
Des
riptive 
omplexity of 
omputable sequen
esBruno Durand?, Alexander Shen??, and Nikolai Vereshagin? ? ?Abstra
t. Our goal is to study the 
omplexity of in�nite binary re
ur-sive sequen
es. We introdu
e several measures of the quantity of infor-mation they 
ontain. Some measures are based on size of programs thatgenerate the sequen
e, the others are based on the Kolmogorov 
omplex-ity of its �nite pre�xes. The relations between these 
omplexity measuresare established. The most surprising among them are obtained using aspe
i�
 two-players game.1 Introdu
tionThe notion of Kolmogorov entropy (=
omplexity) for �nite binary strings was in-trodu
ed in the 60ies independently by Solomono�, Kolmogorov and Chaitin [7,4, 1℄. There are di�erent versions (plain Kolmogorov entropy, pre�x entropy, et
.see [8℄ for the details) that di�er from ea
h other not more than by an additiveterm logarithmi
 in the length of the argument. In the sequel we are using plainKolmogorov entropy K(xjy) as de�ned in [4℄, but similar results 
an be obtainedfor pre�x 
omplexity.When an in�nite 0-1-sequen
e is given, we may study the entropy (=
om-plexity) of its �nite pre�xes. If pre�xes have high 
omplexity, the sequen
e israndom (see [5℄ for details and referen
es); if pre�xes have low 
omplexity, thesequen
e is 
omputable. In the sequel, we study the latter type.Let K(x), K(xjy) denote the plain Kolmogorov entropy (
omplexity) of abinary string x and the 
onditional Kolmogorov entropy (
omplexity) of x wheny (some other binary string) is known. That is, K(x) is the length of the shortestprogram p that prints x; K(xjy) is the length of the shortest program that printsx given y as input. (For details see [5℄ or [9℄.)Let !1:n denote �rst n bits (= n-pre�x) of the sequen
e !.Let us re
all the following 
riteria of 
omputability of ! in terms of entropyof its �nite pre�xes.(a) ! is 
omputable if and only if K(!1:njn) = O(1). This result is attributed in[6℄ to A.R. Meyer (see also [9, 5℄).(b) ! is 
omputable if and only if K(!1:n) < K(n) +O(1) [2℄.? LIP, E
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(
) ! is 
omputable if and only if K(!1:n) < log2 n+O(1)[2℄.These results provide 
riteria of the 
omputability of in�nite sequen
es. Forexample, (a) 
an be reformulated as follows: sequen
e ! is 
omputable if andonly if M(!) is �nite, whereM(!) = maxn K(!1:njn) = maxn minp fl(p) j p(n) = !1:ng:(l(p) stands for the length of program p; p(n) denotes its output on n).Therefore, M(!) 
an be 
onsidered as a 
omplexity measure for !: M(!) is�nite i� ! is 
omputable.Another straightforward approa
h is to de�ne entropy (
omplexity) of a se-quen
e ! as the length of the shortest program 
omputing !:K(!) = minfl(p) j 8n p(n) = !1:ng;(and by de�nition K(!) =1 if ! is not 
omputable.)The di�eren
e between K(!) andM(!) 
an be explained as follows:M(!) �m means that for every n there is a program pn of size at most m that 
omputes!1:n given n; this program may depend on n. On the other hand, K(!) � mmeans that there is a one su
h program that works for all n. Thus,M(!) � K(!)for all !, and one 
an expe
t that M(!) may be signi�
antly less than K(!).(Note that the known proofs of (a) give no bounds of K(!) in terms of M(!).)Indeed, theorem 3 shows that there is no 
omputable bound for K(!) interms ofM(!): for any 
omputable fun
tion �(m) there exist 
omputable in�nitesequen
es !0; !1; !2 : : : su
h that M(!m) � m + O(1) and K(!m) � �(m) �O(1).The situation 
hanges surprisingly when we 
ompare \almost all" versions ofK(!) and M(!) de�ned in the following way:K1(!) = minfl(p) j 81n p(n) = !1:ngM1(!) = lim supn K(!1:njn) = minfm j 81n9p (l(p) � m and p(n) = !1:n)g;(81n stands for \for all but �nitely many n"). It is easy to see that M1(!) is�nite only for 
omputable sequen
es. Indeed, if M1(!) is �nite, then M(!) isalso �nite, and the 
omputability of ! is implied by Meyer's theorem.Surprisingly, it turns out that K1(!) � 2M1(!) +O(1) (theorem 5) so thedi�eren
e between K1 and M1 is not so large as between K and M . We stressthat this result is rather strange be
ause a multipli
ative 
onstant 2 appears,and has no intuitive meaning taking into a

