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Abstract

In this paper we construct a structufethat is a “finite version” of
the semi-lattice of Turing degrees. Its elements are wrifigchnically,
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sequences of strings) and < y means that{(z|y) = (conditional Kol-
mogorov complexity of: relative toy) is small.

We construct two elements iR that do not have greatest lower bound.
We give a series of examples that show how natural algeboaistaictions
give two elements that have lower bounh¢minimal element) but significant
mutual information. (A first example of that kind was constad by Gacs—
Kdrner [1] using a completely different technique.)

We define a notion of “complexity profile” of the pair of elentef R
and give (exact) upper and lower bounds for it in a particcéese.

Keywords: Kolmogorov complexity, common information, ciitional
complexity

1 Introduction

Let o and S be two infinite binary sequences. We say thas Turing reducible
to g if there exists a Turing machin&f that producesy on its output tape when
[ is provided on input tape. Turing reducibility is reflexivedatransitive, so we
get a pre-order on the set of all infinite binary sequencas (te-order is usually
denoted by< ). The equivalence classés ~ y) < (v <7 y) A (y <r z)) form
an upper semi-lattice whose elements are called TuringedsgiThis semi-lattice
is well studied in recursion theory (see, e.g., [7])

Now let us replace infinite sequencesand 5 by finite binary stringse and
y. Of course, for any: andy there exists a Turing machin¥ that produces:
from y. So to get a non-trivial relation we have to put some resbrnst on M.
It is natural to require thad/ is simple (its program is short comparedatand
y). Here the notion of Kolmogorov complexity comes into pIBy. definition, the
conditional Kolmogorov complexitys (z|y) is the length of the shortest program
that produceg: havingy as an input. Now we can define the relatior<,. y as
K (z|y) < ¢ (herex andy are binary strings; is a number).

If ¢ is a constant, this relation does not have good propertsffample, it
is not transitive). This relation also depends on a specifigiamming language
used in the definition of Kolmogorov complexity. To overcothese difficulties,
we use the standard trick and consider the asymptotic bathak/the complexity
for sequences of strings.

Letx = z1,z9,... be a sequence of binary strings. We calegular if length
of x; is polynomially bounded, i.e., ifr;| < ci* for somec, k and for alli. Let R
denote the set of all regular sequences. We say that regadaescer is simple
conditional to a regular sequengef

K (zlys) = O(logy)



and writex < y. The <-relation is a pre-order defined dd The relation(z <
y) A (y < x) is an equivalence relation. Equivalence classes form aaprt
ordered set which (for the same reasons as in the case ofgTdeigrees) is an
upper semi-lattice (any two elements have a least upperd)oun

We prove (Section 2) that this set is not a lower semi-lattitere are two
elements that do not have greatest lower bound. Note thaette Turing degrees
is not a lower semi-lattice either (see, e.g., [7]), but cwop goes in a completely
different way.

The semi-latticeR is useful for analyzing the notion of common information.
This notion was introduced by Gacs and Korner [1] in theterihof Shannon
information theory. They also described a similar notiothie algorithmic theory
but do not give a precise definition. We give such a definitiorierms of the
semi-latticeR (Section 3).

The main result of [1] is an example of two objects whose “cannmforma-
tion” is far less than their “mutual information”; Gacs aKérner provide such
an example in context of Shannon information theory and imerthat it could
be reformulated for algorithmic information theory. Thisaeple was analyzed
in [2] where an alternative proof for a special case of GE&srer example was
provided.

A completely different example of two strings whose commuafieimation is
much less than their mutual information was given in [4];details see [5].

In this paper we develop a third approach to construct suth phstrings. It
is based on the geometry of finite fields. Several examplekistype are given
in Section 4. Our examples (as well as Gacs—Korner's) ansteuctive in the fol-
lowing sense. In the recursion theory, we call a proof of atém of the form
Vn3a P(n,a) constructive if there exists an algorithm that givertomputes an
objecta,, such thatP(n, a,,). In our context this makes no sense, as in this case the
complexity ofa,, is bounded bylog n and we are interested in propertiB$n, a)
implying that complexity ofa is linear inn. We find reasonable the following
meaning of constructivity here: there is a probabilistigogithm that givem with
high probability outputs such an objecthat P(n, a). More specifically, the prob-
ability should tend to 1 as tends to infinity. All our examples except one from
Theorem 7(c) are constructive in this sense.

The amount of common information does not determine coralyi&ow much
the stringsz andy have in common. What reflects this better is the “complexity
profile of z andy”, defined as the set of tripleg:, v, w) such thatK(z) < u,
K(z|z) < v, andK (y|z) < w for some stringz. We use the method of [5] to find
exact upper and lower bounds for complexity profile (Sec@pn(Technically we
have to speak not about stringsandy but about sequences of strings, x4, . ..
andyg, y1, - . - such that complexity af; andy; is proportional tai; see Section 6
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for details.)

2 Theupper semi-lattice R

Let us recall the definition of conditional Kolmogorov coregity. LetU be a
computable (partial) function of two arguments; argumemtd values are binary
strings. (InformallyU is an interpreter of some programming language, the first ar-
gument is a program and the second one is program’s inputyslaefineky; (z|y)
asmin{|p|: U(p,y) = z}; here|p| stands for the length gi. There exists an
optimal U, that is, aU such thatKy < Ky + O(1) for any other computable
function V.. We fix some optimall’ and call Ky (z|y) the conditional complexity
of x wheny is known.

The unconditionalKolmogorov complexity can be defined &5(x|A) where
A is the empty string. It turns out (see, e.g., [3]) that canddl complexity can be
expressed in terms of unconditional complexity. Indeetdyddix some computable
bijectionp, ¢ — (p, q) between pairs of strings and strings. Then

K((p,q)) = K(p) + K(qlp) + O(log(|p| + |q]))-

A sequencer = z1,zo,... Of binary strings is calledegular if there exist
constants: andk such thatiz;| < ci* for all 4. The set of all regular sequences
is denoted byR. We define a pre-order oR saying thate = z,x, ... precedes
Yy = y1,Y2,... if there exists a constamtsuch thatk (z;|y;) < clogi for all 7.
(Let us agree thdbg = meandog,(x + 2) solog z is positive for allz > 0 and we
do not need to consider the case 1 separately.)

The O-term guarantees that the definition does not change if waaephe
optimal functionU used in the definition of Kolmogorov complexity by another
optimal function. Moreover, since we usglogi) (and notO(1)), the definition
remains the same if we replace conditional Kolmogorov cexipt defined as
above by prefix complexity (see [3] for the definition). Indethese complexities
differ only by O(logn) for strings of lengthn. Since elements oR are regular,
this difference is absorbed l8y(log i)-term.

Two elementse andy areequivalentif x < y andy < «. The equivalence
classes form a partially ordered set. We denote this s@.by

Proposition 1. The setR is an upper semi-lattice: any two elements have a least
upper bound.

Proof. By definition,z € R is a least upper bound af, y € R if

e zis an upper bound fat andy, i.e.,xz < z andy < z;
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e z < u for any other upper bound of = andy.

Letx = z1,2z9,... andy = y1,y9,... be any two elements adk. Consider
the sequence = z, z9, ... Wherez; = (z;,y;). (Recall thap, ¢ — (p, q) denotes
a computable bijection between pairs of strings and stijrigs easy to see that
is regular and is the least upper bound#ocandy. O

Theorem 2. The ordered seR is not a lower semi-lattice: there exist two elements
x andy that do not have a greatest lower bound.

