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Algoritmic randomness

I Algorithmic randomness = incompressibility

I n-bit string x is random if C (x) ≈ n

I Randomness deficiency for n-bit string:
d(x) = n − C (x)

I Version: d ′(x) = n − C (x |n);
|d − d ′| = O(log d)

I Most strings of length n are random: the
fraction of strings of deficiency > k is about
2−k .
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Algoritmic independence

I Two random (incompressible) strings can be
dependent

I General notion of independence I (x : y) ≈ 0
I I (x : y) = C (x)− C (x |y) measure how useful y

is in describing x
I Special case of incompressible n-bit strings:

d(x |y) = n − C (x |y) and d(y |x) = n − C (y |x)
are small

I Another measure of dependence:
d(x , y) = 2n − C (x , y).

I Relation: d(x , y) ≈ d(x) + d(y |x) (folklore
enhancement of Kolmogorov–Levin symmetry of
information)
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Sets of pairwise independent strings

I x1, . . . , xN are n-bit strings

I each xi is random and each pair xi , xj is
independent: d(xi |xj) ≤ D [d(xi , xj) ≤ D]

I How large N could be?

I answer: N = 2D+O(log D) (for both versions)

I Lower bound: choose xi sequentially, each xi has
small d(xi |xj) for all j < i .

I the existence is guaranteed since each xi

disables about 2n−D strings

I Problem: what about d(xj |xi)?

I Solution: use only strings with randomness
deficiency O(1).
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Sets of pairwise independent strings: upper bound

I If x and y have a common prefix of length m,
then d(x |y) ≥ m − O(log m)

I So if x1, . . . , xN are pairwise independent, then
their D + O(log D) bit prefixes are different

I so N ≤ 2D+O(log D).

Remark: Lower bound is a kind of generalization of
Gilbert bound in coding theory: there we look for
strings that have large Hamming distance, now we
require more: information distance. (Small
Hamming distance ⇒ dependence).
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t-wise independence

I Fix some t (say, t = 3).
I Looking for n-bit strings x1, . . . , xN such that

any t of them are (almost) independent
I d(xi |xj , xk) = n − C (xi |xj , xk) ≤ D for all i , j , k

(different)
I d(xi , xj , xk) = 3n − C (xi , xj , xk) ≤ D for all

i , j , k (different)
I the second condition may be a bit stronger
I how large N could be?
I answer: N = 2D/(t−1)+O(log D).
I (t = 2 gives the previous result)
I both arguments (for lower and upper bounds)

do not work anymore
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t-wise independence: lower bound

I Take x1, . . . , xN randomly with N = 2D/(t−1)

I with positive probability they are independent?

I no (let t = 3): for given xi , xj , xk the probability
of d(xi , xj , xk) > D is 2−D and there are N3 (not
N2) triples.

I this would give 2D/t lower bound

I for given i the probability of the event

∃j∃k[i , j , k are different, d(xi , xj , xk) > D]

is at most 1/2.

I the expected number of bad i is at most N/2:
delete them
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t-wise independence: upper bound

I now same prefixes are not enough
I but we have three strings instead of two; if

xi , xj , xk have prefixes pi , pj , pk such that
ϕ(pi , pj) = pk for some simple function, this is
enough for us

I combinatorial question: given a set A, find a
function ϕ : A× A→ A such that
for all sufficiently large B ⊂ A there exist three
different elements b1, b2, b3 ∈ B such that
ϕ(b1, b2) = b3

I “sufficiently large”: a bit larger that
√

#A
I existence: probabilistic argument
I existence of a simple ϕ: exhaustive search
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