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Abstract

The main goal of this article is to put some known results in a common perspective and to simplify their
proofs.

We start with a simple proof of a result from Vereshchagin [10] saying that limsupn C(x|n) (here C(x|n) is
conditional (plain) Kolmogorov complexity of x when n is known) equals C0′(x), the plain Kolmogorov com-
plexity with 0′-oracle.

Then we use the same argument to prove similar results for prefix complexity, a priori probability on binary
tree and measure of effectively open sets, and also to improve results of Muchnik [5] about limit frequencies. As
a by-product, we get a criterion of 0′ Martin-Löf randomness (called also 2-randomness) proved in Miller [4]:
a sequence ω is 2-random if and only if there exists c such that any prefix x of ω is a prefix of some string
y such that C(y) > |y| − c. (In the 1960ies this property was suggested in Kolmogorov [2] as one of possible
randomness definitions; its equivalence to 2-randomness was shown in Miller [4]). Miller [4] and Nies et al. [6]
proved another 2-randomness criterion: ω is 2-random if and only if C(x) > |x| − c for some c and infinitely
many prefixes x of ω .

We show that the low-basis theorem can be used to get alternative proofs of our results on Kolmogorov
complexity and to improve the result about effectively open sets; this stronger version implies the 2-randomness
criterion mentioned in the previous sentence.

1 Plain complexity
We denote by {0,1}∗ the set of binary strings and by {0,1}∞ the set of infinite binary sequences. For x ∈ {0,1}∗,
we denote by C(x) the plain complexity of x (the length of the shortest description of x when an optimal descrip-
tion method is fixed, see Li and Vitanyi [3]; no requirements about prefixes). By C(x|n) we mean conditional
complexity of x when n is given, see for example Li and Vitanyi [3]. Superscript 0′ in C0′ means that we consider
the relativized version of complexity to the oracle 0′, the universal computably enumerable set.

The following result was proved in Vereshchagin [10]. We provide a simple proof for it.

Theorem 1 For all x ∈ {0,1}∗:
limsup

n→∞

C(x|n) = C0′(x)+O(1).

(In this theorem and below “ f (x) = g(x)+ O(1)” means that there is a constant c such that | f (x)−g(x)| 6 c for
all x.)

Proof. We start in the easy direction. Let 0n be the (finite) set consisting of the elements of the universal
enumerable set 0′ that have been enumerated after n steps of computation (note that 0n can be computed from n).
If C0′(x) 6 k, then there exists a description (program) of size at most k that generates x using 0′ as an oracle.
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Only finite part of the oracle can be used, so 0′ can be replaced by 0n for all sufficiently large n, and oracle 0n can
be reconstructed if n is given as a condition. Therefore, C(x|n)6 k +O(1) for all sufficiently large n, and

limsup
n→∞

C(x|n)6C0′(x)+O(1).

For the reverse inequality, fix k and assume that limsup C(x|n) < k. This means that for all sufficiently large n
the string x belongs to the set

Un = {u |C(u|n) < k}.

The family Un is an enumerable family of sets (given n and k, we can generate Un); each of these sets has at most
2k elements. We need to construct a 0′-computable process that given k generates at most 2k elements including all
elements that belong to Un for all sufficiently large n. (Then strings of length k may be assigned as 0′-computable
codes of all generated elements.)

To describe this process, consider the following operation: for some u and N add u to all Un such that n> N.
(In other terms, we add a horizontal ray starting from (N,u) to the set U = {(n,u) | u ∈Un}.) This operation is
acceptable if all Un still have at most 2k elements after it (i.e., if before this operation all Un such that n> N either
contain u or have less than 2k elements).

For any given triple u, N, k, we can find out using 0′-oracle whether this operation is acceptable or not. Indeed,
the operation is not acceptable if and only if some Un for n > N contains at least 2k elements that are distinct
from u. Formally, the operation is not acceptable if

(∃n> N) |Un \{u}|> 2k,

and this is an enumerable condition as the Un are themselves enumerable. Now for all pairs (N,u) (in some
computable order) we perform the (N,u)-operation if it is acceptable. (The elements added to some Ui remain
there and are taken into account when next operations are attempted.) This process is 0′-computable since after
any finite number of operations the set U is enumerable (without any oracle) and its enumeration algorithm can
be 0′-effectively found (uniformly in k).

Therefore the set of all elements u that participate in acceptable operations during this process is uniformly
0′-enumerable. This set contains at most 2k elements (otherwise Un would become too big for large n). Finally,
this set contains all u such that u belongs to the (original) Un for all sufficiently large n. Indeed, the operation is
always acceptable if the element we want to add is already present! �

The proof has the following structure. We have an enumerable family of sets Un that all have at most 2k

elements. This implies that the set
U∞ = liminf

n→∞
Un

has at most 2k elements where, as usual, the liminf of a sequence of sets is the set of elements that belong to
almost all sets of the sequence. If U∞ were 0′-enumerable, we would be done. However, this may be not the case:
the criterion

u ∈U∞⇔∃N (∀n> N) [u ∈Un]

has ∃∀ prefix before an enumerable (not necessarily decidable) relation, that is, one quantifier more than we
want (to guarantee that U∞ is 0′-enumerable). However, in our proof we managed to cover U∞ by a set that is
0′-enumerable and still has at most 2k elements.

