
Game interpretation of Kolmogorov complexity

Andrej A. Muchnik∗

Abstract

The Kolmogorov complexity function K can be relativized using any oracle A, and
most properties of K remain true for relativized versions KA. We provide an explanation
for this observation by giving a game-theoretic interpretation and showing that all “natural”
properties are either true for all KA or false for all KA if we restrict ourselves to sufficiently
powerful oracles A.

1 Main theorem and its proof
Consider all functions defined on the set of binary strings with non-negative integer values,
i.e., the set F = N{0,1}∗ . Let α be a property of such a function (i.e., a subset of F). We
say that α is O(1)-stable if f1 ∈ F ⇔ f2 ∈ F for any two functions f1, f2 ∈ F such that
f1(x) = f2(x)+O(1), i.e., the difference | f1(x)− f2(x)| is bounded.

Let A be an oracle (a set of strings). By KA(x) we denote the Kolmogorov complexity
of a string x relativized to oracle A, i.e., the length of the shortest description for x if the
decompressor is allowed to use A as an oracle. (See [2] or [7] for more details; we may use
either plain complexity (denoted usually by C or KS) or prefix complexity (denoted usually by
K or KP) though the game interpretation would be slightly different; see below).

For a given A the function KA is defined up to O(1) additive term, therefore an O(1)-stable
property α is well defined for KA (does not depend on the specific version of KA). So α(KA)
becomes a property of the oracle A. It may be true for some oracles and false for other ones.
For example, if wn is a n-bit prefix of Chaitin’s random real Ω, the (O(1)-stable) property
KA(wn) > 0.5n+O(1) is true for trivial oracle A = 0 and false for A = 0′. The following result
shows that for “usual” α the property α(KA) is either true for all sufficiently large A or false
for all sufficiently large A.

Theorem. Let α be a Borel property. Then there exists an oracle A0 such that either α(KA)
is true for all A≥T A0 or α(KA) is false for all A≥T A0.

Here ≥T stands for Turing reducibility. The statement is true for different versions of
complexity (plain complexity, prefix complexity, decision complexity, a prioriy complexity,
monotone complexity etc.). We provide the proof for plain complexity C and there describe the
changes needed for other versions.

∗The paper is based on talks given by Andrej Muchnik (24.02.1958–18.03.2007) at Kolmogorov seminar
(Moscow Univerisity). The text is prepared by A. Shen and N. Vereshchagin who are responsible for all errors
and omissions.

1

Proof. Consider the following infinite game with full information. Two players called (as
usual) Alice and Bob enumerate graphs of two functions A and B respectively; arguments and
values of A and B are binary strings. The players’ moves alternate; at each move player may
add finitely many pairs to the graph of her/his function (but cannot delete the pairs that are
already there, so the values of A and B that are already defined remain unchanged).

The winner is declared as follows. Let KA and KB be the complexity functions that corre-
spond to decompressors A and B, i.e.,

KA(x) = min{l(p) | A(p) = x}

where l(p) stands for the length of p; the function KB is defined in a similar way. Let us agree
that Alice wins if the function

K(x) = min(KA(x),KB(x))

satisfies α . If not, Bob wins. (A technical correction: functions KA and KB may have infinite
values; we assume that α is somehow extended to such functions, e.g., is false for all functions
with infinite values.)

Lemma. If Alice has a computable winning strategy in this game, then α(C) is true for
(plain) complexity function C; if Bob has a computable winning strategy, then α(C) is false.

Proof of the Lemma is straightforward. Assume that Alice has a computable winning
strategy. Let her use this strategy against the enumeration of the graph of optimal decompres-
sor function (so KB(x) = C(x) for all x). Note that in fact Bob ignores the moves of Alice
and enumerates the graph of B at its own pace. Since both playes use computable strate-
gies, the game is computable. Therefore KA ≤ KB + O(1) due to the optimality of B and
min(KA(x),KB(x)) = KB(x) + O(1) = C(x) + O(1). Since Alice wins and α is O(1)-stable,
the function C has property α . The same argument (with exchanged roles of Alice and Bob)
can be used if Bob has a winning strategy. �

The statement and the proof of the lemma can be relativized: if Alice/Bob has a winning
strategy that is A-computable for some oracle A, then α(CA) is true/false.

