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Abstract

In this paper we construct a structureR that is a “finite version” of
the semi-lattice of Turing degrees. Its elements are strings (technically,�The work was supported by Volkswagen Foundation while visiting Bonn UniversityyThe work was partially done while visiting the University ofAmsterdam and DIMACS center
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sequences of strings) andx � y means thatK(xjy) = (conditional Kol-
mogorov complexity ofx relative toy) is small.

We construct two elements inR that do not have greatest lower bound.
We give a series of examples that show how natural algebraic constructions
give two elements that have lower bound0 (minimal element) but significant
mutual information. (A first example of that kind was constructed by Gács–
Körner [1] using a completely different technique.)

We define a notion of “complexity profile” of the pair of elements ofR
and give (exact) upper and lower bounds for it in a particularcase.

Keywords: Kolmogorov complexity, common information, conditional
complexity

1 Introduction

Let � and� be two infinite binary sequences. We say that� is Turing reducible
to � if there exists a Turing machineM that produces� on its output tape when� is provided on input tape. Turing reducibility is reflexive and transitive, so we
get a pre-order on the set of all infinite binary sequences (this pre-order is usually
denoted by�T ). The equivalence classes((x � y), (x �T y)^ (y �T x)) form
an upper semi-lattice whose elements are called Turing degrees. This semi-lattice
is well studied in recursion theory (see, e.g., [7])

Now let us replace infinite sequences� and� by finite binary stringsx andy. Of course, for anyx andy there exists a Turing machineM that producesx
from y. So to get a non-trivial relation we have to put some restrictions onM .
It is natural to require thatM is simple (its program is short compared tox andy). Here the notion of Kolmogorov complexity comes into play.By definition, the
conditional Kolmogorov complexityK(xjy) is the length of the shortest program
that producesx havingy as an input. Now we can define the relationx � y asK(xjy) �  (herex andy are binary strings, is a number).

If  is a constant, this relation does not have good properties (for example, it
is not transitive). This relation also depends on a specific programming language
used in the definition of Kolmogorov complexity. To overcomethese difficulties,
we use the standard trick and consider the asymptotic behavior of the complexity
for sequences of strings.

Letx = x1; x2; : : : be a sequence of binary strings. We call itregular if length
of xi is polynomially bounded, i.e., ifjxij � ik for some; k and for alli. LetR
denote the set of all regular sequences. We say that regular sequencex is simple
conditional to a regular sequencey ifK(xijyi) = O(log i)
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and writex � y. The�-relation is a pre-order defined onR. The relation(x �y) ^ (y � x) is an equivalence relation. Equivalence classes form a partially
ordered set which (for the same reasons as in the case of Turing degrees) is an
upper semi-lattice (any two elements have a least upper bound).

We prove (Section 2) that this set is not a lower semi-lattice: there are two
elements that do not have greatest lower bound. Note that theset of Turing degrees
is not a lower semi-lattice either (see, e.g., [7]), but our proof goes in a completely
different way.

The semi-latticeR is useful for analyzing the notion of common information.
This notion was introduced by Gács and Körner [1] in the context of Shannon
information theory. They also described a similar notion inthe algorithmic theory
but do not give a precise definition. We give such a definition in terms of the
semi-latticeR (Section 3).

The main result of [1] is an example of two objects whose “common informa-
tion” is far less than their “mutual information”; Gács andKörner provide such
an example in context of Shannon information theory and mention that it could
be reformulated for algorithmic information theory. This example was analyzed
in [2] where an alternative proof for a special case of Gács–Körner example was
provided.

A completely different example of two strings whose common information is
much less than their mutual information was given in [4]; fordetails see [5].

In this paper we develop a third approach to construct such pairs of strings. It
is based on the geometry of finite fields. Several examples of this type are given
in Section 4. Our examples (as well as Gács–Körner’s) are constructive in the fol-
lowing sense. In the recursion theory, we call a proof of a theorem of the form8n9a P (n; a) constructive if there exists an algorithm that givenn computes an
objectan such thatP (n; an). In our context this makes no sense, as in this case the
complexity ofan is bounded bylog n and we are interested in propertiesP (n; a)
implying that complexity ofa is linear inn. We find reasonable the following
meaning of constructivity here: there is a probabilistic algorithm that givenn with
high probability outputs such an objecta thatP (n; a). More specifically, the prob-
ability should tend to 1 asn tends to infinity. All our examples except one from
Theorem 7(c) are constructive in this sense.

The amount of common information does not determine completely how much
the stringsx andy have in common. What reflects this better is the “complexity
profile of x andy”, defined as the set of triples(u; v; w) such thatK(z) � u,K(xjz) � v, andK(yjz) � w for some stringz. We use the method of [5] to find
exact upper and lower bounds for complexity profile (Section6). (Technically we
have to speak not about stringsx andy but about sequences of stringsx0; x1; : : :
andy0; y1; : : : such that complexity ofxi andyi is proportional toi; see Section 6
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for details.)

2 The upper semi-latticeR
Let us recall the definition of conditional Kolmogorov complexity. Let U be a
computable (partial) function of two arguments; argumentsand values are binary
strings. (Informally,U is an interpreter of some programming language, the first ar-
gument is a program and the second one is program’s input.) Let us defineKU (xjy)
asminfjpj : U(p; y) = xg; here jpj stands for the length ofp. There exists an
optimalU , that is, aU such thatKU � KV + O(1) for any other computable
functionV . We fix some optimalU and callKU (xjy) theconditional complexity
of x wheny is known.

The unconditionalKolmogorov complexity can be defined asK(xj�) where� is the empty string. It turns out (see, e.g., [3]) that conditional complexity can be
expressed in terms of unconditional complexity. Indeed, let us fix some computable
bijectionp; q 7! hp; qi between pairs of strings and strings. ThenK(hp; qi) = K(p) +K(qjp) +O(log(jpj+ jqj)):

A sequencex = x1; x2; : : : of binary strings is calledregular if there exist
constants andk such thatjxij � ik for all i. The set of all regular sequences
is denoted byR. We define a pre-order onR saying thatx = x1; x2 : : : precedesy = y1; y2; : : : if there exists a constant such thatK(xijyi) �  log i for all i.
(Let us agree thatlog x meanslog2(x+2) solog x is positive for allx � 0 and we
do not need to consider the casei = 1 separately.)

TheO-term guarantees that the definition does not change if we replace the
optimal functionU used in the definition of Kolmogorov complexity by another
optimal function. Moreover, since we useO(log i) (and notO(1)), the definition
remains the same if we replace conditional Kolmogorov complexity defined as
above by prefix complexity (see [3] for the definition). Indeed, these complexities
differ only byO(log n) for strings of lengthn. Since elements ofR are regular,
this difference is absorbed byO(log i)-term.

Two elementsx andy areequivalentif x � y andy � x. The equivalence
classes form a partially ordered set. We denote this set byR.

Proposition 1. The setR is an upper semi-lattice: any two elements have a least
upper bound.

Proof. By definition,z 2 R is a least upper bound ofx;y 2 R if� z is an upper bound forx andy, i.e.,x � z andy � z;
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� z � u for any other upper boundu of x andy.

Let x = x1; x2; : : : andy = y1; y2; : : : be any two elements ofR. Consider
the sequencez = z1; z2; : : : wherezi = hxi; yii. (Recall thatp; q 7! hp; qi denotes
a computable bijection between pairs of strings and strings.) It is easy to see thatz
is regular and is the least upper bound forx andy.

Theorem 2. The ordered setR is not a lower semi-lattice: there exist two elementsx andy that do not have a greatest lower bound.

