Probabilistic Proofs,
Kolmogorov Compleixity and
Laszlo Lovasz Local Lemma

Alexander Shen,
LIF CNRS & Univ. Aix — Marseille

November 2009

Probabilistic proofs of existence

Probabilistic proofs of existence

» If an event has a positive probability, it sometimes happens

Probabilistic proofs of existence

» If an event has a positive probability, it sometimes happens

» If a random variable has an expectation greater than c, it is
sometimes greater than ¢

An example: MAX-CUT

An example: MAX-CUT

» G =(V,E) is given

An example: MAX-CUT

» G =(V,E) is given
» coloring: a mapping V — {black, white}

An example: MAX-CUT

» G =(V,E) is given
» coloring: a mapping V — {black, white}

» multicolor edge: endpoints have different colors

An example: MAX-CUT

» G =(V,E) is given

» coloring: a mapping V — {black, white}

» multicolor edge: endpoints have different colors

» theorem: every graph has a coloring with at least #E /2
multicolor edges

An example: MAX-CUT

>

>

| 4

|

G =(V,E) is given
coloring: a mapping V — {black, white}
multicolor edge: endpoints have different colors

theorem: every graph has a coloring with at least #E /2
multicolor edges

proof: the expected number of multicolor edge for a random
coloring is #E /2 (every edge has probability 1/2).

An example: MAX-CUT

vV v v Y

G =(V,E) is given

coloring: a mapping V — {black, white}

multicolor edge: endpoints have different colors

theorem: every graph has a coloring with at least #E /2
multicolor edges

proof: the expected number of multicolor edge for a random
coloring is #E /2 (every edge has probability 1/2).

here derandomisation is trivial: adding a vertex choose the
color to maximize the number of multicolor edges

An example: MAX-CUT

>

>

| 4

|

G =(V,E) is given
coloring: a mapping V — {black, white}
multicolor edge: endpoints have different colors

theorem: every graph has a coloring with at least #E /2
multicolor edges

proof: the expected number of multicolor edge for a random
coloring is #E /2 (every edge has probability 1/2).

here derandomisation is trivial: adding a vertex choose the
color to maximize the number of multicolor edges

Digression: approximating MAX-CUT (maximal number of
multicolor edges) is NP-hard

An example: MAX-CUT

>

>

| 4

|

G =(V,E) is given

coloring: a mapping V — {black, white}

multicolor edge: endpoints have different colors

theorem: every graph has a coloring with at least #E /2
multicolor edges

proof: the expected number of multicolor edge for a random
coloring is #E /2 (every edge has probability 1/2).

here derandomisation is trivial: adding a vertex choose the
color to maximize the number of multicolor edges
Digression: approximating MAX-CUT (maximal number of
multicolor edges) is NP-hard

Similar argument: every 3-CNF has an assignment that
satisfies at least 7/8 of all clauses

One more example: robot in a maze

One more example: robot in a maze

» A labyrinth is drawn in a rectangle (walls go between cells, no
exit, connected)

One more example: robot in a maze

» A labyrinth is drawn in a rectangle (walls go between cells, no
exit, connected)

» robot is placed inside the maze

One more example: robot in a maze

» A labyrinth is drawn in a rectangle (walls go between cells, no
exit, connected)

» robot is placed inside the maze

> instructions: up/down/left/right

One more example: robot in a maze

» A labyrinth is drawn in a rectangle (walls go between cells, no
exit, connected)

» robot is placed inside the maze
> instructions: up/down/left/right
» if not possible (due to the wall), skip it

One more example: robot in a maze

v

A labyrinth is drawn in a rectangle (walls go between cells, no
exit, connected)

robot is placed inside the maze
instructions: up/down/left/right
if not possible (due to the wall), skip it

vV v v Y

Theorem: for every board size there exists a sequence that
guarantees that the robot visits all cells (independent of the
maze and initial position).

