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Abstract

The very first Kolmogorov’s paper on algorithmic infor-
mation theory [1] was entitled “Three approaches to the
definition of the quantity of information”. These three ap-
proaches were called combinatorial, probabilistic and al-
gorithmic. Trying to establish formal connections between
combinatorial and algorithmic approaches, we prove that
every linear inequality including Kolmogorov complexities
could be translated into an equivalent combinatorial state-
ment.

Entropy (complexity) proofs of combinatorial inequali-
ties given in [5] and [2] can be considered as a special
cases (and a natural starting points) for this translation.

1. Introduction and examples

Kolmogorov complexity K(x) of a binary string x is
defined as the length of shortest program that produces x.
Complexity depends on the programming system, and we
assume that programming system is optimal (complexity is
minimal up to O(1) additive term). Conditional complex-
ity K(xjy) is defined as the length of shortest program that
produces x given input y.

This approach was called “algorithmic” in [1]. Combina-
torial approach was explained in the same paper as follows:

Consider a variable xwhose range is a finite setX
of cardinality N . One can say that the “entropy”
of variable x is equal to H(x) = log2N . When a
specific value x = a is fixed, we “eliminate” this
entropy by providing I = log2N bits of “infor-
mation”. For k independent variables x1; : : : ; xk
whose range have cardinalities N1; : : : ; Nk we
have H(x1; x2; : : : ; xk) = H(x1) + H(x2) +
: : :+H(xk).

And later:

Let x and y be variables (with ranges X and Y )
that are dependent in the following sense: not all

pairs x; y from X � Y are allowed as values. Let
U be the set of all allowed pairs. For any a 2 X
we consider the set Ya of all y such that (a; y) 2
U . Now the conditional entropy can be naturally
defined as follows: H(yja) = log2N(Ya) where
N(Ya) stands for the cardinality of Ya.

There are some evident connections between combinato-
rial and algorithmic approaches. First, the set of all strings
having complexity less than n contains at most 2n elements
(since different strings correspond to different programs and
the number of programs does not exceed 1+2+: : :+2n�1).
On the other hand, as Kolmogorov says, if a finite set M
with large cardinality N can be defined by a program of
a negligible length (compared to log2N), then almost all
elements of M have complexity close to log2N [1].

Therefore the statement K(x) < n can be informally
translated into combinatorial language as x belongs to a
naturally defined set of cardinality about 2n.

In this section we give several examples showing a sim-
ilarity between combinatorial and algorithmic approaches.
In the next section we formulate three theorems that provide
combinatorial translations for linear inequalities involving
Kolmogorov complexities. All logarithms are binary: logu
stands for log2 u.

Our first example is the inequality

K(x; y) � K(x) +K(y) +O(log(K(x) +K(y))) (1)

Here x and y are binary strings; K(x; y) denotes the com-
plexity of pair (x; y) defined as complexity of the string
[x; y] for a computable encoding x; y 7! [x; y] (different
encodings give different complexities, but the difference is
O(1)).

The combinatorial counterpart of this inequality is the
following statement: LetA be a subset of the productX�Y
of two finite sets X and Y . Then

#A � #�X(A) �#�Y (A) (2)

where # stands for cardinality, �X and �Y are projections
(e.g., �X(A) = fx 2 A j 9y hx; yi 2 Ag).
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The similarity is straightforward: take logarithms and re-
call that “combinatorial entropy” is the logarithm of car-
dinality of range. If a pair of variables x; y ranges over
A � X � Y , then x ranges over �X (A) and y ranges over
�Y (A).

Now consider a stronger inequality

K(x; y) �

� K(x) +K(yjx) +O(log(K(x) +K(y))) (3)

(Let us note that all inequalities for complexities are consid-
ered up to O(logm)-term where m is the sum of complex-
ities of all strings involved; we omit O(logm)-terms (and
O(1)-terms) in the sequel.)

The inequality (3) is stronger than (1) since K(yjx) �
K(y).

Recalling Kolmogorov’s explanation of the combinato-
rial meaning of conditional entropy, we come to the follow-
ing inequality:

#A � #�X(A) � [max
x2X

#Ax]; (4)

where Ax stands for the set fy j hx; yi 2 Ag. Note that the
inequality (4) is stronger than (2) since #Ax � #�Y (A)
for any x 2 A.