Proof. To prove the theorem we have to construct two sequencesx andy that have
no greatest lower bound. Assume somen is fixed; let us explain hown-th terms ofx andy are constructed. Consider2n binary strings of lengthn denoted byb01; b02; : : : ; b0n; b11; b12; : : : ; b1n;
and one more string of lengthn denoted by" = "1 : : : "n
("i are individual bits). We want all these strings to be random and independent
in the following sense: its concatenation is a string of length 2n2 + n which is in-
compressible (its Kolmogorov complexity is equal to its length up toO(1) additive
term). Such strings do exist, see [3]. Now consider two stringsx = b01b02 : : : b0nb11b12 : : : b1n
and y = b"11 b"22 : : : b"nn :
Stringsx andy aren-th terms of the sequencesx andy.

Let us mention that the pairhx; yi contains the same information as the con-
catenation string of length2n2 +n mentioned above, so the complexity of the pairhx; yi is 2n2 + n+O(1). (Asx is random,b0i 6= b1i for all i.)

In the sequel we use the following terminology. Stringsbei (for e = 0; 1 andi = 1; : : : ; n) are calledblocks. We have2n blocks; each block has lengthn. All
the blocksb"ii that are included iny are calledselectedblocks; all other blocksb1�"ii are calledomitted blocks. Our construction starts withn pairs of blocks
and a string" that says which block is selected in each pair. The stringx is a
concatenation of all2n blocks; the stringy is a concatenation ofn selected blocks.

Now the proof goes as follows. Each selected block is simple relative to bothx andy since it is a substring of bothx andy and position information could be
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encoded byO(logn) bits. (When we say that a stringu is simplerelative to a stringv we mean thatK(ujv) = O(log n).)
Suppose that the greatest lower bound ofx andy exists. Let us denote it byz. Then any selected block is simple relative toz. On the other hand, any omitted

block could not be simple relative toz. Indeed, assume that some omitted blockb is simple relative toz. Thenb is simple relative toy sincez is simple relative
to y by assumption. Then to restorex from y it is enough to specify the string"
andn� 1 omitted blocks different fromb, i.e.,n2 bits, and the complexity of pairhx; yi is at most2n2 + O(logn) (n2 bits in y andn2 bits to specifyx wheny in
known). This contradiction shows that no omitted block is simple relative toz.

Now let us show thaty is simple relative tox. Indeed, to findy whenx is
known we need only to distinguish between omitted and selected blocks in each
pair of blocks. We may assume thatz is known since it is simple relative tox.
Then we may enumerate all the objects that have small complexity relative toz
until we findn blocks (we have the list of all blocks since we knowx). Thesen
blocks will be (as shown above) exactly the selected blocks,and we are done. Soy is simple relative tox. But this is impossible, because in this case the pairhx; yi
will have complexity at most2n2 +O(logn) (instead of2n2 + n).

In the argument above we were quite vague aboutO-notation, so let us repeat
the same argument more formally. The construction described above is performed
for eachn; to indicate the dependence onn let us writex(n) instead ofx, b0i (n)
instead ofb0i , etc. Assume thatz = z(0); z(1); : : : is a greatest lower bound ofx
andy. The first step in the proof is the following lemma.

Lemma 1. There exists some constant such thatK(bjz(n)) �  log n
for anyn and for any blockb that was selected atn-th step of the construction.
(There weren selected blocks atn-th step; each of them has lengthn.)

Indeed, consider all the blocksb that were selected atn-th step; letb(n) be
one of them for which the complexityK(bjz(n)) is maximal. The sequenceb =b(1); b(2); : : : belongs toR. It is easy to see thatb � x and thatb � y, becauseb(n) is a substring of bothx(n) andy(n). Therefore,b � z, sincez is the greatest
lower bound ofx andy. By definition,K(b(n)jz(n)) �  log n
for some constant; the same inequality is valid for all other selected blocksb sinceb(n) has maximal complexity (relative toz(n)) among them. Lemma 1 is proved.
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Lemma 2. There exists some constant such thatK(bjy(n)) � n�  log n
for anyn and for any blockb that was omitted atn-th step of the construction.

Proof. As we have said, the stringx(n) can be reconstructed from the stringy(n), the string"(n), some omitted blockb, its number and the concatenation of all
other omitted blocks. Here all the information exceptb has bit sizen2+n+(n2�n) + O(log n) = 2n2 + O(log n), and this information includesy(n). Therefore,
the complexity ofhx(n); y(n)i does not exceedK(bjy(n)) + 2n2 +O(log n). On
the other hand, the complexity ofhx(n); y(n)i is 2n2 + n+O(1). Comparing the
two inequalities, we see thatK(bjy(n)) � n�O(log n). Lemma 2 is proved.

Lemma 3. There exists some constant such thatK(bjz(n)) � n�  log n
for anyn and for any blockb that was omitted atn-th step of the construction.

Indeed, recall thatK(z(n)jy(n)) = O(log n) by our assumption; note also thatK(bjy(n)) � K(bjz(n)) + K(z(n)jy(n)) + O(log n). Hence,n � O(log n) �K(bjy(n)) � K(bjz(n)) +K(z(n)jy(n)) + O(log n) = K(bjz(n)) + O(logn).
Lemma 3 is proved.

Lemma 4. K("(n)jx(n)) = O(log n):
Proof. Lemma 1 implies that for bign the valueK(bjz(n)) is less thann=2

for any selected blockb; Lemma 3 implies that for bign the valueK(bjz(n))
is bigger thann=2 for any omitted blockb. Therefore, knowingx(n) and z(n)
we can reconstruct the list of selected blocks just enumerating the stringss such
thatK(sjz(n)) < n=2 until n blocks fromx(n) appear. SinceK(z(n)jx(n)) =O(log n) by assumption, we need onlyO(log n) additional bits to reconstruct"(n)
from x(n). Lemma 4 is proved.

We conclude thatK(hx(n); "(n)i) is 2n2 + O(log n) but it should be2n2 +n + O(1). The contradiction shows thatx andy do not have the greatest lower
bound.

Let us mention some other properties of the semi-latticeR.
1. The operations “infimum” and “supremum” do not satisfy thedistributive

law even when they are defined. Indeed, consider sequencesx andy wherexn and

7



yn are random independent strings of lengthn. Let zn = xn�yn (bitwise addition
modulo2). Thensup(inf(x;y);z) 6= inf(sup(x;z); sup(y;z));
since inf(x;y) = � (where� is the least element of the semi-lattice), so the
left-hand side is equal toz while the right-hand side is equal tosup(x;y).

Moreover, inf(sup(x;y);z) 6= sup(inf(x;z); inf(y;z));
since left-hand side is equal toz and right-hand side is equal to�.

2. For any two elementsx andy in R there exists a sequencez such thatsup(y;z) = sup(y;x) andinf(y;z) = �. Indeed, givenx, y andK(xjy) we can
enumerate the set of all programsp such thatp(y) = x and length ofp is equal toK(xjy). Let z be the first program in this enumeration.

This z could be considered as a “difference” betweenx andy. Difference is
not defined uniquely; for instance, ifxn andyn are random independent strings of
lengthn, bothxn andxn � yn are differences ofxn andyn.

The semi-latticeR is only one of the possible refinements of the intuitive no-
tion “x is simple relative toy”. Here is another possibility. Let us fix a functionlog n � f(n) = o(n); assume thatx andy are sequences of strings such thatjxnj = O(n), jynj = O(n). Definex �f y asK(xnjyn) = O(f(n)). One can
show that this definition gives a semi-lattice with similar properties (no greatest
lower bound; however, the proof is more difficult and is omitted).

3 Common and mutual information

The semi-latticeR is a useful tool to analyze the amount of common information
shared by two strings.

Let x andy be two strings. Bymutual information inx andy we mean the
valueI(x : y) = K(x) +K(y) �K(hx; yi). (SometimesI(x : y) is defined asK(y) �K(yjx), but these quantities differ only byO(log n) for strings of length
at mostn, see [3].)