ount that all the six 
omplexitymeasures (\entropies") mentioned above are \well 
alibrated" in the followingsense: there are �(2m) sequen
es whose entropy does not ex
eed m. {In thegeneral theory of Kolmogorov 
omplexity, additive 
onstants often appear, butnot multipli
ative ones. As theorem 6 shows, this bound is tight.It is interesting also to 
ompare K1 and M1 with K and M , as well aswith relativized versions of K. For any ora
le A one may 
onsider a relativized



Kolmogorov 
omplexity KA allowing programs to a

ess the ora
le. ThenKA(!)is de�ned in a natural way. By K 0(!) [or K 00(!)℄ we mean KA(!) where A = 00[or 000℄. The results of this 
omparison are shown by a diagram (Fig. 1).
K00(!)? ? ?K0(!) � �� �K1(!)M1(!) K(!)M(!)Fig. 1. Relations between di�erent 
omplexity measures for in�nite sequen
esArrows go from the bigger quantity to the smaller one (up to O(1)-term, asusual). Bold arrows indi
ate inequalities that are immediate 
onsequen
es of thede�nitions. Other arrows are provided by Theorem 1 (K 0(!) � K1(!) +O(1))and Theorem 4 (K 00(!) �M1(!) +O(1)).As we have said, K1(!) � 2M1(!) +O(1), so K1 and M1 di�er only bya bounded fa
tor. If we ignore su
h a di�eren
e, we get a simpli�ed diagramK 00(!) � K 0(!) � K1(!);M1(!) �M(!) � K(!)where X  Y means that X = O(Y ).On the last diagram no arrow 
ould be inverted. Indeed, K 00(!) is �nite whileK 0(!) is in�nite for a sequen
e ! that is 000-
omputable but not 00-
omputable.Therefore the �rst arrow 
annot be inverted. The se
ond one 
annot be invertedfor similar reasons: K 0(!) is �nite while K1(!) and M1(!) are in�nite fora sequen
e that is 00-
omputable but not 
omputable. Theorem 2 shows thatK1(!) and M1(!) 
ould be small while M(!) is large. Finally, Theorem 3shows that M(!) 
ould be small while K(!) is large.These diagrams and the statements we made about them do not tell uswhether the inequalities K1(!) � M(!) + O(1) and K 0(!) � M1(!) + O(1)are true. The �rst one is not true, as Theorem 6 implies. We don't know whetherthe se
ond one is true.Other open questions: (1) is it possible to reverse the se
ond arrow (K 0(!) K1(f);M1(f)) for 
omputable sequen
es? (2) what 
an be said about similarnotions for �nite strings? in parti
ular, is lim supnK(xjn) equal to K0(x) +O(1)or not?12 Theorems and proofsTheorem 1. K 0(!) < K1(!) +O(1).1 It was shown re
ently by the third author that lim supnK(xjn) = K0(x) +O(1).



