
Sets of k-independent strings∗

Ching-Lueh Chang†, Yuh-Danh Lyuu‡, Yen-Wu Ti§, Alexander Shen¶

Abstract

A bit string is random (in the sense of algorithmic information theory) if it is incom-
pressible, i.e., its Kolmogorov complexity is close to its length. Two random strings are
independent if knowing one of them does not simplify the description of other, i.e., the
conditional complexity of each string (using the other as a condition) is close to its length.
We may define independence of a k-tuple of strings in the same way.

In this paper we address the following question: what is that maximal cardinality of a
set of n-bit strings if any k elements of this set are independent (up to a certain constant)?
Lower and upper bounds that match each other (with logarithmic precision) are provided.

1 Randomness and independence
Algorithmic information theory identifies randomness with incompressibility. The Kolmogorov
complexity of a random string x is defined as minimal length of a program that generates x,
provided that the programming language is optimal in terms of program length. There are
several versions of this notion (see, e.g., [1, 2] for the exact definition and basic results about
Kolmogorov complexity), and we use the so-called plain complexity denoted by C(x). We
also consider the conditional complexity of a string x when some other string y is given as
a condition; it is defined as minimal length of a program that maps y to x, and is denoted
by C(x|y). These notions are defined up to O(1) additive term. We may also speak about
complexities of natural numbers and tuples of strings using some computable encoding, and
also use these objects as conditions. For simplicity we omit parentheses and write, e.g., C(x,y)
instead of C((x,y)) for complexity of the pair (x,y).

A bit string x is considered as random if it is incompressible, i.e., its complexity C(x) is
close to its length |x|. Since we deal with finite strings, there is no sharp dividing line between
random and non-random strings. Instead, we define randomness deficiency of a n-bit string x as

∗The first three authors were supported in part by NSC grant 96-2213-E-002-024. A.S. was supported in part
by NAFIT ANR-08-EMER-009-01 grant.

†Dept. Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan. Email:
b89053@csie.ntu.edu.tw.

‡Corresponding author. Dept. Computer Science Information and Engineering, National Taiwan University,
No.1, Sec. 4, Roosevelt Road, Taipei, Taiwan 106. Email: lyuu@csie.ntu.edu.tw. TEL: 886-2-33664888.
FAX: 886-2-23628167.

§Dept. Computer Science Information and Engineering, National Taiwan University, Taipei, Taiwan. Email:
d91010@csie.ntu.edu.tw.

¶Laboratoire Informatique Fondamentale, Marseille, France, CNRS & Univ. Aix–Marseille. On leave from
IITP RAS, Moscow, Russia. Email: alexander.shen@lif.univ-mrs.fr.

1

d(x) = n−C(x). This quantity is non-negative (up to O(1) additive term). One may also define
randomness deficiency as n−C(x|n) (making the deficiency bigger) or n−C(x,n) (making it
smaller): all three quantities coincide with logarithmic precision, as the following proposition
(folklore) shows:

Proposition 1. Let d = n−C(x,n). Then n−C(x|n)≤ d +O(logd).

Proof. Assume that C(x|n) = n− u and p is a program of length n− u that generates x given
n. To generate (unconditionally) both x and n it is enough to specify p and u (knowing p, we
know its length; adding u, we reconstruct n and then reconstruct x using p). The pair (p,u) can
be encoded by |p|+ 2logu + O(1) = n− u + 2logu + O(1) bits (the factor 2, or at least some
other factor greater than 1, is needed for separation). Therefore, d ≥ u−2logu+O(1) and this
implies u≤ d +O(logd).

In this paper we always measure the randomness deficiency up to a logarithmic precision,
so we can use any of three quantities listed above. Note that we speak about O(logd)- and not
O(logn)-terms.

