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Alexander Shen†

Different constructions in the recursion theory use the so-called priority arguments (see,
e.g., [1, Section 13, The Priority Method]). A general scheme was suggested by A. Lachlan
in [2]. Based on this paper, we define the notion of a priority-closed class of requirements.
Then, for a specific priority construction, we need to check only that all requirements we
want to satisfy belong to some priority-closed class (defined in game terms). This game
version of Lachlan’s approach is used to present some results about recursively inseparable
sets obtained by the author.

1 A framework is a quadruple 𝑆 = ⟨𝑀,𝑈, 𝑅, 𝑇⟩, where 𝑀 and 𝑈 are some sets, and
𝑅 ⊂ 𝑀 × 𝑀 and 𝑇 ⊂ 𝑀 × 𝑈 are some relations. We assume that 𝑇 is not empty. The
elements of𝑀 are called items, the elements of 𝑈 are called requests. We read 𝑅(𝑚1, 𝑚2) as
“the element𝑚1 may follow the element𝑚2”, and 𝑇(𝑚, 𝑢) as “the element𝑚 is compatible
with the request 𝑢”.

Here are two examples of frameworks.

1. Items are finite subsets ofℕ (the set of natural numbers), requests are pairs of disjoint
finite subsets of ℕ. We let

𝑅(𝐴, 𝐵) ∶= (𝐵 ⊂ 𝐴); 𝑇(𝐴, ⟨𝐴+, 𝐴−⟩) ∶= (𝐴+ ⊂ 𝐴 ⊂ ℕ ⧵ 𝐴−).

This framework will be denoted by 𝑆+−.

2. Let 𝑎(𝑛) be a computable enumeration without repetitions of an enumerable [=c.e.]
undecidable [=non-computable] set 𝐴. Let items be finite bit sequences; 𝑅(𝑚, 𝑛)
means that 𝑛 is a proper prefix of 𝑚. For each item 𝑚 = 𝑚(0)…𝑚(𝑘) consider the
sets 𝐴0(𝑚) and 𝐴1(𝑚) defined as

𝐴𝑖(𝑚) = {𝑎(𝑠) ∣ 𝑚(𝑠) = 𝑖}.

The requests are pairs of disjoint finite sets ⟨𝐶0, 𝐶1⟩;

𝑇(𝑚, ⟨𝐶0, 𝐶1⟩) ∶= (𝐴0(𝑚) ∩ 𝐶0 = 𝐴1(𝑚) ∩ 𝐶1 = ∅).

This framework is denoted by 𝑆𝐴01 in the sequel.

2 Let 𝑆 be some framework. We say that a request 𝑢 dominates a request 𝑣 in 𝑆 if every
item that is compatible with 𝑢 is also compatible with 𝑣. A sequence 𝑚0𝑚1… of items (of
𝑆) is valid if𝑚𝑖+1 may follow𝑚𝑖 for every 𝑖. A set 𝛼 of valid sequences is called a condition
if it is closed under adding a prefix that keeps the sequence valid; if a sequence 𝑚 belongs
to 𝛼, we say that “𝑚 satisfies 𝛼”. A requirement is a pair of the form ⟨𝑆, 𝛼⟩ where 𝑆 is a
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framework and 𝛼 is a condition (for 𝑆). A requirement ⟨𝑆, 𝛼⟩ is weaker than a requirement
⟨𝑆, 𝛽⟩ if 𝛽 ⊂ 𝛼. The conjunction of two requirements ⟨𝑆, 𝛼⟩ and ⟨𝑆, 𝛽⟩ is the requirement
⟨𝑆, 𝛼 ∩ 𝛽⟩.

Let 𝑆1 and 𝑆2 be two frameworks. We define the framework 𝑆1 × 𝑆2 as follows. It items
and requests are pairs of items (resp. requests) for 𝑆1 and 𝑆2, the relations 𝑅 and 𝑇 and
defined component-wise. Let 𝛼 be a condition for 𝑆1; we define the condition 𝛼 × 𝑆2 for
𝑆1 × 𝑆2 that is satisfied by sequences of pairs whose 𝑆1-projection (the sequence of first
components) satisfies 𝛼. In a similar way we define the product of 𝑆1 and some condition
for 𝑆2.

A class of requirements is priority-closed if the following is true:

1. a requirement that is weaker than some requirement in the class, is also in the class;

2. the conjunction of any two requirements in the class is also in the class;

3. if a requirement ⟨𝑆, 𝛼⟩ is in the class and 𝑆′ is a framework, then the requirements
⟨𝑆, 𝛼⟩ × 𝑆′ and 𝑆′ × ⟨𝑆, 𝛼⟩ are in the class;

4. if a requirement ⟨𝑆, 𝛼⟩ is in the class, then 𝛼 ≠ ∅.

