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Abstract. This paper deals with two similar inequalities:

2K (〈A, B,C〉) ≤ K (〈A, B〉)+ K (〈A,C〉)+ O(logn), (1)

2K P(〈A, B,C〉) ≤ K P(〈A, B〉)+ K P(〈A,C〉)+ K P(〈B,C〉)+ O(1), (2)

whereK denotes simple Kolmogorov entropy (i.e., the very first version of Kol-
mogorov complexity having been introduced by Kolmogorov himself) andK P
denotes prefix entropy (self-delimiting complexity by the terminology of Li and
Vitanyi [1]). It turns out that from (1) the following well-known geometric fact can
be inferred:

|V |2 ≤ |Sxy| · |Syz| · |Sxz|,

whereV is a set in three-dimensional space,Sxy, Syz, Sxzare its three two-dimensional
projections, and|W| is the volume (or the area) ofW. Inequality (2), in its turn,
is a corollary of the well-known Cauchy–Schwarz inequality. So the connection
between geometry and Kolmogorov complexity works in both directions.
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Moscow GSP-4, 101447 Russia.
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1. Inequality

For any binary wordsA, B, andC whose length does not exceedn we have

2K (〈A, B,C〉) ≤ K (〈A, B〉)+ K (〈A,C〉)+ K (〈B,C〉)+ O(logn).

(By K we denote the Kolmogorov complexity as defined in the original Kolmogorov
article, see, e.g., p. 198 of [1]; it is sometimes called the “simple Kolmogorov entropy”
and is denoted byK S. Because of the termO(logn) other versions may be used, see
above.)

2. Proof

We rewrite the inequality as(
K (〈A, B,C〉)− K (〈A, B〉))+ (K (〈A, B,C〉)− K (〈A,C〉))
≤ K (〈B,C〉)+ O(logn).

Now we use the equalityK (〈X,Y〉) = K (X)+ K (Y | X)+ O(logn) whereK (Y | X)
is the conditional complexity ofY whenX is known and get

K (C | 〈A, B〉)+ K (B | 〈A,C〉) ≤ K (〈B,C〉)+ O(logn).

Now it remains to use thatK (C | 〈A, B〉) ≤ K (C | B), K (B | 〈A,C〉) ≤ K (B), and
refer to the equality mentioned above.

3. Application

We use this inequality to prove a (well-known) geometric fact which seems to have
nothing in common with the Kolmogorov complexity. Assume that we have a setV in
a three-dimensional space with coordinatesx, y, z. Consider three projectionsSxy, Syz

andSxz. By |W| we mean the volume (or area) ofW.

Theorem (A Continuous version).

|V |2 ≤ |Sxy| · |Syz| · |Sxz|.

To avoid difficulties (nonmeasurable sets, etc.) we consider a finite version:

Theorem (A Discrete Version). Let X, Y, Z be finite sets, V ⊂ X × Y × Z, and
Sxy ⊂ X × Y, Sxz ⊂ X × Z, and Syz ⊂ Y × Z are projections of V. Then

(#V)2 ≤ (#Sxy) · (#Syz) · (#Sxz).

Proof. Choose a random sequencev = 〈v1 · · · vn〉 ∈ Vn. Its complexity isn·(log #V)+
O(logn). Now remember thatvi is a triple〈xi , yi , zi 〉, thereforev can be considered as
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a triple 〈x, y, z〉 wherex = 〈x1 · · · xn〉, y = 〈y1 · · · yn〉, andz = 〈z1 · · · zn〉. Now use
our inequality:

2K (v) ≤ K (〈x, y〉)+ K (〈y, z〉)+ K (〈x, z〉)+ O(logn).

Remember that〈x, y〉 can also be considered as a sequence ofn elements ofSxy, therefore
K (〈x, y〉) ≤ n · log #Sxy+ O(logn). Using similar inequalities for〈y, z〉 and〈x, z〉 we
get

2n log #V = 2K (v) ≤ n · (log #Sxy+ log #Syz+ log #Sxz)+ O(logn).

Dividing by n and using that(logn)/n→ 0 we get

2 log #V ≤ log #Sxy+ log #Syz+ log #Sxz.

4. Prefix Entropy and L2-Inequality

Because of theO(logn) term the inequality of Section 1 is valid for all usual variants
of Kolmogorov complexity (entropy) such as decision entropy, monotone entropy, and
prefix entropy. However, the case of prefix entropy (also called the self-delimiting com-
plexity, see p. 209 of [1]) is somehow special because the logarithmic term may be
omitted:

2K P(〈A, B,C〉) ≤ K P(〈A, B〉)+ K P(〈A,C〉)+ K P(〈B,C〉)+ O(1).

It turns out that this inequality can be proved analytically, using the Cauchy–Schwarz
inequality. Indeed, recall thatK P may be defined as a− log2 P whereP is ana priori
probability on the set of natural numbers. Therefore, we should prove that

P2(〈A, B,C〉) ≥ c · P(〈A, B〉) · P(〈A,C〉) · P(〈B,C〉)
for some positive constantc. Thea priori probability is defined as a maximum enumerable
from below function on natural numbers with a finite sum; therefore it is enough to show
that ∑

A,B,C

√
P(〈A, B〉) · P(〈A,C〉) · P(〈B,C〉) < +∞.

This fact is a consequence of the following inequality which we prefer to write using
integrals instead of sums:∫ ∫ ∫

f (x, y)g(x, z)h(y, z) dx dy dz

≤
(∫ ∫

f 2(x, y) dx dy

)1/2(∫ ∫
g2(x, z) dx dz

)1/2

×
(∫ ∫

h2(x, y) dy dy

)1/2

.
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This is a version of the Cauchy–Schwarz inequality containing threeL2-norms in the
right-hand side instead of two; it can be easily reduced to an ordinary Cauchy–Schwarz
inequality:∫ ∫ ∫

f (x, y)g(x, z)h(y, z) dx dy dz

=
∫ ∫

h(y, z)

(∫
f (x, y)g(x, z) dx

)
dy dz

≤
∫ ∫

h(y, z)

(∫
f 2(x, y) dx

)1/2(∫
g2(x, z) dx

)1/2

dy dz

≤
(∫ ∫

h2(y, z) dy dz

)1/2

×


∫ ∫ (∫

f 2(x, y) dx

)
︸ ︷︷ ︸

ϕ(y)

(∫
g2(x, z) dx

)
︸ ︷︷ ︸

ψ(z)

dy dz


1/2

=
(∫ ∫

h2(y, z) dy dz

)1/2(∫ ∫
ϕ(y)ψ(z) dy dz

)1/2

=
(∫ ∫

h2(y, z) dy dz

)1/2(∫
ϕ(y) dy

∫
ψ(z) dz

)1/2

=
(∫ ∫

h2(y, z) dy dz

)1/2(∫ ∫
f 2(x, y) dx dy

)1/2

×
(∫ ∫

g2(x, z) dx dz

)1/2

.

Thus, the connection between geometrical facts and Kolmogorov complexity works in
both directions.
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