Math. Systems Theorg9, 271-292 (1996) Mathematical

Systems
Theory

© 1996 Springer-Verlag
New York Inc.

Relations Between Varieties of Kolmogorov Complexitie’s

V. A. Uspensky and A. Shef

1 Division of Mathematical Logic and the Theory of Algorithms,

Fakultet of Mechanics and Mathematics, Lomonosov Moscow State University,
V-234 Moscow, GSP-3, 119899 Russia

uspensky@viniti.msk.su

vau@uspensky.ras.ru

2 Laboratory 13, Institute for Problems of Information Transmission,
Ermolovoi 19, K-51 Moscow, GSP-4, 101447 Russia
shen@Iandau.ac.ru

Abstract. There are several sorts of Kolmogorov complexity, better to say several
Kolmogorov complexities: decision complexity, simple complexity, prefix complex-
ity, monotonic complexitya priori complexity. The last three can and the first two
cannot be used for defining randomness of an infinite binary sequence. All those five
versions of Kolmogorov complexity were considered, from a unified point of view,

in a paper by the first author which appeared in Watanabe’s btsgikUpper and

lower bounds for those complexities and also for their differences were announced
in that paper without proofs. (Some of those bounds are mentioned in Section 4.4.5
of [16].) The purpose of this paper (which can be read independentB3)fif to

give proofs for the bounds fron2§].

The terminology used in this paper is somehow nonstandard: we call “Kol-
mogorov entropy” what is usually called “Kolmogorov complexity.” This is a
Moscow tradition suggested by Kolmogorov himself. By this tradition the term
“complexity” relates toany mode of description and “entropy” is the complexity
related to amptimalmode (i.e., to a mode that, roughly speaking, givestimtest
descriptions).

* The research described in this publication was made possible in part by Grant No. MQ3000 from
the International Science Foundation. A preliminary version of this paper appeared in April, 1993, as CWI's
Technical Report CS-R9329 (CWI is the Dutch National Research Institute for Mathematics and Computer
Science). That version was supported by the Netherlands Organization for Scientific Research (NWO). The
second author was also supported by AMS fSU Aid fund and Volkswagen Stiftung.
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1. Introduction

This paper collects various definitions of algorithmic complexity (entropy) and infor-
mation about their relations. All those definitions and facts were giveAdhvjithout
proofs; here the proofs are given. Many of these proofs are well known; nevertheless,
all the proofs are collected here for the reader’s convenience and adapted to the uniform
terminology.

The paper is organized as follows. We start (Sectjonmith the classification of four
entropies (two possibilities for objects combined with two possibilities for descriptions)
which goes back ta]1] and is explained in Sections 1.2 and 1.3 28|

Then in Sectior8 we look at a different classification of entropies which goes back
to [15] and establish the connections between these two classifications mentioned in
Section 1.6 of 23].

Finally, in Section4 we establish some connections between different entropies
mentioned in Sections 2.1 and 2.2 &8].

2. Objects and Descriptions

Any of the four definitions of entropy given in this section follows the same pattern. First,
an appropriate notion of “description mode,” or “mode of description,” is introduced.
Each of the four definitions requires a specific class of description modes. Any description
mode is a binary relatiofe on E (the set of all binary words). Ifx, y) € E, thenx is

called adescriptionof y. When a modeE is fixed, acomplexityof a binary wordy is
defined as the length of its shortest description, i.e.,

Ke(y) = min{|x| | {x,y) € E},

where |x| denotes the length af. Different modes of description lead to different
complexity functionsKg; the basic Solomonoff-Kolmogorov theorem (valid for all
four entropies of this section) states that among all the functions related to the relevant
class of modes there is a minimal one (up to an additive constant). In other words, in
the class of modes there is aptimaldescription modé= such that, for any description
modeF of the same class,

Ke(y) = Ke(y) +C

for some constant and for all wordsy. Finally, entropyis defined aKg for some
optimal description modé&.
Now we use this general scheme for four different cases.

2.1. Simple Kolmogorov Entropy

When defining simple Kolmogorov entropyneode of descriptioff'simple description
mode”) is a binary relatioe C E x E such that, for every, yi, y» in E,

X, y1) eEAX,Y2) eE = yi=VY>.

In other terms, a mode of description is a (partial) function fi@imto . Enumerable
(i.e., recursively enumerable) modes of descriptions correspond to computable functions;
we restrict ourselves to enumerable modes only.
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When a modé¢E is fixed, thecomplexityof a binary wordy is defined as the length
of its shortest description, i.e.,

Ke(y) = min{|x| | (x,y) € E}.

Different modes of description lead to different complexity functidfs; the basic
Solomonoff-Kolmogorov theorem states that among all these functions a minimal one
(up to an additive constant) exists. In other words, there imal description mode

E such that, for any description mode

Ke(y) < Ke(y)+C

for some constar® and for all wordsy.

To construct an optimal mode of description, assume ttha, n) is a universal
computable function (i.e., the famifyn}, whereUn,(x) = U (m, x), contains all com-
putable functions, including partial ones, froehto ). By Z we denote the worad
where each letter is repeated twice. An optimal mode of description may be constructed
as follows:

E = {(p01g,r)[U(p,q) =r}.

Now we fix some optimal description moéeand call the corresponding complexity
function Kg(y) simple Kolmogorov entropyt is denotedK S(y) in what follows, and
the description modes as defined in this section are caked-description modes” or
“simple description modes.”