2 Prefix complexity and a priori probability
We now prove a similar result for prefix complexity (or, in other terms, for a priori probability). Let us recall the
definition. The function a(x) on binary strings (or integers) with non-negative real values is called a semimeasure
if ∑x a(x)6 1. The function a is lower semicomputable if there exists a computable total function (x,n) 7→ a(x,n)
with rational values such that for every x the sequence a(x,0),a(x,1), . . . is a nondecreasing sequence that has
limit a(x).

There exists a maximal (up to a constant factor) lower semicomputable semimeasure m (see, e.g., Li and
Vitanyi [3]). The value m(x) is sometimes called the a priori probability of x. In the same way we can define con-
ditional a priory probability m(x|n) and 0′-relativized a priori probability m0′(x) (which is a maximal semimeasure
among the 0′-lower semicomputable ones).
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Theorem 2 For all x ∈ {0,1}∗:
liminf

n→∞
m(x|n) = m0′(x)

up to a Θ(1) multiplicative factor (in other terms, two inequalities with O(1) factors hold).

Proof. If m0′(x) is greater than some ε , then for sufficiently large n the value m0n(x) is also greater than ε .
(Indeed, this inequality is established at some finite stage when only a finite part of 0′ is used.) We may assume
without loss of generality that the function x 7→ mA(x) is a semimeasure for any A (recalling the construction of
the maximal semimeasure). Then, similarly to the previous theorem, we have

liminf
n→∞

m(x|n)> liminf
n→∞

m0n(x)> m0′(x)

up to constant multiplicative factors. Indeed, for the first inequality, notice that we can define a conditional lower
semicomputable semimeasure µ by µ(x|n) = m0n(x). By maximality of m, we have µ(x|n) ≤ m(x|n) for all x,n,
up to a multiplicative factor. For the second inequality, recall that m0′(x) is the nondecreasing limit of an 0′-
computable sequence m0′(x,0),m0′(x,1), . . .. Let s be such that m0′(x,s) ≥ 1

2 m0′(x). Since the computation of
m0′(x,s) only uses finitely many bits of 0′, we have for all large enough n: m0n(x,s) = m0′(x,s) ≥ 1

2 m0′(x) and
thus m0n(x)≥ 1

2 m0′(x).

The other direction of the proof is also similar to the second part of the proof of Theorem 1. Instead of
enumerable finite sets Un we now have a sequence of (uniformly) lower semicomputable functions x 7→ mn(x) =
m(x|n). Each of the mn is a semimeasure. We need to construct an 0′-lower semicomputable semimeasure m′ such
that

m′(x)> liminf
n→∞

mn(x)

Again, the liminf itself cannot be used as m′: we do have ∑x liminfn mn(x)6 1 as ∑x mn(x) 6 1 for all n, but
unfortunately the equivalence

r < liminf
n→∞

mn(x)⇔ (∃r′ > r)(∃N)(∀n> N) [r′ < mn(x)]

has too many quantifier alternations (one more than needed; note that the quantity mn(x) is lower semicomputable
making the [. . .] condition enumerable). The similar trick helps. For a triple (r,N,u) consider an increase operation
that increases all values mn(u) such that n > N up to a given rational number r (not changing them if they were
greater than or equal to r). This operation is acceptable if all mn remain semimeasures after the increase.

The question whether the increase operation is acceptable is 0′-decidable. And if it is acceptable, by perform-
ing it we get a new (uniformly) lower semicomputable sequence of semimeasures. We can then try to perform an
increase operation for some other triple. Doing that for all triples (in some computable ordering), we can then de-
fine m′(u) as the upper bound of r for all successful (r,N,u) increase operations (for all N). This gives a 0′-lower
semicomputable function; it is a semimeasure since we verify the semimeasure inequality for every successful
increase attempt; finally, m′(u) > liminf mn(u) since if mn(u) > r for all n > N, then the (r,N,u)-increase does
not change anything and is guaranteed to be acceptable at any step. �

The expression − logm(x), where m is the maximal lower semicomputable semimeasure, equals the so-called
prefix complexity K(x) (up to an additive O(1) term; see for example Li and Vitanyi [3]). The same is true for
relativized and conditional versions, and we get the following reformulation of the last theorem:

Theorem 3
limsup

n→∞

K(x|n) = K0′(x)+O(1).