3 For every requirement ⟨𝑆, 𝛼⟩ we consider a two-player game [with full information].
The players are Alice and Bob. Alice starts the game by choosing a request 𝑢0 and an item
𝑚0 that is compatible with 𝑢0 (in the framework 𝑆). Then Bob chooses some request 𝑢1
that dominates 𝑢0. At the next move Alice chooses some item 𝑚1 that may follow 𝑚0 and
is compatible with 𝑢1. Then Bob chooses some request 𝑢2 that dominates 𝑢0 (but may not
dominate 𝑢1), Alice chooses some item 𝑚2 that may follow 𝑚1 and is compatible with 𝑢2,
and so on. The game is infinite. Bob wins in the game if

1. the game is infinite (Alice always has a move that does not violate the rules of the
game);

2. the valid sequence 𝛼 of items that appear during the game satisfies the condition 𝛼;

3. all Bob’s requests are the same starting from some moment in the game.

A requirement ⟨𝑆, 𝛼⟩ is called a priority requirement if Bob has a winning strategy in
the corresponding game. Let 𝐾p be the class of all priority requirements. A requirement
⟨𝑆, 𝛼⟩ is called a countable-priority requirement if it is the intersection of a countable family
of priority requirements ⟨𝑆, 𝛼0⟩, ⟨𝑆, 𝛼1⟩, … that share the same framework 𝑆. Let 𝐾𝜔p is the
class of all countable-priority requirements.

A framework 𝑆 = ⟨𝑀,𝑈, 𝑅, 𝑇⟩ is constructive if 𝑀 and 𝑈 are spaces of constructive fi-
nite objects (see [1]) and the relations 𝑅 and 𝑇 are decidable [=computable]. A computable
priority requirement has a constructive framework, and the corresponding game has a com-
putable winning strategy for Bob. A weak computable priority requirement has a construc-
tive framework and a computable strategy for Bob that lets Bob win against computable
strategies of Alice (=in all games where the sequence of items is computable and Bob fol-
lows the strategy). The class of all computable priority requirements is denoted by 𝐾cp, the
class of all weakly computable priority requirement is denoted by 𝐾wcp. A requirement
⟨𝑆, 𝛼⟩ is countably computable priority requirement if the framework 𝑆 is constructive and
there exist computable priority requirements ⟨𝑆, 𝛼0⟩, ⟨𝑆, 𝛼1⟩, … such that 𝛼 = ⋂𝛼𝑖 and the
winning strategy for Bob in the 𝑖th game is computable uniformly in 𝑖. In a similar way

2



the countably weakly computable priority requirements are defined. These two classes are
denoted by 𝐾𝜔cp and 𝐾𝜔wcp. The following inclusions immediately follow from the defini-
tions:

𝐾p ⊂ 𝐾𝜔p, 𝐾wp ⊂ 𝐾𝜔wp, 𝐾cwp ⊂ 𝐾𝜔cwp, 𝐾wp ⊂ 𝐾p, 𝐾𝜔wp ⊂ 𝐾𝜔p, 𝐾cp ⊂ 𝐾wcp, 𝐾𝜔wp ⊂ 𝐾𝜔wcp.

Theorem 1. The classes 𝐾p, 𝐾𝜔p, 𝐾𝜔wcp are priority closed. If ⟨𝑆, 𝛼⟩ ∈ 𝐾𝜔wcp, then there
exists a computable sequence that satisfies 𝛼.

The proofs are omitted due to the lack of space.
Remark. The statement remains true if we replace 𝐾𝜔wcp by 𝐾cp, 𝐾𝜔cp, or 𝐾wcp.

4 The proofs of several known existence results in the computability theory can be
presented in the following form. We define some requirements and show that they belong
to one of these classes. Then we consider some combination of these requirements that
also belongs to the same class since the class is priority-closed. Then we use Theorem 1 and
get a computable sequence that satisfies all the requirements and provides an object we are
looking for. In the simple cases the class 𝐾𝜔cp is enough, but sometimes the larger class
𝐾𝜔wcp is needed.

For every valid sequence 𝐴0 ⊂ 𝐴1 ⊂ … of items in the framework 𝑆+− (see section 1)
we consider the set 𝐴∞ = ⋃𝐴𝑖 . Let 𝛼 be one of the conditions (1) “the complement of 𝐴∞
is hyperimmune”, (2) “the complement of 𝐴∞ is not hyperhyperimmune”. Then ⟨𝑆+−, 𝛼⟩
belongs to 𝐾𝜔cp. Let 𝐶 be an undecidable set such that 𝐶 ⩽𝑇 0′ and let 𝛼 be the condition
(3𝐶) “𝐶 is not reducible to 𝐴∞” (here and below we use Turing reducibility), then ⟨𝑆+−, 𝛼⟩
belongs to 𝐾𝜔wcp. Theorem 1 now guarantees that there exist an enumerable [=c.e.] set
that satisfies any combination of the conditions of type (1), (2), (3𝐶).