Proof. Let p(n) = !1:n for almost all n. The following program q (with a

essto 00) 
omputes !1:n given n: For k = n; n + 1; : : : �nd out (using 00) whether(a) p(k) is de�ned and is a binary string of length k; (b) p(m) is 
onsistent withp(k) for all m > k; 
onsisten
y means that either [p(m) has length m and haspre�x p(k)℄ or [p(m) is unde�ned℄. As soon as k satisfying both (a) and (b) isfound, print the �rst n bits of p(k).Obviously, q(n) = !1:n for all n and the bit length of q is O(1) longer thanthat of p. 2Theorem 2. For any 
omputable fun
tion �(m) there exist in�nite sequen
es!0; !1; : : : su
h that M(!m) � �(m) while K1(!m) � m+O(1).Proof. Let xm be the lexi
ographi
ally �rst string x of length �(m) su
h thatK(xj�(m)) � �(m). (Su
h a string exists sin
e the number of programs of lengthless than k is less than 2k.)Now let !m = xm0000 : : : . By de�nition, M(!m) � K(xmj�(m)) � �(m).On the other hand, K1(!m) � m+O(1). Indeed, the set fx j K(xjl(x)) < l(x)gis enumerable. Consider the program pm that having input n performs n steps ofenumeration of this set. Then the program pm �nds the �rst string xnm of lengthm that was not en
ountered, and outputs �rst n bits of the sequen
e xnm0000 : : : .If n is large enough then xnm = xm and p outputs !m1:n. It remains to note thatthe length of pm is logm+O(1). 2Theorem 3. For any 
omputable fun
tion �(m) there exist in�nite sequen
es!0; !1; : : : su
h that K(!m) � �(m) while M(!m) � m+O(1).Proof. Let 
 be a 
onstant (to be spe
i�ed later). The set E = fhx; ki j K(x) <�(k) + 
g is enumerable. Consider the pro
ess of its enumeration. Let s(m) bethe time (step number) when all pairs of type hx;mi with a given m have beenappeared in E. Now let !m = 0s(m)1111 : : : .Let us prove that K(!m) > �(m)�O(1). Assume that p(n) = !m1:n for all n.Given p we 
an �nd the �rst 1 in !m and hen
e s(m). Thus K(s(m)) � K(!m)+O(1). On the other hand, given s(m) we 
an �nd the (lexi
ographi
ally) �rststring xm of entropy �(m) or more, therefore, �(m) � K(xm) � K(s(m))+O(1).Hen
e �(m) � K(!m) +O(1).Let us prove now that M(!m) � m + O(1). Let the program q on input noutput n zeros. Then q(n) = !m1:n for all n � s(m).Consider the program pm that on input n does n steps of enumeration of theset E, �nds the number s(m;n) of the last step among them when a new pairof type hx;mi with a given m has been appeared, and then outputs the �rst nbits of the sequen
e 0s(m;n)1111111:::. If n � s(m), then pm outputs the 
orre
tpre�x of !m.Thus, for any n, either pm or q (given n) outputs !m1:n. It remains to notethat the length of pm is logm+O(1). 2These theorems 2 and 3 
an be reinfor
ed using a te
hnique presented in [3℄:they are true for any 
omputable in�nite family of distin
t sequen
es !0; !1; : : :