Another corollary improves a result of Muchnik [5]. For any (partial) function f from N to N let us define the
limit frequency q f (x) of an integer x as

q f (x) = liminf
n→∞

#{i < n | f (i) = x}
n

In other words, we look at the fraction of terms equal to x among the first n values f (0), . . . , f (n− 1) of f (un-
defined values are also listed) and take the liminf of these fractions. It is easy to see that for a total computable
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f the function q f is a lower 0′-semicomputable semimeasure. Moreover, it is shown in Muchnik [5] that any
0′-semicomputable semimeasure µ can be represented as µ = q f for some computable function f . In particular
this implies that there exists a total computable function f such that q f = m0′ .

We would like to extend Muchnik’s result to partial computable functions f . The problem is that if f is only
partial computable, the function q f is no longer guaranteed to be lower semicomputable. Using the second part of
the proof of Theorem 2, we can nonetheless prove:

Theorem 4 For any partial computable function f , the function q f is upper bounded by a lower 0′-semicomputable
semimeasure.

Indeed, given a partial computable function f , we can define for all n a semimeasure µn as

µn(x) =
#{i < n | f (i) = x}

n
;

µn is lower semicomputable uniformly in n. Then q f = liminf µn; on the other hand we know from the proof
of Theorem 2 that the liminf of a sequence of (uniformly) lower semicomputable semimeasures is bounded by a
0′-lower semicomputable semimeasure. The result follows.

The same type of argument also is applicable to the so-called a priori complexity defined as negative loga-
rithm of a maximal lower semicomputable semimeasure on the binary tree (see Zvonkin and Levin [11]). This
complexity is sometimes denoted as KA(x) and we get the following statement:

Theorem 5
limsup

n→∞

KA(x|n) = KA 0′(x)+O(1).

(To prove this we define an increase operation in such a way that, for a given lower semicomputable semi-
measure on the binary tree a, it increases not only a(x) but also a(y) for y that are prefixes of x, if necessary. The
increase is acceptable if a(Λ) still does not exceed 1.)

It would be interesting to find out whether similar results are true for monotone complexity or not (the authors
do not know this).

3 Open sets of small measure
In Section 1 we covered the liminf of a sequence of finite uniformly enumerable sets Ui by a 0′-enumerable set V
that is essentially no bigger than the Ui. It was done in a uniform way, i.e., V can be effectively constructed given
the enumerations of the Ui and an upper bound for their cardinalities. We now look at the continuous version of
this problem where the Ui are open sets of small measure.

We consider open sets in the Cantor space {0,1}∞ (the set of all infinite sequence of zeros and ones). An
interval [x] (for a binary string x) is formed by all sequences that have prefix x. Open sets are unions of intervals.
An effectively open subset of {0,1}∞ is an enumerable union of intervals, i.e., the union of intervals [x] where
strings x are taken from some enumerable set.

We consider standard (uniform Bernoulli) measure on {0,1}∞: the interval [x] has measure 2−l where l is the
length of x.

A classical theorem of measure theory says: if U0,U1,U2, . . . are open sets of measure at most ε , then liminfn Un
has measure at most ε , and this implies that for every ε ′ > ε there exists an open set of measure at most ε ′ that
covers liminfn Un. Indeed,

liminf
n→∞

Un =
⋃
N

⋂
n>N

Un,

and the measure of the union of an increasing sequence

VN =
⋂

n>N

Un,

equals the limit of measures of VN , and all these measures do not exceed ε since VN ⊂UN . It remains to note that
for any measurable subset X of {0,1}∞ its measure µ(X) is the infimum of the measures of open sets that cover X .
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We now can try to “effectivize” this statement in the same way as we did before. In Section 1 we started with
an (evident) statement: if Un are finite sets of at most 2k elements, then liminfn Un has at most 2k elements and
proved its effective (in the halting problem) version: for a uniformly enumerable family of finite sets Un that have
at most 2k elements, the set liminfn Un is contained in a uniformly 0′-enumerable set that has at most 2k elements.

In Section 2 we did a similar thing with semimeasures. Again, the non-effective version is trivial: it says
that if ∑x mn(x) 6 1 for every n, then ∑x liminfn mn(x) 6 1. We have proved the effective version that provides a
0′-semicomputable semimeasure that is an upper bound for liminfmn.

For the statement about liminf of open sets the effective version could look like this. Let ε > 0 be a rational
number and let U0,U1, . . . be an enumerable family of effectively open sets of measure at most ε each. Then for
every rational ε ′ > ε there exists a 0′-effectively open set V of measure at most ε ′ that contains liminfn→∞ Un =⋃

N
⋂

n>N Un.
We cannot prove this general statement and do not know whether it is true (see Section 8 for some partial

negative results). However, some weaker statements can be proven if we put extra requirements on the sets Un
or weaken the conclusion. Let us start with the simple case where the Un form a computable family of clopen
(closed and open) sets. Such a set is a finite union of intervals, and we assume that the list of these intervals can
be computed given n.

