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Probabilistic proofs of existence

I If an event has a positive probability, it sometimes happens

I If a random variable has an expectation greater than c, it is
sometimes greater than c
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An example: MAX-CUT

I G = (V ,E ) is given

I coloring: a mapping V → {black,white}
I multicolor edge: endpoints have different colors

I theorem: every graph has a coloring with at least #E/2
multicolor edges

I proof: the expected number of multicolor edge for a random
coloring is #E/2 (every edge has probability 1/2).

I here derandomisation is trivial: adding a vertex choose the
color to maximize the number of multicolor edges

I Digression: approximating MAX-CUT (maximal number of
multicolor edges) is NP-hard

I Similar argument: every 3-CNF has an assignment that
satisfies at least 7/8 of all clauses
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One more example: robot in a maze

I A labyrinth is drawn in a rectangle (walls go between cells, no
exit, connected)

I robot is placed inside the maze

I instructions: up/down/left/right

I if not possible (due to the wall), skip it

I Theorem: for every board size there exists a sequence that
guarantees that the robot visits all cells (independent of the
maze and initial position).
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Random program does the job

I Let N be the length of the maximal traversing sequence (for
given board size)

I N-step random program works with probaibility at least 4−N

I kN-step random program does not work with probability at
most (1− 4−N)k

I if k is large enough, this probability is less than 1 even
multiplied by the number of possible mazes and initial
positions (the latter does not depend on k)

I for this k a random program of length kN with positive
probability works for all mazes and initial positions
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Box dimensions

I A rectangular box is allowed if the sum of dimensions does not
exceed the threshold: w + l + h < M

I Is it possible to hide a prohibited box in a legal one?

I Possible if only the maximal dimension is taken into account

I Theorem: if a box B1 is inside B2, the sum of dimensions for
B1 does not exceed the sum of dimensions for B2

I Proof: Look!

I (Expected value of the projection to a random line is
proportional to the sum of dimensions)
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Uniform minors: probabilistic argument

I A k × k-minor in n × n-matrix: select k rows and k columns

I A minor in a Boolean matrix is uniform if it contains only ones
or only zeros

I What size of uniform minor can be guaranteed in n × n
Boolean matrix?

I Theorem: if k > 2 log n + 1, there exists a n × n Boolean
matrix that has no uniform k × k minors.

I Probability argument: take a random n × n matrix. For a
given position of a minor the probability to see an uniform
minor there is 2−k2 × 2. There are at most n2k positions for a
k × k minor. So if n2k2−k2+1 < 1, a matrix without uniform
minors exists. Taking logarithms, we get 2k log n− k2 + 1 < 0
which is guaranteed if k > 2 log n + 1.
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Uniform minors: combinatorial and complexity versions

I Counting version: there are 2n2−k2+1 matrices with an
uniform minor in a given position, then we multiply this
number by the number of possible positions and note that the
sum is less than the number of n × n matrices.

I Complexity version: let us prove that a incompressible matrix
has no uniform minors. In other words, a matrix that has
uniform minor is compressible. Indeed, in can be described by
specifying the position of that minor (2k indices in 1 . . . n
range, i.e., 2k log n bits), the bit in the minor (1 bit) and the
remaining n2 − k2 bits in the matrix, so if
2k log n + 1 + n2 − k2 < n2, the matrix is compressible

I This is not a rigorous proof since complexity is defined up to a
constant.
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Derandomization?

I Is it possible to replace an existence proof using probabilistic
arguments by an explicit construction?

I (The notion of explicit construction is not formally defined)

I Sometimes derandomization is easy (e.g., the first example
with a graph), or an alternative proof can be easily found
(e.g., the robot example)

I Sometimes an open problem (e.g., the existence of Boolean
functions that require circuits of exponential size)

I Sometime explicit constructions exist but are rather
complicated and do no achieve the best possible parameters
(expanders, codes)
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Beyond combinatorics: independence

I if
∑

i Pr[Ai ] < 1, then one can avoid all Ai with positive
probability 1−

∑
i Pr[Ai ]

I if Ai are independent, weaker condition ∀i Pr[Ai ] < 1 is
enough: one can avoid all Ai with positive probability∏

i (1− Pr[Ai ])

I Laslo Lovasz Local Lemma deals with partial independence

I Each node in a rectangular grid may have one of 10 colors;
each edge prohibits one of 100 color combinations (different
for different edges). LLLL guarantees that there exists a
coloring that satisfies all restrictions.



Beyond combinatorics: independence

I if
∑

i Pr[Ai ] < 1, then one can avoid all Ai with positive
probability 1−

∑
i Pr[Ai ]

I if Ai are independent, weaker condition ∀i Pr[Ai ] < 1 is
enough: one can avoid all Ai with positive probability∏

i (1− Pr[Ai ])

I Laslo Lovasz Local Lemma deals with partial independence

I Each node in a rectangular grid may have one of 10 colors;
each edge prohibits one of 100 color combinations (different
for different edges). LLLL guarantees that there exists a
coloring that satisfies all restrictions.