In the framework 𝑆+− × 𝑆+− each valid sequence of items ⟨𝐴0, 𝐵0⟩, ⟨𝐴1, 𝐵1⟩, … deter-
mines two sets 𝐴∞ and 𝐵∞, the unions of 𝐴𝑖 and 𝐵𝑖 . Let 𝛼 be the condition “𝐴∞ is Turing
incomparable with 𝐵∞”. One can show that ⟨𝑆+− × 𝑆+−, 𝛼⟩ belongs to 𝐾𝜔cp. This implies
Friedberg–Muchnik result [3] saying that there exist two incomparable enumerable sets.
One can also ensure that these sets have additional properties (are hypersimple, not hyper-
hypersimple, etc.)

In the framework 𝑆𝐴01 each valid sequence of items defines an infinite bit sequence
𝑚(0)𝑚(1)… (that extends all items) and a splitting of the set 𝐴 into two sets 𝐴0 and 𝐴1
defined as 𝐴𝑖 = {𝑎(𝑠) ∣ 𝑚(𝑠) = 𝑖}. Let 𝛼 be one of the conditions: “𝐴0 and 𝐴1 are insepara-
ble”, “𝐶 is not reducible to 𝐴0”, “𝐶 is not reducible to 𝐴1” (for any undecidable set 𝐶 ⩽𝑇 0′),
“𝐴0 and 𝐴1 are incomparable”. Then one can show that ⟨𝑆𝐴01, 𝛼⟩ belongs to 𝐾𝜔wcp. After
that Theorem 1 can be applied to derive several corollaries, including the following known
results.

Theorems. 1∗. [4] Every enumerable undecidable set can be represented as the union of two
disjoint enumerable undecidable sets.

2∗. (G.E. Sacks, see [1]) Every enumerable undecidable set can be represented as the union
of two disjoint incomparable enumerable sets.

5 Consider the connections between priority arguments and diagonal arguments. A
pair ⟨𝑀, 𝑅⟩ is a 𝐷-framework if 𝑀 is a set and 𝑅 ⊂ 𝑀 × 𝑀 is a binary relation on 𝑀. The
notions of a valid sequence and a condition are defined as before in section 1. A pair of the
type ⟨𝑆, 𝛼⟩where 𝑆 is a𝐷-framework and 𝛼 is a condition in 𝑆, is called𝐷-requirement. A𝐷-
requirement ⟨𝑆, 𝛼⟩ is called a diagonal 𝐷-requirement if for every item𝑚0 of 𝑆 there exists
a finite valid sequence that starts with 𝑚0 such that every its infinite extension satisfies 𝛼.
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Theorem 2. For every framework 𝑆 = ⟨𝑀,𝑈, 𝑅, 𝑇⟩ there exists a𝐷-framework 𝑆1 = ⟨𝑀1, 𝑅1⟩
and a mapping 𝜑 of the set of all valid sequences of 𝑆1 into the set of all valid sequences of 𝑆
such that for every condition 𝛼 in 𝑆 the following holds: if ⟨𝑆, 𝛼⟩ is a priority requirement, then
⟨𝑆1, 𝜑−1(𝛼)⟩ is a diagonal 𝐷-requirement.

In this theorem one can also exchange “framework” and “𝐷-framework”, “priority” and
“diagonal”, “requirement” and “𝐷-requirement” (simultaneously). Therefore, the use of
classes 𝐾p and 𝐾𝜔p is equivalent to diagonal arguments.

6 Consider a framework 𝑆++− that will be used to construct pairs of disjoint enumerable
sets with required properties. Let items be the pairs of disjoint finite sets; the item ⟨𝐴1, 𝐵1⟩
may follow ⟨𝐴, 𝐵⟩ if 𝐴 ⊂ 𝐴1 and 𝐵 ⊂ 𝐵1. Let the requests be triples ⟨𝐴+, 𝐵+, 𝐾⟩ of pairwise
disjoint finite sets. An item ⟨𝐴, 𝐵⟩ is compatible with a requirement ⟨𝐴+, 𝐵+, 𝐾⟩ if 𝐴+ ⊂ 𝐴,
𝐵+ ⊂ 𝐵 and (𝐴 ∪ 𝐵) ∩ 𝐾 = ∅.