(the family itself should be 
omputable). Anyways these pathologi
al 
ases arerare: the di�eren
e between K(x) and K 00(x) 
an be huge but this 
on
erns onlyan exponentially small portion of strings x of a given size.Theorem 4. K 00(!) < M1(!) +O(1):Proof. Let m = M1(!) + 1. Consider the set T = fx j K(xjl(x)) < mg. Byde�nition, all suÆ
iently long pre�xes of ! belong to T . The set T is enumerable.For ea
h n there are at most 2m strings of length n in T . A string x 2 T is 
alled\good" if there is a sequen
e � su
h that x is a pre�x of � and all pre�xes of �longer than x belong to T (in other words, if x lies on the in�nite path in T ). Itis easy to see that K�onig's lemma allows to express the statement \x is good"as 89-statement. Therefore, the set T of all good strings is 000-de
idable.This set 
an be represented as an union of non-overlapping in�nite paths:
onsider all the strings in order of in
reasing length; if a string in T is foundthat is not already in
luded in one of the paths, take a path that starts with it(if there are many of them, 
hoose the lexi
ographi
ally �rst, i.e., turn to theleft when possible). The number of di�erent paths does not ex
eed 2m. Thisde
omposition pro
ess is 000-e�e
tive, i.e., there is an 000-algorithm that gives k-bit pre�x of path number i for given k and i. Appending i (
onsidered as m-bitstring) to that algorithm, we get a 000-program that gives k-bit pre�xes of i-thpath for all k (this program needs also m to 
onstru
t T and T , but m is givenimpli
itly as the length of i). Sin
e one of the paths goes along !, we 
onludethat K 00(f) � m+O(1) =M1(!) +O(1). 2The next two theorems provide the 
onne
tion between K1 and M1.Theorem 5. K1(!) < 2M1(!) +O(1).Theorem 6. There is a sequen
e !m of in�nite strings su
h that M(!m) �m+O(1) and K1(!m) � 2m (hen
e M1(!m);M(!m) = m+O(1), K1(!m) =2m+O(1)).Proof. (The original proof of theorem 5 was simpli�ed signi�
antly by An.A.Mu-
hnik.) First, let us de�ne a game that is relevant to both theorems 5 and 6 andmay be interesting in its own right.Let k; l be integer parameters. The (k; l)-game is played by two players 
alledthe Man (M) and the Nature (N). On its moves, N builds a binary rooted tree.More spe
i�
ally, during its move N adds a binary string to a �nite set T (initallyempty). On his moves, M may 
olor 
ertain binary strings using 
olors from theset f1; 2; : : : ; lg (several 
olors may be atta
hed to the same string; atta
hed
olors 
annot be removed later).The game stops after a �nite number of moves if(1) T is not a tree (that is, there are x 2 T and y 62 T su
h that y is a pre�x ofx); in this 
ase M wins, or



(2) for some n the number of strings of length n in T (the number of nodeshaving depth n) ex
eeds k; in this 
ase M also wins, or(3) there are two di�erent strings of the same length 
olored by the same 
olor;in this 
ase N wins.Otherwise the game lasts inde�nitely long, and the winner is determined asfollows. Let T be the ultimate tree (formed by all strings in
luded in T at allsteps). An in�nite 0-1-sequen
e is 
alled an in�nite bran
h of T if !1:n 2 T forall n.M wins if for any in�nite bran
h � there exists a 
olor 
 su
h that all but�nitely many nodes of � are 
olored by 
 (and, may be, by other 
olors). Other-wise N wins.(One may give the following interpretation to this game. The tree built byNature is the tree of all breeds of animals, and nodes at height n are breedsexisting at time n. The 
oloring is giving names to breeds. Thus Man is requiredto give stable names to all eternal breeds.)We will use also a modi�ed version of this game where the rule (1) is omittedand the de�nition of an in�nite bran
h is 
hanged as follows: sequen
e ! is anin�nite bran
h if all but �nitely many pre�xes of ! are in T . (Obviously, themodi�ed game is more diÆ
ult for M than the original one.)The following two lemmas play a key role in the proof of theorems 5 and 6.Lemma 1. For any k, there is a 
omputable winning strategy for M in themodi�ed (k; k2)-game (the winning algorithm has k as an input).Lemma 2. N has a 
omputable winning strategy in the (k; l)-game if l < k2=4.Before proving these lemmas, let us �nish the proof of theorems 5 and 6 usingthem.Theorem 5 requires us to prove that K1(!) < 2M1(!) +O(1).Fix !. Let T = fx j K(xjl(x)) � M1(!)g. Then for any n the set T hasno more than k = 2M1(!)+1 strings of length n. A

ording to our assumption,!1:n 2 T for all but �nitely many n. Thus ! is an in�nite bran
h in T . Considernow the following strategy for N in modi�ed (k; k2)-game: N just enumerates T(ignoring M's replies). M 
an defeat this strategy using his 
omputable strategythat exists a