This definition of simple Kolmogorov entropy appears in Section 1.28&fyhere
the name (=, =)-entropy” or ‘N-entropy” is used. Essentially the same definition is
given in Section 1.3 of43]. Indeed, the ordering on the bunhis trivial (only equal
objects are comparable), therefore conditions 1 ang32(. 89] are always satisfied.
Condition 3 means thd is a graph of a function, and acceptable modes of descriptions
are graphs of computable functions. Therefore, “bunch definitior? @fdoincides with
the one given above (and with the original Kolmogorov definition fraij)]

2.2. Decision Entropy

For the case of decision entropy a description mode (“decision description mode”) is
defined as a (recursively enumerable) Bet E x E satisfying the following require-
ments:

(@) If (x,y1) € E and(X, y») € E, then one of the wordg; andys; is a prefix of
another one.
(b) If (x,y) € E, then(x, y’) € E for all prefixesy’ of y.

It is easy to see that, for any fixed all y’s such that(x, y) € E are prefixes of some
(finite or computable infinite) binary string. So the mode of description may be naturally
considered as a mappirgof E into the set of all finite or computable infinite binary
strings, andx, y) € E means Y is an initial segment oé(x).”

Then decision complexity with respect to a given médis defined as before, and
again the optimal description mode exists. The corresponding complexity function
Ke(y) is calleddecision entropynd is denoted biK D(y).
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Again the Solomonoff—-Kolmogorov theorem is valid for this case. The construction
of the optimal description mode follows. Assume tbidip, g, n) (wherep, q are binary
words and is a natural number) is a computable function with 0-1 values universal for
the class of all computable functio@sx N — {0, 1}. Then the set

{(p01q, r)|ri =U(p,q,i) for alli not exceedingr |}

(by r; we denote théth bit ofr) is an optimal description mode. (This description mode
follows the original construction of decision entropy, séd or [26].)

The above-mentioned requirements (a) and (b) (given as in Section 23] dior
X =B, Y = T) seem natural if we think of a description mode as a computable mapping
in the sense of the Scott—Ershov domain theory (8&¢. [However, requirement (b) may
in fact be omitted (as in Section 1.2 ¢fj]). Then we get a broader class of description
modes and, theoretically speaking, may get a smaller entropy. However, for any binary
relation E satisfying requirement (a) we may consider its exten&an

E' = {(x, y)|y is a prefix of some/’ such thatx, y') € E}.

Itis easy to check that this extension is enumeralieif, thatE’ satisfies both require-
ments (a) and (b), and that the corresponding complexity function does not exceed the
complexity function corresponding .

The decision entropy is callgd, y)-entropy, olN E-entropy in Section 1.2 of[3).

2.3. Monotonic Entropy

Here by the description mode (“monotonic description mode”) we mean a (recursively
enumerable) s€E C E x E satisfying the following requirements (see Section 1.3 of
[23)):

(a) If (x,y) € E, then(x, y') € E for all prefixesy’ of y.

(b) If (x,y) € E, then(X’, y) € E for all X’ havingx as a prefix.

(c) If (x,¥) e Eand(x, y’) € E, then one ofthe wordg, y” is a prefix of another
one.

Then the complexity (for a given mode) is defined in the usual way, as the length of the
shortest description.

The optimal description mode does exist; corresponding complexity is cathed-
tonic entropyand is denoted biK M (y)

Here to prove the existence of an optimal description mode is slightly more difficult
than in the previous cases. The reason is that we should construct the “universal com-
putable mapping” for the family of all “computable monotone mappings” fi®nmto
E. This is explained in the general case (for semantic domaink-spaces) inf1]; a
very detailed description of what happens for the case of monotonic entropy is given in
Sections 3.1 and 3.2 o2{l.

Again, the requirements for the description mode may be weakened. Namely, we
may require only (as in Section 1.2 ¢fj)) that if

(X1, Y1) € E and (xz,y2) € E

and one of the wordsg,, X, is a prefix of another one, then one of the woygandy,
is a prefix of another one.
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It is easy to check that this requirement is a consequence of requirements (a)—(c)
above (we may replace andx, by the longest of them), but not vice versa. However,
if E satisfies the latter requirement, then its exten&odefined as

E' = {(x, y) |[there arex’ < x andy’ > y such thatx’, y') € E}

(here p < q means that a binary worg@ is a prefix of a binary wordj) satisfies
requirements (a)—(c). Using this extension, it is easy to check that both versions of
monotonic entropy definition lead to functions which differ only by a bounded additive
term.

Monotonic entropy is calledy, y)-entropy, org E-entropy, in Section 1.2 oP[].

2.4. Prefix Entropy

Here the requirements for the description mode (“prefix description mode”) are as follows
(see Section 1.3 oP3)):

(@) If (x,y) € E, then(x’, y) € E for anyx’ such thak is a prefix ofx’.
(b) If {x, y1) € Eand(x, y2) € E, theny; = y,.

(As everywhereE is supposed to be recursively enumerable.) They can be replaced by
the weaker requirement (see Section 1.2261) if (x1, y1) € E and(x, y») € E and

X1 is a prefix ofx,, theny; = y,. This requirement, though being weaker, leads to the
same entropy. Indeed, if sonkesatisfies this requirement, then its extension

E' = {(x, y){X', y) € E for somex’ being a prefix ofE}

satisfies both requirements (a) and (b) and gives the same complexity function.

The existence of an optimal description mode may be proved by enumerating all
description modes (in other terms, all “computable mappings” fExmN). Its existence
follows from the general facts about semantic domains (3§4nd can also be proved
directly. We omit this proof because the existence of an optimal mode is a by-product of
the coincidence of the definition given above and the encoding-free definition (see the
next section).

The complexity with respect to an optimal description mode in the sense of this
section is callegbrefix entropyand is denoted b P(x).