Random program does the job

Random program does the job

> Let N be the length of the maximal traversing sequence (for
given board size)

Random program does the job

» Let N be the length of the maximal traversing sequence (for
given board size)

» N-step random program works with probaibility at least 4=V

Random program does the job

» Let N be the length of the maximal traversing sequence (for
given board size)

» N-step random program works with probaibility at least 4=V

» kN-step random program does not work with probability at
most (1 — 4~ N)k

Random program does the job

» Let N be the length of the maximal traversing sequence (for
given board size)

» N-step random program works with probaibility at least 4=V

» kN-step random program does not work with probability at
most (1 — 4~ N)k

» if k is large enough, this probability is less than 1 even
multiplied by the number of possible mazes and initial
positions (the latter does not depend on k)

Random program does the job

» Let N be the length of the maximal traversing sequence (for
given board size)

» N-step random program works with probaibility at least 4=V

» kN-step random program does not work with probability at
most (1 — 4~ N)k

» if k is large enough, this probability is less than 1 even
multiplied by the number of possible mazes and initial
positions (the latter does not depend on k)

» for this k a random program of length kN with positive
probability works for all mazes and initial positions

Box dimensions

Box dimensions

» A rectangular box is allowed if the sum of dimensions does not
exceed the threshold: w+/+h< M

Box dimensions

» A rectangular box is allowed if the sum of dimensions does not
exceed the threshold: w+/+h< M

» Is it possible to hide a prohibited box in a legal one?

Box dimensions

» A rectangular box is allowed if the sum of dimensions does not
exceed the threshold: w+/+h< M

» Is it possible to hide a prohibited box in a legal one?

» Possible if only the maximal dimension is taken into account

Box dimensions

» A rectangular box is allowed if the sum of dimensions does not
exceed the threshold: w+/+h< M

» Is it possible to hide a prohibited box in a legal one?
» Possible if only the maximal dimension is taken into account

» Theorem: if a box By is inside By, the sum of dimensions for
B; does not exceed the sum of dimensions for Bs

Box dimensions

v

A rectangular box is allowed if the sum of dimensions does not
exceed the threshold: w+/+h< M

Is it possible to hide a prohibited box in a legal one?

v

v

Possible if only the maximal dimension is taken into account

v

Theorem: if a box Bj is inside By, the sum of dimensions for
B; does not exceed the sum of dimensions for Bs

Proof: Look!

v

Box dimensions

v

A rectangular box is allowed if the sum of dimensions does not
exceed the threshold: w+/+h< M

Is it possible to hide a prohibited box in a legal one?

» Possible if only the maximal dimension is taken into account

» Theorem: if a box By is inside By, the sum of dimensions for

B; does not exceed the sum of dimensions for Bs
Proof: Look!

(Expected value of the projection to a random line is
proportional to the sum of dimensions)

Uniform minors: probabilistic argument

Uniform minors: probabilistic argument

» A k x k-minor in n X n-matrix: select k rows and k columns

Uniform minors: probabilistic argument

» A k x k-minor in n X n-matrix: select k rows and k columns

» A minor in a Boolean matrix is uniform if it contains only ones
or only zeros

Uniform minors: probabilistic argument

» A k X k-minor in n X n-matrix: select k rows and k columns
» A minor in a Boolean matrix is uniform if it contains only ones
or only zeros

» What size of uniform minor can be guaranteed in n X n
Boolean matrix?

Uniform minors: probabilistic argument

» A k X k-minor in n X n-matrix: select k rows and k columns

» A minor in a Boolean matrix is uniform if it contains only ones
or only zeros

» What size of uniform minor can be guaranteed in n X n
Boolean matrix?

» Theorem: if k > 2log n+ 1, there exists a n x n Boolean
matrix that has no uniform k x k minors.

Uniform minors: probabilistic argument

v

v

A k x k-minor in n X n-matrix: select k rows and k columns

A minor in a Boolean matrix is uniform if it contains only ones
or only zeros

What size of uniform minor can be guaranteed in n x n
Boolean matrix?

Theorem: if k > 2logn+ 1, there exists a n X n Boolean
matrix that has no uniform k x k minors.

Probability argument: take a random n x n matrix. For a
given position of a minor the probability to see an uniform
minor there is 27%* x 2. There are at most n2k positions for a
k x k minor. So if n?k2—K+1 1, a matrix without uniform
minors exists. Taking logarithms, we get 2k logn — k> +1 < 0
which is guaranteed if kK > 2logn+ 1.

Uniform minors: combinatorial and complexity versions

Uniform minors: combinatorial and complexity versions

» Counting version: there are 2m*=k*+1 matrices with an
uniform minor in a given position, then we multiply this
number by the number of possible positions and note that the
sum is less than the number of n x n matrices.