The next example involves three variables and is consid-
ered in detail in [2]. The inequality

2K(x; y; z) � K(x; y) +K(x; z) +K(y; z) (5)

is true (up to logarithmic terms) for any three strings x; y; z.
Its combinatorial counterpart says that

(#A)2 � #�XY (A) �#�XZ(A) �#�Y Z(A) (6)

for any subsetA of the Cartesian productX�Y �Z of three
finite sets X , Y and Z. (Here �XY stands for the projection
of X � Y � Z onto X � Y etc.)

This inequality also can be strengthened by replacing un-
conditional complexity by conditional one:

2K(x; y; z) � K(x; y) +K(x; z) +K(y; zjx) (7)

The combinatorial counterpart is

(#A)2 � #�XY (A) �#�XZ(A) � [max
x2X

#Ax] (8)

where Ax = fhy; zi j hx; y; zi 2 Ag.
All four examples given above follow the same pattern

and are covered by theorem 1 below; it says that combi-
natorial statement is true if and only if the corresponding
inequality holds.

More subtle example is provided by an inequality

K(x) +K(yjx) � K(x; y) (9)

where, as usual, logarithmic terms are omitted. (This in-
equality is a reversed form of (3), so in fact inequality (3)
is an equality.) What is the corresponding combinatorial
statement? One could try

#�X (A) � [max
x2X

#Ax] � #A

but this statement is false for evident reasons (consider A
that has large Ax for some x and small Ax for many other
x’s). However, one can find a true statement which looks
parallel to (9). Here it is:

LetX and Y be two finite sets and letA be a subset
of X � Y . Let u and v be two integers such that
uv � #A. Then A can be partitioned into A =
U [ V with #�X (U) � u and max

x2X
#Vx � v.

(10)

To prove (10) consider the set T of all x 2 X such that
#Ax > v. This set contains at most u elements (otherwise
#A > uv). Now let U be the set of all hx; yi 2 A such
that x 2 T and let V be the remaining part of A. Then
�X(U) = T and #�X(U) � u; on the other hand, #Vx is
zero for x 2 T and does not exceed v for x =2 T , therefore,
max
x2X

#Vx � v.

In fact, the statement (10) can be used as an intermediate
step in the proof of (9).

Our last example is the so-called “basic inequality” from
[4], i.e., the inequality

K(x) +K(x; y; z) � K(x; y) +K(x; z) (11)

This inequality follows from the inequality K(y; zjx) �
K(yjx) +K(zjx) (which is a “conditional version” of (1))
using the equalities K(x; y) = K(yjx)+K(x), K(x; z) =
K(zjx) + K(x) and K(x; y; z) = K(y; zjx) + K(x); all
three equalities mentioned follow from (3) and (9).

Inequality (11) corresponds to the following combinato-
rial statement:

Let X , Y and Z be three finite sets and let A be a
subset of X � Y � Z. Let l and v be two integers
such that lv � #�XY (A) �#�XZ(A). Then A can
be partitioned into A = U [ V with #�X (U) � l
and #V � v.

(12)

This statement can be proved as follows. For each x 2 X
consider the set

Ax = fhy; zi j hx; y; zi 2 Ag

The set X can be linearly ordered in such a way that #Ax

decreases as x increases. Consider l first elements of X
in this ordering. Corresponding triples form the set U ; the
remaining part of A goes to V . (It is easy to see that this
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choice is optimal; we want to make #V smaller, so we in-
clude large Ax into U .) The construction guarantees that
#�X(U) � l. It remains to prove that #V � v.

Let S1 and S2 be the cardinalities of �XY (A) and
�XZ(A). Let us prove first that all Ax outside U have
cardinalities at most S1S2=l2. Let p(x) and q(x) be the
cardinalities of projections of Ax onto Y and Z. ThenP

x p(x) = S1 and
P

x q(x) = S2. Therefore, the average
value of p(x) for l first values of x (corresponding to the set
U ) does not exceed S1=l; the average value of q(x) for l first
values of x does not exceed S2=l. Using Cauchy inequal-
ity, we conclude that the geometric mean of l first values of
p(x) [of q(x)] does not exceed S1=l [resp. S2=l]. There-
fore, the geometric mean of the product p(x)q(x) does not
exceed S1S2=l

2, and the minimal value of p(x)q(x) does
not exceed S1S2=l2. Since #Ax � p(x)q(x), the minimal
value of #Ax in U (and all the values outside U ) does not
exceed S1S2=l2.