Theorem 3. Letx = x1; x2; : : : andy = y1; y2; : : : be elements ofR.
(a) If z = z1; z2; : : : is a lower bound ofx andy thenK(zn) � I(xn : yn) +O(log n): (1)

(b) If z = z1; z2; : : : is a lower bound ofx andy andK(zn) = I(xn : yn) +O(log n) (2)
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thenz is the greatest lower bound ofx andy in R.

Proof. (a) Sincez � x,K(hxn; zni) = K(xn) +K(znjxn) +O(logn) = K(xn) +O(log n):
So K(xn) = K(hxn; zni) +O(logn) = K(zn) +K(xnjzn) +O(log n): (3)

SimilarlyK(yn) = K(hyn; zni) +O(log n) = K(zn) +K(ynjzn) +O(log n): (4)

On the other hand,K(hxn; yni) � K(zn) +K(xnjzn) +K(ynjzn) +O(log n): (5)

since we can reconstruct the pairhxn; yni from zn and programs that transformzn
into xn andyn. Combining the last three inequalities [(3) + (4)� (5)], we get the
statement (a).

Let us prove the part (b) now. Assume thatz is a lower bound forx andy and
the inequality (1) turns into equality (2). Letz0 be any other lower bound forx andy. Consider the sequencez00 defined asz00n = hzn; z0ni. It is the least upper bound
of z andz0 (Proposition 1). Thereforez00 � x andz00 � y. Applying (a) toz00 we
see that K(z00n) = K(hzn; z0ni) � I(xn : yn) +O(log n)
By assumption,I(xn : yn) = K(zn) + O(log n), soK(hzn; z0ni) � K(zn) +O(log n). On the other hand,K(hzn; z0ni) = K(zn) + K(z0njzn) + O(logn),
thereforeK(z0njzn) � O(logn) andz0 � z in R.

Remark. If two sequencesx = x1; x2; : : : andy = y1; y2; : : : have the great-
est lower boundz = z1; z2; : : : , one may callK(zn) “the amount of common
information in stringsxn andyn”.

4 Examples where common information is less than mu-
tual information

Informally speaking, stringsx andy haveu-bit common informationz if K(z) =u, K(zjx) � 0, andK(zjy) � 0. We know (Theorem 3(a)) that the amount
of common information in two strings is not larger than the mutual information
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of these strings. A natural related question is the following one: can common
information be far less than mutual information?

This question was positively answered by Gács and Körner [1]. They found
out that there are pairs of stringsx andy such thatI(x : y) is big but nevertheless
any stringz that is simple relative to bothx andy (bothK(zjx) andK(zjy) are
small) is simple (has smallK(z)).

Their construction uses ideas from Shannon information theory. Another con-
struction was suggested in [4] (see [5] for details). Here wepresent a third way to
construct examples of that kind.

Consider a finite fieldFn of cardinality q = qn close to2n. (Any field of
size2n+O(1) will work, so we may use the field of cardinality2n or the fieldZ=qZ
whereq is a prime number between2n and2n+1.) Consider three-dimensional vec-
tor space overFn. Any non-zero vector(f1; f2; f3) generates a line (by “line” we
mean a line going through0, i.e., one-dimensional subspace). Two lines generated
by (f1; f2; f3) and(g1; g2; g3) are called orthogonal iff1g1 + f2g2 + f3g3 = 0.
Now consider two random orthogonal linesx andy (i.e. pair of two orthogonal
lines(x; y) which has the greatest possible complexity). We claim thatI(x : y) is
significant but there is no stringz which is simple relative to bothx andy unlessz
is simple.

More precisely, consider the setO = f(x; y) : x andy are orthogonal linesg:
This set containsq3 + o(q3) elements (there areq2 + q + 1 lines and each line is
orthogonal toq+1 lines). Therefore,O contains a pair(x; y) whose complexity islog(q3(1 + o(1))) = 3n+O(1). (We assume that elements ofFn are encoded by
binary strings of lengthn+O(1), so we can speak about complexities.) Note thatK(x) � 2n+ O(log n) since there are about22n lines; moreover,K(yjx) � n+O(log n) sincey is one of2n+O(1) lines orthogonal toA. Recalling the inequalityK(hx; yi) � K(x)+K(yjx)+O(logn), we conclude thatK(x) = 2n+O(logn)
andK(yjx) = n + O(logn). For similar reasonsK(y) = 2n + O(log n) andK(xjy) = n+O(logn). Therefore,I(x : y) = n+O(log n).

Remark. We would like to caution against free usage of geometrical intuition in
our context. For instance, though we use the term “orthogonal”, we have no scalar
product in linear spaces over finite fields and a nonzero vector may be orthogonal
to itself.

Theorem 4. Let hxn; yni be a random pair of orthogonal lines in the three-dimen-
sional space overFn. For any sequence of stringsznK(zn) � 2K(znjxn) + 2K(znjyn) +O(log n)
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assuming thatzn has polynomial(in n) length.[The constant inO(log n)-notation
does not depend onn.]

This theorem implies that sequencesx = x1; x2; : : : andy = y1; y2; : : : have� = �;�; : : : as their greatest lower bound. (Here� denotes the empty string.)
Indeed, ifK(znjxn) = O(log n) andK(znjyn) = O(log n) for some sequencez = z1; z2; : : : , thenK(zn) = O(log n) according to Theorem 4.

Proof. The proof of Theorem 4 is based on a simple combinatorial observation.

Lemma 5. Consider a bipartite graph withk vertices1; : : : ; k on the left andl
vertices1; : : : ; l on the right. Assume that for any two different nodesu; v on the
left there are at mostr nodes on the right connected with bothu; v. Then the
following bound for the number of edgesjEj is valid:� k �pl=r ) jEj � 2l;� k �pl=r ) jEj � 2kplr:

Indeed, for each elementv on the left consider the setNv of its neighbors on
the right; letnv be the cardinality ofNv. The intersectionNv \ Nw (for v 6= w)
contains at mostr element. Assume thatk �pl=r. Consider the union of allNv;
it has at least n1 + n2 + : : :+ nk �Xi<j jNi \Nj j
elements. On the other hand, it has at mostl elements. The number of pairshi; ji
is less thatk2 � l=r, thereforen1 + n2 + : : : + nk � (l=r)r � l ) jEj = n1 + n2 + : : :+ nk � 2l:

The first statement is proved. It implies that fork = pl=r (we assume here
that the number

pl=r is integer; the proof can be easily modified to handle the
general case) the average number of neighbors for vertices on the left is at most2plr. We use this observation to prove the second part of the lemma.

Let k �pl=r. Consider
pl=r vertices on the left having maximum neighbor-

hoods and delete all other vertices on the left; this makes the average number of
neighbors bigger. But we know that it does not exceed2plr. The same is true for
the initial graph, thereforejEj � k � 2plr. Lemma 5 is proved.