Theorem 6 Let Un be a uniformly computable family of clopen sets. Suppose also that for all n the set Un has
measure at most ε for some rational ε . Then for every rational ε ′ > ε there exists a 0′-effectively open set V of
measure at most ε ′ such that

U∞ = liminf
n→+∞

Un ⊆V

Proof. By definition
U∞ =

⋃
N

⋂
n≥N

Un,

therefore U∞ is a union of the pairwise disjoint sets

F0 =
⋂

i

Ui, F1 =
⋂
i>1

Ui \U0, F2 =
⋂
i>2

Ui \U1, . . .

(in other terms, a given x ∈U∞ belongs to Fk if and only if the last Ui to which x does not belong is Uk−1). Each
of Fk is an effectively closed set (recall that each Ui is a finite union of intervals hence is closed). Since the sets Fk
are disjoint and

liminf
n→+∞

Un =
⋃
k

Fk,

we conclude that
µ(liminf

n→+∞
Un) = ∑

k
µ(Fk).

For each k the value µ(Fk) is the limit over r of the (non-increasing) quantity µ (
⋂r

i=k Ui \Uk−1) which is com-
putable uniformly in (i,r). Thus, with oracle 0′, one can compute µ(Fk) for every k (with arbitrary precision) and
find a stage rk such that

µ

( rk⋂
i=k

Ui \Uk−1

)
< µ(Fk)+(ε ′− ε)/2k+1

Set F ′k =
⋂rk

i=k Ui \Uk−1. Notice that F ′k contains Fk, and is itself an clopen set, and the list of corresponding
intervals can be 0′-effectively computed given k. Thus,

V =
⋃
k

F ′k

is a 0′-effectively open set, contains
⋃

k Fk = U∞ and has measure at most

∑
k

µ(Fk)︸ ︷︷ ︸
=µ(U∞)6ε

+∑
k

(ε ′− ε)/2k+1

︸ ︷︷ ︸
=ε ′−ε

,

i.e. at most ε ′. Hence, V satisfies all the requirements. �
As we have said, instead of putting additional requirements on the sequence Ui (requiring it to be a computable

sequence of clopen sets) we can weaken the conclusion. The techniques presented in the previous sections allow
us to prove the following:
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Theorem 7 Let ε > 0 be a rational number and let Un be a uniformly enumerable family of effectively open sets
of measure at most ε each. Then there exists a 0′-effectively open set of measure at most ε that contains⋃

N

Int
( ⋂

n>N

Un

)
(and the construction is uniform given ε and an index for the sequence Un).

Here Int(X) denotes the interior part of X , i.e., the largest open subset of X . In this case we do not need to
consider ε ′ > ε (not a surprise, since the union of open sets is open).

Proof. Following the same scheme as in Sections 1 and 2, for every string x and integer N we consider (x,N)-
operation that adds [x] to all Un such that n> N. This operation is acceptable if the measures of all the Un remain
at most ε for each n. This can be checked using 0′ as an oracle (if the operation is not acceptable, this fact becomes
known after a finite number of steps).

We attempt to perform this operation (if acceptable) for all pairs in some computable order. The union of all
added intervals for all accepted pairs is 0′-effectively open. If some sequence belongs to the union of the interior
parts, then it is covered by some interval [u] that is a subset of Un for all sufficiently large n. Then some (u,N)-
operation is acceptable since it actually does not change anything and therefore [u] is a part of an 0′-open set that
we have constructed. �

In Section 6 we will return to this topic and state in Theorem 10 one more result about the liminf of small sets.

4 Kolmogorov and 2-randomness
Theorem 7 has an historically remarkable corollary. When Kolmogorov tried to define randomness in 1960ies,
he started with the following approach. A string x of length n is “random” if its complexity C(x) (or conditional
complexity C(x|n); in fact, these requirements are almost equivalent) is close to n: its randomness deficiency d(x)
is defined as

d(x) = |x|−C(x)

(here |x| stands for the length of x). This sounds reasonable, but if we then define an infinite random sequence as a
sequence whose prefixes have deficiencies bounded by a constant, such a sequence does not exist at all: Martin-Löf
showed that every infinite sequence has prefixes of arbitrarily large deficiency, and suggested a different definition
of randomness using effectively null sets. Later more refined versions of randomness deficiency (using monotone
or prefix complexity) appeared that make the criterion of randomness in terms of deficiencies possible. But before
that, in 1968, Kolmogorov wrote: “The most natural definition of infinite Bernoulli sequence is the following:
x is considered m-Bernoulli type if m is such that all xi are initial segments of the finite m-Bernoulli sequences.
Martin-Löf gives another, possibly narrower definition”, see Kolmogorov [2, p. 663].

Here Kolmogorov speaks about “m-Bernoulli” finite sequence x (this means that C(x|n,k) is greater than
log
(n

k

)
−m where n is the length of x and k is the number of ones in x). We restrict ourselves to the case of

uniform Bernoulli measure where p = q = 1/2. In this case Kolmogorov’s idea can be described as follows: an
infinite sequence is random if each its prefix also appears as a prefix of some random string (=string with small
randomness deficiency). More formal, let us define

d̄(x) = inf{d(y) | x is a prefix of y}

and require that d̄(x) is bounded for all prefixes of an infinite sequence ω . It is shown by Miller [4] that this
definition is equivalent to Martin-Löf randomness relativized to 0′ (called also 2-randomness):

Theorem 8 A sequence ω is Martin-Löf 0′-random if and only if the quantities d̄(x) for all prefixes x of ω are
bounded from above by a common constant.