Proof. To prove the theorem we have to construct two sequeneegly that have

no greatest lower bound. Assume somis fixed; let us explain how-th terms of

x andy are constructed. Consid2r binary strings of length. denoted by
02,069, ...,0%, b} b5, ... bt

»Vn »Vn

and one more string of lengthdenoted by
E=¢€1...€p

(e; are individual bits). We want all these strings to be random iadependent
in the following sense: its concatenation is a string of thrdg.? + n which is in-
compressible (its Kolmogorov complexity is equal to itsgmup toO(1) additive
term). Such strings do exist, see [3]. Now consider two gin

z = b3, .. 2b10) ... b)

and
y=b{'b5% ... b5

Stringsz andy aren-th terms of the sequencesandy.

Let us mention that the paie, y) contains the same information as the con-
catenation string of length? 4 n mentioned above, so the complexity of the pair
(z,y) is2n? +n + O(1). (Asz is randomp) = b} for all i.)

In the sequel we use the following terminology. Stringgfor e = 0,1 and
1 =1,...,n) are calledblocks We have2n blocks; each block has length All
the blocksb:’ that are included iry are calledselectedblocks; all other blocks
b; % are calledomitted blocks. Our construction starts with pairs of blocks
and a stringe that says which block is selected in each pair. The sting a
concatenation of alln blocks; the string, is a concatenation of selected blocks.

Now the proof goes as follows. Each selected block is simgigive to both
z andy since it is a substring of both andy and position information could be



encoded by)(logn) bits. (When we say that a stringis simplerelative to a string
v we mean thaf (u|v) = O(logn).)

Suppose that the greatest lower bound:@ndy exists. Let us denote it by
z. Then any selected block is simple relativeztdOn the other hand, any omitted
block could not be simple relative ta Indeed, assume that some omitted block
b is simple relative toz. Thenb is simple relative tqy sincez is simple relative
to y by assumption. Then to restogefrom y it is enough to specify the string
andn — 1 omitted blocks different from, i.e.,n? bits, and the complexity of pair
(z,y) is at most2n? + O(logn) (n? bits iny andn? bits to specifyz wheny in
known). This contradiction shows that no omitted block e relative taz.

Now let us show thay is simple relative tor. Indeed, to findy whenz is
known we need only to distinguish between omitted and sadebtocks in each
pair of blocks. We may assume thafs known since it is simple relative te.
Then we may enumerate all the objects that have small cortpletative to z
until we findn blocks (we have the list of all blocks since we kneyv Thesen
blocks will be (as shown above) exactly the selected bloakd,we are done. So
y is simple relative tac. But this is impossible, because in this case the {aiy)
will have complexity at mos2n? + O(logn) (instead of2n? + n).

In the argument above we were quite vague aldduiotation, so let us repeat
the same argument more formally. The construction dest@ibeve is performed
for eachn; to indicate the dependence erlet us writez(n) instead ofz, bY(n)
instead of?, etc. Assume that = 2(0), 2(1),... is a greatest lower bound af
andy. The first step in the proof is the following lemma.

Lemma l. There exists some constarguch that
K (b|z(n)) < clogn

for any n and for any blockb that was selected at-th step of the construction.
(There weren selected blocks at-th step; each of them has length)

Indeed, consider all the blocksthat were selected at-th step; letb(n) be
one of them for which the complexiti (b|z(n)) is maximal. The sequende=
b(1),b(2),... belongs toR. Itis easy to see thdt < x and thatb < y, because
b(n) is a substring of botl(n) andy(n). Thereforep < z, sincez is the greatest
lower bound ofe andy. By definition,

K (b(n)|2(n)) < clogn

for some constant, the same inequality is valid for all other selected blogksce
b(n) has maximal complexity (relative tgn)) among them. Lemma 1 is proved.



Lemma 2. There exists some constarnguch that
K(bly(n)) > n — clogn

for anyn and for any block that was omitted at-th step of the construction.

Proof. As we have said, the stringn) can be reconstructed from the string
y(n), the stringe(n), some omitted block, its number and the concatenation of all
other omitted blocks. Here all the information excepias bit sizen? +n + (n? —

n) + O(logn) = 2n? + O(logn), and this information includeg(n). Therefore,
the complexity of(z(n),y(n)) does not exceed (bly(n)) + 2n? + O(logn). On

the other hand, the complexity ¢f(n), y(n)) is 2n% + n + O(1). Comparing the
two inequalities, we see théf (b|y(n)) > n — O(logn). Lemma 2 is proved.

Lemma 3. There exists some constanguch that
K(b|z(n)) > n —clogn

for anyn and for any block that was omitted at-th step of the construction.

Indeed, recall thak (z(n)|y(n)) = O(logn) by our assumption; note also that
K(bly(n)) < K(blz(n)) + K(z(n)|y(n)) + O(logn). Hence,n — O(logn) <
K(bly(n)) < K(blz(n)) + K(2(n)ly(n)) + O(logn) = K(b|z(n)) + O(logn).
Lemma 3 is proved.

Lemma4.
K(e(n)|z(n)) = O(logn).

Proof. Lemma 1 implies that for big the valueK (b|z(n)) is less tham /2
for any selected block; Lemma 3 implies that for big: the value K (b|z(n))
is bigger thann /2 for any omitted blockb. Therefore, knowingc(n) and z(n)
we can reconstruct the list of selected blocks just enunmgralie stringss such
that K (s|z(n)) < n/2 until n blocks fromz(n) appear. Sincé(z(n)|z(n)) =
O(log n) by assumption, we need onfy(log ») additional bits to reconstrue{n)
from z(n). Lemma 4 is proved.

We conclude thak ((z(n),e(n))) is 2n? + O(logn) but it should be2n? +
n + O(1). The contradiction shows that andy do not have the greatest lower
bound. O

Let us mention some other properties of the semi-latRce
1. The operations “infimum” and “supremum” do not satisfy thgtributive
law even when they are defined. Indeed, consider sequeraedy wherez,, and



y, are random independent strings of length_et z,, = x,, ® y,, (bitwise addition
modulo2). Then

sup(inf(x,y), 2) # inf(sup(z, z), sup(y, z)),

sinceinf(x,y) = A (whereA is the least element of the semi-lattice), so the
left-hand side is equal te while the right-hand side is equal ¢ap(z, y).
Moreover,

inf(sup(x, y), z) # sup(inf(x, z), inf(y, 2)),

since left-hand side is equal oand right-hand side is equal fo.

2. For any two elementg andy in R there exists a sequeneesuch that
sup(y, z) = sup(y, ) andinf(y, z) = A. Indeed, giverr, y andK (z|y) we can
enumerate the set of all programsuch thap(y) = = and length op is equal to
K (z|y). Letz be the first program in this enumeration.

This z could be considered as a “difference” betwaeandy. Difference is
not defined uniquely; for instance,f, andy,, are random independent strings of
lengthn, bothz,, andz,, ® y, are differences af,, andy,,.

The semi-latticeR is only one of the possible refinements of the intuitive no-
tion “z is simple relative ta,”. Here is another possibility. Let us fix a function
logn < f(n) = o(n); assume thax andy are sequences of strings such that
|z,| = O(n), |lyn| = O(n). Definex <y y asK(z,|y,) = O(f(n)). One can
show that this definition gives a semi-lattice with similapjperties (no greatest
lower bound; however, the proof is more difficult and is oedit

3 Common and mutual infor mation

The semi-latticeR is a useful tool to analyze the amount of common information
shared by two strings.

