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ON RELATIONS BETWEEN DIFFERENT ALGORITHMIC
DEFINITIONS OF RANDOMNESS
UDC 517.11

A. KH. SHEN'’

There exist different versions of algorithmic definition of an (individual) ran-
dom object. We establish some connections between them. Namely, we show that
(1) Kolmogorov-Loveland stochastic sequences can be nonrandom in the sense of
Martin-L6f [1], [2] and that (2) the variant of Martin-L5fs definition called “Solo-
vay randomness” in [3] is equivalent to the original Martin-L6f definition. The first
statement is proved by the method of van Lambalgen [4].

1. Kolmogorov [5] stated that there exist Kolmogorov-Loveland stochastic se-
quences (also called Mises-Kolmogorov-Loveland random sequences) of zeros and
one with logarithmic increase of entropy (= Kolmogorov complexity): a prefix of
length n had entropy O(log n). (We consider only uniform Bernoulli distribution on
the set of all infinite sequences of zeros and ones, unless explicitly stated otherwise.)
Such sequences cannot be Martin-Lof random, so Kolmogorov’s statement implies
that there are Kolmogorov-Loveland stochastic sequences, which are not Martin-Lof
random. But the proof of Kolmogorov’s assertion was never published and, as Andrei
A. Muchnick has shown, it is false. Muchnik proved that each sequence «w whose
prefixes (of length n) have entropy < Cn + O(1), where C is a constant, C < 1,
cannot be Kolmogorov-Loveland stochastic. (There exist different versions of Kol-
mogorov complexity (= entropy), but for our purposes the differences between them
are unessential—they differ only by O(log n); see [2] and [6].)

Nevertheless Kolmogorov-Loveland stochastic sequences which are not Martin-
Lof random do exist: we give a proof of this fact by the method of van Lambalgen

[4].

THEOREM 1. There exists a Kolmogorov-Loveland stochastic sequence (with respect
to the uniform Bernoulli distribution) which is not Martin-Lof random (with respect
to the same distribution).

PRrRoOF. Following van Lambalgen, let us consider a sequence p = pg, p;, ... of real
numbers, which converges—but very slowly—to 1 /2. Let us consider a distribution
Up on the set of all infinite sequences of zeros and ones: the jth trial has p; as the
probability of 1 and trials are independent. Now we consider a Martin-L6f random
sequence with respect to the distribution u,. It will be stochastic but not random
with respect to the uniform distribution.

Now we give the proof in detail.

LEMMA 1. Letp = py,p,,... be a computable sequence of computable real numbers,
and let 3 7(p; — 1/2)? = +o0o. Then no sequence can be random with respect both to u,
and the uniform distribution.

PrROOF. This is a corollary of a more general result of Vovk [7]. We present his
proof in our special case. We have two distributions: Up and the uniform Bernoulli
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distribution 4,/,. Let us consider one more distribution x’: it is a Bernoulli distri-
bution and the probabilities of ones will be arithmetic means between p; and 1/2.
Assume that a sequence w is random with respect to u, and u,/;. Let u; denote the
probability of the ith member of w with respect to u, (so u; = p; if the ith member
of wis 1, and u; = 1 —p; otherwise). Let v; and w; denote the same probabilities with
respect to 4, and 4’ (so vy = 1/2 and w; = (u; +v;)/2). The criteria of randomness
in terms of an a priori probability (see [8]) gives that

n n n n
HwiSCHui, HwiSCHUi
i1 i1 i=1 i=1

for some constant C and for each n (because u’ does not exceed the a priori proba-
bility). Multiplying these two inequalities and taking logarithms, we get

> log((ui +vi)/2) <> _(logu; +logv;)/2 + O(1).

The difference between the left and right sides is of order (u; — v;)? (convexity of the
logarithm function), so Y (u; — v;)?> < oo, a contradiction. Lemma 1 is proved.

LEMMA 2. Let p,,p1,... be a computable sequence of computable real numbers
that computably converges to 1/2. Then each sequence Martin-Léf random with re-
spect to up is Kolmogorov-Loveland stochastic with respect to the uniform Bernoulli
distribution.

PrRoOOF. Suppose that w is a Martin-Lof random sequence which is not stochastic
and R is the corresponding rule of choice (R gives a sequence with no limit frequency
of ones or with limit frequency of ones not equal to 1/2). Let ¢ > 0 be such that
the frequency of ones in the R-choice subsequence is greater than 1/2 + ¢ infinitely
many times. (If it is less than 1/2 — ¢ infinitely many times, the proof goes the same
way). We shall reach a contradiction, showing that the set of all sequences for which
the R-choice subsequence has infinitely many prefixes with frequency greater than
1/2 + ¢ has effective measure zero. By D, we denote the set of all sequences which
give after application of R a subsequence with at least » members and the frequency
of ones in the first » members of it is greater than 1/2 + ¢. It is sufficient to show
that >_ u(D,) converges computably. (We mention that Theorem 2 below shows that
it is sufficient to establish convergence.)

By a,x(q1,...,4,) we denote the probability of getting more than k ones in n
independent trials, in the ith of which the probability of 1 is g;. The function «, 4
is monotone, and o, < a,; when k > /. We claim that u,(D,) < a,«(q1,-.-,49n),
where kK = n(1/2 + ¢) and

g1 = supp;, g2 = supmin(p;,p;),...,q = sup min(py,,...,Dk,)-
i i#]j ky#---#k,
This implies the convergence of ) u(D,). Indeed, we can replace the g; that are
greater than 1/2 + ¢/2 (let s be the number of g;), and the others by 1/2+¢/2. Then

w(Dy) < ani(l,...,1,1/2+¢€/2,...,1/2+¢/2)
= an_sk_s(1/2+€/2,...,1/2+&/2).

