Decomposition Complexity

..., Alexander Shen, ...

Abstract

We consider a problem of decomposition of
a ternary function into a composition of bi-
nary ones from the viewpoint of communica-
tion complexity and algorithmic information
theory as well as some applications to cellular
automata.

1 Introduction

The 13th Hilbert problem asks whether all
functions can be represented as compositions
of binary functions. This question can be un-
derstood in different ways. Kolmogorov and
Arnold (see [3]) gave positive answer for con-
tinuous functions proving that any continuous
function of real arguments can be represented
as a composition of continuous unary func-
tions and addition (a binary function). On the
other hand, for differentiable functions nega-
tive answer was obtained by Vituschkin. Later
Kolmogorov interpreted this result in terms of
information theory (see [2]): the decomposi-
tion is impossible since we have “much more”
ternary functions than compositions of binary
ones. (Below we present some discrete ver-
sion of this argument.)

Let us start with a simple decomposition
problem. An input (say, a binary string) is di-
vided into three parts x, y and z. We want to
represent T°(x,y, z) as a composition of three
binary functions:

T(x,y,z) = t(a(x,y), b(y,2)).

In other words, we want to compute
T(x,y,z) under the following restrictions:

T(x,y,z) =t(a(x,y),b(y,2))

T/,\

/‘/ *\
a(x,y) kA Bab(»2)
% y 4

node A gets x and y and computes some
function a(x,y); node B gets y and z and
computes some function D(y, z); finally, the
output node T gets a(x,y) and b(y,z) and
should compute T'(x,y, z).

The two upper channels have limited ca-
pacity; the question is how much capacity is
needed to make such a decomposition possi-
ble. If a- and b-channels are wide enough,
we may transmit all the available information,
i.e., let a(x,y) = (x,y) and b(y,z) = (y, z).
Even better, we can split y in an arbitrary
proportion and send one part with x and the
other one with z.

Is it possible to use less capacity? The an-
swer evidently depends on the function T'. If,
say, T(x,y,z) is xor of all bits in x, y and z,
one bit for a- and b-values is enough. How-
ever, for other functions T it is not the case,
as we see below.

In the sequel we prove different lower
bounds for the necessary capacity of two up-
per channels in different settings; then we
consider related questions in the framework
of multisource algorithmic information the-
ory [5]).

Before going into details, let us note that the

definition of communication complexity can
be reformulated in similar terms: one-round
complexity corresponds to the network

(dotted line indicates channels of limited ca-
pacity) while two-rounds complexity corre-
sponds to the network

p(x,y)

etc. Another related setting that appears in
communication complexity theory: three in-
puts x, y, z are distributed between three par-
ticipants; one knows x and y, the other knows
y and z, the third one knows x and z; all three
participants send their messages to the fourth
one who should compute 7'(x, y, z) based on
their messages (see [4]).

One can naturally define communication
complexity for other networks (we select
some channels and count the bits that go
through these channels).

2 Communication
complexity

Let T = T(x,y,z) be a function defined on
B? x B? x B" (here B is the set of k-bit
strings) whose values belong to some set M.
We say that decomposition complexity of T
does not exceed n if there exist u+v < n and

functions a: B xBY — B¥, b: BIxB" — B
and t: B* x BY — M such that

T(x,y,z) = tla(x,y), b(y, z))

for all x € B, y € BY, z € B". (As in com-
munication complexity, we take into account
the total number of bits transmitted via both
restricted links. More detailed analysis could
consider u and v separately.)

2.1 General upper and

lower bounds

Since the logarithm of the image cardinality
is an evident lower bound for decomposition
complexity, it is natural to consider predi-
cates T (so this lower bound is trivial).

Theorem 1 (Upper bound) Complexity of
any function does not exceed n = p+q+r;
complexity of any predicate does not exceed
2° + v as well as 2" + p.

(Lower bound) If p and r are not too
small (at least logn + O(1)), then there
exists a predicate with decomposition com-
plexity n — O(1).

The second statement shows that the upper
bounds provided by the first one are rather
tight.

Proof. (Upper bounds) For the first bound
one can let, say, a(x,y) = (x,y) and
b(y,z) = z. (One can also split y between a
and b in an arbitrary proportion.)

For the second bound: for each x,y the
predicate ¢,

Z = tey(2) = t(x,y,2)

can be encoded by 2" bits, so we let a(x,y) =
I,y and b(z) = z and get decomposition com-
plexity at most 2" 4+ p. The bound 27 + r is
obtained in a symmetric way.