For every valid sequence ⟨𝐴0, 𝐵0⟩, ⟨𝐴1, 𝐵1⟩, … of items in this framework we consider
two sets 𝐴∞ = ⋃𝐴𝑖 and 𝐵∞ = ⋃𝐵𝑖 . Let 𝛼 be one of the following conditions: “𝐴∞ and 𝐵∞
and strongly inseparable” [3, exercise 8.39, p. 125], “𝐴∞ and 𝐵∞ are incomparable”. Then
one can prove that the requirement ⟨𝑆++− , 𝛼⟩ belongs to 𝐾𝜔cp.

We say that a set 𝐷 is a separator for a pair ⟨𝑋, 𝑌⟩ of disjoint sets if 𝑋 ⊂ 𝐷 and 𝑌 ∩ 𝐷 =
∅. One can prove that if 𝛼 is one of the following conditions: “no separator of ⟨𝐶1, 𝐶2⟩ is
reducible to any separator of 𝐴∞, 𝐵∞” (for a given pair ⟨𝐶1, 𝐶2⟩ of enumerable inseparable
sets); “𝐶 is not reducible to any separator of ⟨𝐴∞, 𝐵∞⟩” (for any undecidable 𝐶 ⩽𝑇 0′), then
the requrement ⟨𝑆++− , 𝛼⟩ belongs to 𝐾𝜔wcp.

In the framework 𝑆++− × 𝑆++− every valid sequence of items determines two pairs
⟨𝐴∞, 𝐵∞⟩ and ⟨𝐶∞, 𝐷∞⟩. One can prove that for the condition 𝛼=“any separator of ⟨𝐴∞, 𝐵∞⟩
is incomparable with any separator of ⟨𝐶∞, 𝐷∞⟩” the requirement ⟨𝑆++− × 𝑆++− , 𝛼⟩ belongs
to 𝐾𝜔cp.

Theorem 1 then can be used to get the following results as corollaries:

Theorem 3. There exist two pairs ⟨𝐴1, 𝐴2⟩ and ⟨𝐵1, 𝐵2⟩ of enumerable inseparable sets such
that any separator of ⟨𝐴1, 𝐴2⟩ is incomparable with any separator of ⟨𝐵1, 𝐵2⟩. Both pairs could
be made strongly inseparable. One may also require that 𝐴1 and 𝐴2 are incomparable and
also 𝐵1 and 𝐵2 are incomparable.

Theorem 4. For every pair ⟨𝐶1, 𝐶2⟩ of enumerable inseparable sets there exists a pair ⟨𝐴1, 𝐴2⟩
of enumerable inseparable sets such that no separator of ⟨𝐶1, 𝐶2⟩ is reducible to any separator
of ⟨𝐴1, 𝐴2⟩. One may also require that the pair ⟨𝐴1, 𝐴2⟩ is strongly inseparable.

Theorem 5. For every undecidable set 𝐶 ⩽𝑇 0′ there exists a pair ⟨𝐴1, 𝐴2⟩ of enumerable
inseparable sets such that 𝐶 is not reducible to any separator of ⟨𝐴1, 𝐴2⟩.

7 Consider one more framework that can be used to study separation problems. Let
⟨𝐴1, 𝐴2⟩ be a pair of enumerable inseparable sets, and let 𝑎(𝑛) be a computable enumeration
of𝐴1 without repetitions. Consider finite sets as items and pairs ⟨𝐾+, 𝐴−⟩ such that 𝑎(𝐾+)∩
𝐴− = ∅ as requests. We say that item 𝐾2 may follow 𝐾1 if 𝐾1 ⊂ 𝐾2. We say that item 𝐾 is
compatiblewith request ⟨𝐾+, 𝐴−⟩ if𝐾+ ⊂ 𝐾 and 𝑎(𝐾)∩𝐴− = ∅. We denote this framework
by 𝑆⊕−. For every valid sequence of items𝐾0 ⊂ 𝐾1 ⊂ … consider the set𝐴′1 = 𝑎(⋃𝐾𝑖). One
can prove that if 𝛼 is one of the conditions “𝐴′1 and 𝐴2 are inseparable”, “𝐶 is not reducible
to 𝐴′1” (for any undecidable 𝐶 ⩽𝑇 0′), “no separator for ⟨𝐶1, 𝐶2⟩ is reducible to 𝐴′1” (for any
pair ⟨𝐶1, 𝐶2⟩ of enumerable inseparable sets), then ⟨𝑆⊕−, 𝛼⟩ belongs to 𝐾𝜔wcp. This implies,
in particular, the following result.

4



Theorem 6. For every unsolvable separation problem in the sense of Yu.T. Medvedev[5] there
exists a strictly smaller with respect to weak [=Muchnik] reducibility [unsolvable] separation
problem.

The definition of weak reducibility can be found in [6].
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