Now we know that #Vx � S1S2=l
2 for all x (here Vx =

? for l first values of x and Vx = Ax for remaining x). It
remains to apply the inequality (8) to get the desired result:

#V �

r
S1 � S2 �

S1S2
l2

=
S1S2
l

� v:

The statement (12) is proved.

2. Linear inequalities

We hope that the examples above make clear the corre-
spondence between complexity inequalities and combina-
torial statements. However, let us give the exact definitions
for the general case.

We consider linear inequalities involving strings
x1; : : : ; xs. (The number s of strings is a constant.) For any
set I � f1; : : : ; sg containing elements i1; : : : ; im we de-
note by xI the tuple hxi1 ; : : : ; ximi. Its complexity (defined
in a natural way using encodings) is denoted by K(xI). For
example, the basic inequality (11) can be written in this no-
tation as

K(xf1g) +K(xf1;2;3g) � K(xf1;2g) +K(xf1;3g)

The general form of the linear inequality involving com-
plexities of strings x1; : : : ; xs and their combinations is

X
I

�IK(xI) � 0:

The general form of an inequality involving conditional
complexities is

X
I\J=?

�I;JK(xI jxJ ) � 0: (13)

We assume that I\J = ? sinceK(xI jxJ ) = K(xInJ jxJ ).
Now we need to introduce the notation for combinato-

rial statements. Let X1; : : : ; Xs be sets. For each I �
f1; : : : ; sg we consider a projection function �I that maps
X1� : : :�Xs onto

Q
i2I Xi. For any A � X1 � � � � �Xs

by �I(A) we denote the image of A under this projection;
nI(A) = #�I (A) is its cardinality. (According to Kol-
mogorov, lognI(A) can be considered as “combinatorial
entropy” of projection xI if x ranges over A.)

Conditional combinatorial entropy can be defined in a
similar way. Let I and J be disjoint subsets of the index
set f1; : : : ; sg. For any a 2 A consider a section of A go-
ing through a and having all J-coordinates fixed; consider
I-projection of this section. Cardinality of this projection
depends on a; let nIjJ(A) be the maximal cardinality. Re-
formulation: fix J-coordinates of a variable a 2 A and con-
sider the set of all possible values of I-coordinates. (This
set depends on the values of J-coordinates.) Maximal car-
dinality of this set is denoted by nIjJ(A).

The connection between combinatorial entropy and Kol-
mogorov complexity can be informally described as fol-
lows. Let A be a set whose elements are tuples of strings
hx1; : : : ; xsi. Assume that Kolmogorov complexity of A
is small. Then the maximal value of K(xI jxJ ) over all
hx1; : : : ; xsi 2 A is close to lognIjJ(A). Indeed, to spec-
ify xI when xJ is known, we need logN bits, where N
is the number of possible values of xI when xJ is known.
This simple observation (refined in an appropriate way) is
the main point of the proofs given below.

Our first theorem considers the case when only one co-
efficient �I;J is negative. In other words, we consider in-
equality of type

K(xI0 jxJ0) �
X
I;J

�I;JK(xI jxJ ) (14)

where summation ranges over pairs of disjoint sets different
from (I0; J0) and all �I;J are non-negative.

Theorem 1 The inequality (14) is valid for all binary
strings x1; : : : ; xs (up to O(log(K(x1) + : : : + K(xs)))
term) if and only if

nI0jJ0(A) �
Y
I;J

�
nIjJ(A)

��I;J (15)

for any subsetA � X1�: : :�Xs (X1; : : : ; Xs are arbitrary
finite sets).