It turns out that the forward direction of the equivalence stated in Theorem 8 follows easily from Theorem 7.
Proof. Assume that d̄-deficiencies for prefixes of ω are not bounded. According to Martin-Löf’s definition,

we have to construct for a given c an 0′-effectively open set that covers ω and has measure at most 2−c.
Fix some c. For each n consider the set Dc

n of all sequences u of length n such that C(u) < n−c (i.e., sequences
u of length n such that d(u) > c). It has at most 2n−c elements. By definition of d̄, the requirement d̄(x) > c means
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that every string extension y of x belongs to Dc
m where m is the length of y. This implies that [x] (=set of sequences

with prefix x) is contained in every Um for m> |x|, where

Uc
m =

⋃
u∈Dc

m

[u]

(in other words Uc
m is the set of all sequences that have prefixes in Dc

m). Therefore, in this case the interval [x] is
a subset of

⋂
m>|x|U

c
m and (being open) is a subset of its interior. To sum up, we have proven that if an infinite

sequence ω has a prefix x such that d̄(x) > c, then

ω ∈ Int
( ⋂

m>|x|
Uc

m

)
Now note that each Uc

m is effectively open uniformly in (m,c) as Dc
m is enumerable uniformly in (m,c). Moreover,

there are at most 2m−c strings in Dc
m, hence the measure of Uc

m is at most 2−c. Applying Theorem 7, we conclude
that there exists a 0′-effectively open (uniformly in c) set Vc that has measure at most 2−c such that⋃

N

Int
( ⋂

m>N

Uc
m

)
⊆Vc

Note that this tells us in particular that the sequence (Vc)c∈N forms an 0′-Martin-Löf test. Thus, if a sequence ω is
0′-Martin-Löf random, it only belongs to finitely many Vc. Let then b be such that ω /∈Vb. By the above argument,
this means that ω has no prefix x such that d̄(x) > b, or equivalently that for every prefix x of ω , d̄(x) ≤ b. This
proves the forward direction of the equivalence.

For the sake of completeness, we give the proof of the reverse implication in terms of Martin-Löf tests
(Miller [4] provided a proof solely in terms of Kolmogorov complexity). Assume that a sequence ω is cov-
ered (for each c) by a 0′-computable sequence of intervals I0, I1, . . . of total measure at most 2−c. (We omit c in
our notation, but the construction below depends on c.)

Using the approximations 0n of 0′ (obtained by performing at most n steps of computation for each n) we
get another (now computable) family of intervals I0,n, I1,n, . . . such that Ii,n = Ii for every i and sufficiently large
n. We may assume without loss of generality that Ii,n either has size at least 2−n (i.e., is determined by a string
of length at most n) or equals ⊥ (a special value that denotes the empty set) since only the limit behavior is
prescribed. Moreover, we may also assume that Ii,n =⊥ for n < i and that the total measure of all I0,n, I1,n, . . . does
not exceed 2−c for every n (the latter is achieved by deleting the excessive intervals in this sequence starting from
the beginning; the stabilization guarantees that all limit intervals will be eventually let through).

Since Ii,n is defined by intervals of size at least 2−n, we get at most 2n−c strings of length n covered by intervals
Ii,n for any given n and all i. This set of strings is decidable (recall that only i not exceeding n are used), therefore
each string in this set can be defined, assuming c is known, by a string of length n− c, the binary representation
of its ordinal number in this set. Note that this string also determines n if c is known.

Returning to the sequence ω , we note that it is covered by some Ii and therefore is covered by Ii,n for this i and
all sufficiently large n (after the value of Ii,n is stabilized), say, for all n> N. Let u be the prefix of ω of length N.
All extensions of u of any length n are covered by Ii,n and thus have complexity less than n−c+O(1), conditional
to c, hence their complexity is at most n− c+2logc+O(1). This means that d̄(u)> c−2logc−O(1).

Such a string u can be found for every c, therefore ω has prefixes of arbitrarily large d̄-deficiency. �
In fact a stronger statement than Theorem 8 is proved in Miller [4] and Nies et al. [6]; our tools are still too

weak to get this statement. However, the low basis theorem helps.

5 The low basis theorem
The low basis theorem is a classical result in recursion theory (see, for example, Odifreddi [7]). It was used in
Nies et al. [6] to prove 2-randomness criterion; analyzing this proof, we get theorems about limit complexities as
byproducts. For the sake of completeness, we state the low-basis theorem and its simple proof.