Uniform minors: combinatorial and complexity versions

» Counting version: there are 2m*=k*+1 matrices with an
uniform minor in a given position, then we multiply this
number by the number of possible positions and note that the
sum is less than the number of n x n matrices.

» Complexity version: let us prove that a incompressible matrix
has no uniform minors. In other words, a matrix that has
uniform minor is compressible. Indeed, in can be described by
specifying the position of that minor (2k indices in 1...n
range, i.e., 2k log n bits), the bit in the minor (1 bit) and the
remaining n®> — k? bits in the matrix, so if
2klogn+4 1+ n?> — k? < n?, the matrix is compressible

Uniform minors: combinatorial and complexity versions

» Counting version: there are 2m*=k*+1 matrices with an
uniform minor in a given position, then we multiply this
number by the number of possible positions and note that the
sum is less than the number of n x n matrices.

» Complexity version: let us prove that a incompressible matrix
has no uniform minors. In other words, a matrix that has
uniform minor is compressible. Indeed, in can be described by
specifying the position of that minor (2k indices in 1...n
range, i.e., 2k log n bits), the bit in the minor (1 bit) and the
remaining n®> — k? bits in the matrix, so if
2klogn+4 1+ n?> — k? < n?, the matrix is compressible

» This is not a rigorous proof since complexity is defined up to a
constant.

Derandomization?

Derandomization?

» Is it possible to replace an existence proof using probabilistic
arguments by an explicit construction?

Derandomization?

» Is it possible to replace an existence proof using probabilistic
arguments by an explicit construction?

» (The notion of explicit construction is not formally defined)

Derandomization?

» Is it possible to replace an existence proof using probabilistic
arguments by an explicit construction?

» (The notion of explicit construction is not formally defined)

» Sometimes derandomization is easy (e.g., the first example
with a graph), or an alternative proof can be easily found
(e.g., the robot example)

Derandomization?

» Is it possible to replace an existence proof using probabilistic
arguments by an explicit construction?

» (The notion of explicit construction is not formally defined)

» Sometimes derandomization is easy (e.g., the first example
with a graph), or an alternative proof can be easily found
(e.g., the robot example)

» Sometimes an open problem (e.g., the existence of Boolean
functions that require circuits of exponential size)

Derandomization?

» Is it possible to replace an existence proof using probabilistic
arguments by an explicit construction?

» (The notion of explicit construction is not formally defined)

» Sometimes derandomization is easy (e.g., the first example
with a graph), or an alternative proof can be easily found
(e.g., the robot example)

» Sometimes an open problem (e.g., the existence of Boolean
functions that require circuits of exponential size)

> Sometime explicit constructions exist but are rather
complicated and do no achieve the best possible parameters
(expanders, codes)

Beyond combinatorics: independence

Beyond combinatorics: independence

» if >, Pr[Ai] <1, then one can avoid all A; with positive
probability 1 — >, Pr[A;]

Beyond combinatorics: independence

> if >, Pr[A;] <1, then one can avoid all A; with positive
probability 1 — >, Pr[A;]

» if A; are independent, weaker condition Vi Pr[A;] < 1 is
enough: one can avoid all A; with positive probability

[1;(1 = Pr{A])

Beyond combinatorics: independence

> if >, Pr[A;] <1, then one can avoid all A; with positive
probability 1 — >, Pr[A;]

» if A; are independent, weaker condition Vi Pr[A;] < 1 is
enough: one can avoid all A; with positive probability
[T;(1 = Pr{Ai)

» Laslo Lovasz Local Lemma deals with partial independence

Beyond combinatorics: independence

> if >, Pr[A;] <1, then one can avoid all A; with positive
probability 1 — >, Pr[A;]

» if A; are independent, weaker condition Vi Pr[A;] < 1 is
enough: one can avoid all A; with positive probability
[T;(1 = Pr[Ai])

» Laslo Lovasz Local Lemma deals with partial independence

» Each node in a rectangular grid may have one of 10 colors;
each edge prohibits one of 100 color combinations (different
for different edges). LLLL guarantees that there exists a
coloring that satisfies all restrictions.