Let x andy be two strings. Bymutualinformation inxz andy we mean the
valueI(z : y) = K(x) + K(y) — K({z,y)). (Sometimed (z : y) is defined as
K(y) — K(y|z), but these quantities differ only by (logn) for strings of length
at mostn, see [3].)

Theorem 3. Letx = z1,z9,... andy = y1, v, ... be elements aR.

@) If z = 21, 29,... is alower bound ofc andy then

K(zp) < I(zp : yn) + O(logn). (1)
(b) If z = 21, 29, ... is alower bound of andy and

K(zn) = I(an : yn) + O(logn) 2

8



thenz is the greatest lower bound afandy in R.

Proof. (a) Sincez < =,
K ({20, 20)) = K (0) + K (z02) + O(log n) = K () + O(log n).
So
K(zn) = K({zn, 2n)) + O(logn) = K(zn) + K(zn|zn) + O(logn). — (3)
Similarly
K(yn) = K((yn, 2n)) + O(logn) = K(z,) + K (yn|zn) + O(logn).  (4)
On the other hand,
K (@ yn)) < K (20) + K (@alz0) + K (yalza) + O(logn).  (5)

since we can reconstruct the péit,, v,,) from z,, and programs that transforep
into z,, andy,,. Combining the last three inequalitieS] + (4) — (5)], we get the
statement (a).

Let us prove the part (b) now. Assume tha a lower bound for: andy and
the inequality (1) turns into equality (2). Let be any other lower bound far and
y. Consider the sequene# defined as = (z,,2,,). Itis the least upper bound
of z andz’ (Proposition 1). Therefore” < z andz” < y. Applying (a) toz" we
see that

K(2) = K ((zn, ) < I(2n - yn) + O(logn)

By assumption(z, : y,) = K(z,) + O(logn), sOK((zp,2,,)) < K(z,) +

O(logn). On the other handK ((z,,z,)) = K(zn) + K(2}|zn) + O(logn),
thereforeK (z/,|z,) < O(logn) andz’ < zin R. O

Remark. If two sequences = z,z2,... andy = y1,y2, ... have the great-
est lower boundz = zj,29,..., one may callK(z,) “the amount of common
information in stringse,, andy,,”.

4 Examples where common information is less than mu-
tual information
Informally speaking, strings andy haveu-bit common informatiore if K(z) =

u, K(z|z) = 0, and K(z|y) =~ 0. We know (Theorem 3(a)) that the amount
of common information in two strings is not larger than thetuwali information
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of these strings. A natural related question is the follgvome: can common
information be far less than mutual information?

This question was positively answered by Gacs and Korher They found
out that there are pairs of stringsandy such that/(z : y) is big but nevertheless
any stringz that is simple relative to both andy (both K (z|z) and K (z|y) are
small) is simple (has smal(z)).

Their construction uses ideas from Shannon informationrtheAnother con-
struction was suggested in [4] (see [5] for details). Hergovesent a third way to
construct examples of that kind.

Consider a finite fieldr,, of cardinalityq = ¢, close to2™. (Any field of
size2"+O(M) will work, so we may use the field of cardinaligy or the fieldZ/qZ
whereg is a prime number betweéft and2”t!.) Consider three-dimensional vec-
tor space oveF,,. Any non-zero vectof f1, f2, f3) generates a line (by “line” we
mean a line going through i.e., one-dimensional subspace). Two lines generated
by (f1, f2, f3) and (g1, g2, gs) are called orthogonal ifig1 + fag2 + f3g3 = 0.
Now consider two random orthogonal linesandy (i.e. pair of two orthogonal
lines (z,y) which has the greatest possible complexity). We claim Iitat: y) is
significant but there is no stringwhich is simple relative to botlh andy unlessz
is simple.

More precisely, consider the set

O = {(=z,y) : z andy are orthogonal linds

This set containg® + o(¢*) elements (there arg’ 4 ¢ + 1 lines and each line is
orthogonal ta; + 1 lines). ThereforeQ contains a paifz, y) whose complexity is
log(¢®(1 + o(1))) = 3n + O(1). (We assume that elementsf are encoded by
binary strings of lengtlh + O(1), so we can speak about complexities.) Note that
K(z) < 2n + O(logn) since there are abo@t” lines; moreoverk (y|z) < n +
O(log n) sincey is one of2"+t°() lines orthogonal tod. Recalling the inequality
K((z,y)) < K(z)+ K(y|z)+O(logn), we conclude thak (z) = 2n+O(logn)
and K (y|z) = n + O(logn). For similar reasong((y) = 2n + O(logn) and
K (z|y) = n+ O(logn). ThereforeI(z : y) = n+ O(logn).

Remark. We would like to caution against free usage of geaca¢intuition in
our context. For instance, though we use the term “orthdgowe have no scalar
product in linear spaces over finite fields and a nonzero vesty be orthogonal
to itself.

Theorem 4. Let(x,,y,) be arandom pair of orthogonal lines in the three-dimen-
sional space over;,. For any sequence of stringg

K(zn) < 2K (zn|wp) + 2K (2|yn) + O(log n)
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assuming that,, has polynomia(in ») length.[The constant itD(log n)-notation
does not depend an]

This theorem implies that sequences= x1,zs,... andy = y1,ys,... have
A = A A, ... as their greatest lower bound. (Hekedenotes the empty string.)
Indeed, ifK (zp|z,) = O(logn) and K (z,|y,) = O(logn) for some sequence
z =21,2,...,thenK(z,) = O(logn) according to Theorem 4.

Proof. The proof of Theorem 4 is based on a simple combinatorialrebten.

Lemma 5. Consider a bipartite graph witlk verticesl, ...,k on the left and

verticesl, ..., [ on the right. Assume that for any two different nodes on the
left there are at most nodes on the right connected with baihw. Then the
following bound for the number of edgds| is valid:

o k< l/r=|E| <2l
o k> \/l/r = |E| < 2kVIr.

Indeed, for each elementon the left consider the séf, of its neighbors on
the right; letn, be the cardinality ofV,. The intersectionv, N N,, (for v # w)
contains at most element. Assume that < \/l/_r Consider the union of alv,;
it has at least

n1+n2+...+nk—Z|NiﬂNj|
1<)
elements. On the other hand, it has at miadements. The number of paifs j)
is less thak? < [/r, therefore

ny+ne+...+n—(/r)r <l=|E|l=n1+ns+... +np <2l

The first statement is proved. It implies that for= \/l/_r (we assume here
that the number/I/r is integer; the proof can be easily modified to handle the
general case) the average number of neighbors for verticdseoleft is at most
2v/Ir. We use this observation to prove the second part of the lemma

Letk > +/I/r. Consider,/l/r vertices on the left having maximum neighbor-
hoods and delete all other vertices on the left; this makesaterage number of
neighbors bigger. But we know that it does not exceedr. The same is true for
the initial graph, thereforgf| < k - 2v/Ir. Lemma 5 is proved.

This lemma will be applied to a bipartite graph whose vestig@th on the left
and on the right) are lines; edges connect pairs of orthddmes. It is easy to
see that we can let = 1 (if both x, y are orthogonal to both, v andx # y then
z = u).

11



Now we are ready to prove Theorem 4. As we knéiNz) = K (y) = 2n and
K ({z,y)) = 3n (from now on we omiD(log n)-terms for brevity). LetK (z|z) =
p1 and K (z]y) = p2. We want to get an upper bound for = K(z). First, let us
computeK (z|z) and K (y|z):

K(z|z) = K((z,2)) — K(2) = K(z) + K(z|]z) — K(2) = 2n+ p1 — m.