ording to lemma 1.Sin
e both M and N are using 
omputable strategies, the set C = fhx; pi jnode x gets 
olor p at some stageg is enumerable. As M wins, there is a 
olor pthat is atta
hed to !1:n for all suÆ
iently large n. Ea
h 
olor 
an be 
onsideredas binary string of length 2(M1(!) + 1), sin
e there are at most k2 
olors.The following algorithm 
omputes !1:n given n and p. First �nd the valuek = 2M1(!)+1 = 2l(p)=2. Se
ond, enumerate C until a pair hx; pi appears withl(x) = n, i.e., until some node x having depth n gets 
olor p. Then return x. Forall suÆ
iently large n this algorithm will return !1:n (sin
e the in�nite bran
h! has 
olor p assigned).The program q to 
ompute !1:n given n for almost all n 
onsists of the abovealgorithm with the string p appended. Thus, the length of q is 2M(!) + O(1),and the theorem 5 (modulo lemma 1) is proved.



Now let us derive theorem 6 from lemma 2. We need to prove that there existin�nite sequen
es !0; !1; : : : su
h that M(!m) � m+O(1) and K1(!m) � 2m.For any �xed m 
onsider the following strategy for M. He enumerates alltriples hp; n; xi su
h that p(n) = x; if it turns out that l(x) = n and l(p) < 2m,he assigns 
olor p to string x. This strategy may be performed by an algorithmhaving m as an input.Let k = 2m+1, l = 22m � 1. Sin
e l < k2=4, the lemma 2 guarantees that N
ould defeat this strategy using its own 
omputable strategy. Therefore, thereexists an algorithm A that given m generates a tree Tm whi
h has an in�nitebran
h ! that is not properly 
olored, i.e., there is no p of length less than 2msu
h that p(n) = !1:n for almost all n. In other words, K1(!) � 2m.On the other hand, M(!) � m + O(1). Indeed, let n be a natural number.Let us des
ribe a program of size m + O(1) that 
omputes !1:n. Consider analgorithm B that for a given string q of length m + 1 and for any n uses A togenerate Tm and waits until q nodes (here q is identi�ed with its ordinal numberamong all strings of length m+1) at height n appear. Then B outputs the nodethat appeared last. Sin
e !1:n 2 Tm, for some q the output will be equal to!1:n. The string q appended to B 
onstitutes a program to 
ompute !1:n givenn. This program has size m+O(1).Theorem 6 is proved (modulo lemma 2)Now we have to prove lemmas 1 and 2.Re
all that lemma 1 says that for any k, there is a 
omputable winningstrategy for M in the modi�ed (k; k2)-game (the winning algorithm has k as aninput).Proof. (Using An.Mu
hnik's argument.) Let M use k2 
olors indexed by pairs(a; b), where a and b are natural numbers in range 1: :k. Let us explain how the
olor (a; b) is assigned. (Di�erent 
olors are assigned independently.) Observingthe growing set T , M looks for all pairs of strings u and v su
h that:(a) u has number a if we 
ount all the (already appeared) strings in T in thelexi
ographi
 order;(b) v has number b if we 
ount all the (already appeared) strings in T in thereverse lexi
ographi
 order;(
) u is a pre�x of v.After su
h a pair of strings is found, any pre�x of u gets 
olor (a; b) unless someother string of the same length already has this 
olor (and M is prohibited touse (a; b) again on that level). Then M looks for another pair of strings u and vwith the same properties, et
.We need to prove that this strategy guarantees that any in�nite bran
h willbe 
olored uniformly starting at some point. Let T be the set of all strings thatN gives (at all steps). Let ! be an in�nite bran
h, so !1::n 2 T for all suÆ
ientlylarge n. For these n let an denote the lexi
ographi
 number of !1::n in the set Tnof all strings of length n that are in T , and let bn denote the inverse lexi
ographi
number of !1::n in Tn. Let a = lim sup an and b = lim sup bn. We 
laim that forsuÆ
iently large n the string !1::n will have 
olor (a; b).