2.5. Historical Remarks

The different versions of entropy described above (as well as some other versions) were
invented independently by different people. If we attribute those versions according to
the first publication date, the list would be as follows:

e Simple entropyK S: 1965, Kolmogorov [2, Section 3]; and (even earlier but in
some nebulous form) 1964, Solomondif].

Decision entropyK D: 1969, Loveland17].

A priori entropyK A (see below): 1973, Levin (se&q, no. 3.3] and 13)).
Monotonic entropyK M: 1973, Levin [L3].

Prefix entropyK P: 1974, Levin [L4], see also{].
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Some other historical remarks:

e In 1966 Chaitin published his papé&[where a complexity measure was defined
in terms of Turing machine parameters. This definition, however, does not provide
the optimal complexity measure, which appeared in a subsequent paper published
in 1969 []. (According to [L€], p. 86, those papers were submitted in October
1965 and November 1965, respectively.) In a publication of 1975 Chaitin also
reinvented the prefix entropy (se§)l See also}] and [6].

In [7] Chaitin writes: “I have been the main intellectual driving force behind
both AIT; and AIT,.” As to AlT; and AlT,, in [7] there is a declaration that
Algorithmic Information Theory “appeared in two installments,” akd,, AlT,
stand for those installments. Here is the opinion of one of the leading experts
in the field: “Chaitin has done more than others to popularize some aspects of
algorithmic information theory. The benefits of this activity are offset by his
somewhat narrow interests. .) and the way he ascribes all major achievements
to himself” [10].

e In 1964 Markov, Jr. 18], proposed a complexity measure similar to decision
entropy. It was based on so-called “normal algorithms.” However, his definition
did not provide an optimal complexity measure.

e Monotonic entropy was defined (in its present form) in Levin’s pap@rtpgether
with the characterization of randomness in terms of that entropy. At the same time
Schnorr [L9] independently provided a similar characterization, but his notion of
entropy (“process complexity” according to Schnorr) was slightly different. Later
Schnorr R0] discarded his notion and used the same notion of monotonic entropy
as given in Levin's paper.

The complete account of the history of different notions related to Kolmogorov
complexity may be found in the recently published monogrdth [

3. Encoding-Free Definitions

3.1. Simple Kolmogorov Entropy

The simple Kolmogorov entropy can be characterized as a minimal (up to a constant)
enumerable from above functiolt € — N U {oo} satisfying the following condition
(which, in an equivalent form, is callg€B) in Section 1.5 of 23]):

e There is at most2differenty such thatf (y) = n.

(A function f: E — NU{oo} is calledenumerable from abovtthe set of all pairs
(X, n) such than > f (x) is recursively enumerable.)

Remark. If we replace 2 by C - 2" (see condition’) in Section 1.5 of 23]) we get
the same (up to a constant) entro@y:2" = 2+1°9C therefore this facto€ corresponds
to an additive constant in the exponent. We may also replacg)“= n"by“ f (y) < n”;

if there is at most 2 objectsy such thatf (y) = n, then the number of objecissuch
that f(y) < ndoesnotexceed+2+..-+2" <2.2".
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To prove this characterization of simple Kolmogorov entropy (as defined in Sec-
tion 2.1) we should prove that:

e A simple Kolmogorov entropy functioK S(x) satisfies this condition.

e For any enumerable from above functidnsatisfying this condition a simple
description modé= can be constructed such that the complexity function corre-
sponding toE exceedsf by not more than a constant.

The first claim is trivial: different objects have different descriptions, and objects
such thatK S(y) = n have descriptions of lengtih Therefore, the number of thogés
does not exceed the total number of descriptions having lengté., 2.

The second claim is also simple. We reserve words of lendthbe descriptions
of objectsy such thatf (y) < n. The total number of these objects does not exceed
142+ 421 < 2" therefore we cannot exhaust all reserved words. The function
f is by assumption enumerable from above. Thus, the set of all pairs such that
f (y) < nisenumerable. When a new p&yt, n) appears during the enumeration process,
we allocate one of the unused worlsf lengthn to be a description of. The setE of
all pairs(e, y) generated in this way is enumerablieis a function graph (because each
emay be allocated only once), therefoEeis a simple description mode. Evidently, the
corresponding complexity function does not excded 1.

A by-product of this argument is the existence of a minimal (up to an additive
constant) enumerable from above function satisfying our condition.

3.2. Decision Entropy

To get the characterization of decision entrdip we should look for the minimal (up
to a constant) functiori: & — N U {oo} which is enumerable from above and satisfies
the following condition:

e If M is a finite set of incomparable words (there is no wordMnwhich is a
prefix of another word irM) andM ¢ f~1(n), then the cardinality oM does
not exceed 2

(The equivalent condition is calle@T) in [23]). As in the previous section, to prove
this characterization we should prove that:

e A decision entropy functio D (x) satisfies this condition.

e For any enumerable from above functiérsatisfying this condition, a decision
description modé= can be constructed such that the complexity function corre-
sponding toE exceedsf by not more than a constant.

We start with the first claim. Assume thislt is prefix-free (no word irM is a prefix
of another one M) set of words having decision entropy That means that all these
words have descriptions of length All these descriptions must be different (otherwise
the conditions for the description mode are violated). Thus, the number of descriptions
(and the cardinality oM) does not exceed'2

Now consider the second claim. As well as in the previous section we reserve words
of lengthn to be descriptions of objecissuch thatf (y) < n. Now the total number of
objectsy suchthatf (y) = nisnotlimited; however, any subset of pairwise incomparable
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y's such thatf (y) = n has cardinality not greater that &wo words arecomparable

if one of them is a prefix of another one). Therefore, any set of pairwise incomparable
objects withf -values less than contains no more than#.2+ - . . +2"1 < 2" objects.