Similarly, K (y|z) = 2n+p2 —m. Consider the se? of all lines whose complexity
relative toz does not exceed (z|z); this set contains line and has cardinality
227+P1=m (yp to a polynomial im factor). Similarly we get a sep that contains
lines whose complexity relative to does not exceed (y|z); this set has cardi-
nality 22" +P2—™_ Consider a bipartite graph whose edges connect orthogjoaal
from P and(. This graph satisfies the lemma for= 1, so the number of edges
|E| does not exceed

92n-+p2—m if (2n + p; —m) < ZAL=m,
92n+p1—m \/m if (2n +py — m) > 2n+g2—m‘
On the other hand, the pajx, y) represents one of the edges of that graph: If
is known, we can enumerafe, ( and £, so the paifz,y) may be described by
its number inE. Hence3n = K((z,y)) < K(z) + log|E|. Therefore, the two
bounds for £| imply

3n<m+ (2n+ps —m) =n < po

(the first one) and

1
3n§m+(2n+p1—m)+§(2n+p2—m):>m§2p1+p2

(the second one). We have to prove that< 2p; + 2p, (recall that logarithmic
terms are omitted). In the second case it is evident; in teedase one should note
that K (z) < K(z|z) + K(z) < p1 +2n < p1 + 2p2 < 2p1 + 2ps. O

Remark. The same example may be reformulated in several. wRgplac-
ing line y by the orthogonal plang", we may say thatz,y) is a random pair
(line z, planey going throughz). We may then switch from projective plane to
affine plane and say thét, y) is a random paifpointz on the affine plane, line
y that goes through). Indeed, fix any affine plan® not going through zero.
Thenz may be identified with the common point 6fandz and planey with the
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common line ofy and P. (We lose lines that are parallel 18, but those lines are
not random.) The third way (used in [5]) to reformulate thareple is to say that
z = (a,b) andy = (c,ac + b) where(a, b, ¢) is a random triple of elements &f.
Indeed,z = (a,b) identifies the affine lind (u,v) | v = au + b} (again we lose
affine lines that are parallel to the line= 0, but all those lines are not random)
andy = (c,ac + b) is a point on that line.

Using Lemma 5 we can prove that several other examples of pave no
common information. Here are two of them:

Theorem 5. (a) Let(z,,,y,) be a random pair of orthogonal lines in four-dimen-
sional space ovef;,. For any sequence of stringg

K(zn) < 2K (zn|wp) + 2K (23|yn) + O(log n)

assuming that,, has polynomialin n) length.
(b) The same is true ifz,,y,) is a random pair of intersecting affine lines
(one-dimensional affine subspaces) in three-dimensidifiaeaspace oveF,.

Proof. (a) The proof goes along the same lines as the proof of theguetheo-
rem, so we just outline the main points.

e K(z)=K(y) =3nandK((z,y)) = 5n (we omitO(log n)-terms). Thus,
inthis caseX (z|z) = K(z)+ K(z|z) — K(z) = 3n+p—mandK (y|z) =
3n+q—m.

e We consider the same bipartite graph (but now a line meame arlia four-
dimensional space). This time the conditions of Lemma 5 alféléd for

r = 2", because the number of lines in four-dimensional spacegothal
to two different given lines ig".

e Thus the number of edge#| does not exceed

. 2+ ¢ —
23nta=m if  (3p 4 p—m) < W;
. M + ¢ —
93n+p—m \/odntq—m if (3n 4 p—m)> LT +2q .

e On the other handyn = K ((z,y)) < K(z) + log |E|. Therefore, the two
bounds forl /| imply

S5n<m+Bn+qg—m)=2n<gq
(the first one) and
1
5n§m+(3n+p—m)+§(4n+q—m):>m§2p+q

(the second one).
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e In the first case one should note thafz) < K(z|z) + K(z) <p+3n <
p+3q<2p+2q.

(b) This time we connect by edges affine lines that have a canpomt, thus
the conditions of the lemma are true for= 22" (there are this many affine lines
intersecting two given different affine lines). The restsda@lows:

e K(z)=K(y) =4nandK ((z,y)) = 7n (omitting O(log n)-terms),
e K(z|z) =4n+p—m, K(y|lz)=4n+q—m,

o the number of edgd#| does not excee2i™ 7 if (4n-+p—m) < M#
and2*ntP—m . \/9bnta—m if (4n +p —m) > W'

e hencern < m+(4n+q—m) = 3n < ginthefirstcase anth < m+(4n+
p—m)+ %(Gn +q—m) = m < 2p+qinthe second case. In the first case
one should note that (z) < K (z|z)+ K(z) < p+4n < p+3q < 2p+2q.

O

Let us note that in these examples somstill have more information about,
andy,, than one could expect. For example, if in (b) we consider ritersection
point p,, of z,, andy,, thenK(p,) = 3n, K(z,|pn) = 2n, K(ynlpn) = 2n
(omitting O(log n)-terms). There are somé, andy/, with the same complexities
(K(zl) = 4n, K(y),) = 4n, K({z],,y.)) = 7n) for which there is ng,, with
similar properties. (Remark: Instead of intersection pwaia could consider two-
dimensional affine subspace that contains both lines.)

For (a) one also can find, that contain more information about, andy,,
than one could expect. The way to construct spghvas pointed by Finkelberg
and Bezrukawnikov. Lekl be the two-dimensional subspace (a plane) containing
the vector1,0,0,0) and(0, 1,0, 0) (the choice of# is not important: any plane
W with K(W) = O(log n) would work). Letw be any line ini¥ orthogonal tay
(obviously it exists). Take aB the plane having the linesandw (aszx is random,
z € W). Let us note thaP has 1-dimensional intersection wilti and the number
of planes with this property is abot”, thereforeK (P) < 3n + O(logn). The
number of lines inP is about2”, thus K (z|P) < n + O(logn). The liney is
orthogonal to both:, w, therefore this line is orthogonal #8. The number of lines
orthogonal taP is about2”, thereforeK (y|P) < n + O(logn).

This effect (some contains more information aboutandy than one could
expect) is analyzed in Section 6.
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5 Moreexamples. a new method

The examples of Theorem 4 and 5 (a) are specific cases of foevifay exam-
ple. Letm, k be integer constants and le} andy,, be random orthogonal-di-
mensional subspaces of andimensional linear space ové},. (Recall thatF;,
denotes a field having abo®t elements.) Itm < 2k then there are no orthogo-
nal k-dimensional subspaces. H = 2k thenz,, determinegy,, uniquely, hence
their greatest lower bound is equal Q. So we will assume that, > 2k. It
was proven in [6] that for any such, k& the greatest lower bound af, y is the
sequence\ = A, A, .... Note that the most interesting case is whefis close to
2k because then the mutual informationagf, v,, is close to complexities of both
Zn,Yn. INdeed, itis easy to verify that

K(xy,) = (mk — k*)n + O(logn),
K(y,) = (mk — k?)n + O(logn),
I(zy : yn) = k?n + O(logn).

So, the fractionl(z,, : y,)/K(zy) is close tol ask/m is close tol/2 (recall
thatk, m are fixed thus the constants in O-notation may depené, et). In this
section, we give a new proof of the result of [6] using clem@mnbinatorial argu-
ments.