Indeed, 
onsider a pair (u; v) that satis�es the 
onditions listed above. Letus prove �rst that for suÆ
iently long sequen
es only pre�xes of ! have 
han
eto get 
olored with 
olor (a; b). Indeed, for large enough n we have an � a, sosuÆ
iently long strings u are \on the right of !" or are pre�xes of !. (\On theright of ! means that u follows the pre�x of ! having the same length, in thelexi
ographi
 order.) For the same reasons all suÆ
iently long strings v are onthe left of ! or are pre�xes of !. Therefore, the only 
han
e for u to be a pre�xof v (if both are long enough) is when both u and v are pre�xes of !. Therefore,no other long strings (ex
ept pre�xes of !) 
ould get 
olor (a; b).A

ording to the de�nition of a and b there are in�nitely many n su
h thatan = a and in�nitely many m su
h that bm = b. Choose a pair of su
h n and m;assume that n � m. The strings u = !1::n and v = !1::m will be dis
overed afterall strings of length n and m appear in the enumeration of T sin
e they will have
orre
t ordinal numbers. And all pre�xes of u will get 
olor (a; b) unless someother vertex of the same length already has this 
olor. (And this is possibly onlyfor short strings, as we have seen). Sin
e u may be arbitrarily long, all suÆ
ientlylong pre�xes of ! will get 
olor (a; b). Lemma 1 is proved.Lemma 2 says that N has a 
omputable winning strategy in (k; l)-game ofl < k2=4.Proof. Let m = k=2. First we introdu
e some terminology. We 
onsider �nitetrees T with m distinguished leaves at the height equal to height of the tree.Those distinguished leaves are 
alled tops of the tree. The m paths from the rootto m tops are 
alled trunks of the tree. All the nodes that belong to the trunksare 
alled trunk nodes ; other are 
alled side nodes.We 
all a tree T 0 an extension of a tree T if (a) T � T 0; (b) T 0 does not
ontain new verti
es on the levels that exist in T (i.e., any string is T 0 � T islonger than any string in T ); (
) all trunks of T 0 
ontinue those of T (that is,jth trunk of T 0 
ontinues jth trunk of T for all j � m).First N builds any tree T0 of width m that has m trunks. Then N 
ontinuesall the m trunks of T0 (for example, by adding, for any top v, nodes v0, v00,and so on) and waits until M starts to 
olor nodes on the trunks (otherwise helooses). More spe
i�
ally, N waits until there exists h1 su
h that the nodes atheight h1 on all m trunks are 
olored. We 
all those nodes spe
ial ones. The
olors of spe
ial nodes are be pairwise di�erent, as the spe
ial nodes are at thesame height (otherwise M looses). Let h2 be the height of trunks when M 
olorsthe last spe
ial node (h2 � h1).N has just for
ed M to use m di�erent 
olors and has 
onstru
ted a �nite treeof width m. However, we wish (for the next iteration) that the nodes 
olored inm di�erent 
olors do not belong to trunks at the expense of in
reasing the widthof the tree by 1. This is done as follows. On
e N has for
ed M to 
olor m spe
ialnodes at the same height h1, it 
hooses one the trunks and 
uts it (this meansthat N will not 
ontinue that trunk). Then N takes the father of the spe
ial nodeon that trunk and starts from the father another trunk instead of the 
ut trunk.The nodes lying on the 
ut trunk from the height h1 to h2 be
ome side nodes.