The functionf is by assumption enumerable from above. Thus, the set of all yain$

such thatf (y) < nis enumerable. Assume that a new p@airn) appears during the
enumeration process. For each already allocated descriptiom look at the longest
objectz(e) in the set of all objects havingas a description. (All other objects in this
set will be prefixes of the longest one.) If any of these obje@sis comparable with

y, then the correspondingis declared to be a description gf If not, we allocate a

new description foly. (There is a free description becausezal) together withy are
incomparable and therefore the number of useds less than 2) The set of all pairs

(e, y) generated in this way is an enumerable decision description mode (i.e., satisfies
the conditions of Sectiofi.2). Evidently, the corresponding complexity function does
not exceedf + 1.

3.3. A Priori Entropy

In the case of monotonic entropy, situations differs: monotonic entropy has no exact
characterization of the same type as in Secidhand3.2. However, it is connected
closely with another complexity measure, caledriori probability. We reproduce its
original definition from Section 3 offg], where itis called a “universal semicomputable
measure.” (This notion is discussed in details in Chapter \24f)

A semimeasurén this section!) is a functiom defined orE with nonnegative real
values satisfying the following conditions:

e m(A) =1 (hereA denotes an empty word).
e M(X0) + m(x1) < m(x) for any wordx.

A semimeasure is calleshumerable from belovfithe set of all pairgx, r) such that
is a rational number less thamx) is enumerable. There is a maximal (up to a constant
factor) enumerable from below semimeashtéx) calleda priori probability (see p4]).
Its logarithm is calledh priori entropyand is denoted bi< A.

Another definition ofa priori entropy is given in Section 1.5 o2§]. Namely,a
priori entropy is defined there under the namedf-entropy as a minimal enumerable
from above functionf: E — N U {oo} such that

(TT) Z 27T <1 forany finite prefix-free setM c
yeM

(“prefix-free” means that no word iM is a prefix of another word iv).
We explain shortly why these two definitions are equivalent. The mainrole is played
by the following two facts:

o If m(x) is asemimeasure, thdrik) = [minimalk suchthat 2¥ < m(x)] satisfies
the condition ET).

o If a function f satisfies the conditionXT), then the functiom(x) defined as
maxd_,.p 2~ '™, where maximum is taken over all finite prefix-free sBtsuch
thatx is a prefix of each word i, is a semimeasure. (Technically speaking, we
should also change the valuerafon A and assume that(A) = 1.)
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These facts establish an approximate (up to a factor of 2) correspondence between
semimeasures and functions satisfying the condiiinwhich preserves enumerability
and allows us to prove the coincidence mentioned above.

There is one more assertion concerning the definitioam mfiori entropy using the
(XT) condition. It is called “Muchnik’s theorem” on p. 93 ofJ]. It can be stated as
follows. Assume that functiog is defined on binary words and al(x) are real numbers
between 0 and 1. We consider any binary waerds a vertex in a complete binary tree
and ¢(x) as its label. Assume that, for ea€h we can find a finite set of pairwise
incomparable words with the sum of labels exceedin@hen an infinite set of pairwise
incomparable words with an infinite sum of labels exists.

The scheme of the proof is as follows. For each binary wo(dach vertex of the
tree) consider all set® of pairwise incomparable words havingas a prefix. For each
D compute the sum of all labels of vertices frdnand take a supremum over &lls;
this supremum (finite or infinite) depends wnWe call a vertexbadif that supremum
is infinite. By assumption, the tree root is bad. We should find an infinite set of pairwise
incomparable words with an infinite sum of labels. Bad vertices form a subtree in the
full binary tree; this subtree has no leavesx(is bad, at least one of the wordé and
x1 is bad). Now we consider two cases:

e There is a bad vertex such that its bad descendants form a path (any two bad
descendants of are comparable).
e For any bad vertex there are two incomparable bad descendanis of

In both cases it is possible to find the required infinite set of vertices with an infinite sum
of labels.

3.4. Prefix Entropy

The prefix entropy with its encoding-free definition given in this section is probably the
most technically interesting among all the four entropies. It is discussed in detailjin |
however, an English translation of this paper has not been published yet, so we try to
give a self-contained description of what happened in this case.

We start with the another definition of a semimeasure. The corresponding notion
differs from the notion of semimeasure used in the previous section. The underlying
reason for this difference is that in the previous section binary words were considered
as vertices of a binary tree; now this structure is ignored and all the word are “placed on
the same level,” s& is treated not as a tree but as a “bunch.”

In this section &emimeasurs a (total) functiorm defined on the s of all binary
words with nonnegative real values such thatm(x) < 1.

A semimeasuren is calledenumerable from belofithe set of all pairgx, r) such
thatr is a rational number less tham(x) is enumerable.

Enumerable from below semimeasures correspond to probabilistic machines which
have no input but have an output where a binary word may appear (after it appears, the
machine terminates). Namely:

e If M is a probabilistic machine of this type, the functiBf) (y) = the probability
of the event “machin® stops with outpuy” is a semimeasure enumerable from
below.
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e For any semimeasura enumerable from below a probabilistic machiecan
be constructed such that(x) = Py, (x) for all x.

Thefirstclaim is almost evident. Indeed, the shim Py, (X) is the probability of the event
“machineM stops” and therefore does not exceed 1. FuncBfjnis also enumerable
from below: trying to emulate the computation processvbfor all possible random
bits, we get more and more cases where the output is known and therefore may generate
the lower bounds foPy; ().