Theorem 6 ([6]). Let2k < m and z,, andy, be random orthogonak-dimen-
sional subspaces of am-dimensional linear space ovdr, (whereF,, is a field
having abou2™ elements). Then there are positize ¢, such that the following
holds. For any sequence of strings such thatK (z,,|z,,), K (zn|yn) < cin, we
haveK (z,) < co(K (zn|zn) + K (2n|yn)) +O(log n). (The constant iW-notation
may depend om but not onn.)

Proof. Recall the proof of Theorem 4. Using a combinatorial propeft the
graph whose nodes atedimensional subspaces of tRedimensional space over
F,, and edges connect orthogonal subspaces, we proved thasaupgraph has
few edges. (A subgraph of a grapW, £) is a graph of the fornfU, EN (U x U))
whereU C V.) That property stated that any two nodes have at most onenoom
neighbor. Now this property does not hold and we shall defiotteer one. Graphs
satisfying that property will be callet e-oblivious. (Now we shall consider ordi-
nary undirected graphs, not bipartite ones.) Then we widleran appropriate
analog of Lemma 5 fot, e-oblivious graphs.

Assume that starting from a node= V we maket moves of a random walk in
the finite grapHV, E'); on every step we move to a random neighbor of the current
node. Lew(t) stand for the end node of the walk. The graph is calleebblivious
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if foranyv € V and foranyU C V,

U]
Probv(t) € U] < — + €.
V]
Lemma 6. Let(V, E) be the graph whose nodes dredimensional subspaces of
the m-dimensional space ovéf,, and edges connect orthogonal subspaces. Then
(V,E) ist,e-oblivious, wherg = 2[k/(m — 2k)], ande = C27" (whereC'is a
positive real depending am but not onn).

Proof. Let a, b be two subspaces of the-dimensional space ovéf,. It is well
known that
dima + dimb = dim(a U b) 4+ dim(a N b).

HereaUb stands for linear sum ef andb. Hencedim(anb) > dim a+dimb—m.
Assume thats is fixed, dima = k, andb is a randomi-dimensional subspace.
With overwhelming probability the dimension afn b is as low as possible (that
is, max{0; k + [ —m}). More precisely, the following claim is true.

Claim 1. The probability of the event

dim(a Nb) = max{0;k +1 — m}

is at least1 — C2™) for some positive” depending only omn. (We postpone the
proof of the claim to the end of the proof of the theorem.)
Let ¢ andb be k-dimensional subspaces such that

dim(aNat) = 7o
dlm(a nL) = n
dlm(a Nb) = ro
dim(aNatNb) = r3
dim((aUat)Nb) = ry.

wherea’ stands for orthogonal complement 4o (Note that intersection of
anda’ may be nontrivial.) Let be a randonmk-dimensional subspace from the
orthogonal complement to

Claim 2. For some positivel’ depending only omn with probability greater
than(1 — C2~") it holds

dlm(a Nc) = max{0;ry — (m — 2k)}
dlm(a Ne) = 1
dim(aNa*Nec) = max{0;ry — (m —k —1g)}
dim((aUat)Ne) = r3+k—rg.
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Proof of the claim. Find first the dimension of intersectidma avith the orthogonal
complement td. Asdima’ = m — dima = m — k, we have

dim(a Nb*) = dim(at Ub)* = m — dim(a’™ Ub) =
m — (dimaL +dimb — dim(aL Nb) =m—((m—k)+k—re) =ro.

Asanc = (anbt)ncwe can find the most probable dimensionaof ¢ by
applying Claim 1 to subspaces) b+ andc of the linear spacé*. Thus we obtain

dim(a N¢) = max{0;re + k — (m — k)} = max{0;ry — (m — 2k)}
with probability at leasfl — C2™").
In a similar way we find the most probable dimension of intetise of sub-

spacesi andc. We have:

dim(a* Nb+) = dim(a U b))t = m — dim(a U b) =
=m — (dima + dimb —dim(aNb)) =m — (k+k —r1) =m — 2k + ry.

Applying Claim 1 to subspaces- N b+ andc of linear spacé' we see that
dim(a’ Ne¢) = max{0; (m — 2k + 1) + k — (m — k)} = max{0;7,}

with probability at leasfl — C2™").
In a similar way we obtain

dim(a Nat Nbt) =m — dim(a Uat Ub) =
=m —dim(a Uat) — dimb + dim((a U at) Nb) =
=m—(m-—ry) —k+rg=r9—k+ry

Thus

dim(aNa®™Ne) = max{0; (ro—k+ry) +k— (m—k)} = max{0; k+ry—m+ry}

with probability at leasfl — C2™").

Finally,
dim((a Uat) Nbdt) =m —dim((aNat) Ub) =
=m —dim(a Na’) — dimb + dim(a Nat Nb) =
=m-—ro—k+rs.
Thus

dim((a Uat) Ne) = max{0;(m —ro —k +73) +k — (m —k)} =r3 + k — 19
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with probability at leasf{l — C'27™). The claim is proven.
Fix an arbitraryv € V. Denote byry dimension of intersection N v=*. Let S;
stand for the set of al € V' such that

dlm(v Nu) = r(7)
dlm(v Nu) = 7o)
dim(v NvtNu) = r3(i)
dim((v Uvt)Nu) = r4(3),
Whel’E’Fl( ) =k, 7‘2(0) =170, 7“3( ) =79, T 4(0) k, and
ri(i+1) = max{0;7re(i) — (m — 2k)}
Tg(i + 1) = 7‘1( )
rs(i+1) = max{0;r4(i) —(m —k —ro)}
(t+1)

= r3(i)+k—rp.

The above recurrence implies that

ri(i+2) = max{0;r. (i) — (m —2k)}
ro(i +2) = max{0;ra(i) — (m —2k)}
r3(i+2) = max{0;r3(i) — (m — 2k)}
r4(i+2) = max{k —rp; 7“4(2) (m —2k)},

hencer (t) = ra(t) = r3(t) =0, ra(t) = k —ro (recall thatt = 2[k/(m — 2k)]).
By Claim 1 the probability for a random € V to get intoS; is at leastl — C2™"
for someC depending only omn.

Let v(7), « < t denote theith node in a random walk starting from (and
v(0) = v). Let G, stand for the event

v(0) € Sp,v(1) € 81, ..., (i) € Si.

Using Claim 2 it is easy to prove by induction that for ang V' the probability
of G; is at leastl — C27™ (whereC depends omn only).
Claim 3. Leta, b andc be as in Claim 2. The probability of event

dlm(a Ne) = q
dlm(a Nec) = ¢
dim(aNatNec) = g3
dim((aUat)Nec) = q4

is a function ofk,ry,r1,79,73,74, 491,92, 93,94 (but it does not depend on the
choice ofa andb). (We postpone the proof of the claim to the end of the proof
of the theorem.)
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Claim 4. The probabilityProb[v(i) = u;|G;] is the same for all;; € S; (and
hence is equal td/|S;).

Proof of the claim. The proof is by induction @nFori = 0 the statement is
trivial. Lets > 0 andu; € S;. We have

PrOb[GZ;l]
Prob[G;]

The second factor does not dependu@nso it remains to prove that neither does
the first factor. LeU;- denote the set of all € V" orthogonal tau;. We have

Prob[v(i) = u;|G;] = Prob[v(i) = u;|G;_1]

Z PI‘Ob[U(i — 1) = ui_1|Gi_1]

Prob[v(i) = u;|Gi—1] = i ;

ui_1€Si_1ﬁU{L

whereM stands for the number éFdimensional subspaces orthogonal to a fixed
k-dimensional subspace. By induction hypothesis the nuiorenéthe last fraction
is equal tol /|.S;_1 |, therefore we have

: 1 S;_1 N Ut
Problu(i) =wilGia] = D, gpe— = | M5, |‘
ui—1€S;_1NUF+ =1 =t

The factor|S;_1 NU;*|/M is equal to the probability of the event “a randange V/
orthogonal tas; belongs taS; ,”. By Claim 3 this probability does not depend on
u; € S;. (End of proof of Claim 4.)