Laszlo Lovasz Local Lemma

Let Ay,..., A, are events indexed by vertices of an (undirected)
graph. Let N(i) be the set of all neighbors of i (not including 7).
Assume that for every i the event A; is independent with the tuple
of all events A; with j ¢ N(i). Assume that for every i an upper
bound &; < 1 for Pr[A;] is chosen and, moreover,

Pridl <& J] (1—¢)).
JEN()

Then
Pri=Ar A=Ay A A=A = [- &)

1

Laszlo Lovasz Local Lemma

Let Ay,..., A, are events indexed by vertices of an (undirected)
graph. Let N(i) be the set of all neighbors of i (not including 7).
Assume that for every i the event A; is independent with the tuple
of all events A; with j ¢ N(i). Assume that for every i an upper
bound &; < 1 for Pr[A;] is chosen and, moreover,

Pridl <& J] (1—¢)).
JEN(I)

Then
Pri=Ar A=Ay A A=A = [- &)

1

» If all A; are independent, ¢; = Pr[A]

Laszlo Lovasz Local Lemma

Let Ay,..., A, are events indexed by vertices of an (undirected)
graph. Let N(i) be the set of all neighbors of i (not including 7).
Assume that for every i the event A; is independent with the tuple
of all events A; with j ¢ N(i). Assume that for every i an upper
bound &; < 1 for Pr[A;] is chosen and, moreover,

Pridl <& J] (1—¢)).

JEN()

Then
Pri=Ar A=Ay A A=A = [- &)

1

» If all A; are independent, ¢; = Pr[A]

» If there is no information about dependence (complete graph),
and > Pr[A;] < 1/4, one can let £; = 2 Pr[A;]: the product of
(1—¢j)isatleast 1 —> &; > 1/2.

Laszlo Lovasz Local Lemma
Let Ay,..., A, are events indexed by vertices of an (undirected)
graph. Let N(i) be the set of all neighbors of i (not including 7).
Assume that for every i the event A; is independent with the tuple
of all events A; with j ¢ N(i). Assume that for every i an upper
bound &; < 1 for Pr[A;] is chosen and, moreover,

Pridl <& J] (1-¢)).
JEN(I)
Then
Pri=At A —Ax AL A=A > T = e).

» In our example events correspond to edges; neighbors are
edges that share a vertex (6 of them). Choosing the same ¢
for every edge, we need

1/100 < e(1 —€)®
If e =1/6, the rhs is about 1/6e > 1/100.

Proof of the LLLL

Proof of the LLLL

» generalization:

Pr[ﬁA,-/\ﬁAj/\...|ﬁAp/\ﬁAq/\...]2(1—5,-)(1—@)...

Proof of the LLLL

» generalization:
Pr[ﬁA,-/\ﬁAj/\...|ﬁAp/\ﬁAq/\...] > (1—8,‘)(1—5j)...

» enough to show for one event (and many conditions):
Pr[—|A,- VAN —|Aj| ..] = Pr[ﬂAj| ..] PI’[—|A;|—|AJ' VAN]

Proof of the LLLL

» generalization:

Pr[ﬁA,-/\ﬁAj/\...|ﬁAp/\ﬁAq/\...]2(1—5;)(1—@)...

» enough to show for one event (and many conditions):
Pr[—|A,- VAN —|Aj| ..] = Pr[ﬂAj| ..] PI’[—|A;|—|AJ' VAN]
> for the complement: Pr[A;[—A; A —Ac A ...] <&

Proof of the LLLL

» generalization:
Pr[ﬁA,-/\ﬁAj/\...|ﬁAp/\ﬁAq/\...] > (1—8;)(1—5j)...
» enough to show for one event (and many conditions):
Pr[—|A,- VAN —|Aj| ..] = Pr[ﬂAj| ..] PI’[—|A;|—|AJ' VAN]
> for the complement: Pr[A;[—A; A —Ac A ...] <&

> separating neighbors and non-neighbors (j, k are neighbors,
[,... are not):
PI’[A;|—|AJ' A—A AN—AN ..] =
PrlAiN-AA-AL|-ANA..] Pr[Aj] < e
PrAAA-AA T~ (I—g)(1—eg) > i