Now we proceed to the second claim. We give only a sketch of a proof. Assume that
a semimeasuna(x) enumerable from below is given and we are looking at the process
of enumeration of all rational lower bounds for al(x). Assume thain(x) is a current
lower bound fom(x) at thekth step. We may assume that for e&ctihe valuemy(x)
differs from 0 only for finitely manyx’s, that my(x) increases wheR increases and
converges tan(x). Our probabilistic space is the set of all infinite 0-1 sequences. At
stepk we allocate the part of it having measung(x) to the outpui; this part increases
whenk andmy(x) increase. (End of sketch.)

There is an enumerable from below semimeaduie) which is maximal in the
following sense: for any enumerable from below semimeas\rg there is a constant
¢ such tham(x) < e- M(x) for all wordsx.

This fact can be proved as follows: enumerate all probabilistic machines and con-
struct a “universal” machine which chooses a natural nurmbérandom (probabilities
pi to choose are assumed to be positive) and then simulatestthmachine. Ifm; is a
semimeasure corresponding to ttie machine and/ is a semimeasure corresponding
to the universal machine, thvi(x) > p; - mj(x). Therefore M is maximal.

Semimeasures are connected with functibnsE — N U {oco} satisfying the fol-
lowing condition:

(=B) Y 27'™<1
X

Namely:

e If f isafunction satisfying conditiors{B), thenm(x) = 2~ '® is a semimeasure.
o If mis a semimeasure, then the functibfx) = minimalk such that 2¥ < m(x)
satisfies conditionXB).

Therefore we can go back and forth between semimeasures and functions satisfying
condition (ZB) and for the round-trip we pay at most factor 2 (or additive constant 1).

It is easy to see that enumerable from below semimeasures correspond to enumerable
from above functions. Therefore, the existence of a maximal enumerable from below
semimeasurdM (x) implies the existence of a minimal enumerable from above func-
tion satisfying £B) and this function coincides witk-log, M (x) up to an additive
constant.

It turns out that the minimal function from the preceding paragraph (or loga-
rithm of the maximal semimeasure) coincides with prefix entropy. So prefix entropy
may be defined as minimal enumerable from above function f satisfying condition
(EB).
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To prove this coincidence we should prove two assertions:

e Forany prefix description modethe corresponding complexity function Corapl
satisfies conditionXB) and is recursively enumerable from above.

o Ifarecursively enumerable from above functibsatisfies condition{B), then a
prefix description mod& exists such that the corresponding complexity function
Compk exceedsf not more than by a constant.

The first assertion is almost trivial. M = {my, ..., m¢} is a finite set of words and

e, ..., & are their descriptions, them are pairwise incomparable. Therefore, the cor-
responding intervals in the Cantor space (of all infinite 0—1 sequences) do not overlap
and the total measure. 2~® does not exceed 1. Therefore, conditi®@B)) is fulfilled.

The main role in the proof of the second assertion is played by the following con-
struction. Consider the segment [ divided into two equal parts [(%] and [%, 1],
each part is divided into two equal parts, etc. At ldveve have # parts of length 2%
each. Assume that we get a sequence of natural numbegns, ... and each number
s of this sequence is considered as a request to allocate a segment af (ewel of
the 2 segments of length2). The segments allocated by different requests should not
overlap.

Of course, this goal may be achieved onlyif; 2™ < 1. It turns out that this
condition is not only necessary but also sufficient. The simple allocation algorithm
maintains the following invariant relation: all free space is represented as a union of
nonoverlapping segments which belong to different levels (two segments of the same
length should not appear in this union). The following allocation algorithm maintains
this relation: if a segment of the required length is present in this union, allocate it; if
not, take the smallest segment in the union whose length is sufficient and cut it into half
+ quarter+ - - - until a segment of required length appears.

This construction allows us to finish the proof of the second assertion. Assume that
f is an enumerable from above function satisfying condit®dB). Consider the se$ of
all pairs(x, k) such thak > f (x). The setSis enumerable. If we add up alt2for all
pairs(x, k) € S, the sum does not exceed 1. Indeed, when we group all paik$ € S
with the samex we get

27f(X)71 + 27f(X)72 + 27f(X)73 4. < 27f(X)

and the suny_, 2~ does not exceed 1.

Now each pairx, k) € Swill be considered as a request to allocate a segment of
length 2°%. These requests can be fulfilled (see the discussion above). Segments of level
k may be indexed bk-bit 0—1 words in a natural way; allocating the segment with index
e according to the requesx, k) € S, we declaree to be a description of the objext
The allocated segments do not overlap, therefore the descriptions of different objects are
incomparable and the requirement of Sectiofi(in its weakened form) is fulfilled. It
is easy to see also that the minimal length of a description of an abjisct (x) + 1;
therefore, the complexity function exceefldy not more than 1.

This argument also implies that there is an optimal description mode (i.e., a descrip-
tion mode corresponding to the minimal functiénwhich in its turn corresponds to a
maximal semimeasure).
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4. Inequalities between Entropies

4.1. Entropies Pentagon

Four entropies form a diamond:

KP

KS KM

KD

It is easy to see that restrictions for description modes become weaker when we go
down along the sides of this parallelogram: each prefix description mode is a monotonic
description mode and at the same time a simple description mode, etc. Weaker restrictions
correspond to broader classes of description modes, so the entropy (defined as a minimum
taken over all description modes) may only decrease. We shall see later that entropies
do decrease when we go down.

So we get a picture where vertices correspond to entropies and edges correspond to
inequalities between entropies. The entrép (a priori entropy) may be added to this
picture:

prefix entropy
KP

monotonic entropy

simple entropy KM

KS o
a priori entropy

KA

decision entropy
KD
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Indeed,

e decision entropy does not exceggriori entropy;
e a priori entropy does not exceed monotonic entropy.