Let x and y be two n-bit strings. We want them not only to be random, but also to be
independent (which is a different thing: if x is incompressible but y is equal to x, then x and
y are not independent). This idea can be formalized in different ways. One possibility is to
require not only that C(x) is close to n, but also that C(x|y) is close to n: even knowing y we
cannot describe x in a simpler way than just writing all its bits (and vice versa: C(y|x) should
be also close to n). Another possibility is to require that the complexity of (x,y) is close to
2n (here (x,y) can be replaced by the concatenation xy since x and y have the same length and
can be reconstructed from xy). To understand the relation between these definition, one may
use the following (folklore) version of Kolmogorov–Levin information symmetry theorem for
deficiencies.

Proposition 2. Let x and y be two strings of length n. Then

d(x,y) = d(x)+d(y|x)+O(logd),

where d(x,y) = 2n−C(x,y), d(y|x) = n−C(y|x), and d(x) = n−C(x) as defined earlier; the
O(logd) term means that both sides of the equality differ at most by logarithm of one of them
(multiplied by a constant).

(Note that if a = b+O(logb), then a = Θ(b) and loga = logb+O(1), so b = a+O(loga).)

Proof. The classical Kolmogorov–Levin theorem says that

C(x,y) = C(x)+C(y|x)+O(logn),

so it gives the desired equality, but precision is not enough: logd could be much smaller than
logn. However, we can repeat the proof of the theorem and optimize it knowing that complex-
ities of x and y are close to n.

Let d(x) = u and d(y|x) = v, i.e., C(x) = n− u and C(y|x) = n− v. Let p and q be the
corresponding programs. To specify (x,y), it is enough to provide p, q, and u (or v), so C(x,y)≤
|p|+ |q|+2logu+O(1) = 2n−u−v+2logu+O(1) and d(x,y)≥ u+v−O(logu) = u+v−
O(log(u+v)). (In the standard argument we specify |p| instead of n−|p|, and this may require
O(logn) bits.)

2

On the other hand, let d(x,y) = w, i.e., C(x,y) = 2n−w. Consider the set S of all pairs (x,y)
of n-bit strings such that C(x,y)≤ 2n−w. Consider its x-section Sx = {t | (x, t) ∈ S}. We claim
that log2 #Sx = n−O(w). Indeed, let log2 #Sx = n−m for some m (rounded to an integer). To
specify (x,y) when n is known it is enough to list x (n bits), w (requires O(logw) bits for a
self-delimiting description), m (requires O(logm) bits) and the ordinal number of y in Sx (in the
enumeration order, requires n−m+O(1) bits). In total we get 2n−m+O(logm)+O(logw),
so

2n−w−O(logw) = C(x,y|n)≤ 2n−m+O(logm)+O(logw),

i.e., m−O(logm)≤ w+O(logw), so m≤ w+O(logw) = O(w).
Describing y when x and n are known by w, m, and the ordinal number of y in Sx, we see

that
C(y|x,n)≤ n−m+O(logw)

(the bound m = O(w) is used to replace logm by logw). Also there is at most

2(2n−w)−(n−m)+O(1) = 2n+m−w+O(1)

string x′ such that Sx′ has cardinality at least 2n−m−1, and x is among them, so x can be specified
(given n) by specifying m, w, and the ordinal number of x in the enumeration (n+m−w+O(1)
bits), i.e.,

C(x|n)≤ n+m−w+O(logw).

In total we get

C(x|n)+C(y|x,n)≤ n−m+n+m−w+O(logw) = 2n−w+O(logw),

so
d(x)+d(y|x)≥ d(x,y)−O(logd(x,y))

(recall that condition n in the deficiency can be ignored since our equalities are true with loga-
rithmic precision, proposition 1).

Now recall our discussion about two ways to define independent pairs of random strings.
If d(x,y) is small, say, less than some D, then both d(x) and d(y|x) are small: they are at most
D+O(logD). In the other direction we have factor 2: if d(x) and d(y|x) do not exceed D, then
d(x,y) does not exceed 2D+O(logD). So the first requirement is stronger.

Similar result (with the same proof) holds for tuples: for example, for triples we have

d(x,y,z)≈ d(x)+d(y|x)+d(z|x,y)

(with the same precision: the difference between two sides is bounded by a logarithm of each
side multiplied by a constant).