Proof of the LLLL

» generalization:
Pr[ﬁA,-/\ﬁAj/\...|ﬁAp/\ﬁAq/\...] > (1—8;)(1—5j)...
» enough to show for one event (and many conditions):
Pr[—|A,- VAN —|Aj| ..] = Pr[ﬂAj| ..] PI’[—|A;|—|AJ' VAN]
> for the complement: Pr[A;[—A; A —Ac A ...] <&
> separating neighbors and non-neighbors (j, k are neighbors,

[,... are not):

PI’[A;|—|AJ' A—A AN—AN ..] =
Pr[Ai/_\A‘/_\AkI_\A[/\...] Pr[A[] .
PAAAL-AA] = (1=5)(—cn) = i

» using induction (less events in the condition)

Forbidden substrings

Forbidden substrings

> Let Xi,..., X, be some bit strings. We want to construct a
sequence w that does not contain X; as substrings (factors)

Forbidden substrings

> Let Xi,..., X, be some bit strings. We want to construct a
sequence w that does not contain X; as substrings (factors)

» not always possible: e.g., 00,11,0101

Forbidden substrings

> Let Xi,..., X, be some bit strings. We want to construct a
sequence w that does not contain X; as substrings (factors)

» not always possible: e.g., 00,11,0101

» quantitative results: if forbidden strings are long enough and
there are not too many of them, a sequence w exists

Forbidden substrings

> Let Xi,..., X, be some bit strings. We want to construct a
sequence w that does not contain X; as substrings (factors)

» not always possible: e.g., 00,11,0101

» quantitative results: if forbidden strings are long enough and
there are not too many of them, a sequence w exists

> Let @ < 1. Assume that for every n there is at most 2%”

forbidden (bit) strings. Then there exists a number ¢ and a
bit sequence w that has no forbidden substrings of length > c.

Forbidden substrings

> Let Xi,..., X, be some bit strings. We want to construct a
sequence w that does not contain X; as substrings (factors)

» not always possible: e.g., 00,11,0101

» quantitative results: if forbidden strings are long enough and
there are not too many of them, a sequence w exists

> Let @ < 1. Assume that for every n there is at most 2%”
forbidden (bit) strings. Then there exists a number ¢ and a
bit sequence w that has no forbidden substrings of length > c.

» (Kolmogorov complexity version) There exists a sequence w
such that any substring x is w has complexity at least
alx| — O(1).

Statements are equivalent: there is at most 2" sequences of
length n and complexity < an; on the other hand, if X is a set of
forbidden strings and there is at most 2*” forbidden strings of
length n, they are all simple (have compexity an + o(n)) relative
to X. (Non-relativized version can be also used.)

Combinatorial and complexity proofs

Combinatorial and complexity proofs

» Combinatorial: use LLLL

Combinatorial and complexity proofs

» Combinatorial: use LLLL

» Complexity: construct the sequence inductively adding blocks
of some length M; each added block should increase the
complexity at least by SM for some 3 in (v, 1).

Combinatorial and complexity proofs

» Combinatorial; use LLLL

» Complexity: construct the sequence inductively adding blocks
of some length M; each added block should increase the
complexity at least by SM for some 3 in (v, 1).

» such a block exists since we can take a block that is random
relative to the prefix of the sequence; each group of s
consequtive blocks increases complexity at least by GsM and
therefore has complexity at least 3sM. For non-aligned blocks
we discard some part of them (using the difference between «
and 3 to compensate for the losses).

Forbidden subsequences

Forbidden subsequences

> Let A be a finite set of indices (integers) and let w be a
sequence. By w(A) we denote the subsequence of w with
indices in A (in increasing order).

Forbidden subsequences

> Let A be a finite set of indices (integers) and let w be a
sequence. By w(A) we denote the subsequence of w with
indices in A (in increasing order).

> A restriction “w(A) # X" is specified by A and binary string
X (of length #A).

Forbidden subsequences

> Let A be a finite set of indices (integers) and let w be a
sequence. By w(A) we denote the subsequence of w with
indices in A (in increasing order).

> A restriction “w(A) # X" is specified by A and binary string
X (of length #A).

» In other terms, we have Boolean variables (bits of w) and
clauses: e.g., ws V —wy V wyg says that w({5,7,11}) # 010.