By Claim 4 for anyU C V we have

Prob[v(t) € U|Gi] = |U N Sy|/|St]
Therefore,
Prob[v(t) € U] =Prob[v(t) € U|Gy] - Prob[G;] + Prob[v(t) € U, Gy]
<|U N S| /1St| + Prob[Gy].
The second term is bounded b~ ". Estimate the first term:

U NSy U] Ul | g
<-—+C"27" O
1S T V(L= C27m) T |V

Lemma 7. Assume that every node intg-oblivious graph(V, E') has degreel
or less. Then the number of edges in any subgi@pif V' is at mostw|U|, where

SLGRN
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Proof. DefineU’ C U as follows. Let us start with’’ = () and iterate the follow-

ing step: if there is a node € U \ U’ that has at most adjacent nodes ity \ U’

then choose any such node and include iUin Otherwise halt. The resulting
subgraphl/’ has at mostv|U’| edges, as on each step the number of edges that are
incident to some node i’ increases at most hy. Another useful property di’’

is as follows: any node € U\ U’ has at least.+ 1 neighbors in the séf \ U’. Let

us prove that actuallyy/’ coincides withU. Suppose this is not true. Then choose
anodev € U \ U'. We have

Problu(t) € U\ U] > (““)t Y]

d >m+8.

On the other hand,

Prob[v(t) € U \ U'] < Prob[v(t) € U] < % +e.

These two inequalities are inconsistent, this provestifat U, thus the number
of edges inJ is at mostw|U|. O

Lemma 8. Lett be an integer number andl < ¢ < 1 a real number. LeG =
(V, E)) be at,e-oblivious graph in which any node has degeéelet (u,v) be a
random edge irG (that is, K (u,v|G) > log|E|) and letz be a string. Then at
least one of the following three inequalities holds:

1 1
K >—|log-—1
(6l 6) 2 7 1og 2 - 1),
1 1
K >—|log——1
(l0.6) 2 7 (1087 - 1),
1
K(z|G) < (t+ 1) max{K(z|u,G), K(z|]v,G)} + O <log (log - + log |V|>>

(the constant in O-notation does not depend af).
Proof. Assume that the first two inequalities are false. Let
k = max{K(z|u,G), K(z|v,G)}, m = K(z|G).

We haves < 27%~1 First estimaten very roughly:

m = K(z|G) < K(z|u,G) + 2K (u|G) + O(1) <

~& | =

1
log - +2log |V |+ O(1).
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Thus the complexities of alki, v,z conditional to G are polynomial in
log [V, log L. In what follows we omit additiveO(log(log [V'| + log 1)) terms.
We have

K(ulz,G) = K(u|G) + K(z|u,G) — K(2|G) < log|V |+ k —m.

The same bound is valid fd{ (v|z, G).

Let U be the set of all: € V such thatK (z|z, G) < K(u|z, G), K(v|z, G).
Then|U| < |V[2F=™ (up to a factor polynomial ifog |V|,log 1). By Lemma 7
we obtain the following upper bound for the numtgy of edges inJ:

|U| 1/t
Bul <do (fp1+¢)
V]
Asu,v € U andU (henceEy) is enumerable given, G, K (u|z,G), K (v|z, G),
we have

log(|V'|d/2) =log| B| < K (u,v]G) < log|Ey| + K(|G)

|U| 1/t
glogd+log|U|+log<m+€> +m

<logd +log|V|+ (k —m) + (1/t) log (Qkfm + 6) +m.

Therefore, we have
27kt S 2kfm +e

(up to a factor polynomial itog |V, log(1/€)). By our assumption is less than
half of 2~*¢, hence

—kt<k-m=m<(t+1)k O

The assertion of the theorem is a direct corollary of the @ndemmas.

Thus it remains to prove Claims 1 and 3.

Proof of Claim 1. LetV stand for the number of elements in the fiélgd(recall
that N =~ 2™). Letw be ani-dimensional subspace of the-dimensional space
over F,,. The number of vectors that do not belongutés equal toN™ — N* =
N™(1+ O(1/N)) (provided; < m). Assume that + [ < m. The numbeSed™
of sequences of vectoes, .. ., ¢; such that the system

(a basis ofu) U {ey,...,e}

is independent is equal t§™! (1 + O(1/N)) (the constant ifD-notation depends
onl).
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Let Sul§® stand for the number dfdimensional subspaces of the-dimen-
sional space. We have

Seg” N™(1+ O(1/N))

_ pny(m=10)
Seq® NP(1+O(1/N)) N (1+OQ/N)).

Sulf* =

Let a be ak-dimensional subspace. The numbel-dimensional subspacés
such thatlim(a Nb) = s is equal to the number afdimensional subspacef a
multiplied by the number of-dimensional subspacésvhose intersection with
is equal to a fixed-dimensional subspace

k
Sulf Se(ﬂs.
Se¢’,

Hence the probability that a randoirdimensional subspack satisfies the
equalitydim(a N'b) = s is equal to
SulfSed*  N(k—s)s ym(l—s)
dSeq, = — —(1 4+ O(1/N))
Se§’ ,Suft  NU—s) N(m-Di
= NKH=m=9)5(1 L O(1/N)).

This probability is exponentially (in) close to 1 when either=00rs =k +1 —
m.
Proof of Claim 3. Assume that

dim(anb) = 71, dim(a"Nb) = ry, dim(aNaNb) = r3, dim((aUa™)Nb) = ry.

Then
dim(aNbt) = 7y,
dim(at Nbdt) = m— 2k + 7y,
dim(aNatNbt) = ry—k+ry,
dim((aUat)Nbt) = m—ry—k+rs.

Thus the claim is a particular case of the following geneaat.f

Let «, 3, v be subspaces of a linear spateover a finite fieldF
such thate U § C . Then the probability for a randork-dimen-
sional subspacé of L of satisfying the equalitiedim(d N ) = ¢,
dim(6 N B) = g2, dim(6 N N B) = g3, dim(d N y) = g4, depends
only onk, q1, g2, g3, q1, dim o, dim 3, dim(a N B), dim~y, dim L, | F|.
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(We apply this assertion i@ = aNb*, 8 = at Nb*, v = (aUa’)Nb*, L = bt))

Proof. Letd/, 3, be a triple of linear subspaces such thatJ 8/ C +/
anddim o’ = dime, dim ' = dim g, dim(¢/ N f') = dim(a N F), dimy’ =
dim~. Then there is an automorphismof L such thatpa = o/, o8 = ',
oy = v'. Indeed, construct five systems of vectdrs Ao, ..., A5 as follows. The
first system,A; is a basis olx N 5. The second systerni, completesA; to the
basis ofa. The third systemAs completesA; to the basis ofs. It is easy to see
thatA; U Ay U A3 is a basis ofx U 5. The forth systemA, completes this union
to the basis ofy. The fifth system, A5 completes the union of the four defined
systems to the basis @f. In a similar way construct five system, A, ..., AL
for o/, 5',+'. The assumptions on dimensions of subspaces guarante4;that
Al have the same number of elements. The automorphissngenerated by one
to one correspondence betwednand A;.