Now we can use the standard upper bound (obtained, for example, by Stirling’s
formula) and see that u(D,) decreases exponentially as n tends to infinity.

Now we prove that u(D,) < a,(q1,-..,9»). Let us imagine (as in [9]) that the
members of a sequence w are written on cards which lie on an (infinitely long) table
(we do not see what is written on a card unless we turn it). The rule of choice
is an algorithm that says which card must be turned next and whether it must be
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turned only for information or it is selected into the subsequence. We consider also
a protocol containing all information about this process (which cards were turned,
what for, and what was written on them).

Let 7 be the initial segment of such a protocol (containing full information about
some cards). We denote by n(z) the number of cards included in the subsequence
turned during the initial segment 7, and by k(7)) the number of ones on these cards.
By g5(m) we denote

sup min(rg,...,",)
ki #- kg
where the sequence ry,rp,... 1S po,p1,... without members corresponding to the

turned (for any purpose) cards during n. By u,(A4|n) we denote the conditional
probability of w € A4 with respect to u, if the protocol of application of R to w has
a prefix 7. We prove that if n(n) < n and k = (1/2 + ¢)n, then

(1) Up(Dn|7) < ap_pin)k—k(m)(q1(TT),...).

(When 7 is empty, we get the original inequality.) If n(z) = n, inequality (1) in fact
becomes an equality (both sides are equal to either O or 1). Let n(n) < n, and let ¢
be the number of a card which must be turned immediately after z. (If no such card
exists, u(D,|r) = 0.) Then

(2) .up(DnIn) = pt.up(Dn|7tl) + (1 - pt)ﬂp(Dn|7t0)

where n; and 7y are protocols which contain (in addition to n) also information
about 1 and O (respectively) on the ¢th card. Let us show that if inequality (1) holds
for m; and ng, it holds also for . The right-hand side of (2) does not exceed

(3) Ptz k—k(z)(@1(71),5 - .. ) + (1 = Dr)Qp—n(ng) k—k(n,)(41(T0), - - . )

If the tth card was turned only for information, then n(ny) = n(m;) = n(n) and
k(m) = k(ny) = k(m), and we use the monotonicity of a,; and the inequality
qgi(my) = gi(mg) < gi(m). If the tth card was included in the subsequence, n(m;) =
n(ngy) = n(n) + 1, k(ny) = k(n) + 1, k(ny) = k(x), and (3) is equal to

Qp—n(n) k—k(m) (P> 41 (7o), g2(7o), - - .)
and does not exceed (by monotonicity)

Ay n(m) k—k(m) (41(T), 2 (7), . . . ).

So (1) is proved provided that all prefixes of protocols 7= with n(7) < n have limited
length. If this is not so, the above considerations give us a bound for u,(DY|n), where
DY is the set of all sequences for which the rule R gives, after N or less turned cards,
a subsequence with length > »n and frequency of ones among the first N members
greater than 1/2 + ¢. Then we let N tend to infinity and get (1). Lemma 2 is proved.

Now it remains to fix a computable sequence pg, p1,... of computable real num-
bers, computably converging to 1/2 with 3 (p; — 1/2)? = +00. We take, for example,
pi=1/2+(i+10)~1/2,

2. Chaitin [3] gives the following definition of a Solovay random sequence of zeros
and ones with respect to a given computable distribution on the space of all sequences
of zeros and ones. (Strictly speaking, Chaitin gives the definition of a random real
number, but this makes no difference for our purposes.)

DEFINITION [3]. A sequence w is called a Solovay random with respect to a com-
putable distribution u if for each computable sequence of effectively open sets U;
with Y u(U;) < oo the sequence w belongs to U; only for finitely many i. (An effec-
tively open set is a union of a computable sequence of intervals; an interval is a set
of all infinite sequences with a given finite prefix.)
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As pointed out in [3], any Solovay random sequence is Martin-Lof random. It is
also pointed out there that if we require computable convergence of > u(U;) we get
a definition equivalent to Martin-L6fs.

The next theorem says that even without this restriction the Solovay and Martin-
Lof definitions are equivalent. (This question is posed in [31.)

THEOREM 2. Any Martin-Lof random sequence with respect to a computable distri-
bution u is Solovay random with respect to u.

PROOF. Let w be a Solovay nonrandom sequence with respect to u; Uy, Uj,... is
a computable sequence of effectively open sets such that .S = > u(U;) is finite and
w € U; for infinitely many i. We show that w is Martin-L6f nonrandom, giving a
method of constructing (for each ¢ > 0) an effectively.open set with measure < .

Let n be a positive integer, and consider the set ¥, of all infinite sequences which
belong to at least » different U;. V), is an effectively open set: if a sequence belongs to
V» this fact can be established by exhibiting » different values of i for which w € U;.
It is also easy to see that u(V,) < S/n. (If u; is equal to 1 on U; and to 0 outside,
then [> u; = S and Y u; > n on V..) We suppose that w € ¥, for all n. So to
find an effectively open set containing w with measure < ¢ it is sufficient to choose n
such that S/n < ¢ and then use V,. (S can be a noncomputable real, but it does not
matter because we can use any upper bound for .S instead of .S itself.) Theorem 2 is
proved.
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