Forbidden subsequences

> Let A be a finite set of indices (integers) and let w be a
sequence. By w(A) we denote the subsequence of w with
indices in A (in increasing order).

> A restriction “w(A) # X" is specified by A and binary string
X (of length #A).

» In other terms, we have Boolean variables (bits of w) and
clauses: e.g., ws V —wy V wyg says that w({5,7,11}) # 010.

» Rumyantsev: for every av < 1 there exists a sequence w such
that for every finite A the complexity K(A,w(A)|t) exceeds
a#A — O(1) for some t € A. [Proof: use LLLL]

Forbidden subsequences

>

Let A be a finite set of indices (integers) and let w be a
sequence. By w(A) we denote the subsequence of w with
indices in A (in increasing order).

A restriction “w(A) # X" is specified by A and binary string
X (of length #A).

In other terms, we have Boolean variables (bits of w) and
clauses: e.g., ws V —wy V wyg says that w({5,7,11}) # 010.
Rumyantsev: for every o« < 1 there exists a sequence w such
that for every finite A the complexity K(A,w(A)|t) exceeds
a#A — O(1) for some t € A. [Proof: use LLLL]

Corollary: if A has small complexity with respect to every its
element, then K(w(A)) is large.

Forbidden subsequences

>

Let A be a finite set of indices (integers) and let w be a
sequence. By w(A) we denote the subsequence of w with
indices in A (in increasing order).

A restriction “w(A) # X" is specified by A and binary string
X (of length #A).

In other terms, we have Boolean variables (bits of w) and
clauses: e.g., ws V —wy V wyg says that w({5,7,11}) # 010.
Rumyantsev: for every o« < 1 there exists a sequence w such
that for every finite A the complexity K(A,w(A)|t) exceeds
a#A — O(1) for some t € A. [Proof: use LLLL]

Corollary: if A has small complexity with respect to every its
element, then K(w(A)) is large.

so there is a sequence such that every substring has high
complexity

Forbidden subsequences

>

Let A be a finite set of indices (integers) and let w be a
sequence. By w(A) we denote the subsequence of w with
indices in A (in increasing order).

A restriction “w(A) # X" is specified by A and binary string
X (of length #A).

In other terms, we have Boolean variables (bits of w) and
clauses: e.g., ws V —wy V wyg says that w({5,7,11}) # 010.
Rumyantsev: for every o« < 1 there exists a sequence w such
that for every finite A the complexity K(A,w(A)|t) exceeds
a#A — O(1) for some t € A. [Proof: use LLLL]

Corollary: if A has small complexity with respect to every its
element, then K(w(A)) is large.

so there is a sequence such that every substring has high
complexity

and a two-dimensional sequence such that every rectangle has
a high complexity (close to its area)

A constructive version of LLLL

A constructive version of LLLL

» General statement of LLLL has nothing to do with algorithms

A constructive version of LLLL

» General statement of LLLL has nothing to do with algorithms

» Most applications show the existence of some constructive
object (assignment, sequence, coloring etc.)

A constructive version of LLLL

» General statement of LLLL has nothing to do with algorithms

» Most applications show the existence of some constructive
object (assignment, sequence, coloring etc.)

» The statement itself does not provide a reasonable
probabilistic algorithm (the guaranteed probability is
exponentially small)

A constructive version of LLLL

» General statement of LLLL has nothing to do with algorithms

» Most applications show the existence of some constructive
object (assignment, sequence, coloring etc.)

» The statement itself does not provide a reasonable
probabilistic algorithm (the guaranteed probability is
exponentially small)

» However, such an algorithm exists

A constructive version of LLLL

» General statement of LLLL has nothing to do with algorithms

» Most applications show the existence of some constructive
object (assignment, sequence, coloring etc.)

» The statement itself does not provide a reasonable
probabilistic algorithm (the guaranteed probability is
exponentially small)

» However, such an algorithm exists

> (Moser, 2009) it is the simple one: resample variables that
appear in the violated restriction until everything is OK

A constructive version of LLLL

» General statement of LLLL has nothing to do with algorithms

» Most applications show the existence of some constructive
object (assignment, sequence, coloring etc.)