We check that:

First, decision entropy may be defined as a smallest function satisfying the condition
of Section3.2. That condition is weaker than the similar condition &priori entropy
in Section3.3—therefore, decision entropy does not excagqatiori entropy.

Second, we should prove theapriori entropy does not exceed monotonic entropy.
This is explained in detail in4], see Section 5.3; here we give only a short comment.
Assume that we have an optimal monotonic description ntodé semimeasuren(z)
can be defined as follows. Consider theRgeof all infinite sequences = wpw; . . . such
that E contains a paitx, y) such thak is a prefix ofw andz is a prefix ofy. Definem(z)
as a uniform Bernoulli measure of the $&t It is easy to see thah is a semimeasure in
the sense of Sectigh3and thatm(z) > 2-XM®@ whereK M is a complexity function
corresponding to description moée

In fact both inequalities mentioned above are strict: the difference between decision
entropy and priori entropy (as well as betweerpriori entropy and monotonic entropy)
is unbounded, see below.

4.2. Entropies and Lengths

Any of the entropieK S(x), KM (x), KA(x), KD(x) does not exceetk| + C for
some constant. (Indeed, we may consider a description méde- {(x, X) | X € E}.)

This upper bound cannot be improved significantly; we Ha&(x) > |x| for infinitely
manyx’s. (K D is the smallest of the four entropies mentioned, so itis also true for other
entropies.) Indeed, consider all the wosdsf a given lengtm. They are incomparable,
therefore theilK D descriptions should be different. If all these descriptions have length
smaller tham, the total number of descriptions does not exceed

1424448+ 42" =2"_12"

—too few to provide descriptions for aitbit words.
For prefix entropy the situation is more difficult. Consider the following divergent
series (all logarithms are binary; we ignore the difficulties with log/ofj 1, etc.):

1 1 1
Zﬁ’ anogn’ anognloglognm'

At the same time the series

1 1 1
2 nite’ 2 n(logn)t+e’ 2 nlogn(loglogn)*+s

converge. Let us see how these series provide upper and lower bounds foKgpefre
inequalities (2) and (3) on p. 99 iAf]). Enumerate all binary words in the lexicographic
order (empty, 0, 1, 00, 01, 10, 11, etc.) and identify each word with its number. The series

1
> i
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converges. Therefore function— 1/n** is a semimeasure (in the sense of Sectigh

when multiplied by some constant (to make the sum not exceed 1). Therefore, the
prefix entropy ofn (i.e., prefix entropy of binary word numbe) does not exceed
1+ ¢)logn 4+ O(1). SoK P(x) does not exceedl + ¢)|x| + O(1). The convergent
series

1 1
Z n(logn)i+e’ Z nlogn(loglogn)+s
provide the upper bounds
KP(X) < |x|+ (1+¢)log|x|, KP(x) < |x| +log|x| + (1+ ¢)loglog|x|,

etc.

Now for the lower bounds. All of them angeaklower bounds, i.e., lower bounds
valid for infinitely many arguments but not necessarily for all the arguments. Assume,
for instance, that the (weak) lower bound

KP(y) > |y| + logly| for infinitely manyy'’s
is notvalid. Then for ally (except a finite number of's) we have
KP(y) <yl +loglyl

and, therefore,

2—KP(y) _ o=(lyl+loglyh

Summing over ally’s, we see that the left-hand side series converge (see Séctipn
therefore, the right-hand side series should converge also. However, recalling that a
binary wordy is identified with its numben (which is of the same order a®'2 we
recognize the series

1
anogn

in the right-hand side.
Similar arguments can be used to prove stronger lower bounds:

KP(y) > |y| + log|y| + loglog|yl,
KP(y) > |yl + log|y| + loglog|y| + log log log|y|,

etc. (valid for infinitely manyy’s).

The upper bound foK P(x) can be explained also in a more explicit way. The
description mode “each binary word is a description of itself” is valid for simple Kol-
mogorov entropy (or monotonic entropy, or decision entropy) but is not valid for prefix
entropy (i.e.K P), because the description mode in this case should be prefix-free: the
descriptions of different objects should not be prefixes of each other. We can obtain a
prefix-free description if we consider the word

binary representation ¢k|01x
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as a description of. Herez denotes the wordwhere each letter is repeated twice. This
encoding is prefix-free, because the position of the 01-group is determined uniquely, and
therefore we may reconstruct the lengthxofThis encoding leads to an upper bound

KP(x) < x| +2log|x| + O(1)

and we can repeat the trick: the encoding

b.r. of [b.r. of [x| | 01(b.r. of |x|)x
(b.r. stands for “binary representation”) leads to an upper bound
KP(x) < |x] + log|x| + 2loglog|x| + O(1).

This trick can be iterated.

4.3. Differences Between Entropies
The similar (though a little more subtle) considerations allow us to establish bounds for
differences of entropies (stated in Section 2.2a3).

4.3.1. KP — KD: Upper Bound We start with the boun# P(y) — KD(y). Assume
that)_ g, in one of the convergent series mentioned above. We should prove that
KP(y) < KD(y) +logly| + (= logqy) + O(1)

or, in other words (recall the encoding-free definitionkoP in Section3.4), that the
series

1
S 2Kew.
v Ay

converges. We classify ajl according to two integer parameters: its lengthnd its
K D-entropyk. It is easy to see that the numberys$ of lengthn and entropyk does
not exceed 2 each of them contributes

1
2%~
to the sum; so alh-k elements contribute at most
1
ﬁ *On

(for anyk). Now we sum oven andk; summing ovek we consider onlk not exceeding
n+ O(1) (becaus&K D(y) < |y|+ O(1)), therefore, summing ové&rmeans multiplying
by n+ O(1) and the sum does not exce®dl) - g,. It remains to recall tha} _ g, < oo.