This lemma will be applied to a bipartite graph whose vertices (both on the left
and on the right) are lines; edges connect pairs of orthogonal lines. It is easy to
see that we can letr = 1 (if both x; y are orthogonal to bothz; u andx 6= y thenz = u).
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Now we are ready to prove Theorem 4. As we know,K(x) = K(y) = 2n andK(hx; yi) = 3n (from now on we omitO(log n)-terms for brevity). LetK(zjx) =p1 andK(zjy) = p2. We want to get an upper bound form = K(z). First, let us
computeK(xjz) andK(yjz):K(xjz) = K(hx; zi) �K(z) = K(x) +K(zjx)�K(z) = 2n+ p1 �m:
Similarly,K(yjz) = 2n+p2�m. Consider the setP of all lines whose complexity
relative toz does not exceedK(xjz); this set contains linex and has cardinality22n+p1�m (up to a polynomial inn factor). Similarly we get a setQ that contains
lines whose complexity relative toz does not exceedK(yjz); this set has cardi-
nality 22n+p2�m. Consider a bipartite graph whose edges connect orthogonallines
from P andQ. This graph satisfies the lemma forr = 1, so the number of edgesjEj does not exceed(22n+p2�m if (2n+ p1 �m) � 2n+p2�m2 ;22n+p1�m � p22n+p2�m if (2n+ p1 �m) � 2n+p2�m2 :
On the other hand, the pairhx; yi represents one of the edges of that graph. Ifz
is known, we can enumerateP , Q andE, so the pairhx; yi may be described by
its number inE. Hence3n = K(hx; yi) � K(z) + log jEj. Therefore, the two
bounds forjEj imply 3n � m+ (2n+ p2 �m) ) n � p2
(the first one) and3n � m+ (2n+ p1 �m) + 12(2n+ p2 �m) ) m � 2p1 + p2
(the second one). We have to prove thatm � 2p1 + 2p2 (recall that logarithmic
terms are omitted). In the second case it is evident; in the first case one should note
thatK(z) � K(zjx) +K(x) � p1 + 2n � p1 + 2p2 � 2p1 + 2p2.

Remark. The same example may be reformulated in several ways. Replac-
ing line y by the orthogonal planey?, we may say thathx; yi is a random pairhline x;planey going throughxi. We may then switch from projective plane to
affine plane and say thathx; yi is a random pairhpointx on the affine plane, liney that goes throughxi. Indeed, fix any affine planeP not going through zero.
Thenx may be identified with the common point ofP andx and planey with the
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common line ofy andP . (We lose lines that are parallel toP , but those lines are
not random.) The third way (used in [5]) to reformulate the example is to say thatx = (a; b) andy = (; a + b) where(a; b; ) is a random triple of elements ofF .
Indeed,x = (a; b) identifies the affine linef(u; v) j v = au + bg (again we lose
affine lines that are parallel to the lineu = 0, but all those lines are not random)
andy = (; a + b) is a point on that line.

Using Lemma 5 we can prove that several other examples of pairs have no
common information. Here are two of them:

Theorem 5. (a) Let hxn; yni be a random pair of orthogonal lines in four-dimen-
sional space overFn. For any sequence of stringsznK(zn) � 2K(znjxn) + 2K(znjyn) +O(log n)
assuming thatzn has polynomial(in n) length.

(b) The same is true ifhxn; yni is a random pair of intersecting affine lines
(one-dimensional affine subspaces) in three-dimensional affine space overFn.

Proof. (a) The proof goes along the same lines as the proof of the previous theo-
rem, so we just outline the main points.� K(x) = K(y) = 3n andK(hx; yi) = 5n (we omitO(log n)-terms). Thus,

in this caseK(xjz) = K(x)+K(zjx)�K(z) = 3n+p�m andK(yjz) =3n+ q �m.� We consider the same bipartite graph (but now a line means a line in a four-
dimensional space). This time the conditions of Lemma 5 are fulfilled forr = 2n, because the number of lines in four-dimensional space orthogonal
to two different given lines is2n.� Thus the number of edgesjEj does not exceed23n+q�m if (3n+ p�m) � 2n+ q �m2 ;23n+p�m � p24n+q�m if (3n+ p�m) � 2n+ q �m2 :� On the other hand,5n = K(hx; yi) � K(z) + log jEj. Therefore, the two
bounds forjEj imply5n � m+ (3n+ q �m) ) 2n � q
(the first one) and5n � m+ (3n+ p�m) + 12(4n+ q �m)) m � 2p+ q
(the second one).

13



� In the first case one should note thatK(z) � K(zjx) +K(x) � p+ 3n �p+ 32q � 2p+ 2q.
(b) This time we connect by edges affine lines that have a common point, thus

the conditions of the lemma are true forr = 22n (there are this many affine lines
intersecting two given different affine lines). The rest is as follows:� K(x) = K(y) = 4n andK(hx; yi) = 7n (omittingO(log n)-terms),� K(xjz) = 4n+ p�m; K(yjz) = 4n+ q �m,� the number of edgesjEj does not exceed24n+q�m if (4n+p�m) � 2n+q�m2

and24n+p�m � p26n+q�m if (4n+ p�m) � 2n+q�m2 ,� hence7n � m+(4n+q�m)) 3n � q in the first case and7n � m+(4n+p�m)+ 12(6n+ q�m)) m � 2p+ q in the second case. In the first case
one should note thatK(z) � K(zjx)+K(x) � p+4n � p+ 43q � 2p+2q.

Let us note that in these examples somezn still have more information aboutxn
andyn than one could expect. For example, if in (b) we consider the intersection
point pn of xn and yn, thenK(pn) = 3n, K(xnjpn) = 2n, K(ynjpn) = 2n
(omittingO(log n)-terms). There are somex0n andy0n with the same complexities
(K(x0n) = 4n, K(y0n) = 4n, K(hx0n; y0ni) = 7n) for which there is nopn with
similar properties. (Remark: Instead of intersection point we could consider two-
dimensional affine subspace that contains both lines.)

For (a) one also can findpn that contain more information aboutxn andyn
than one could expect. The way to construct suchpn was pointed by Finkelberg
and Bezrukawnikov. LetW be the two-dimensional subspace (a plane) containing
the vectors(1; 0; 0; 0) and(0; 1; 0; 0) (the choice ofW is not important: any planeW with K(W ) = O(log n) would work). Letw be any line inW orthogonal toy
(obviously it exists). Take asP the plane having the linesx andw (asx is random,x 62W ). Let us note thatP has 1-dimensional intersection withW and the number
of planes with this property is about23n, thereforeK(P ) � 3n + O(log n). The
number of lines inP is about2n, thusK(xjP ) � n + O(log n). The liney is
orthogonal to bothx;w, therefore this line is orthogonal toP . The number of lines
orthogonal toP is about2n, thereforeK(yjP ) � n+O(log n).

This effect (somep contains more information aboutx andy than one could
expect) is analyzed in Section 6.
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5 More examples: a new method

The examples of Theorem 4 and 5 (a) are specific cases of the following exam-
ple. Letm; k be integer constants and letxn andyn be random orthogonalk-di-
mensional subspaces of anm-dimensional linear space overFn. (Recall thatFn
denotes a field having about2n elements.) Ifm < 2k then there are no orthogo-
nal k-dimensional subspaces. Ifm = 2k thenxn determinesyn uniquely, hence
their greatest lower bound is equal toxn. So we will assume thatm > 2k. It
was proven in [6] that for any suchm; k the greatest lower bound ofx;y is the
sequence� = �;�; : : :. Note that the most interesting case is whenm is close to2k because then the mutual information ofxn; yn is close to complexities of bothxn; yn. Indeed, it is easy to verify thatK(xn) = (mk � k2)n+O(log n);K(yn) = (mk � k2)n+O(logn);I(xn : yn) = k2n+O(log n):
So, the fractionI(xn : yn)=K(xn) is close to1 ask=m is close to1=2 (recall
thatk;m are fixed thus the constants in O-notation may depend onk;m). In this
section, we give a new proof of the result of [6] using clearercombinatorial argu-
ments.

Theorem 6 ([6]). Let 2k < m and xn and yn be random orthogonalk-dimen-
sional subspaces of anm-dimensional linear space overFn (whereFn is a field
having about2n elements). Then there are positive1; 2 such that the following
holds. For any sequence of stringszn such thatK(znjxn);K(znjyn) < 1n, we
haveK(zn) � 2(K(znjxn)+K(znjyn))+O(log n). (The constant inO-notation
may depend onm but not onn.)