This theorem can be applied to the examples given
above: it says that (1) is equivalent to (2), that (3) is equiva-
lent to (4), that (5) is equivalent to (6), and that (7) is equiv-
alent to (8). A special case of this theorem (inequalities (5)
and (6)) was considered in [2]. Other special cases of this
theorem and theorem 2 below are considered in [5]; in this
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paper Shannon entropy is used instead of Kolmogorov com-
plexity and all Xi have two elements (this restriction is not
essential).

Proof. Let us prove (15) ) (14) first. Let x1; : : : ; xs be
arbitrary strings and kIjJ = K(xI jxJ ). Consider the set A
of all tuples y = hy1; : : : ; ysi such that K(yI jyJ) � kIjJ
for all (I; J) 6= (I0; J0). We want to apply (15) to A.
It is easy to see that lognIjJ(A) � kIjJ + O(1). In-
deed, if yJ is fixed, only 2 � 2kIjJ values of yI are possi-
ble, since these values are obtained from yJ by programs
of length at most kIjJ . Applying (15) to A, we conclude
that lognI0jJ0(A) �

P
�I;JkIjJ + O(1). Note also that

the set A can be enumerated effectively provided all kIjJ
are given (we need O(log(K(x1) + : : : + K(xs))) bits to
specify all kIjJ ). Now we see that I0-coordinates of any el-
ement y of A are determined by J0-coordinates of y and its
ordinal number in the enumeration of all A-elements hav-
ing given J0-coordinates. This number has lognI0jJ0 bits,
so we get (14).

Formally speaking, there is an error in this argument: we
cannot apply (15) to A directly, since A can be infinite.
However, we can apply (15) to all finite subsets of A: if
nI0jJ0(A

0) � c for all finite A0 � A, then nI0jJ0(A) � c.
Now let us prove (14) ) (15). This proof is given in [2]

for the special case of inequalities (5) and (6). It uses some
trick: to get rid of logarithmic terms, we consider a se-
quence of elements of A instead of one element.

We may assume that X1; : : : ; Xs are sets of binary
strings. LetM be a natural number. Let y = y1; : : : ; yM be
a sequence of arbitrary elements ofA. Each yi is a sequence
of strings yi1; : : : ; y

i
s, so y can be considered as a matrix

with M rows and s columns. For any set I � f1; : : : ; sg
we denote the sequence y1I ; : : : ; y

M
I by yI . (To get yI from

y we consider only columns of the matrix whose numbers
belong to I .)

Now we apply the inequality (14) to the columns of
the matrix. For any disjoint sets I; J � f1; : : : ; sg the
complexity K(yI jyJ) does not exceed M lognIjJ(A) +
O(logM) where the constant in O-notation depends on A
but not on M . Indeed, to specify yI when yJ is known
we need (for each row i) to use lognIjJ bits for the ordinal
number of yiI in the set of all possibilities (for given yiJ ).

Therefore, for any y1; : : : ; yM 2 A we have

K(yI0 jyJ0) �M
X

�I;J lognIjJ(A) +O(logM):

Now we want to get an upper bound for nI0jJ0(A). Fix
some value of J0-coordinates. We want to get an up-
per bound for the number N of possible values of I0-
coordinates compatible with fixed J0-coordinates. Con-
sider an arbitrary matrix y where all rows have given J0-
coordinates. Since J0-coordinates are fixed, K(yJ0) =
O(logM) and K(yI0) � M

P
�I;J lognIjJ(A) +

O(logM). On the other hand, there are still NM possi-
ble values of yI0 , and all of them have bounded complexity,
therefore

log(NM ) =M logN �

�M
X

�I;J lognIjJ(A) +O(logM):

Since logM=M ! 0 as M ! 1, we get the required
upper bound for N .

Theorem 1 is proved.
Let us consider a special case of (14) when no condi-

tional complexities are involved:

K(x1; : : : ; xs) �
X

�IK(xI) (16)

Here �I are non-negative reals (for all I ( f1; : : : ; sg).

Theorem 2 The inequality (16) is true for all x1; : : : ; xs
(up to a logarithmic term) if and only if for any j = 1; : : : ; s
the sum of coefficients �I for all I containing j is at least 1.

Proof. Let xi be empty strings for all i 6= j. Then the
inequality (16) can be rewritten as K(xj) �

P
�IK(xj)

where the sum is taken over all I containing j. Therefore,
if (16) is true for all strings, the sum of coefficients �I is at
least 1.