(Lower bound) We can use a standard
counting argument. Assuming that a has u-
bit values and b has v-bit values, we have

(21)?""" possible a’s, (2*)2*"" possible b’s and
24 possible t’s, i.e.,

2u2p+q 2v2q+r 22u+v

possibilities (for fixed u, v). In total we get at
most

m21421’+‘1 . 2v24+r . 22'"

predicates of decomposition complexity less
than m (the factor m appears since there are
at most m decompositions of m—1 into u+v).
Therefore, if all 22" predicates B? xBIxB" —
B have decomposition complexity less than m,
we have

m2u2p+q . 2v2q+r . 22m 2 221:
or
logm + u2P™9 +v29+" 4 2™ > 2"

At least one of the terms in the left-hand side
should be Q(2"), therefore either m > n —
O(), or logu > r — O(1), or logv > p —
o). 0

2.2 Bounds for explicit functions

As with circuit complexity, an interesting
question is to provide a lower bound for an
explicit function; it often is much harder than
proving the existence results. The following
statement provides a lower bound for a simple
function.

Consider the predicate T: Bf xB
B defined as follows:

22k X]Ek _
T(x,y,z) = y(x,2)

where y € B2" is treated as a function B¥ x
Bf — B.

Theorem 2 The decomposition complexity
of T is at least 2%,

(Note that this bound is weaker than in
Theorem 1: it is close to the square root of

the input size, not the input size as in the non-
constructive bound.)

Proof. Assume that some decomposition of
T is given:

T(x,y,z) = tla(x,y), b(y, z))

where a(x, y) and b(y,z) have u and v bits
respectively. Then every y : B¥ x B — B
determines two functions a,: Bf — B* and
b,: B¥ — B obtained from @ and b by fixing
y. Knowing these two functions one should
be able to reconstruct T'(x, y, z) for all x and
z, since

T(x,y,z) = t(ay(x), ay(2)),

i.e., to reconstruct u. Therefore, the number
of possible pairs (ay, by), which is at most

u2k yok
8V

is at least the number of all y’s, i.e. 22, So
we get
(u +v)2k > 2%,

or u + v > 2%, therefore the decomposition
complexity of T is at least 2F. n

Remarks.

1. In this way we get a lower bound
Q(y/n) (where n is the input size) for the
case when x and z are of size O(logn). It is
easy to see that we can add dummy bits to x
and z and get the same bound (,/n) for the
case when x and z have bigger size. (On the
contrary, we cannot significantly decrease the
size of x and z according to Theorem 1.)

2. Note that if the predicate #(x,y,z) is
defined as x = z, we need to transmit x and
z completely (pigeon-hole principle). So there
is a trivial (and tight) linear bound if we let
x and z be long (of ®(n)) size. It would be
interesting to get a linear bound for an explicit
function in the more interesting case where x
and z are short compared to y (preferable
even of logarithmic size as above)

Note that the function 7 defined above does
not work (since there is an upper bound:

a(x,y) can be xth row in matrix y). The
function 7”: B} x B?' x B¥ x B defined by
T'(x,y,z) = y(x®z) also has a (non-trivial)
sublinear upper bound, see [4]. (This upper
bound is still much bigger than (/n) lower
bound obtained by reduction to T'.)

3. For communication complexity peo-
ple consider also probabilistic and random-
ized versions. For decomposition complex-
ity one may do the same: ecither consider
random variables instead of binary function
(with shared random bits or independent ran-
dom bits) or look for a decomposition that is
Hamming-close to a given function. The fol-
lowing natural question arise:

e what are the relations between these
models?

e what upper and lower bounds can be
proven for generic functions?

e what upper and lower bounds can be
proven for explicit functions (in partic-
ular, for functions 7 and 7T’ defined
above)?

3 Applications to cellular au-
fomata

An (one-dimensional) cellular automata is a
linear array of cells. Each of the cells can
be in some state from a finite set S of states
(the same for all cells). At each step all the
cells update their state; new state is some fixed
function of its old state and the states of its
neighbors. All the updates are made syn-
chronously.

Using a cellular automaton to compute a
predicate, we assume that there are two spe-
cial states 0 and 1 and a neutral state that is
stable (the cell remains neutral if it is neutral
together with its two neighbors). To compute
P(x) for a n-bit string x, we assemble n cells
and put them into states that correspond to x;

the rest of the (biinfinite) cell array is in a
neutral state.

Then we start the computation; the answer
should appear in some predefined cell (see be-
low about the choice of this cell).

There is a natural non-uniform version of
cellular automata: we assume that in each
vertex of the time-space diagram an arbitrary
function is used. Then the only restriction is
caused by the limited capacity of links: we re-
quire that inputs/outputs of all functions (in
all vertices) belong to some fixed set S.

In this non-uniform setting a predicate P
on binary strings is considered as a family
of Boolean functions P, (where P, is a re-
striction of P onto n-bit strings) and for each
P, we measure the minimal size of a set S
needed to compute P, in a non-uniform way
described above. If this size is an unbounded
function of n, we conclude that predicate P is
not computable by a cellular automaton. (In
compexity theory we use the same approach
when we try to prove that some predicate is
not in P since it needs superpolinomial circuits
in a non-uniform setting.)

As usual, getting lower bounds for nonuni-
form model is difficult, but it turns out that
the decomposition complexity can be used if
the cellular automaton is obliged to produce
the answer as soon as possible.