Thus we have

Prob[dim(d N a) = ¢, dim(d N B) = go,
dim(§ NN B) = g3, dim(6 N7y) = q4]
= Prob[dim p(d N «) = ¢, dimp(d N F) = go,
dimp(d Nanp) =qs, dime(d Ny) = g4
= Prob[dim(pd N pa) = ¢1, dim(pd N pS) = ¢,
dim(pd N pa N pB) = g3, dim(pd N py) = g4
= Prob[dim(d N &) = ¢1, dim(5 N B') = ¢o,
dim(6 N’ NB') =gz, dim(6 NY') =q4]. O

6 Moreabout common information

Let us reformulate our informal definition of common infooa. We say that
stringsz andy haveu-bit common informatiorr if K(z) < u, K(z|z) < K(z) —

u, andK (y|z) < K(y) — u. (Itis easy to see that all three inequalities in fact are
equalities in that case.)

The question whether suetexists is a special case of a more general question:
we may ask for giveru, v, w whether there is a string such thatK (z) < u,
K(z|z) < wv,andK (y|z) < w. The set of all triplegu, v, w) for which such &
exists could be considered as “complexity profile” of the pay.

Technically speaking, we should consider sequences afjstinstead of indi-
vidual strings. Lete = x1,z9, ... andy = y1,ys, ... be two sequences such that
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|z,| = O(n) and|y,| = O(n). (Only sequences satisfying these conditions will
be considered in this section.) A triple of reéls v, w) is calledx, y-admissible
if there exists a sequenee= zy, z2, ... and a constant such that

K(zp) <un+clogn, K(zy|z,) < vn+clogn, K(yy|z,) < wn+clogn (6)

for all n. A triple of reals(u,v,w) is calledx,y-non-admissiblgif for any ¢
and for all sufficiently large: there is noz,, satisfying (6) (we consider triples of
non-negative reals only). Note that no triple candyg-admissible anet, y-non-
admissible simultaneously. But it may happen that a trialls in neither of these
two categories (below we shall give such an example).

The set of alkz, y-admissible triples is denoted by, . The largerM, , is,
the more informationc andy share. The set of alt, y-non-admissible triples is
denoted byM .

Here is a trivial example: assume that is a random string of length and
Yn = Tp. Then

M, ={(u,v,w) |[u+v>1 utw>1}, Mg, =1[000)>\ M}, .
If z,,,y, are random independent strings of IengthhenM;:y is much smaller:

M;y ={(u,v,w) Ju+v>1L u+w>1, ut+v+w>2}

Mg, =1[0,00)%\ M.
If x,,y, are random strings of length such thatz,, = vy,, for evenn andz,,, y,
are independent for oddthen

Mg, ={(u,v,w) |[u+o>1, utw>1 utv+w>2}

Mgy = {(u,v,w) [u+v<loru+w <1}
(so in this examplé\/.f;(y and M, are not complementary). As we shall see, the
values ofK (z,,), K (y,) and K ((x,, y»)) do not determine the sefd} , M.,
completely.

For simplicity we restrict ourselves to one special caseagsime that
K(z,) =2n+0O(logn), K(y,) = 2n+ O(logn),

_ @)
K ((zn,yn)) = 3n + O(logn).

Consider the following two sets of triples. The first onelexl/ _; , contains
all the triples satisfyingt least oneof the inequalities

utvt+w<3, ut+tv<2 ut+w<2. (8)
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The second one, calletf !, , contains all the triples outsid®/_. satisfyingat
least oneof the inequalities

ut+v+w>4, utov>3, utw>3. 9)
Theorem 7. (a) For any sequences, y satisfying(7)

Mr—ril_in c M;;,y’ Mr;in c M:I?,y
(b) There exist sequencesy satisfying(7) such thatM:j,y =[0,00)>\ M.
(henceM , = M ).
(c) There exist sequences y satisfying(7) such thatM,, , = [0, 00)3\ M.t
(henceM,,, = M,.).

in

Proof. (a) Using the inequalities
K((zn,yn)) < K(zn) + K(2n|2n) + K(yn|zn) + O(logn)

and K (z,) < K(z,) + K(z,|zn) + O(log n) we see that inequalities (6) and (7)
imply

3n+O0(logn) < wun+wvn+wn+ O(logn),
2n+ O(logn) < wun+ vn + O(logn),
2n+ O(logn) < wun+ wn + O(logn).

Hence if at least one of the inequalities
3<u+v4w,2<u+v, 2<ut+w (20)

is not fulfilled the triple(u, v, w) is @, y-non-admissible. Thus, for eveny, y the
setM, , includes the sed/ . .

Letus prove thad/ !, C M, ,. Without loss of generality assume thaj,| =
2n + O(logn), |yn| = 2n + O(logn) (otherwise replace,, andy,, by minimum
length programs to compute them). Lt v, w) be in Mgin. Then the triple
(u, v, w) satisfies all the the inequalities (10) and at least one dhegualities (9).
So consider three cases.

Dutv+w > 4. If v,w < 2letz be the concatenation of the fitst — vn bits
of 2 and the firsn—wn bits ofy (we omit logarithmic terms). Sineet+v+w > 4,
we havez| = 2n—vn+2n—wn < un. To obtainz givenz we need the remaining
vn bits of z and the numbers, [vn], [wn], so K(z|z) < wvn. Analogously,

K(y|z) < wn.
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Otherwise, if say > 2, let z consist of the firstun bits of y (andz = y if
2 < w). ThenK(y|z) < 2n —un < wn (if u < 2, andK(y|z) = 0 < wn
otherwise). AndK (z|z) < K(z) < 2n < vn.

2)u+v > 3. If u < 2letz consist of the firstun bits of y. To find 2 given
z it suffices to know the remainingn — un bits of y and the minimum program
to computez given y (havingn bits). So to findz given z it suffices to have
2n —un + n < vn extra bits. AndK (y|z) < 2n —un < wn.

Otherwise (ifu > 2) let z be the concatenation gfand the firstun — 2n bits
of minimum length program to computer giveny (andz = yp if un — 2n > n).
To obtainz givenz it suffices to have the remaining— (un — 2n) < vn bits of p.

3)u + w > 3. Similar to the previous case.

(b) Letz,, = pq, y, = pr, wherep, ¢, are random independent strings of
lengthn. We have to prove that any triple satisfying the inequai(#0) isx, y-
admissible.

If u < 1letz consist of the firstin bits of p. To findx [y] given z it suffices to
have the remaining — un bits of p and the whole string [r]. So the total number
of bitsisn —un +n < wvn [n —un +n < wn).

If w > 1 andv > 1 let z consist of the firsun bits of y. To findz given z
it suffices to havey (n bits). To findy given z it suffices to have the remaining
2n — un bits ofy and2n — un < wn.

If w > 1andw > 1 use the same argument.

If v > 1andv,w < 1 letz be the concatenation ¢f the firstn — vn bits ofg
and the firsth — wn bits of ». The length ozisn +n —vn +n —wn < un. TO
find z [y] given z it suffices to have the remaining: [wn] bits of g [r].

The proven fact agrees with our intuition that theseind y have as much
common information as possible (under restriction (7)).

(c) This is the most interesting part of the theorem; the puses methods
from [5].

The set[0,00)? \ M} consistsM, and of those triples satisfying the in-
equalities
utvt+w<4, utv<3 utw<3. (112)

By item (a) we haveM/ ;. € M, ,. Therefore it suffices to prove that any triple
satisfying (11) belongs td/,,. Let (u,v,w) satisfy (11). Note that all three
inequalities are strict. Assume that for infinitely manythere isz, for which
inequalities (6) are true. Then for infinitely many

K(zn) + K(zn|2n) + K(ynlzn) < 4n (12)
K(zp) + K(zplzn) < 3n (13)
K(zn) + K(ynlzn) < 3n. (14)
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Therefore it suffices to prove the following lemma.