On the other hands, if all these sums are at least 1, we
can prove (16) as follows. Using (3) and (9), we rewrite
K(x1; : : : ; xs) as

K(x1) +K(x2jx1) +K(x3jx1; x2) + : : :

: : :+K(xsjx1; : : : ; xs�1)

and rewrite complexities in the right-hand side in the same
way (using the same order of indices). For example, the
term K(x1; x3) in the right-hand side becomes K(x1) +
K(x3jx1). We then add omitted conditions in the right-
hand side (e.g., replace K(x3jx1) by K(x3jx1; x2)) and
get a stronger inequality; this stronger inequality is valid
according to our assumption (sum of coefficients for each
K(xijx1; : : : ; xi�1) is at least 1).

Theorem 2 is proved.
This argument shows also that any valid inequality of

type (16) is a positive linear combination of basic inequali-
ties in the sense of [4].

Now we return to the general case and consider inequal-
ities of type

P
�I;JK(xI jxJ ) � 0 where several coeffi-

cients may be negative. It is convenient to separate positive
and negative coefficients and consider inequalities of type

X
(I;J)2A

�I;JK(xI jxJ ) �
X

(I;J)2B

�I;JK(xI jxJ ) (17)

where all �I;J and �I;J are positive and A;B are disjoint
sets of pairs of disjoint subsets of f1; : : : ; sg.
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The following theorem gives a combinatorial statement
that is equivalent to (17). Unfortunately, this condition is
more complicated than one could expect looking at the re-
lations between (9) and (10) or between (11) and (12). It
includes a polynomial factor that corresponds to additive
logarithmic term in the inequality about complexities.

Notation: Bn is a set of all binary strings of length n.

Theorem 3 The inequality (17) is valid for given coeffi-
cients �I;J and �I;J and for any strings x1; : : : ; xs (up to a
logarithmic term) if and only if the following combinatorial
statement is true:

there exists a constant c such that for any n, for
any set A � (B n )s and for any integers aI;J such
that

Y
(I;J)2B

[nIjJ(A)]
�I;J �

Y
(I;J)2A

a
�I;J
I;J

the set A can be covered by sets UI;J (for (I; J) 2
A) such that

nIjJ(UI;J) � aI;J � n
c

(18)

Before proving this theorem, let us look at the combina-
torial translation for the basic inequality (11): there exists a
constant c such that for all n, for any set A � X � Y � Z
(where X = Y = Z = Bn ) and for any l and v such that
#�XY (A)#�XZ(A) � lv there exist U and V such that
A � U [ V , #�X (U) � lnc and #V � vnc. We see that
the only difference between this statement and (12) is the
factor nc. (It seems quite possible that theorem 3 remains
true without this factor. However, this factor is needed in
our proof.)

Proof of theorem 3. Assume that the inequality (17)
is valid up to a logarithmic term O(log(K(x1) + : : : +
K(xs))). We want to prove (18). For a given n and given
A there exists some constant c(n;A) that makes the state-
ment (18) true (for all values of aI;J ). This is evident; what
we need to prove is that the same constant works for all n
and all A. For a given n consider the “worst-case” set An

and values of aI;J that require maximal constant. The set
An can be effectively found (try all possibilities; it is a very
long, but finite, process). Therefore, complexity of An is
O(log n). For any x 2 An and for any disjoint I; J �
f1; : : : ; sg we have K(xI jxJ ) � lognIjJ(An) + O(logn)
(to specify xI when xJ is fixed we need to specify An and
the ordinal number of xI ). Therefore, if numbers aI;J sat-
isfy the inequality

Y
(I;J)2B

[nIjJ(An)]
�I;J �

Y
(I;J)2A

a
�I;J
I;J

then

X
(I;J)2B

�I;JK(xI jxJ) �

�
X

(I;J)2B

�I;J lognIjJ(A) +O(logn) �

�
X

(I;J)2A

�I;J log aI;J +O(logn)

Combining this inequality with (17), we conclude that

X
(I;J)2A

�I;JK(xI jxJ ) �
X

(I;J)2A

�I;J log aI;J + C logn

for any x 2 An and for some fixed C (not depending on n).
Therefore, if x 2 An, then

�I;JK(xI jxJ ) � �I;J log aI;J +
C

#A
logn

for at least one (I; J) 2 A. In other terms, sets

UI;J = fx j K(xI jxJ) � log aI;J +
C

�I;J#A
logng

cover A. And lognIjJ(UI;J) � log aI;J + c logn for
some constant c that does not depend on n. Since An is
the “worst-case” set by our assumption, we conclude that
c(n;An) is bounded by a constant not depending on n, and
(18) is true.