Let us fix the neighborhood and assume that
each cell depends on itself and its two neigh-
bors. Then the first occasion to use all n input
bits happens around time n/2 in the middle of
the string:

[t]

Now we assume that the output of a cellu-
lar automaton should be produced at this place
(both in uniform and non-uniform model).
(This is a very strong version of real-time

computation by cellular automata; we could
call it “as soon as possible”-computation .)

Theorem 3 Let T;: B¥ xB/® x Bt — B be
a family of predicates that is non-uniformly
computable in this sense. Then the decom-
position complexity of Ty is O(k), and the
constant in O-notation is the logarithm of
the number of states.

Proof: see the picture

T(x,y,z)

(we use bigger units for time direction to
make the picture more clear).

We consider the contents of the line of
length 2k located k steps before the end of
the computation. The left half is a(x,y), the
right half is b(y, z) and the function ¢ is com-
puted by the upper part of the circuit. It is
easy to see that a(x,y) indeed depends only
on x and y since information about z has not
arrived yet; for the same reason b(y,z) de-
pends only on y and z.

Corollary: the predicate T from Theo-
rem 2 cannot be computed in this model.

Note that this predicate is computable by a
cellular automaton in linear time (we combine
the string x and z into a 2k-binary string; then
we move this string across the middle part of
input subtracting one at each step and waiting
until our counter decreases to zero; then we
know where the output bit should be read.
So we get the following result:

Theorem 4 There exists a linear-time com-
putable predicate that is not computable
“as soon as possible” even in a non-uniform
model.

Remark. This result and the intuition be-
hind the proof are not new (see the papers
of V. Terrier [6]; see also [1]). However, the
explicit use of decomposition compleixty helps
to formalize the intuition behind the proof. It
also allows us to show (in a similar way) that
this predicate cannot be computed not only
“as soon as possible”, but even after o(\/n)
steps after this moment (which seems to be an
improvement).

Questions: There could be other ways to
get lower bounds for non-uniform automata
(=triangle circuits). Of course, there is a
counting lower bound, but this does not give
any explicit function. Are there some other
tools?

4 Algorithmic Information

Theory

Now we can consider the Kolmogorov com-
plexity version of the same decomposition
problem. Assume that we have four binary
strings x,y,z, t such that K(f|x,y,z) ~ O.
Here K(a|f3) stands for conditional complex-
ity of @ when § is known, i.e., for the mini-
mal length of a program that transforms [to
a. (Hence our requirement says that there is
a short program that produces # given x, y, z.)

We are looking for strings a and b such
that K(alx,y) =~ 0, K(bly,z) 0, and
K(t|a, b) ~ 0. Such a and b always exist,
since we may let a = (x,y) and b = (y, z)
(again, y can be split between a and b). How-
ever, the situation change if we restrict the
complexity of @ and b. As we shall see, some-
times we need a and b of total complexity
close to K(x) + K(y) + K(z) even if ¢ has
much smaller compmlexity. (Note the now

~
~

we cannot restrict to one-bit strings ¢ for ev-
ident reasons.)

Theorem that shows that in general it is not
possible

TO BE WRITTEN:

Proof by a game-theoretic argument: op-
ponent has less moves so we can still create a
problem for him after every move

A stronger result requires that 7 is obtained
from x,y,z by a simple total function. To
prove this we need a probabilitic argument:
random function is covered by a small family
of binary functions with negligible probability

Reformulation: is there a function that has
large decomposition complexity even if we al-
low multi-valued functions?

Question: it would be nice to get bounds
for an explicit function #(x, y, z).

Question: is the reformulation in terms of
classical information theory possible? Is it re-
lated to the probabilistic decomposition com-
plexity?

References

[1] C. Choffrut and K. Culik II, On Real-Time
Cellular Automata and Trellis Automata,
Acta Informatica, 21, 393-407 (1984).

[2] Kommoropos A.H., Tuxommpos B.M.,
E-DHTPONUSL W E-EMKOCTb MHOXKECTB
B (PYHKIMOHAJBHBIX HPOCTPAHCTBAX.
Yenexu mamemamuueckux nayx, 14 (2),
p. 3-86.

[3] KommoropoB A.H., O mnpexncrasienun

HETPEPBIBHBIX ~ (PYHKUMH HECKOJIBKHUX
IEPEMEHHBIX B BHAE CYNEPIO3HIMi
HETIPEPbIBHBIX (yHKIMT OJIHOI'0
HEPEMEHHOTO W ciaoxeHus. /[oknaowl

Axademuu nayk CCCP, 114(5), 953—
956 (1957)

(4] Eyal Kushilevitz, Noam Nisan, Communi-
cation complexity, Cambridge University
Press, 1997.

[5] Shen A., Multisource information theory,
Theory and Applications of Models of
Computation, Lecture Notes in Computer
Science, Springer Berlin/Heidelberg,
3959 (2006), p. 327-338.

[6] Véronique Terrier, Language not recog-
nizable in real time by one-way cellu-
lar automata. Theoretical Computer Sci-
ence, 156(1-2), 281-287 (1996).