4.3.2. KP — KD: Lower Bound The corresponding lower bound states thatiify,
is one of the divergent series mentioned above, then

KP(y) > KD(y) +logly| + (= logqyy) + O(D).

for infinitely manyn.
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To prove it, it is enough to prove that the series

1
S 27Kow . — .
v Ayl

diverges. Consider the decision description mode whkesea description of all words

x10...0. Consider the sef, x of all words of lengthn having this form for some

of lengthk (assuming thak < n). All words from A, x have decision complexity not

exceeding; the total number of words i\, i is 2¢. They contribute to the sum at least

w1 On
Kook Z g, = 2
n =7

summing ovek first, we get the sun}_ g, = +oo.

4.3.3. KS— KA, KS— KM: Upper Bounds Now we consider another difference
(see paragraph (2) on p. 100 @fj) and prove that

KS(y) — KA(y) < logly| + O(1)
(all logarithms are binary logarithms). In other words, we should prove that
KS(y) < KA(y) +log|y| + O(1).

According to the encoding-free definition KfS (Section3.1) it is enough to show that
the set

Y = {y|IKA(y) +logly| < n}

containsO(2") elements: ¥ = O(2"). The setY is prefix-closed (all prefixes of an
element ofY belong toY too); in other wordsy is a subtree of the complete binary
tree. We consider the s¥t of all leaves of this subtree, i.e., all maximal element¥ of
(having no continuations ix). Each element of is a prefix of some maximal element,
and it is easy to see that

#Y <Yyl

yey’
(each elemeny has|y| prefixes). For any elemente Y’ we have
K A(y) + logly| < n,
or
KA(y) <n—loglyl,
or

—K A(Y) |y|
2 y > F

All elementsy € Y’ are incomparable, therefore
Y2 KAY <o)

yeY’
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and, consequently,
> '2%' <0
yeY’
and we get the upper bound ¢ |y| that we need.

4.3.4. KS— KA, KS— KM: Lower Bounds To obtain the matching (weak) lower
bound, consider the sequence(f zeros). We have

KAQ") = O(1), KM@Y =0, and KSO") = KSn)+ O(l)

(we identifyn and thenth binary word as before). It remains to prove tKe&(n) > log, n
for infinitely manyn which could be done by an easy counting argument (see above).

435 KA—KS KM —KS, KP —KS: Upper Bounds Next differences (see para-
graph (3) onp. 100 oif3]) areK M (y) — K S(y) andK A(y) — K S(y). The upper bounds
follow from the following upper bound foK P(y) — K S(y) (mentioned on p. 101 of
[23)): assume tha} _ g, is any of the convergent series considered above; then

KP(y) = KS(y) + (- logqy)).
According to the encoding-free definition KfP (Section3.4), we should prove that

Z 2—K5(y)q‘y| < Q.

We consider all terms witK S(y) = k; the number of such terms is abotit 8ach term
is 27%qy. We may replacey, by gk because is monotone and becauke= K S(y)
does not exceefl/| (up to a constant, as usual). Then we get the Sumy which is
finite by our assumption.

43.6. KA—KS KM —KS, KP — KS: Lower Bounds To get the complementary
lower bound forK A(y) — K S(y) we start with the bound foK P(y) — K S(y) (it is
easier, becaud¢ A < KP). Assume tha _ g; is any of the divergent series mentioned
above. We prove that

KP(y) — KS(y) > —logqyy

for infinitely manyy. Indeed K S(y) < |y| (we ignoreO(1) terms) and, as we have seen
before,

KP(y) > |yl +logqy

for infinitely manyy. Now we show how to transform a lower bound foP — K Sinto a
lower bound forlK A— K S. For any binary word consider the binary wor{x) = X01.
All words t(x) are incomparable. It is easy to show thaM (t(x)) = KAt (X)) =
KP(t(x)) (up to O(1) terms). Indeed, these wortex) form a “bunch embedded into
atree” (see SectioB.4). It is also easy to see th&tS(t(x)) = K S(x). Now the lower
bound forK P — K Scan be rewritten as

KA(t(y) — KS(t(y)) = —logqgy),

and it remains to mention thity) is only twice as long as so it does not matter whether
we haveqy;(y) or gy under the logarithm.
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4.3.7. KM — KD, KA — KD: Upper Bounds Now we prove the upper bound for
KM (y) — KD(y) (and therefore foK A(y) — K D(y)). When definingk D(y) we used

an optimal description modé which may be considered as a “computable mapping”
of typeN — E in the sense of the Scott—Ershov domain theory (lerga tree, i.e., a
domain where binary words are ordered by a relation “to be a prefix,Naisch bunch,

i.e., a domain where all binary words lie on the same level). Now an optimal prefix
description modé- (corresponding to the prefix entrop§/P) may also be considered

as a “computable mapping” of tyfe — N. So we get a diagram

-~ F G
E—>N->E

with two description modes. Their compositihis a mapping of type&& — E and is
a monotone description mode, or, if you do not like references to domain theory, just
consider a set

H = {(X,2) | Iy((X, y) € F and{y, z) € G}.