Proof. Recall the proof of Theorem 4. Using a combinatorial property of the
graph whose nodes are1-dimensional subspaces of the3-dimensional space overFn and edges connect orthogonal subspaces, we proved that any its subgraph has
few edges. (A subgraph of a graph(V;E) is a graph of the form(U;E \ (U �U))
whereU � V .) That property stated that any two nodes have at most one common
neighbor. Now this property does not hold and we shall define another one. Graphs
satisfying that property will be calledt; "-oblivious. (Now we shall consider ordi-
nary undirected graphs, not bipartite ones.) Then we will prove an appropriate
analog of Lemma 5 fort; "-oblivious graphs.

Assume that starting from a nodev 2 V we maket moves of a random walk in
the finite graph(V;E); on every step we move to a random neighbor of the current
node. Letv(t) stand for the end node of the walk. The graph is calledt; "-oblivious
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if for any v 2 V and for anyU � V ,Prob[v(t) 2 U ℄ � jU jjV j + ":
Lemma 6. Let (V;E) be the graph whose nodes arek-dimensional subspaces of
them-dimensional space overFn and edges connect orthogonal subspaces. Then(V;E) is t; "-oblivious, wheret = 2dk=(m � 2k)e, and" = C2�n (whereC is a
positive real depending onm but not onn).

Proof. Let a; b be two subspaces of them-dimensional space overFn. It is well
known that dima+ dim b = dim(a [ b) + dim(a \ b):
Herea[b stands for linear sum ofa andb. Hencedim(a\b) � dima+dim b�m.
Assume thata is fixed, dima = k, andb is a randoml-dimensional subspace.
With overwhelming probability the dimension ofa \ b is as low as possible (that
is,maxf0; k + l �mg). More precisely, the following claim is true.

Claim 1. The probability of the eventdim(a \ b) = maxf0; k + l �mg
is at least(1� C2n) for some positiveC depending only onm. (We postpone the
proof of the claim to the end of the proof of the theorem.)

Let a andb bek-dimensional subspaces such that8>>>><>>>>: dim(a \ a?) = r0dim(a \ b) = r1dim(a? \ b) = r2dim(a \ a? \ b) = r3dim((a [ a?) \ b) = r4:
wherea? stands for orthogonal complement toa. (Note that intersection ofa
anda? may be nontrivial.) Let be a randomk-dimensional subspace from the
orthogonal complement tob.

Claim 2. For some positiveC depending only onm with probability greater
than(1� C2�n) it holds8>><>>: dim(a \ ) = maxf0; r2 � (m� 2k)gdim(a? \ ) = r1dim(a \ a? \ ) = maxf0; r4 � (m� k � r0)gdim((a [ a?) \ ) = r3 + k � r0:
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Proof of the claim. Find first the dimension of intersection of a with the orthogonal
complement tob. Asdima? = m� dima = m� k, we havedim(a \ b?) = dim(a? [ b)? = m� dim(a? [ b) =m� (dima? + dim b� dim(a? \ b)) = m� ((m� k) + k � r2) = r2:
As a \  = (a \ b?) \  we can find the most probable dimension ofa \  by
applying Claim 1 to subspacesa\ b? and of the linear spaceb?. Thus we obtaindim(a \ ) = maxf0; r2 + k � (m� k)g = maxf0; r2 � (m� 2k)g
with probability at least(1� C2�n).

In a similar way we find the most probable dimension of intersection of sub-
spacesa? and. We have:dim(a? \ b?) = dim(a [ b)? = m� dim(a [ b) == m� (dima+ dim b� dim(a \ b)) = m� (k + k � r1) = m� 2k + r1:
Applying Claim 1 to subspacesa? \ b? and of linear spaceb? we see thatdim(a? \ ) = maxf0; (m � 2k + r1) + k � (m� k)g = maxf0; r1g
with probability at least(1� C2�n).

In a similar way we obtaindim(a \ a? \ b?) = m� dim(a [ a? [ b) == m� dim(a [ a?)� dim b+ dim((a [ a?) \ b) == m� (m� r0)� k + r4 = r0 � k + r4:
Thusdim(a\a?\) = maxf0; (r0�k+r4)+k�(m�k)g = maxf0; k+r4�m+r0g
with probability at least(1� C2�n).

Finally, dim((a [ a?) \ b?) = m� dim((a \ a?) [ b) == m� dim(a \ a?)� dim b+ dim(a \ a? \ b) == m� r0 � k + r3:
Thusdim((a [ a?) \ ) = maxf0; (m� r0 � k + r3) + k � (m� k)g = r3 + k � r0
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with probability at least(1� C2�n). The claim is proven.
Fix an arbitraryv 2 V . Denote byr0 dimension of intersectionv \ v?. LetSi

stand for the set of allu 2 V such that8>><>>: dim(v \ u) = r1(i)dim(v? \ u) = r2(i)dim(v \ v? \ u) = r3(i)dim((v [ v?) \ u) = r4(i);
wherer1(0) = k, r2(0) = r0, r3(0) = r0, r4(0) = k, and8>><>>: r1(i+ 1) = maxf0; r2(i)� (m� 2k)gr2(i+ 1) = r1(i)r3(i+ 1) = maxf0; r4(i)� (m� k � r0)gr4(i+ 1) = r3(i) + k � r0:
The above recurrence implies that8>><>>: r1(i+ 2) = maxf0; r1(i)� (m� 2k)gr2(i+ 2) = maxf0; r2(i)� (m� 2k)gr3(i+ 2) = maxf0; r3(i)� (m� 2k)gr4(i+ 2) = maxfk � r0; r4(i)� (m� 2k)g;
hencer1(t) = r2(t) = r3(t) = 0, r4(t) = k� r0 (recall thatt = 2dk=(m� 2k)e).
By Claim 1 the probability for a randomx 2 V to get intoSt is at least1� C2�n
for someC depending only onm.

Let v(i), i � t denote theith node in a random walk starting fromv (andv(0) = v). LetGi stand for the eventv(0) 2 S0; v(1) 2 S1; : : : ; v(i) 2 Si:
Using Claim 2 it is easy to prove by induction that for anyv 2 V the probability
of Gi is at least1� C2�n (whereC depends onm only).

Claim 3. Let a; b and be as in Claim 2. The probability of event8>><>>: dim(a \ ) = q1dim(a? \ ) = q2dim(a \ a? \ ) = q3dim((a [ a?) \ ) = q4
is a function ofk; r0; r1; r2; r3; r4; q1; q2; q3; q4 (but it does not depend on the
choice ofa andb). (We postpone the proof of the claim to the end of the proof
of the theorem.)
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Claim 4. The probabilityProb[v(i) = uijGi℄ is the same for allui 2 Si (and
hence is equal to1=jSij).

Proof of the claim. The proof is by induction oni. For i = 0 the statement is
trivial. Let i > 0 andui 2 Si. We haveProb[v(i) = uijGi℄ = Prob[v(i) = uijGi�1℄Prob[Gi�1℄Prob[Gi℄ :
The second factor does not depend onui, so it remains to prove that neither does
the first factor. LetU?i denote the set of allu 2 V orthogonal toui. We haveProb[v(i) = uijGi�1℄ = Xui�12Si�1\U?i Prob[v(i � 1) = ui�1jGi�1℄M ;
whereM stands for the number ofk-dimensional subspaces orthogonal to a fixedk-dimensional subspace. By induction hypothesis the numerator of the last fraction
is equal to1=jSi�1j, therefore we haveProb[v(i) = uijGi�1℄ = Xui�12Si�1\U?i 1M jSi�1j = jSi�1 \ U?i jM jSi�1j :
The factorjSi�1\U?i j=M is equal to the probability of the event “a randomx 2 V
orthogonal toui belongs toSi�1”. By Claim 3 this probability does not depend onui 2 Si. (End of proof of Claim 4.)