» The statement itself does not provide a reasonable
probabilistic algorithm (the guaranteed probability is
exponentially small)

» However, such an algorithm exists

> (Moser, 2009) it is the simple one: resample variables that
appear in the violated restriction until everything is OK

» The proof of the most general result (Moser and Tardos) is a
bit misterous

A constructive version of LLLL

» General statement of LLLL has nothing to do with algorithms

» Most applications show the existence of some constructive
object (assignment, sequence, coloring etc.)

» The statement itself does not provide a reasonable
probabilistic algorithm (the guaranteed probability is
exponentially small)

» However, such an algorithm exists

> (Moser, 2009) it is the simple one: resample variables that
appear in the violated restriction until everything is OK

» The proof of the most general result (Moser and Tardos) is a
bit misterous

> but a very simple argument exists for special cases (as
explained by Fortnow using complexity)

The special case: forbidden subsequences

The special case: forbidden subsequences

» Boolean variables wa, ..., wy.

The special case: forbidden subsequences

» Boolean variables wa, ..., wy.

» Clauses: each of M clauses involves m variables and prohibits
some combination of values: [=]w;, V...V [-]w;, .

The special case: forbidden subsequences

» Boolean variables wy, ..., wy.

» Clauses: each of M clauses involves m variables and prohibits
some combination of values: [=]w;, V...V [-]w;, .

» Looking for a satisfying assignment (that does not violate any
clause).

The special case: forbidden subsequences

» Boolean variables wy, ..., wy.

» Clauses: each of M clauses involves m variables and prohibits
some combination of values: [=]w;, V...V [-]w;, .

» Looking for a satisfying assignment (that does not violate any
clause).

» Statement: it exists if clauses are not very small and not too
dependent

The special case: forbidden subsequences

» Boolean variables wy, ..., wy.

» Clauses: each of M clauses involves m variables and prohibits
some combination of values: [=]w;, V...V [-]w;, .

» Looking for a satisfying assignment (that does not violate any
clause).

» Statement: it exists if clauses are not very small and not too
dependent

» Two clauses intersect if there have common variables

The special case: forbidden subsequences

» Boolean variables wy, ..., wy.

» Clauses: each of M clauses involves m variables and prohibits
some combination of values: [=]w;, V...V [-]w;, .

» Looking for a satisfying assignment (that does not violate any
clause).

» Statement: it exists if clauses are not very small and not too
dependent

» Two clauses intersect if there have common variables

» Statement: if each clause intersects at most t others and
t < 2™M/8, then there exists a satisfying assignment

The special case: forbidden subsequences

» Boolean variables wy, ..., wy.

» Clauses: each of M clauses involves m variables and prohibits
some combination of values: [=]w;, V...V [-]w;, .

» Looking for a satisfying assignment (that does not violate any
clause).

» Statement: it exists if clauses are not very small and not too
dependent

» Two clauses intersect if there have common variables

» Statement: if each clause intersects at most t others and
t < 2™M/8, then there exists a satisfying assignment

» ...and it can be found with high probability by a polynomial
probabilistic algorithm

Resampling algorithm

Resampling algorithm

» Main algorithm:
start with any assignment for w;
FOR every clause S:
if S is violated, Fix(S)

Resampling algorithm

» Main algorithm:
start with any assignment for w;
FOR every clause S:
if S is violated, Fix(S)
» { S is violated }
Fix(S)
{ S is satisfied; no other previously satisfied clauses are
violated }

Resampling algorithm

» Main algorithm:
start with any assignment for w;
FOR every clause S:
if S is violated, Fix(S)
» { S is violated }
Fix(S)
{ S is satisfied; no other previously satisfied clauses are
violated }
> Fix(S):
resample (S);
FOR every neighbor clause S’
if S” is violated, Fix(S’)

Resampling algorithm

» Main algorithm:
start with any assignment for w;
FOR every clause S:
if S is violated, Fix(S)
» { S is violated }
Fix(S)
{ S is satisfied; no other previously satisfied clauses are
violated }
> Fix(S):
resample (S);
FOR every neighbor clause S’
if S” is violated, Fix(S’)
» The correctness of Fix assuming it terminates is trivial
(induction: if recursive calls are correct, the calling procedure
is correct)

Resampling algorithm

» Main algorithm:
start with any assignment for w;
FOR every clause S:
if S is violated, Fix(S)
» { S is violated }
Fix(S)
{ S is satisfied; no other previously satisfied clauses are
violated }
> Fix(S):
resample (S);
FOR every neighbor clause S’
if S” is violated, Fix(S’)

» The correctness of Fix assuming it terminates is trivial
(induction: if recursive calls are correct, the calling procedure
is correct)

» The only problem is why Fix(S) terminates in reasonable time
with high probability.