2 Sets of pairwise independent strings
A classical (and simple) observation: most n-bit strings have deficiency at most 2. Now let
us ask similar question adding the independence requirement. Let S be a set of n-bit strings.
Assume that d(x,y)≤D for every (different) x,y ∈ S. What is the maximal possible cardinality
of S? The same question can be asked with condition d(x|y)≤D. It turns out that in both cases
we have maximal cardinality 2D+O(logD). Let us prove the corresponding upper and lower
bounds.

3

Theorem 1. (1) Let S be a set of n-bit binary strings such that d(x|y)≤D for every two different
x,y ∈ S. Then #S≤ 2D+O(logD).

(2) There exists a set S of n-bit binary strings of size 2D−O(logD) such that d(x,y) ≤ D for
every two different x,y ∈ S.

Note that to make the theorem stronger, we use different interpretation of independence in
the upper and lower bounds.

Proof. The upper bound is simple: if #S > 2m, then S has two different elements x,y with the
same m-bit prefix, so d(x|y)≥m−O(logm). (Indeed, to specify y when x is given, it is enough
to specify m (using O(logm) bits for self-delimiting description) and list the last n−m bits of y.

To prove the lower bound, we first restrict ourselves to strings x with deficiency d(x) =
O(1); we have Ω(2n) of them. Let x1 be one of these strings. Delete all the strings y such
that d(y|x1) ≥ D. There are at most 2n−D+O(1) strings to be deleted. Let x2 be one of the
remaining strings; delete also all the strings y such that d(y|x2) ≤ D. Continuing this process,
we get a set S = {x1,x2, . . .} of at least 2D−O(1) strings. For every i we have d(xi) = O(1) and
for every i, j such that i < j we have d(x j|xi) ≤ D + O(1). Therefore (proposition 2) we have
d(xi,x j)≤ D+O(logD).

It is instructive to provide an alternative argument for the lower bound (which can be gen-
eralized for tuples, see section 3). Let N be some number (to be chosen later). Consider N
independent random variables X1, . . . ,XN uniformly distributed among n-bit strings. For fixed
i 6= j the probability of the event d(Xi,X j) > D is 2−D+O(1). For a fixed i the probability of
the event “d(Xi,X j) > D for some j 6= i” is bounded by O(N2−D), and the expected number
of i with this property (we call them “bad”) is NO(N2−D). Taking N = 2D−c for large enough
constant c, we make this expected value less than N/2. Therefore, with positive probability
only half of Xi are bad. Fix some outcome when this happens. Deleting all bad strings, we get
a set S of size 2−D+O(1) such that d(x,y)≤ D for every different x,y ∈ S.

The lower bound can be considered as a generalization of a lower bound for the code size: In
coding theory we try to construct strings that have large Hamming distance. Our requirement
is stronger: we want them to be independent (note that strings x and y that have Hamming
distance significantly less than n/2 are dependent). One can construct a code by choosing
codewords one by one (outside of the existing balls) or choose them all together randomly (and
then deleting elements that are close to other elements). Both arguments, as we have seen,
easily generalize to our case.

3 Sets of k-wise independent strings
Similar upper and lower bounds can be shown for tuples. Fix some number t ≥ 2. (All the
constants in the O()-notation below depend on this t.)

Theorem 2. (1) Let S be a set of n-bit strings such that d(x1|x2, . . . ,xt) ≤ D for every two
different x1, . . . ,xt ∈ S. Then #S≤ 2D/(t−1)+O(logD).

(2) There exists a set S of n-bit strings of size 2D/(t−1)−O(logD) such that d(x1, . . . ,xt) ≤ D
for every different x1, . . . ,xt ∈ S.

4

For t = 2 we get theorem 1.

Proof. Let us start with the second part (lower bound) that can be obtained as above. For some
N consider N independent random variables X1, . . . ,XN that are uniformly distributed among
n-bit strings. For fixed i1, . . . , it the probability of the event

d(Xi1, . . . ,Xit) > D

does not exceed 2−D+O(1). Therefore, for given i1 the probability of the event “there exist
i2, . . . , it such that. . . ” does not exceed Nt−12−D+O(1). If the latter probability is less than 1/2,
then with positive probability only half of i1 are bad. So letting N = 2D/(t−1)−O(1), we get Ω(N)
good strings (as required).