Theorem 9 Let U ⊂ {0,1}∞ be an effectively open set that does not coincide with {0,1}∞. Then there exists a
sequence ω /∈U which is low, i.e., ω ′ =T 0′
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Here ω ′ is the jump of ω; the equation ω ′ =T 0′ means that the universal ω-enumerable set is 0′-decidable.
Theorem 9 says that any effectively closed nonempty set contains a low element. For example, if P,Q ⊂ N

are enumerable inseparable sets, then the set of all separating sequences is an effectively closed set that does
not contain computable sequences. We conclude, therefore, that there exists a non-computable low separating
sequence.

Proof. Assume that an oracle machine M and an input x are fixed. The computation of M with oracle ω on x
may terminate or not depending on oracle ω . Let us consider the set T (M,x) of all ω such that Mω(x) terminates
(for fixed machine M and input x). This set is an effectively open set: if termination happens, it happens due to
finitely many oracle values. This set together with U may cover the entire space {0,1}∞; this means that Mω(x)
terminates for all ω /∈U . If it is not the case, we can add T (M,x) to U and get a bigger effectively open set Û
that still has nonempty complement such that Mω(x) does not terminate for all ω /∈ Û . Either way, this operation
guarantees that the termination of the computation Mω(x) does not depend on the choice of ω in the remaining
nonempty effectively closed set (meaning that for all ω1,ω2 in the remaining effectively closed set, Mω1(x) termi-
nates if and only if Mω2(x) terminates).

This increase operation of the effectively open set can be performed for all pairs (M,x) sequentially. At each
stage the effectively open set U stays the same or is increased but in any case its complement remains nonempty.
Hence, by compactness of {0,1}∞, the open set U∞ obtained in the limit will have nonempty complement. Note
that the set U∞ does not have to be effectively open: though at any stage the current U is an effectively open set,
the construction is not effective (we need to find out which of the two cases happens).

We claim that any sequence ω /∈U∞ is low. Indeed, by construction of U∞, for every M and x the termination of
the computation of Mω(x) is independent on the choice of ω in the complement of U∞ and is determined at some
point of the construction. And the construction is 0′-effective: if during the increase operation U ∪T (M,x) covers
the entire space {0,1}∞, this happens on some finite stage (compactness), so 0′ is enough to find out whether this
happens or not. Therefore, for every M and x we can 0′-effectively find out whether Mω(x) terminates or not. This
precisely means that ω ′ =T 0′, i.e., that ω is low. �

6 Using the low basis theorem
Let us show how Theorem 1 can be proved using the low basis theorem. As we have seen, we have an enumerable
family of sets Un; each of Un has at most 2k elements (say, strings). We need to construct effectively a 0′-
enumerable set that has at most 2k elements and contains U∞ = liminfn Un.

In the special case where the sets Un happen to be (uniformly) decidable, U∞ is 0′-enumerable and we do not
need any other set. The low basis theorem allows us to reduce the general case to this special one.

First, we may assume without loss of generality that for all n the set Un contains only strings of length at
most n. To see why we can do this, consider for all n the set Ûn of strings in Un that have length at most n. The
sequence of Ûn is uniformly enumerable and liminfUn = liminfÛn (any string x ∈ liminfn Un belongs to almost
all Un and will be allowed to enter Ûn for n≥ |x|).

Having imposed this restriction on the Un, let us consider the family of all “upper bounds” for Un: by an upper
bound we mean a sequence Vn of finite sets such that for all n, we have (1) Un ⊆ Vn; (2) #Vn ≤ 2k and (3) Vn
contains strings of length at most n. The sequence V0,V1, . . . can be encoded as an infinite binary sequence: each
Vi contains only strings of length at most n (there are 2n+1−1 of them) and can be encoded as a binary string of
length 2n+1−1. Then the sequence V0,V1, . . . can be encoded by concatenation of the individual encodings of the
Vi.

For a binary sequence the property “to be an encoding of an upper bound for Un” is effectively closed (the
restriction #Vn < 2k is decidable and the restriction Un ⊂ Vn is co-enumerable). Therefore the low basis theorem
can be applied. We get an upper bound V that is low. Then V∞ = liminfVn is (uniformly in k) V ′-enumerable
(as we have said: with V -oracle the family Vn is uniformly decidable), but since V is low, the V ′-oracle can be
replaced by the 0′-oracle, and we get the desired result.

This proof though being simple looks rather mysterious: we get something almost out of nothing! (As far as
we know, this idea appeared in a slightly different context in Nies et al. [6].)
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The same trick can be used to prove Theorem 2: here “upper bounds” are distributions Mn with rational values
and finite support that are greater than m(x|n) but still are semimeasures. (Technical correction: first we have to
assume that m(x|n) = 0 if x is large, and then we have to weaken the restriction ∑Mn(x) 6 1 replacing 1 by, say,
2; this is needed since the values m(x|n) may be irrational).

Theorem 5 can be also proved in this way (upper bounds should be semimeasures on tree with rational values
and finite support).

