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Formal definitions

C — a finite set of colors

τ ⊂ C 4 — a set of tiles (Wang tiles)
tile t = 〈t.left, t.right, t.up, t.down〉
configurations: mappings Z2 → τ

tilings: configuration that satisfy matching rules

C (i , j).right = C (i + 1, j).left

C (i , j).up = C (i , j + 1).down
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Periodic tilings

A tiling C is periodic if it has some period T :

C (x + T ) = C (x)

for all x .
Four possibilities for a tile set:

I no tilings;

I only periodic tilings;

I both periodic and aperiodic tilings;

I only aperiodic tilings;
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Berger’s theorem and theory of computation

I the question was asked by Hao Wang when he
studied decision problems

I Berger’s construction became an important tool
to prove undecidability of many algorithmic
problems

I Aperiodic tiling can be constructed using
self-referential argument widely used in logic and
computation theory (Kleene’s fixed point
theorem)
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History

I Hao Wang (1961) asked whether aperiodic
tilings exist in connection with domino problem;

I Alternative history: the self-referential aperiodic tile set should have
been invented by von Neumann, inventor of self-reproducing
automata (1952), but he died in 1957 and his work on cellular
automata was published only in 1966

I Berger (1966) proved the existence of aperiodic
tile sets and used this construction to prove the
undecidability of the domino problem;

I Robinson tiling (1971)

I Penrose tiling (1974)

I . . .

I Ollinger tiling (2007)
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Self-similar tile sets

Fix a integer zoom factor M > 1.

Let τ be a tile set. A τ -macro-tile is a M ×M
square correctly tiled by τ -tiles.

Let ρ be a set of τ -macro-tiles. We say that τ
implements ρ if any τ -tiling can be uniquely split by
a grid into ρ-macro-tiles

Tile set τ is self-similar if it implements some set of
macro-tiles ρ that is isomorphic to τ
(Isomorphism: 1-1-correspondence that preserves
matching rules)
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Proof of A

Let τ be a self-similar tile set with zoom factor M

Let U be τ -tiling
Let T be a period of U
U can be splitted into macro-tiles; T -shift preserves
this splitting (uniqueness) and therefore T is a
multiple of M
Zoom out: T/M is a period of a tiling by a tile set
isomorphic to τ
T/M is a multiple of M etc.
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Self-referential tile set

I For a given tile set σ we construct a tile set τ
that implements σ

I This gives a mapping σ → τ(σ)

I It remains to find a fixed point:

τ(σ) is isomorphic to σ



The structure of a macro-tile that implements itself

Universal

Turing

machine

program

c1 c2

c3

c4



Applications

I tile sets with variable zoom factor

I strongly aperiodic tile sets (each shift changes
99% positions)

I robust aperiodic tile sets (isolated or sparse
holes can be patched)

I simple proof of the unidecidability of the domino
problem

I simple construction of a tile set that has only
complex tilings

I tile set with any computable density
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