To prove the second part of the theorem, assume that the
statement (18) is true. We need to prove (17) for arbitrary
tuple x = hx1; : : : ; xsi. To do that, we “generalize” x and
include it in the set A of tuples of strings that have “similar
complexity behavior”. Then we apply the statement (18) to
A.

Formally A is defined as the set of all tuples y =
hy1; : : : ; ysi such that K(yI jyJ) � K(xI jxJ ) for any
disjoint sets I; J � f1; : : : ; sg. (This set was already
used in the proof of theorem 1.) The set A is not
empty since it contains x. Moreover, log#A is close to
K(x1; : : : ; xs). Indeed, log#A cannot be significantly
larger than K(x1; : : : ; xs) because all y 2 A have com-
plexity not exceeding K(x1; : : : ; xs). On the other hand,
A can be enumerated by a program that has logarithmic
(in K(x1) + � � � + K(xs)) length (we need to specify all
complexity bounds; number of these bounds is exponential
in s, but s is considered as a constant). Therefore, com-
plexity of any y 2 A (including x) does not exceed signifi-
cantly log#A, so log#A cannot be significantly less than
K(x1; : : : ; xs).

The same argument shows that for any (I; J) the num-
ber lognIjJ(AI;J) differs from K(xI jxJ ) at most by
O(log(K(x1) + : : :+K(xn))).
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To apply the statement (18) toAwe need to choose some
value of n. Let n be equal to K(x1) + : : : +K(xn) + 1.
Using this value, we cannot apply (18) directly: an element
y = hy1; : : : ; ysi 2 A can contain very long yi. However,
the purely combinatorial nature of (18) allows us to rename
all yi. There is at most 2n of them (since all yi’s have com-
plexity less than n), and they can be replaced by strings of
length n.

Now suppose that (in contradiction with (17))
X

(I;J)2B

�I;JK(xI jxJ ) <

<
X

(I;J)2A

�I;JK(xI jxJ )� C logn;

for some constant C (to be fixed later).
Choose numbers a0I;J such that

log a0I;J = K(xI jxJ )�
C logn

�I;J#A

Note that a0I;J defined by this formula are not integers. Let
aI;J be da0I;Je. Then

log aI;J = K(xI jxJ )�
C logn

�I;J#A
+O(1):

We haveX
(I;J)2B

�I;JK(xI jxJ ) <
X

(I;J)2A

�I;J log aI;J ;

i.e., Y
(I;J)2B

K(xI jxJ)
�I;J �

Y
(I;J)2A

[aI;J ]
�I;J :

Then by (18) the setA can be covered by sets UI;J such that

nIjJ(UI;J) � aI;J � n
c:

One may assume that UI;J have logarithmic complexity,
because some covering can be found by exhaustive search
when A is given and A has logarithmic complexity.

Let (I0; J0) be a pair such that x 2 UI0;J0 . Then for
some constant C1 we have

K(xI0 jxJ0) � lognI0jJ0(UI0;J0) + C1 logn �

� log(aI0;J0 � n
c) + C1 logn �

� K(xI0 jxJ0)�
C logn

�I0;J0#A
+c logn+C1 logn+O(1)

For C large enough we get a contradiction. Theorem 3 is
proved.

The underlying reason for the second part of the proof
can be explained as follows. A is uniform: most of its sec-
tions (in a given direction) have approximately the same
size. (The same is true for projections.) Therefore, if U
is some part of A that has small sections in some direction,
#U is small compared to #A and such U ’s cannot coverA.