Returning to the topic of Section 3, we can use the low basis theorem to improve Theorem 6:

Theorem 10 Let ε > 0 be a rational number and let Un be a sequence sets that are effectively open (uniformly in
n). Assume that Un has measure at most ε for every n. Assume also that Ui has “effectively bounded granularity”,
i.e., all strings x that define the intervals in Un have length at most c(n) where c is a total computable function.
Then for every ε ′ > ε there exists a 0′-effectively open set V of measure at most ε ′ that contains liminfn→∞ Un and
this construction is uniform.

Proof. We use the low basis theorem to reduce the general case to the case where the Un form a computable
family of finitely generated open sets.

Indeed, define an “upper bound” as a sequence W of sets Wn where Wn is a set of strings of length at most
c(n) such that Un is covered by the intervals generated by elements of Wn. Again W can be encoded as an infinite
sequence of zeros and ones, and the property “to be an upper bound” is effectively closed. Applying the low
basis theorem, we choose a low W and add it is an oracle; evidently, Wn is a W -computable family of finitely
generated open sets. By Theorem 6 (relativized to oracle W ) for every ε ′ > ε there exists a W ′-effectively open
set V covering liminfn Wn, hence covering liminfn Un. And since W ′ is Turing-equivalent to 0′, we are done. �

7 Corollary on 2-randomness
Theorem 10 can be used to prove 2-randomness criterion from [4, 6]. In fact, this gives exactly the proof from [6];
the only thing we did is structuring the proof in two parts (formulating Theorem 10 explicitly and putting it in the
context of other results on limits of complexities). For the sake of completeness, let us reproduce this proof.

Theorem 11 ([4, 6]) A sequence ω is 0′ Martin-Löf random if and only if

C(ω0ω1 . . .ωn−1)> n− c

for some c and for infinitely many n.

Proof. Let us first understand the relation between this theorem and Theorem 8. If

C(ω0ω1 . . .ωn−1)> n− c

for infinitely many n and given c, then d̄(x)6 c for every prefix x of ω (indeed, one can find the required continu-
ation of x among prefixes of ω). As we know, this guarantees that ω is 0′ Martin-Löf random.

It remains to prove that if for all c we have

C(ω0ω1 . . .ωn−1) < n− c

for all sufficiently large n, then ω is not 0′-random. Using the same notation as in the proof of Theorem 8, we can
say that ω has a prefix in Dn and therefore belongs to Un for all sufficiently large n. We can apply then Theorem 10
since Un is defined using strings of length n (so c(n) = n) and cover U∞ (and therefore ω) by a 0′-effectively open
set of small measure. Since this can be uniformly done for all c, the sequence ω is not 0′-random. �

8 The general case: Σ0
3 sets and liminf of open sets

As we have said before, it would be nice to prove the following statement: if Un are (uniformly) effectively open
sets in Cantor space, all Un have measure less than ε , and ε ′ > ε , then there exists a 0′-effectively open set of
measure less than ε ′ that covers liminfUn.

We do not know whether this is true or not. However, some partial negative result could be obtained. In this
section, we prove that there exists a liminf of uniformly effectively open sets Un that has small measure but cannot
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be covered by a 0′-effectively open set of small measure. (The difference is that only this limit set has small
measure while the sets Un itself can have any measure.)

The first step towards this result is to prove that every Σ0
3 subset of {0,1}∞ can be written as the liminf

of a sequence of uniformly effectively open sets. The term Σ0
3 refers to the standard effective Borel hierarchy:

effectively open sets are the Σ0
1 sets, effectively closed sets (i.e., the complements of effectively open sets) are Π0

1
sets etc.: by induction, a Σ0

n set is an effective countable union of Π0
n−1 sets and a Π0

n set is an effective (countable)
intersection of Σ0

n−1 sets. It is easy to see from the definition that a liminf of a sequence of uniformly effectively
open sets is a Σ0

3 set. Simpson [9] noted that the converse is also true:

Theorem 12 (Simpson) For every Σ0
3 set S⊂ {0,1}∞ there exists a sequence of uniformly effectively open sets Vn

such that S = liminfn→+∞ Vn.

Proof. It is sufficient to construct a procedure which, given ω ∈ {0,1}∞ as an oracle, enumerates a set Xω ⊂N
such that ω ∈ S⇔ Xω is co-finite. Then we let Vn = {ω | n ∈ Xω}.

Such a procedure is in fact provided by a proof of Σ0
3-completeness of the cofiniteness property for enumerable

sets (see, e.g., Rogers’ textbook [8], Corollary XIV in Section 14.8). We give a sketch of this proof here.
As S is Σ0

3, there exists a collection Un
k of uniformly effectively open sets such that

S =
⋃
n

⋂
k

Un
k

For a given ω , let
Zω = {(n,k) | ω ∈Un

k }

Then ω is in S if and only if

there exists an n such that (n,k) ∈ Zω for all k (∗)

We have to reduce this characterization to a characterization via cofiniteness of some ω-enumerable set Xω ,
i.e., we have to transform (effectively and uniformly) the enumeration of Zω into the enumeration of an Xω in
such a way that

ω ∈ S ⇔ ∃n∀k [(n,k) ∈ Zω ] ⇔ Xω is cofinite

To do so, we use a so-called “movable markers” construction. We first consider a countable series of counters:
at each stage, the nth counter contains the maximal k such that all k pairs (n,0), . . . ,(n,k−1) have already appeared
in Zω . The property (∗) now means that some counter increases indefinitely.