By Claim 4 for anyU � V we haveProb[v(t) 2 U jGt℄ = jU \ Stj=jStj
Therefore,Prob[v(t) 2 U ℄ =Prob[v(t) 2 U jGt℄ � Prob[Gt℄ + Prob[v(t) 2 U; �Gt℄�jU \ Stj=jStj+ Prob[ �Gt℄:
The second term is bounded byC2�n. Estimate the first term:jU \ StjjStj � jU jjV j(1� C2�n) � jU jjV j + C 02�n:
Lemma 7. Assume that every node in at; "-oblivious graph(V;E) has degreed
or less. Then the number of edges in any subgraphU of V is at most�jU j, where� = $d� jU jjV j + "�1=t% :
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Proof. DefineU 0 � U as follows. Let us start withU 0 = ; and iterate the follow-
ing step: if there is a nodev 2 U n U 0 that has at most� adjacent nodes inU n U 0
then choose any such node and include it inU 0. Otherwise halt. The resulting
subgraphU 0 has at most�jU 0j edges, as on each step the number of edges that are
incident to some node inU 0 increases at most by�. Another useful property ofU 0
is as follows: any nodev 2 U nU 0 has at least�+1 neighbors in the setU nU 0. Let
us prove that actuallyU 0 coincides withU . Suppose this is not true. Then choose
a nodev 2 U n U 0. We haveProb[v(t) 2 U n U 0℄ � ��+ 1d �t > jU jjV j + ":
On the other hand,Prob[v(t) 2 U n U 0℄ � Prob[v(t) 2 U ℄ � jU jjV j + ":
These two inequalities are inconsistent, this proves thatU 0 = U , thus the number
of edges inU is at most�jU j.
Lemma 8. Let t be an integer number and0 < " < 1 a real number. LetG =(V;E) be at; "-oblivious graph in which any node has degreed. Let (u; v) be a
random edge inG (that is,K(u; vjG) � log jEj) and letz be a string. Then at
least one of the following three inequalities holds:K(zju;G) � 1t �log 1" � 1� ;K(zjv;G) � 1t �log 1" � 1� ;K(zjG) < (t+ 1)maxfK(zju;G);K(zjv;G)g +O�log�log 1" + log jV j��
(the constant in O-notation does not depend ont; ").
Proof. Assume that the first two inequalities are false. Letk = maxfK(zju;G);K(zjv;G)g; m = K(zjG):
We have" < 2�kt�1. First estimatem very roughly:m = K(zjG) � K(zju;G) + 2K(ujG) +O(1) � 1t log 1" + 2 log jV j+O(1):
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Thus the complexities of allu; v; z conditional to G are polynomial inlog jV j; log 1" . In what follows we omit additiveO(log(log jV j + log 1" )) terms.
We haveK(ujz;G) = K(ujG) +K(zju;G) �K(zjG) � log jV j+ k �m:
The same bound is valid forK(vjz;G).

Let U be the set of allx 2 V such thatK(xjz;G) � K(ujz;G);K(vjz;G).
Then jU j � jV j2k�m (up to a factor polynomial inlog jV j; log 1" ). By Lemma 7
we obtain the following upper bound for the numberEU of edges inU :jEU j � djU j� jU jjV j + "�1=t :
As u; v 2 U andU (henceEU ) is enumerable givenz;G;K(ujz;G);K(vjz;G),
we havelog(jV jd=2) = log jEj � K(u; vjG) � log jEU j+K(zjG)� log d+ log jU j+ log� jU jjV j + "�1=t +m� log d+ log jV j+ (k �m) + (1=t) log �2k�m + "�+m:
Therefore, we have 2�kt � 2k�m + "
(up to a factor polynomial inlog jV j; log(1=")). By our assumption" is less than
half of 2�kt, hence �kt � k �m) m � (t+ 1)k:

The assertion of the theorem is a direct corollary of the proven lemmas.
Thus it remains to prove Claims 1 and 3.
Proof of Claim 1. LetN stand for the number of elements in the fieldFn (recall

thatN � 2n). Let u be ani-dimensional subspace of them-dimensional space
overFn. The number of vectors that do not belong tou is equal toNm � N i =Nm(1 +O(1=N)) (providedi < m). Assume thati+ l � m. The numberSeqmil
of sequences of vectorse1; : : : ; el such that the system(a basis ofu) [ fe1; : : : ; elg
is independent is equal toNml(1 +O(1=N)) (the constant inO-notation depends
on l).
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Let Subml stand for the number ofl-dimensional subspaces of them-dimen-
sional space. We have

Subml = Seqm0l
Seql0l = Nml(1 +O(1=N))N l2(1 +O(1=N)) = N (m�l)l(1 +O(1=N)):

Let a be ak-dimensional subspace. The number ofl-dimensional subspacesb
such thatdim(a\ b) = s is equal to the number ofs-dimensional subspaces of a
multiplied by the number ofl-dimensional subspacesb whose intersection witha
is equal to a fixeds-dimensional subspace:

Subks Seqmkl�s
Seqlsl�s :

Hence the probability that a randoml-dimensional subspaceb satisfies the
equalitydim(a \ b) = s is equal to

SubksSeqmkl�s
Seqlsl�sSubml = N (k�s)sNm(l�s)N l(l�s)N (m�l)l (1 +O(1=N))= N (k+l�m�s)s(1 +O(1=N)):

This probability is exponentially (inn) close to 1 when eithers = 0 or s = k+ l�m.
Proof of Claim 3. Assume thatdim(a\b) = r1; dim(a?\b) = r2; dim(a\a?\b) = r3; dim((a[a?)\b) = r4:

Then dim(a \ b?) = r2;dim(a? \ b?) = m� 2k + r1;dim(a \ a? \ b?) = r0 � k + r4;dim((a [ a?) \ b?) = m� r0 � k + r3:
Thus the claim is a particular case of the following general fact.

Let �, �,  be subspaces of a linear spaceL over a finite fieldF
such that� [ � � . Then the probability for a randomk-dimen-
sional subspaceÆ of L of satisfying the equalitiesdim(Æ \ �) = q1,dim(Æ \ �) = q2, dim(Æ \ � \ �) = q3, dim(Æ \ ) = q4, depends
only onk; q1; q2; q3; q4;dim�;dim�;dim(�\�);dim ;dimL; jF j.
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(We apply this assertion to� = a\ b?, � = a?\ b?,  = (a[a?)\ b?, L = b?.)
Proof. Let�0; �0; 0 be a triple of linear subspaces such that�0 [ �0 � 0

anddim�0 = dim�, dim�0 = dim�, dim(�0 \ �0) = dim(� \ �), dim0 =dim. Then there is an automorphism' of L such that'� = �0, '� = �0,' = 0. Indeed, construct five systems of vectorsA1; A2; : : : ; A5 as follows. The
first system,A1 is a basis of� \ �. The second system,A2 completesA1 to the
basis of�. The third system,A3 completesA1 to the basis of�. It is easy to see
thatA1 [ A2 [ A3 is a basis of� [ �. The forth system,A4 completes this union
to the basis of. The fifth system,A5 completes the union of the four defined
systems to the basis ofL. In a similar way construct five systemsA01; A02; : : : ; A05
for �0; �0; 0. The assumptions on dimensions of subspaces guarantee thatAi andA0i have the same number of elements. The automorphism' is generated by one
to one correspondence betweenAi andA0i.