The upper bound can be shown using a Muchnik-type combinatorial argument. In section 2
we used the following (evident) fact: two strings are dependent if they have the same prefix.
However, it is not needed for prefixes to be the same: it is enough for one of the prefixes to be
a simple function of the other one. For the same reason, d(x|y,z) is big if a prefix of x (of a
significant size) is a simple function of y and z or their prefixes. Following this idea, we prove
a combinatorial statement.

Lemma 1. For every m there exist a function f : (x2, . . . ,xt) 7→ f (x2, . . . ,xt) whose arguments
x2, . . . ,xt and values are m-bit binary strings, with the following property: every set S ⊂ Bm

with #S > 2m/(t−1)+O(logm) contains pairwise different elements x1,x2, . . . ,xt such that x1 =
f (x2, . . . ,xt).

Before proving this lemma, let us show how it can be used to prove our theorem. Note
that we may assume without loss of generality that the function f in the lemma has complexity
O(logm). Indeed, if a function with this property exists, it can be found by an exhaustive
search (given m). For a given set S ∈ Bn of size 2s or bigger, let us consider m-bit prefixes
of all the elements of S, where m = D + c logD for large enough constant c (to be chosen
later). If two prefixes of different elements of S coincide, we have found x,y ∈ S such that
d(x|y) > D (and we may use t− 2 arbitrary strings as a condition). If not, the set of prefixes
contains 2s elements. If s > m/(t−1)+O(logm), the lemma guarantees that y1 = f (y2, . . . ,yt)
for some prefixes y1, . . . ,yt (all different) of strings x1, . . . ,xt ∈ S (also different). This implies
d(x1|x2, . . . ,xt) ≥ m−O(logm), and m−O(logm) > D if the constant c (see above) is large
enough. This should not happen for our S, so s≤m/(t−1)+O(logm) = D/(t−1)+O(logD).
This finishes the proof of the theorem modulo our lemma. It remains to prove the lemma.

Proof of the lemma. We use the probabilistic argument and show that a random function
f has the required property with positive probability. The number of different sets S of size 2s

is at most (2m)2s
. For each set S of this size we consider the event “ f (x2, . . . ,xt) /∈ S” for every

tuple (x2, . . . ,xt) of different elements of S. For each tuple the probability is 1−2s/2m, and for
different tuples the events are independent. The number of tuples is (2s)t−1/O(1) (we divide
by (t−1)! and should take into account that elements in tuple are different; note that constants
hidden in O-notation depend on t). So we get the following upper bound for the probability:

(2m)2s
(

1− 2s

2m

)2s(t−1)−O(1)

If s = m/(t−1)+ c logm, this equals

5

(2m)2s
(

1− 1
2m−s

)2m+c(t−1) logm−O(1)

= (2m)2s

((
1− 1

2m−s

)2m−s)2s+c(t−1) logm−O(1)

Recall that (1−1/u)u ≈ e, we get the upper bound

(2m)2s
(

1
e

)2s+c(t−1) logm−O(1)

(to be exact, we should use some e′ < e instead of e). We have to prove that the bound is less
than 1, so we may delete factor 2s in the exponents and show that

2m
(

1
e

)2c(t−1) logm−O(1)

< 1,

which is evident if c is large enough. This finishes the proof of the lemma.

Acknowledgements
Authors are grateful to Paul Vitanyi, the Editor of this Journal.

References
[1] Li M., Vitányi P., An Introduction to Kolmogorov Complexity and Its Applications, Second

Edition, Springer, 1997. (638 pp.)

[2] Alexander Shen, Algorithmic Information Theory and Kolmogorov Complexity, Uppsala
Universitet, Technical Report 2000-034. Available at:
http://www.it.uu.se/research/publications/reports/2000-034.

6