Thus at least one side node is 
olored. Call that node a distinguished node. Afterthat N still grows m trunks in parallel (
ontinuing m�1 non-
ut trunks and thetrunk having a bran
h with the distinguished node) until M 
olors m nodes onm trunks at a new height h3 > h2.Call those nodes the new spe
ial nodes. Now N 
hooses a trunk whose newspe
ial node is 
olored in a 
olor di�erent from the 
olor of the distinguishednode, 
uts it and starts a new trunk from its node at height h3 � 1. We thusobtain the se
ond side node 
olored in a 
olor di�erent from the 
olor of thedistiguished node. Call that side node also a distiguished node. Thus we havetwo distinduished side nodes having di�erent 
olors.This pro
ess is repeated m times. Ea
h time N 
uts a trunk whose spe
ialnode is 
olored in a 
olor di�erent from the 
olors of the existing distiguishednodes (su
h a spe
ial node exists while the number of distinguished nodes isless than m). After m repetitions we have a tree of width m + 1 that has mdistinguished side nodes 
olored in m di�erent 
olors.The des
ribed strategy will be denoted by S1. Its starting point may be anytree T with m trunks. It either terminates and 
onstru
ts an extension T 0 of Tsu
h that T 0 � T is 
olored in m di�erent 
olors, or wins. The set T 0 � T haswidth m+ 1.Now let us des
ribe the indu
tion step. Assume X is a subset of a tree T .Let 
olors(X) [side
olors(X)℄ denote the set of 
olors of all nodes [all side nodes℄in X .Assume we have a strategy Si (i < m) for N with the following properties.Starting from any tree T with m trunks it 
onstru
ts a �nite extension T 0 of Tsu
h that the di�eren
e T 0 � T has width m+ i and j side
olors(T 0 � T )j � im.Our goal is to de�ne a strategy Si+1 satisfying the same 
onditions (forin
reased value of i). We de�ne �rst an auxilliary strategy ~Si+1 that, startingfrom any tree T withm trunks, 
onstru
ts a �nite extension T 0 of T su
h that thedi�eren
e T 0�T has widthm+i, j 
olors(T 0�T )j � (i+1)m, and j side
olors(T 0�T )j � im (or ~Si+1 wins).The strategy ~Si+1 given a tree T works as follows. Apply Si starting fromT . Wait until Si terminates. Let T1 be the 
ontinuation of T 
onstru
ted bySi. Then j side
olors(T1 � T )j � im. Apply Si starting from T1. Wait until Si
onstru
ts a 
ontinuation T2 of T1 with j side
olors(T2 � T1)j � im. Applying Simany times, we get T1; T2; T3; : : :. Wait until there exist j and s su
h that j � sand all the nodes along all the trunks inside Tj �Tj�1 at step s are 
olored andea
h trunk has its own 
olor (if no su
h j and s exist, the startegy ~Si+1 neverterminates and wins). Let T 0 = Ts. The tree Ts has im di�erent 
olors on sidenodes in Tj � Tj�1 and m new 
olors on nodes on m trunks.Now we are able to de�ne the strategy Si+1. Starting from a tree T it works asfollows. Apply ~Si+1 starting from T . Wait until it terminates. Let T1 denote theresulting tree. The set 
olors(T1 � T ) has at least (i+ 1)m 
olors. The problem,however, is that some of them may be used for trunk nodes only. In this 
ase
hoose a trunk of T1 that has a node 
olored in a 
olor 
 2 
olors(T1 � T ) �side
olors(T1 � T ). Let j be the number of that trunk. We add to T1 a new



bran
h starting from the jth top of T and de
lare this bran
h a new trunk of T1;the old jth trunk is not a trunk anymore. This operation in
reases the width ofT1�T tom+i+1. The gain is that the set side
olors(T1�T ) has got a new 
olor 
.So j side
olors(T1�T )j � im+1 now. If it happens that the set side
olors(T1�T )already has at least (i+1)m 
olors, we stop. Otherwise, we apply on
e more thestrategy ~Si+1 starting from T1. We get T2 su
h that j 
olors(T2�T1)j � (i+1)m.As j side
olors(T1 � T )j < (i + 1)m, the set 
olors(T2 � T1) has at least one
olor that does not belong to side
olors(T1 � T ). We 
hoose again a 
olor 
 from
olors(T2 � T1) � side
olors(T1 � T ), 
hoose a trunk node in T2 � T1 
oloredby 
, make a new trunk from the top of T1 lying on that trunk and thus getside
olors(T2�T ) � side
olors(T1�T )+1 � im+2. Repeating this tri
k at mostm times, we obtain an extension T 0 su
h that side
olors(T 0� T ) � (i+1)m andthe width of T 0 � T is at most m+ i.The indu
tion step is des
ribed. Note that the strategy ~Sm wins in the2m; (m2 � 1)-game. 2Referen
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