Thus we haveProb[dim(Æ \ �) = q1; dim(Æ \ �) = q2;dim(Æ \ � \ �) = q3; dim(Æ \ ) = q4℄= Prob[dim'(Æ \ �) = q1; dim'(Æ \ �) = q2;dim'(Æ \ � \ �) = q3; dim'(Æ \ ) = q4℄= Prob[dim('Æ \ '�) = q1; dim('Æ \ '�) = q2;dim('Æ \ '� \ '�) = q3; dim('Æ \ ') = q4℄= Prob[dim(Æ \ �0) = q1; dim(Æ \ �0) = q2;dim(Æ \ �0 \ �0) = q3; dim(Æ \ 0) = q4℄:
6 More about common information

Let us reformulate our informal definition of common information. We say that
stringsx andy haveu-bit common informationz if K(z) � u,K(xjz) � K(x)�u, andK(yjz) � K(y)� u. (It is easy to see that all three inequalities in fact are
equalities in that case.)

The question whether suchz exists is a special case of a more general question:
we may ask for givenu; v; w whether there is a stringz such thatK(z) � u,K(xjz) � v, andK(yjz) � w. The set of all triples(u; v; w) for which such az
exists could be considered as “complexity profile” of the pair x; y.

Technically speaking, we should consider sequences of strings instead of indi-
vidual strings. Letx = x1; x2; : : : andy = y1; y2; : : : be two sequences such that
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jxnj = O(n) andjynj = O(n). (Only sequences satisfying these conditions will
be considered in this section.) A triple of reals(u; v; w) is calledx;y-admissible,
if there exists a sequencez = z1; z2; : : : and a constant such thatK(zn) � un+ logn; K(xnjzn) � vn+ log n; K(ynjzn) � wn+ log n (6)

for all n. A triple of reals(u; v; w) is calledx;y-non-admissible, if for any 
and for all sufficiently largen there is nozn satisfying (6) (we consider triples of
non-negative reals only). Note that no triple can bex;y-admissible andx;y-non-
admissible simultaneously. But it may happen that a triple falls in neither of these
two categories (below we shall give such an example).

The set of allx;y-admissible triples is denoted byM+x;y. The largerM+x;y is,
the more informationx andy share. The set of allx;y-non-admissible triples is
denoted byM�x;y.

Here is a trivial example: assume thatxn is a random string of lengthn andyn = xn. ThenM+x;y = f(u; v; w) j u+ v � 1; u+ w � 1g; M�x;y = [0;1)3 nM+x;y:
If xn; yn are random independent strings of lengthn, thenM+x;y is much smaller:M+x;y = f(u; v; w) j u+ v � 1; u+ w � 1; u+ v + w � 2g;M�x;y = [0;1)3 nM+x;y:
If xn; yn are random strings of lengthn such thatxn = yn for evenn andxn; yn
are independent for oddn thenM+x;y = f(u; v; w) j u+ v � 1; u+ w � 1; u+ v + w � 2g;M�x;y = f(u; v; w) j u+ v < 1 or u+ w < 1g
(so in this exampleM+x;y andM�x;y are not complementary). As we shall see, the
values ofK(xn), K(yn) andK(hxn; yni) do not determine the setsM+x;y, M�x;y
completely.

For simplicity we restrict ourselves to one special case: weassume thatK(xn) = 2n+O(log n); K(yn) = 2n+O(logn);K(hxn; yni) = 3n+O(logn): (7)

Consider the following two sets of triples. The first one, calledM�min, contains
all the triples satisfyingat least oneof the inequalitiesu+ v + w < 3; u+ v < 2; u+ w < 2: (8)
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The second one, calledM+min, contains all the triples outsideM�min satisfyingat
least oneof the inequalitiesu+ v + w � 4; u+ v � 3; u+ w � 3: (9)

Theorem 7. (a)For any sequencesx;y satisfying(7)M+min �M+x;y; M�min �M�x;y:
(b) There exist sequencesx;y satisfying(7) such thatM+x;y = [0;1)3 nM�min

(henceM�x;y = M�min).
(c) There exist sequencesx;y satisfying(7) such thatM�x;y = [0;1)3 nM+min

(henceM+x;y = M+min).

Proof. (a) Using the inequalitiesK(hxn; yni) � K(zn) +K(xnjzn) +K(ynjzn) +O(log n)
andK(xn) � K(zn) +K(xnjzn) +O(log n) we see that inequalities (6) and (7)
imply 3n+O(log n) � un+ vn+ wn+O(log n);2n+O(log n) � un+ vn+O(log n);2n+O(log n) � un+ wn+O(log n):
Hence if at least one of the inequalities3 � u+ v + w; 2 � u+ v; 2 � u+w (10)

is not fulfilled the triple(u; v; w) is x;y-non-admissible. Thus, for everyx;y the
setM�x;y includes the setM�min.

Let us prove thatM+min �Mx;y. Without loss of generality assume thatjxnj =2n + O(log n), jynj = 2n + O(log n) (otherwise replacexn andyn by minimum
length programs to compute them). Let(u; v; w) be inM+min. Then the triple(u; v; w) satisfies all the the inequalities (10) and at least one of theinequalities (9).
So consider three cases.

1) u+v+w � 4. If v; w � 2 let z be the concatenation of the first2n�vn bits
of x and the first2n�wn bits ofy (we omit logarithmic terms). Sinceu+v+w � 4,
we havejzj = 2n�vn+2n�wn � un. To obtainx givenz we need the remainingvn bits of x and the numbersn; dvne; dwne, soK(xjz) � vn. Analogously,K(yjz) � wn.
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Otherwise, if sayv > 2, let z consist of the firstun bits of y (andz = y if2 < u). ThenK(yjz) � 2n � un � wn (if u � 2, andK(yjz) = 0 � wn
otherwise). AndK(xjz) � K(x) � 2n � vn.

2) u + v � 3. If u � 2 let z consist of the firstun bits of y. To findx givenz it suffices to know the remaining2n � un bits of y and the minimum program
to computex given y (havingn bits). So to findx given z it suffices to have2n� un+ n � vn extra bits. AndK(yjz) � 2n� un � wn.

Otherwise (ifu > 2) let z be the concatenation ofy and the firstun� 2n bits
of minimum length programp to computex giveny (andz = yp if un� 2n > n).
To obtainx givenz it suffices to have the remainingn� (un� 2n) � vn bits ofp.

3) u+ w � 3. Similar to the previous case.
(b) Let xn = pq, yn = pr, wherep; q; r are random independent strings of

lengthn. We have to prove that any triple satisfying the inequalities (10) isx;y-
admissible.

If u � 1 let z consist of the firstun bits ofp. To findx [y] givenz it suffices to
have the remainingn�un bits ofp and the whole stringq [r]. So the total number
of bits isn� un+ n � vn [n� un+ n � wn].

If u > 1 andv � 1 let z consist of the firstun bits of y. To find x given z
it suffices to haveq (n bits). To findy given z it suffices to have the remaining2n� un bits ofy and2n� un � wn.

If u > 1 andw � 1 use the same argument.
If u > 1 andv; w < 1 let z be the concatenation ofp, the firstn� vn bits of q

and the firstn� wn bits of r. The length ofz is n+ n� vn+ n� wn � un. To
find x [y] given z it suffices to have the remainingvn [wn] bits of q [r].

The proven fact agrees with our intuition that thesex andy have as much
common information as possible (under restriction (7)).

(c) This is the most interesting part of the theorem; the proof uses methods
from [5].

The set[0;1)3 n M+
min consistsM�

min and of those triples satisfying the in-
equalities u+ v + w < 4; u+ v < 3; u+ w < 3: (11)

By item (a) we haveM�
min � M�x;y. Therefore it suffices to prove that any triple

satisfying (11) belongs toM�x;y. Let (u; v; w) satisfy (11). Note that all three
inequalities are strict. Assume that for infinitely manyn there iszn for which
inequalities (6) are true. Then for infinitely manyn,K(zn) +K(xnjzn) +K(ynjzn) < 4n (12)K(zn) +K(xnjzn) < 3n (13)K(zn) +K(ynjzn) < 3n: (14)
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Therefore it suffices to prove the following lemma.