3. Prefix complexity

All inequalities for Kolmogorov complexities were con-
sidered up to O(logn) term, where n is a sum of com-
plexities of strings involved. Therefore we could safely
ignore the difference between several existing versions of
complexity. We can use plain complexity defined by Kol-
mogorov in [1]), denoted by C(x) in [6] and KS(x) in [7],
or prefix complexity, denoted by K(x) in [6] and KP(x)
in [7].

In this section we are interested in equalities valid up
to O(1). Therefore we should be careful and specify
exactly the version of complexity we use. Most useful
here is prefix complexity KP(x). For example, the in-
equality KP(x; y) � KP(x) + KP(y) + O(1) is well
known (see [6], example 3.1.2, p. 194). The inequality
2KP (x; y; z) � KP (x; y) + KP (x; z) + KP (y; z) was
proved (using Cauchy–Schwartz inequality) in [2]. These
examples make the following conjecture plausible:

Conjecture. Any linear inequality involving uncondi-
tional complexities that is valid up to logarithmic term is
valid up to O(1) for prefix complexity.

A partial result in this direction:

Theorem 4 Basic inequality (11) is valid up to O(1)-term
for prefix complexity:

KP(x) +KP(x; y; z) � KP(x; y) +KP(x; z): (19)

Proof. This theorem can be easily derived from
L.A. Levin’s formula for prefix complexity of a pair:
KP(x; y) = KP(x) +KP(yjx;KP(x)) (for the proof see,
e.g., [6], theorem 3.9.1, p. 232). Indeed, this formula allows
us to rewrite (19) as

KP(y; zjx;KP(x)) �

� KP(yjx;KP(x)) +KP(zjx;KP(x));

and this inequality is a “relativized” version of the inequal-
ity KP(y; z) � KP(y) +KP(z).

We provide also a direct proof of (19) using a priori prob-
abilities. Recall that KP(x) = � logm(x), where m is
universal enumerable semimeasure (see [6], p. 247). There-
fore, we need to prove that

m(x; y; z)m(x) �m(x; y)m(x; z):

or

m(x; y; z) �
m(x; y)m(x; z)

m(x)
:

Since
P

y
m(x; y) � m(x) and

P
z
m(x; z) � m(x), we

conclude that

X
x;y;z

m(x; y)m(x; z)

m(x)
�
X
x

m(x) < 1:
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(In fact we know only that
P

y
m(x; y) = O(m(x)) and

KP(x) = � logm(x)+O(1), but for simplicity we assume
that

P
y
m(x; y) � m(x) and KP(x) = � logm(x) and

omit some constants in the proof.)
If the fractionm(x; y)m(x; z)=m(x) were enumerable

from below, the proof would be complete, sincem(x; y; z)
is maximal. However, we havem in the denominator, and
the fraction is not enumerable from below. We need to find
an enumerable upper bound for this fraction having finite
sum. For each n by mn(x; y) we denote the enumerable
function obtained fromm(x; y) by adding an additional re-
quirement

P
y
mn(x; y) � 2�n. (We eliminate values of

m that can violate this requirement.) Now consider the
function X

n�KP(x)

mn(x; y)mn(x; z)

2�n

This sum is an upped bound for

m(x; y)m(x; z)

m(x)

(let n = KP(x); then 2�n =m(x) andmn =m). It is an
enumerable upper bound we asked for, since

X
x;y;z

X
n�KP(x)

mn(x; y)mn(x; z)

2�n
�

�
X
x

X
n�KP(x)

P
y
mn(x; y)

P
z
mn(x; z)

2�n
�

�
X
x

X
n�KP(x)

2�n �
X
x

2m(x) � 2:

Theorem 4 is proved.
Corollary: all inequalities involving unconditional com-

plexities, having one term in the left-hand side and being
true up to logarithmic term, are true up to O(1) for prefix
complexity.

(Indeed, theorem 2 guarantees that such an inequality is
a positive linear combination of basic inequalities, so we
can apply theorem 4.)

This corollary can be proved directly using semimea-
sures and the following version of Jensen’s inequality: if
�1 + : : :+ �s = 1, �i � 0, then

Z
[f1(x)]

�1 : : : [fs(x)]
�s dx �

�

�Z
f1(x) dx

��1
: : :

�Z
fs(x) dx

��s
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