Beyond combinatorics: independence

I if
∑

i Pr[Ai ] < 1, then one can avoid all Ai with positive
probability 1−

∑
i Pr[Ai ]

I if Ai are independent, weaker condition ∀i Pr[Ai ] < 1 is
enough: one can avoid all Ai with positive probability∏

i (1− Pr[Ai ])

I Laslo Lovasz Local Lemma deals with partial independence

I Each node in a rectangular grid may have one of 10 colors;
each edge prohibits one of 100 color combinations (different
for different edges). LLLL guarantees that there exists a
coloring that satisfies all restrictions.



Beyond combinatorics: independence

I if
∑

i Pr[Ai ] < 1, then one can avoid all Ai with positive
probability 1−

∑
i Pr[Ai ]

I if Ai are independent, weaker condition ∀i Pr[Ai ] < 1 is
enough: one can avoid all Ai with positive probability∏

i (1− Pr[Ai ])

I Laslo Lovasz Local Lemma deals with partial independence

I Each node in a rectangular grid may have one of 10 colors;
each edge prohibits one of 100 color combinations (different
for different edges). LLLL guarantees that there exists a
coloring that satisfies all restrictions.



Beyond combinatorics: independence

I if
∑

i Pr[Ai ] < 1, then one can avoid all Ai with positive
probability 1−

∑
i Pr[Ai ]

I if Ai are independent, weaker condition ∀i Pr[Ai ] < 1 is
enough: one can avoid all Ai with positive probability∏

i (1− Pr[Ai ])

I Laslo Lovasz Local Lemma deals with partial independence

I Each node in a rectangular grid may have one of 10 colors;
each edge prohibits one of 100 color combinations (different
for different edges). LLLL guarantees that there exists a
coloring that satisfies all restrictions.



Laszlo Lovasz Local Lemma

Let A1, . . . ,An are events indexed by vertices of an (undirected)
graph. Let N(i) be the set of all neighbors of i (not including i).
Assume that for every i the event Ai is independent with the tuple
of all events Aj with j /∈ N(i). Assume that for every i an upper
bound εi < 1 for Pr[Ai ] is chosen and, moreover,

Pr[Ai ] ≤ εi
∏

j∈N(i)

(1− εj).

Then
Pr[¬A1 ∧ ¬A2 ∧ . . . ∧ ¬An] ≥

∏
i

(1− εi ).

I If all Ai are independent, εi = Pr[Ai ]

I If there is no information about dependence (complete graph),
and

∑
Pr[Ai ] < 1/4, one can let εi = 2 Pr[Ai ]: the product of

(1− εi ) is at least 1−
∑
εi > 1/2.
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graph. Let N(i) be the set of all neighbors of i (not including i).
Assume that for every i the event Ai is independent with the tuple
of all events Aj with j /∈ N(i). Assume that for every i an upper
bound εi < 1 for Pr[Ai ] is chosen and, moreover,

Pr[Ai ] ≤ εi
∏

j∈N(i)

(1− εj).

Then
Pr[¬A1 ∧ ¬A2 ∧ . . . ∧ ¬An] ≥

∏
i

(1− εi ).

I In our example events correspond to edges; neighbors are
edges that share a vertex (6 of them). Choosing the same ε
for every edge, we need

1/100 < ε(1− ε)6

If ε = 1/6, the rhs is about 1/6e � 1/100.



Proof of the LLLL

I generalization:
Pr[¬Ai ∧ ¬Aj ∧ . . . |¬Ap ∧ ¬Aq ∧ . . .] ≥ (1− εi )(1− εj) . . .

I enough to show for one event (and many conditions):
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I for the complement: Pr[Ai |¬Aj ∧ ¬Ak ∧ . . .] ≤ εi .
I separating neighbors and non-neighbors (j , k are neighbors,

l , . . . are not):
Pr[Ai |¬Aj ∧ ¬Ak ∧ ¬Al ∧ . . .] =

=
Pr[Ai∧¬Aj∧¬Ak |¬Al∧...]

Pr[¬Aj∧¬Ak |¬Al∧...] ≤
Pr[Ai ]

(1−εj )(1−εk ) ≤ εi
I using induction (less events in the condition)
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Forbidden substrings

I Let X1, . . . ,Xn be some bit strings. We want to construct a
sequence ω that does not contain Xi as substrings (factors)

I not always possible: e.g., 00, 11, 0101

I quantitative results: if forbidden strings are long enough and
there are not too many of them, a sequence ω exists

I Let α < 1. Assume that for every n there is at most 2αn

forbidden (bit) strings. Then there exists a number c and a
bit sequence ω that has no forbidden substrings of length > c .

