 
prefix, 427 

prefix-free code, 213 
prefix-free encoding, 31 
prefix-free function, 83, 86 
prefix-stable function, 82 
probabilistic algorithm, 75, 115 
probabilistic argument, 395 
probability 

a priori, 81 
conditional, 219, 275 
of a letter, 214 
of the event, 54 
von Mises, 261 

probability bounded randomness test, 72 
probability distribution 

computable, 480 
probability measure, 176 
probability-bounded randomness deficiency, 

73
problem, 401
profile of a pair of strings, 392 
proper sequence, 177 
propositional formula, 404 
pseudo-disjunction, 403 
pseudo-randomness generator, 377 
PSPACE, 376

random graph, 372 
random sequence, 58, 261, 466 
random string, 8, 102 
random variable

conditional independence, 342 
independence, 221 

randomness 
blind, 65

computable, 284 
computably, 311 
deficiency, 8 
Kurtz, 284, 310, 311 
Martin-Löf, 63, 310, 476 
Mises-Church, 284, 311 
Mises-Church-Daley, 305, 311 
Mises-Kolmogorov-Loveland, 291, 309, 

311
of real numbers, 157 
partial-computably, 311 
Schnorr, 69, 282 

randomness deficiency, 8, 71, 146, 182, 426, 
447 

a priori, 177
expectation-bounded, 73, 150 
probability-bounded, 73 

randomness extractor, 121 
randomness test 

Martin-Löf, 71 
probability-bounded, 72 

real
absolutely normal, 265 
normal in base b, 265 

regular function, 60 
relation

enumerable, 377 
relativization, 47, 103, 202, 223 

inequalities, 223 
robust program, 128

Schnorr effectively null set, 69 
Schnorr random sequence, 283 
Schnorr randomness, 282 
Scott domain, 201 
secret sharing, 385 
selection rule, 261, 262, 287 

Church-Daley admissible, 287 
Church-admissible, 264 
Kolmogorov-Loveland admissible, 291 

self-delimited input, 85 
self-delimiting description, 82 
self-delimiting program, 3 
semimartingale, 278 
semimeasure, 92, 105, 279 

continuous, 116 
lower semicomputable, 79 
maximal, 79 
on the binary tree, 116 
simple, 118 
universal, 122 
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lower semicomputable, 122 

separable set, 27 
sequence

1- random, 157
2- random, 157 
balanced, 262
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characteristic, 67 
Church stochastic, 264 
computably random, 279, 284, 311 
convergence speed, 158 
forbidden, 248 
generic, 70, 178
Kolmogorov-Loveland random, 310 
Kurtz random, 284, 310, 311 
lower semicomputable, 77 
Martin-Löf random, 63, 229, 270, 310 

criterion, 125 
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Mises-Church random, 264, 266, 270, 
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Mises-Church-Daley random, 296, 305, 
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normal, 265
partial-computably random, 290, 311 
proper, 177 
random, 65, 466 
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unpredictable, 476 
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r- separable, 27 
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Borel, 53 
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effectively null, 58, 59, 147 
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everywhere dense, 178 
low, 180 
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Slepian-Wolf theorem, 369, 377
slow convergence in the Solovay sense, 165
slowly converging series, 169

Solomonoff-Kolmogorov theorem, 3, 15, 34
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Solovay function, 168
Solovay reduction, 160
solution to a problem, 401
space of partial functions, 201
stabilizer subgroup, 323
Stirling’s approximation, 226
stochastic sequence, 482
stochastic string, 428
strategy, 479
string
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random, 8 
stochastic, 428 
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sufficient statistics, 390 
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Turing reduction, 27 
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construction, 322 
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halting probability, 157 
unpredictability, 467
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