Lemma 9. There arex;y satisfying (7) such that for all but finitely manyn there
is nozn satisfying the inequalities(12), (13) and (14).

Proof. Let us fix a natural numbern. As usually we will omit the subscriptn inxn, yn, etc.
We choose the pair(x; y) from the setU consisting of pairs of strings of length2n+2 log n. SojU j = 24nn4. First remove fromU all pairs satisfying at least one

of the following requirements:� K(x) < 2n,� K(y) < 2n,� K(hx; yi) < 3n,� there isz satisfying the inequalities (12), (13), and (14).

Let us count the number of pairs removed fromU to show thatU does not become
empty. Indeed, less than22n22nn2 pairs have been removed for the first reason
(and the same amount for the second one), less than23n for the third reason and
less than(4n)324n for the fourth reason (for anyk; l;m there are at most2k2l2m
pairsx; y such that there isz with K(z) = k, K(xjz) = l, K(yjz) = m; and
the number of triplesk; l;m satisfying the inequalityk + l +m < 4n is less than(4n)3). Thus the total number of removed pairs is less than2� 24nn2 + 23n + (4n)324n < 24nn4
(for sufficiently largen).

Let (x; y) be the least pair remaining inU (with respect to any fixed well
founded order). ThenK(x) = 2n + O(log n), K(y) = 2n + O(logn),K(hx; yi) � 3n and there is noz satisfying inequalities (12), (13) and (14). Thus,
to prove the lemma it suffices to show thatK(hx; yi) � 3n+O(log n).

LetWk;l stand for the set consisting of all pairs(a; b) such thatK(a) � k andK(bja) � l. To identify (x; y) it suffices to known, the setfx0 j K(x0) < 2ng,
the setf(x0; y0) j K(hx0; y0i) < 3ng, and the setsWk;l for all k + l < 3n. The
elements of these sets can be enumerated givenn, therefore to get the lists of all
these sets it suffices to known and the numberm = jfx0 j K(x0) < 2ngj+ jf(x0; y0) j K(hx0; y0i) < 3ngj+ Xk+l<3n jWk;lj
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(givenn we enumerate all these sets untilm elements have been enumerated; if a
pair belongs to several sets we count it separately for each set). Asm < 22n + 23n + Xk+l<3n 2k+l+2 < 23n+1 + Xj<3n(j + 1)2j+2 � (3n)223n+2;
we get K(hx; yi) � logm+O(log n) � 3n+O(log n):

The proof of Theorem 7(c) is non-constructive, it gives no “example” of the
pair (x;y) with M�x;y = [0;1)3 n M+min. An example would be a computable
sequence of finite non-empty setsAn of low complexity (sayO(logn)) such that
any random pair(xn; yn) in An satisfies Theorem 7(c). Such an example was
recently constructed by An. A. Muchnik (unpublished).

In Section 4 we presented several examples of sequencesx;y whose common
information is less than mutual information. It would be interesting to find the
complexity profile for these examples. Unfortunately, we know only few things.
We present here known facts about random orthogonal lines inthree-dimensional
space. In the rest of the paper letx;y be sequences mentioned in Theorem 4.
Using Lemma 5 we obtain the following lower bound forM�x;y.

Theorem 8. The setM�x;y contains any triple(u; v; w) such thatu + v=2 +maxfw; v=2g < 3 or u+ w=2 +maxfv; w=2g < 3.

Note that there are such triples outsideM�min (for instance, the triple(1:1; 1:1; 1:1)).
Proof. Assume thatu+ w=2 + maxfw=2; vg < 3 (the other case is entirely sim-
ilar). Assume that for some for infinitely manyn there iszn such that (6) holds.
Fix any suchn (in the sequel we omit subscriptn in xn; yn; zn). We use Lemma 5
for the same bipartite graph as in Theorem 4: left nodes are lines having com-
plexity at mostK(xjz) conditional toz, right nodes are lines having complexity at
mostK(yjz) conditional toz, and edges connect orthogonal lines. By Lemma 5
we have jEj � 2plmaxfpl; kg:
Therefore (we omit logarithmic terms)3n � K(hx; yi) � log jEj+K(z) � (1=2) log l + logmaxfpl; kg +K(z)� wn=2 +maxfw=2; vgn + un:
As this is true for infinitely manyn (up toO(log n) term) we get3 � u+ w=2 +maxfw=2; vg, a contradiction.
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A natural question is whether the inclusionM+min � M+x;y is also strict. The
answer to this question may depend on the choice of the fieldFn. Note that all
proven theorems onx;y are true for any choice ofFn. However, it turns out that
if the field Fn has sizep2, wherep is an integer then the setM+x;y contains the
triple (1:5; 1; 1) that is outsideM+min. But we don’t know whether this is true for
other fields. Recall that we gave similar examples forx;y from Theorem 5. To
obtain such examples we used arguments from linear algebra.Such arguments can
provide only triples(u; v; w) whose coefficients are dimensions of certain linear
spaces. But the first component of the triple(1:5; 1; 1) is not an integer so now
we cannot use linear-algebraic arguments directly. To overcome this difficulty we
“double” the dimension by regarding three-dimensional linear space overFn as a
six-dimensional linear space over the subfieldGn of Fn of sizep. Now 1.5 may be
obtained as dimension 3 of a space overGn.

Theorem 9. Assume that all fieldsFn are of sizep2n wherepn are integers. ThenM+x;y contains the triple(1:5; 1; 1).
Note that together with previous theorem this implies that in the casejFnj = p2n

the triple(1:5; 1; 1) is on the border line betweenM�x;y andM+x;y.

Proof. We shall use the following representation of the examplex; y of Theorem 4:x = (a; b), y = (; a + b) where(a; b; ) is a random triple of elements ofFn.
The pairx = (a; b) will be called a line andy = (; a + b) a point (on that line).
(See the remark after Theorem 4.)

What do we gain assuming thatjFnj = p2n (for all n)? In this case the fieldF = Fn has a subfield ofp = pn elements, denoted byG. Let � 2 F be a
primitive element ofF overG. Thus any element inF can be represented in the
form h+ s� for someh; s 2 G.

We construct a family ofp3 disjoint p3-element sets of pairsha line, a point on
that linei, whose union covers the setS of all p6 such pairs. Each set will involvep2 different points andp2 different lines, each of thosep2 points will belong top of
thosep2 lines, and conversely each of thosep2 lines will havep of thosep2 points.
To construct such family represent each pairhx; yi 2 S in the formx = (f + r�; h+ s�); y = (g + t�; fg + h+ (ft+ gr + s)�+ rt�2);
wheref; g; h; r; t; s 2 G. Fixing r; t; s we obtain a setSrts of p3 pairs fromS
havingp2 lines. UnfortunatelySrts has aboutp3 points. Let is try to reduce the
number of points in eachSrts: the substitutions 7! s � ft changes the above
representation of a pairhx; yi 2 S tox = (f + r�; h+ (s� ft)�); y = (g + t�; fg + h+ (gr + s)�+ rt�2):
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Now, any line inSrts is identified by pair(f; h) thus there arep2 different lines inSrts; any point inSrts is identified by pair(g; fg + h) thus there arep2 different
points inSrts.

Let us finish the proof. We take asz the set from our family which contains
the pairhx; yi. As the number of sets isp3 we haveK(z) � 3 log p+O(log n) =1:5n+O(log n). As each set hasp2 different lines andp2 different points, we haveK(xjz);K(yjz) � 2 log p+O(logn) = n+O(log n).
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