Therefore, theK M-entropy of somey € E does not exceed thi€ P-entropy of the
shortesiG-descriptionz of an objecty:

KM(y) < KP(2+ 0O(1) and |z = KD(y).
Now the inequality for the prefix entropy, e.g.,

KP(2) < |zl +log|z| + (1 + ¢) loglog|z| + O(1),
can be applied to get

KM(y)

IA

|z] +log|z| + (1 + &) loglog|z| + O(1)
= KD(y) + logK D(y) + (1 + &) loglogK D(y) + O(1)
KD(y) + loglyl + (1 + ¢) loglog|y| + O(1)

A

(the last step uses thigtD (y) does not exceel|). More elaborate inequalities for prefix
entropy may be used in the same way, and we get
KM(y) = KD(y) +log|y| + loglog|y| + (1 + ¢) logloglogly| + O(1),
KM(y) < KD(y) +log|y| + loglog|y| +loglog log|y|
+ (1+¢)loglogloglogly| + O(1),

etc.

Remark. Replacinginthe diagram above, the rightmost sjibg N we get the upper
bound for the differenc& P(y) — K S(y) that we have already proved.

4.3.8. KM — KD, KA— KD: Lower Bounds The lower bound foK A— KD (and
therefore folk M — K D) can be obtained from the lower bound #6P — K Smentioned
above. Indeed,

KP(y) — KS(y) = KA(t(y)) — KD(t(y)) + O
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(heret is an embedding of the bunch into a tree explained above). In this way we obtain
(weak) lower bounds like

KA(y) > KD(y) + loglyl,
KA(y) > KD(y) + log|y| + log log|y|,
etc.
4.3.9. KS—KD: UpperBound Assume that a decision description mddis used to

defineK D. Construct a simple description mo@eas follows: ifx is anF-description
of y, then

binary representation ¢f|01x
is aG-description ofy. Therefore,
KS(y) < KD(y) +2logly| + O(1).

Iterating the trick (using the binary representation of the length of the binary represen-
tation ofy, etc.) we get stronger inequalities of that sort:

KS(y) < KD(y) + log|y| + 2loglogly| + O(1),
KS(y) < KD(y) +log|y| + loglog|y| + 2logloglogly| + O(1),

etc.

4.3.10. KS— KD: Lower Bound We prove that

K S(y) > KD(y) + log|y| + loglog|y|

for infinitely manyy’s (the proof of the lower bound with more logarithms is similar).
As usual, assume that itiet valid, i.e., that

KS(y) < KD(y) + logly| + log log|y|
for almost ally. We takey’s of the formx10/ ~* and get

KS(x10'™Y) < |x| + log(|x| + j) + loglog(|x| + j).

Now we should count all pair&, j) where the right-hand side does not exceed some
n and see that the number of such pairadas O(2"). (This would be a contradiction,
because different pairs correspond to different words.) We restrict ourselxesntbj

such that

n

IX| <n and nfjs—z.
n

In this case we may replace 08| + j) by logj (ignoring an additive constant) and
obtain a sum

2 /n2 2n/n? ) ) 2n/n?
> " #{x|logj +loglogj + x| < n}~ ) 2negi-loglos 2”/
n

j=n j=n

dj
jlog]

s

the integral tends to infinity whem — oo.
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4.3.11. KP—KA, KP—K M:UpperBounds Assume thaty, is one of the convergent
series considered above. We prove that

KP(y) < KA(y) + (—log, gy)).
According to the encoding-free definition KfP (Section3.4), it is enough to prove that

2 KAWHoG ay — g 2 KAY)

is finite. Indeed, if we consider the sum overy of a given lengtm, we getg, - O(1)
(thesey’s are incomparable), and the serjes, is convergent.

The upper bound foK P — KM follows from the upper bound foK P — KA
becauséK M is bigger thatk A.

4.3.12. KP—KA, KP—-KM:LowerBounds The (weak) lowerboundfdf P—K A

is a consequence of the lower bound FoP — K M which in its turn is a consequence
of the lower bound foK P(y) — |y| because&K M(y) < |y| + O(1). The lower bound
for KP(y) — |y| is established in Sectioh2.

4.3.13. KM — K A: Upper and Lower Bounds This difference is of special interest.

The very fact that these entropies differ by more than a bounded additive term is dis-
appointing. This fact was discovered by& P]. (The Hungarian surname ‘488" is
pronounced approximately as English “garch.”) In his paper he considered sequences of
natural numbers instead of binary words, and the bounds become much weaker if we
restrict ourselves to binary words. As he writes: “Therefore for binary strings, the lower
bound obtainable from the proof of Theorem 1.1 is only the inverse of some version
of Ackermann’s function” 9, p. 75]. As is known, Ackermann’s function is a function
with natural arguments and values growing faster than any primitive recursive function.
Its inversef ! (defined asf ~(a) = min{z: f(z) > a}), therefore grows extremely
slowly. G&sz’s proof is rather technical. Here is a quotation franj:[

Formulation. For any functionp( ) let us defineh(j, t, ¢) by the following
recursion:

h(@,t, ¢) =t,
h(j +1t,9) = o(h(j,t, 9)).
Thus,h(j, t, ) is essentially thg -fold iteration ofp. Now we define
tG,r) =12 2%2logi + 8)7,
fko,r =r,
4G + 1,r) = h(t“d, r), Mlogtka, r)1, sk, s)).

Let
L(k) = 2%, F(k) = L(k) log f*(L(k), 3).

Then, for large enough, there is a binary string of length< n with

KMx) — KAX) > F1(n)/2.
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(In the last line notation is changed because&ises another notation: idsn is our
KM, hisKM is ourK A.)

As to upper bounds, the authors know nothing except the trivial consequences of
boundsfoK M —K D or K P—K A. The gap between upper and lower bounds, therefore,
is rather big, and it may be interesting to find tighter bounds.
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