We also use “markers” that will locate the missing elements in Xω . Markers are numbered 0,1,2 . . .. Initially
the ith marker is located under the number i; then markers can be moved to the right, but the ith marker is always
on the left of (i + 1)th one (so all markers mark different numbers). When the nth counter increases, the number
that was marked by the nth marker is added to Xω , and all the markers n,n + 1,n + 2, . . . are moved to the right
(the ith marker moves to the previous place of the (i + 1)th one). The markers 0,1, . . . ,n− 1 do not move. Note
the invariant relation: the currently enumerated part of Xω is the set of all non-marked numbers.

If the nth counter increases indefinitely, then the nth marker is moved infinitely many times, so Xω is cofinite
(its complement consists of the final positions of the markers 0,1, . . .n−1). Conversely, if every counter increases
only finitely many times, then each marker eventually reaches a final position, and these positions form an infinite
complement of Xω . �

Theorem 12 implies the following result, due to Kjos-Hanssen [1]:

Theorem 13 (Kjos-Hanssen) There exists a sequence Un of uniformly effectively open sets such that:
• µ(liminfn Un) < 1/2
• liminfn Un cannot be covered by any 0′-effectively open set of measure less than 1.

Proof. This can be obtained by relativizing standard results about Martin-Löf random sequences. The set
of non-random sequences can be covered by an effectively open set of measure less that 1/2 (by definition).
Therefore, the set of 0′′-nonrandom sequences can be covered by an 0′′-effectively open set, i.e., by Σ0

3-set (as the
standard results about the arithmetic hierarchy say, see, e.g., Rogers [8]).

On the other hand, for every effectively open set that has measure less than 1 there exists a 0′-computable
sequence outside this set (e.g., the leftmost path of the binary tree representing its complement). And this can be
relativized: for every 0′-effectively open set of measure less than 1 there is an 0′′-computable sequence outside it.
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Now, combining these two remarks and Theorem 12, we get the desired result. The Σ0
3 set mentioned above

can be represented as liminf of effectively open sets. If this set could be covered by an 0′-effectively open set of
measure less than 1, we would be able to find a 0′′-computable sequence outside it; this sequence is not 0′′-random
but is outside the set that has to cover all nonrandom (relative to 0′′) sequences. �

Another related question: even if the most general statement mentioned at the beginning of the section is not
true, may be it is enough to require that Un are clopen sets (thus removing the hypothesis of “effectively bounded
granularity” from Theorem 10)?

9 Fatou’s lemma
It would be nice to find some general result that could unite several cases that we have treated separately. Indeed,
these results may be considered as constructive version of classical Fatou’s lemma.

This lemma guarantees that if
∫

fn(x)dµ(x)6 ε for µ-measurable functions f0, f1, f2, . . ., then∫
liminf
n→+∞

fn(x)dµ(x)6 ε.

The constructive version may require that fi are lower semicomputable functions (probably with some additional
conditions), and the statement could say that for every ε ′ > ε there exists a lower 0′-semicomputable function ϕ

such that liminf fn(x)6 ϕ(x) for every x and
∫

ϕ(x)dµ(x)6 ε ′.
Special case of this lemma appears when fi are indicator functions of some effectively open sets.
However, as we have seen in Section 8, some additional requirements maqy be needed and we don’t know how

to formulate them in a natural and general form. In Theorem 10 instead of computably bounded granularity we
may require that for each Ui we can provide a finite list of “simple” sets that have measure at most ε and guarantee
that Ui is contained in one of them; a similar thing can be done for functions (a list of upper bounds having small
integrals). The source of difficulties here is the low basis theorem: it uses the compactness of Cantor space, so
when choosing upper bound for the Un or fn we need to have in advance a finite list of possibilities.

Additional complications appear when the measure of the space where fn are defined is infinite (and this
is needed for the results of Section 1 and 2). Then we should artificially cut fn in such a way that liminf is
not changed; this is possible in the special cases we need, but it is not clear how one can combine all these
considerations into one (preferably not very boring) theorem.

Another open question: classical Fatou lemma usually is formulated in a stronger form:∫
liminf
n→+∞

fn(x)dµ(x)6 liminf
n→+∞

∫
fn(x)dµ(x)

there the right hand side has also liminf. This motivates the question: what happens if we weaken the condition
and require only that

∫
fn(x)dµ(x) 6 ε for infinitely many ε? (For the classical version this is not important,

since we can delete all the terms of the sequence that are not bounded by ε; this could only increase liminf in the
conclusion.)
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