I (Kolmogorov complexity version) There exists a sequence ω
such that any substring x is ω has complexity at least
α|x | − O(1).

Statements are equivalent: there is at most 2αn sequences of
length n and complexity < αn; on the other hand, if X is a set of
forbidden strings and there is at most 2αn forbidden strings of
length n, they are all simple (have compexity αn + o(n)) relative
to X . (Non-relativized version can be also used.)
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Combinatorial and complexity proofs

I Combinatorial: use LLLL

I Complexity: construct the sequence inductively adding blocks
of some length M; each added block should increase the
complexity at least by βM for some β in (α, 1).

I such a block exists since we can take a block that is random
relative to the prefix of the sequence; each group of s
consequtive blocks increases complexity at least by βsM and
therefore has complexity at least βsM. For non-aligned blocks
we discard some part of them (using the difference between α
and β to compensate for the losses).
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Forbidden subsequences

I Let A be a finite set of indices (integers) and let ω be a
sequence. By ω(A) we denote the subsequence of ω with
indices in A (in increasing order).

I A restriction “ω(A) 6= X” is specified by A and binary string
X (of length #A).

I In other terms, we have Boolean variables (bits of ω) and
clauses: e.g., w5 ∨ ¬w7 ∨ w11 says that ω({5, 7, 11}) 6= 010.

I Rumyantsev: for every α < 1 there exists a sequence ω such
that for every finite A the complexity K (A, ω(A)|t) exceeds
α#A− O(1) for some t ∈ A. [Proof: use LLLL]

I Corollary: if A has small complexity with respect to every its
element, then K (ω(A)) is large.

I so there is a sequence such that every substring has high
complexity

I and a two-dimensional sequence such that every rectangle has
a high complexity (close to its area)
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A constructive version of LLLL

I General statement of LLLL has nothing to do with algorithms

I Most applications show the existence of some constructive
object (assignment, sequence, coloring etc.)

I The statement itself does not provide a reasonable
probabilistic algorithm (the guaranteed probability is
exponentially small)

I However, such an algorithm exists

I (Moser, 2009) it is the simple one: resample variables that
appear in the violated restriction until everything is OK

I The proof of the most general result (Moser and Tardos) is a
bit misterous

I but a very simple argument exists for special cases (as
explained by Fortnow using complexity)
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appear in the violated restriction until everything is OK

I The proof of the most general result (Moser and Tardos) is a
bit misterous

I but a very simple argument exists for special cases (as
explained by Fortnow using complexity)



The special case: forbidden subsequences

I Boolean variables w1, . . . ,wN .

I Clauses: each of M clauses involves m variables and prohibits
some combination of values: [¬]wi1 ∨ . . . ∨ [¬]wim .

I Looking for a satisfying assignment (that does not violate any
clause).

I Statement: it exists if clauses are not very small and not too
dependent

I Two clauses intersect if there have common variables

I Statement: if each clause intersects at most t others and
t < 2m/8, then there exists a satisfying assignment

I . . . and it can be found with high probability by a polynomial
probabilistic algorithm
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Resampling algorithm

I Main algorithm:
start with any assignment for wi

FOR every clause S :
if S is violated, Fix(S)

I { S is violated }
Fix(S)
{ S is satisfied; no other previously satisfied clauses are
violated }

I Fix(S):
resample (S);
FOR every neighbor clause S ′:

if S ′ is violated, Fix(S ′)
I The correctness of Fix assuming it terminates is trivial

(induction: if recursive calls are correct, the calling procedure
is correct)

I The only problem is why Fix(S) terminates in reasonable time
with high probability.
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Resampling: analysis

I We show only that Fix(S) terminates at some point if we use
fresh bits from an incompressible string for resampling (and
do not translate this argument into a probabilistic language
with exact bounds)

I Bit source: a long incompressible bit string split into m-bit
blocks

I When resampling is needed, next block is used

I Main observation: random bits can be reconstructed from the
current values and the (chronological) list of resampled clauses

I Indeed, each clause is violated only for one combination of
bits, so resampling can be “undone” and random bits can be
extracted

I So if we can describe the sequence of resampled clauses using
less than m bits per clause, we get a contradiction (N is fixed
and for the large number of steps we get a contradiction with
incompressibility)
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Describing the resampled clauses

I (Simplified) Each clause is one of t neighbors of a previous
one, so we need at most log t bits to specify which one.

I The lists of neighbors can be fixed in advance

I Indeed a simplification: though in the tree of recursive calls
each vertex is a neighbor of its father, this is not enough: we
also go up (when exiting a recursive call)

I so we need an additional bit (up/down) for recursive call
(down step) and one bit to describe exits (up steps)

I so instead of log t per resampling we get (log t + 1) + 1 – still
less than m by assumption (log t < m − 3)
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