Lemma9. There arex, y satisfying (7) such that for all but finitely mamythere
iS no z,, satisfying the inequalitie€l2), (13) and (14).

Proof. Let us fix a natural numbet. As usually we will omit the subscript in
Tn, Yn, €1C.

We choose the paie, y) from the sefJ consisting of pairs of strings of length
2n +2logn. So|U| = 2'"n*. First remove front/ all pairs satisfying at least one
of the following requirements:

e K(z) < 2n,

o K(y) < 2n,

o K((z,y)) < 3n,

e there isz satisfying the inequalities (12), (13), and (14).

Let us count the number of pairs removed frbhto show that/ does not become
empty. Indeed, less tha??"22"n? pairs have been removed for the first reason
(and the same amount for the second one), less 2fafor the third reason and
less than(4n)32%" for the fourth reason (for any, [, m there are at most*2/2™
pairsz,y such that there is with K(z) = k, K(z|z) = [, K(y|z) = m; and
the number of tripleg;, [, m satisfying the inequality: + [ + m < 4n is less than
(4n)?). Thus the total number of removed pairs is less than

2 x 21?4 237 4 (4n)3210 < 2npt

(for sufficiently largen).

Let (z,y) be the least pair remaining i&i (with respect to any fixed well
founded order). Therk(z) = 2n + O(logn), K(y) = 2n + O(logn),

K ({z,y)) > 3n and there is na satisfying inequalities (12), (13) and (14). Thus,
to prove the lemma it suffices to show th&at(z, y)) < 3n + O(logn).

Let W}, stand for the set consisting of all paiis, b) such thatkK (a) < k and
K(bla) < I. To identify (z,y) it suffices to known, the set{z’ | K(z') < 2n},
the set{(«',y') | K({«',3')) < 3n}, and the set§V},, for all k + [ < 3n. The
elements of these sets can be enumerated giyéinerefore to get the lists of all
these sets it suffices to knawand the number

m={a' | K(a') < 2n}| +[{(«,¢) | K((2",y) <3n}|+ Y Wiyl
k+1<3n
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(givenn we enumerate all these sets umtilelements have been enumerated; if a
pair belongs to several sets we count it separately for estyhss

k+1<3n 7<3n

we get
K({z,y)) <logm+ O(logn) < 3n+ O(logn). O

The proof of Theorem 7(c) is non-constructive, it gives ngdimaple” of the
pair (z,y) with M, = [0,00)° \ M}, . An example would be a computable
sequence of finite non-empty sedg of low complexity (sayO(logn)) such that
any random paif(z,,y,) in A, satisfies Theorem 7(c). Such an example was
recently constructed by An. A. Muchnik (unpublished).

In Section 4 we presented several examples of sequanges/hose common
information is less than mutual information. It would beeirgsting to find the
complexity profile for these examples. Unfortunately, wewronly few things.
We present here known facts about random orthogonal lindgée-dimensional
space. In the rest of the paper lety be sequences mentioned in Theorem 4.
Using Lemma 5 we obtain the following lower bound fuf,, , .

Theorem 8. The setM, , contains any triple(u,v,w) such thatu + v/2 +
max{w,v/2} <3 or u+w/2+ max{v,w/2} < 3.

Note that there are such triples outsidé , (for instance, the triple
(1.1,1.1,1.1)).

Proof. Assume that: + w/2 + max{w/2,v} < 3 (the other case is entirely sim-
ilar). Assume that for somefor infinitely manyn there isz,, such that (6) holds.
Fix any suchn (in the sequel we omit subscriptin z,,, y,,, z,). We use Lemma 5
for the same bipartite graph as in Theorem 4. left nodes ass Ihaving com-
plexity at mostK (z|z) conditional toz, right nodes are lines having complexity at
most K (y|z) conditional toz, and edges connect orthogonal lines. By Lemma 5
we have

|E| < 2VImax{V1,k}.

Therefore (we omit logarithmic terms)

3n < K((z,y)) <log|E| + K(z) < (1/2)logl + log max{V1,k} + K(z)
< wn/2 + max{w/2,v}n + un.

As this is true for infinitely many. (up toO(logn) term) we ge88 < u + w/2 +
max{w/2,v}, a contradiction. O

28



A natural question is whether the inclusia; C M, is also strict. The
answer to this question may depend on the choice of the figldNote that all
proven theorems oa, y are true for any choice af,,. However, it turns out that
if the field F;, has sizep?, wherep is an integer then the sar[;,y contains the
triple (1.5, 1,1) that is outsideM,, . But we don't know whether this is true for
other fields. Recall that we gave similar examplesaoy from Theorem 5. To
obtain such examples we used arguments from linear alg8bch arguments can
provide only triples(u, v, w) whose coefficients are dimensions of certain linear
spaces. But the first component of the trifle5, 1,1) is not an integer so now
we cannot use linear-algebraic arguments directly. Toawrae this difficulty we
“double” the dimension by regarding three-dimensionatdinspace ovef;, as a
six-dimensional linear space over the subfi@lgof F;, of sizep. Now 1.5 may be
obtained as dimension 3 of a space odegr.

Theorem 9. Assume that all field#}, are of sizep? wherep,, are integers. Then
M, contains the triplg(1.5, 1, 1).

Note that together with previous theorem this implies thdhe cas¢F,,| = p?
the triple(1.5, 1, 1) is on the border line betweel andM;,y.

Proof. We shall use the following representation of the exampleof Theorem 4.
x = (a,b), y = (c,ac + b) where(a,b,c) is a random triple of elements d@,.
The pairz = (a, b) will be called a line and; = (¢, ac + b) a point (on that line).
(See the remark after Theorem 4.)

What do we gain assuming thgt,| = p2 (for all n)? In this case the field
F = F,, has a subfield op = p,, elements, denoted b§f. Leta € F be a
primitive element off’ over G. Thus any element i’ can be represented in the
form h 4+ s« for someh, s € G.

We construct a family op? disjoint p3-element sets of pair& line, a point on
that line, whose union covers the s8tof all p® such pairs. Each set will involve
p? different points ang? different lines, each of thog€ points will belong tgp of
thosep? lines, and conversely each of thgselines will havep of thosep? points.
To construct such family represent each fairy) € S in the form

z=(f+roa,h+sa), y=I(g+ta, fg+h+ (ft+gr+s)a+rta?),

where f,g,h,r,t,s € G. Fixing r,t,s we obtain a sel,;, of p3 pairs fromS
havingp? lines. UnfortunatelysS,;; has aboup?® points. Let is try to reduce the
number of points in eacld,;: the substitutions — s — ft changes the above
representation of a pair, y) € S to

z=(f+roa,h+(s— ft)a), y=(g+ta, fg+h+ (gr+s)a+rta?).
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Now, any line inS,., is identified by pair( f, h) thus there arg? different lines in
S,5; @any point inS,s is identified by pair(g, fg + h) thus there arg? different
points inS,.s.

Let us finish the proof. We take asthe set from our family which contains
the pair{z,y). As the number of sets j$ we haveK (z) < 3logp + O(logn) =
1.5n+O(log n). As each set hag’ different lines angh? different points, we have
K(z|z),K(ylz) < 2logp+ O(logn) =n+ O(logn). O
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