Resampling: analysis

Resampling: analysis

» We show only that Fix(S) terminates at some point if we use
fresh bits from an incompressible string for resampling (and
do not translate this argument into a probabilistic language
with exact bounds)

Resampling: analysis

» We show only that Fix(S) terminates at some point if we use
fresh bits from an incompressible string for resampling (and
do not translate this argument into a probabilistic language
with exact bounds)

» Bit source: a long incompressible bit string split into m-bit
blocks

Resampling: analysis

» We show only that Fix(S) terminates at some point if we use
fresh bits from an incompressible string for resampling (and
do not translate this argument into a probabilistic language
with exact bounds)

» Bit source: a long incompressible bit string split into m-bit
blocks

» When resampling is needed, next block is used

Resampling: analysis

» We show only that Fix(S) terminates at some point if we use
fresh bits from an incompressible string for resampling (and
do not translate this argument into a probabilistic language
with exact bounds)

» Bit source: a long incompressible bit string split into m-bit
blocks

» When resampling is needed, next block is used

» Main observation: random bits can be reconstructed from the
current values and the (chronological) list of resampled clauses

Resampling: analysis

» We show only that Fix(S) terminates at some point if we use
fresh bits from an incompressible string for resampling (and
do not translate this argument into a probabilistic language
with exact bounds)

» Bit source: a long incompressible bit string split into m-bit
blocks

» When resampling is needed, next block is used

» Main observation: random bits can be reconstructed from the
current values and the (chronological) list of resampled clauses

» Indeed, each clause is violated only for one combination of
bits, so resampling can be “undone” and random bits can be
extracted

Resampling: analysis

>

We show only that Fix(S) terminates at some point if we use
fresh bits from an incompressible string for resampling (and
do not translate this argument into a probabilistic language
with exact bounds)

Bit source: a long incompressible bit string split into m-bit
blocks

» When resampling is needed, next block is used

» Main observation: random bits can be reconstructed from the

current values and the (chronological) list of resampled clauses

Indeed, each clause is violated only for one combination of
bits, so resampling can be “undone” and random bits can be
extracted

So if we can describe the sequence of resampled clauses using
less than m bits per clause, we get a contradiction (N is fixed
and for the large number of steps we get a contradiction with
incompressibility)

Describing the resampled clauses

Describing the resampled clauses

» (Simplified) Each clause is one of t neighbors of a previous
one, so we need at most log t bits to specify which one.

Describing the resampled clauses

» (Simplified) Each clause is one of t neighbors of a previous
one, so we need at most log t bits to specify which one.

» The lists of neighbors can be fixed in advance

Describing the resampled clauses

» (Simplified) Each clause is one of t neighbors of a previous
one, so we need at most log t bits to specify which one.

» The lists of neighbors can be fixed in advance

» Indeed a simplification: though in the tree of recursive calls
each vertex is a neighbor of its father, this is not enough: we
also go up (when exiting a recursive call)

Describing the resampled clauses

» (Simplified) Each clause is one of t neighbors of a previous
one, so we need at most log t bits to specify which one.

» The lists of neighbors can be fixed in advance

» Indeed a simplification: though in the tree of recursive calls
each vertex is a neighbor of its father, this is not enough: we
also go up (when exiting a recursive call)

> so we need an additional bit (up/down) for recursive call
(down step) and one bit to describe exits (up steps)

Describing the resampled clauses

v

(Simplified) Each clause is one of t neighbors of a previous
one, so we need at most log t bits to specify which one.

» The lists of neighbors can be fixed in advance

» Indeed a simplification: though in the tree of recursive calls

each vertex is a neighbor of its father, this is not enough: we
also go up (when exiting a recursive call)

so we need an additional bit (up/down) for recursive call
(down step) and one bit to describe exits (up steps)

so instead of logt per resampling we get (logt + 1) + 1 — still
less than m by assumption (logt < m — 3)