Now recall Martin’s theorem on the determinacy of Borel games: the winning condition
of the game described is a Borel set (since α has this property), so either Alice or Bob has a
winning strategy in the game. So if the oracle A is powerful enough (is above the strategy in
the hiearchy of T -degrees), the property α(KA) is true (if Alice has a winning A-computable
strategy) or false (if Bob has a winning A-computable strategy). Theorem is proven. �

2 Discussion
Let us make several remarks.
• First, note that not all theorems in algorithmic information theory are O(1)-stable. For

example, most of the results about algorithmic properties of complexity function are not sta-
ble. (The non-computablity of the complexity function or its upper semicomputablity are not
stable while the non-existence of nontrivial computable lower bound is stable. Also the Turing-
completeness of C is a non-stable assertion though the stronger claim “any function that is
O(1)-close to C can be used as an oracle to decide halting problem” is stable.) The other
assumption (Borel property) seems less restrictive: it is hard to imagine a theorem about Kol-
mogorov complexity where the property in question won’t be a Borel one by construction.

2

• One may ask whether the statement of our theorem can be used as a practical tool to
prove the properties of Kolmogorov complexity. The answer is yes and no at the same time.
Indeed, it is convenient to use some kind of game while proving results about Kolmogorov
complexity, and usually the argument goes in the same way: we let the winning strategy play
against the “default” strategy of the opponent and the fact that the winning strategy wins implies
the statement in question. However, it is convenient to consider more special games. For
example, proving the inequality

C(x,y)≥ KS(x)+C(y|x)−O(logn)

(for strings x and y of length at most n), we would consider a game where Alice wins if
KB(x,y) < k + l implies that either KA(x) < k + O(logn) or KA(y|x) < l + O(logn) for every
n,k, l and for every strings x,y of length at most n.

This example motivates the following version of the main theorem. Let α be a property
of two functions in F , i.e., a subset of F ×F . Assume that α is monotone in the following
sense: if α(f ,g) is true and if f ′(x) ≤ f (x)+ O(1) and g′(x) ≥ g(x)−O(1), then α(f ′,g′) is
true, too. Consider the version of the game when Alice wins if α(KA,KB) is true. If Alice has a
computable winning strategy, then α(C,C) is true; if Bob has a computable winning strategy,
then α(C,C) is false. (The proof remains essentially the same.)

We provide several examples where game interpretation is used to prove statements about
Kolmogorov complexity in Section 3; one more example can be found in [6].
• Going in the other direction, one would like to extend this result to arbitrary results of

computablility theory not necessarily related to Kolmogorov complexity. Such an extension is
given in [5].
• It is easy to modify the proof to cover different versions of Kolmogorov complexity. For

example, for prefix complexity we may consider prefix-stable decompressors where F(p) = x
implies F(p′) = x for every p′ that has prefix p; similar modification work for monotone and
decision complexity. For a priori complexity the players specify lower approximations to a
semimeasure.
• One may change the rules of the game and let Alice and Bob directly provide upper

bounds KA and KB instead of enumerating graphs for A and B. Initially KA(x) = KB(x) = +∞

for every x; at each step the player may decrease finitely many values of the corresponding
function. The restriction (that goes back to Levin [1]) is that for every n there is at most 2n

strings x such that KA(x) < n (the same restriction for KB). This approach works for prefix and
decision complexities (but not for the monotone one).

3 Examples

Conditional complexity and total programs
Let x and y be two strings. The conditional complexity C(x|y) of x when y is known can be de-
fined as the length of the shortest program that transforms y into x (assuming the programming
language is optimal). What if we require this program be total (i.e., defined everywhere)?

It turns out that this requirement can change the situation drastically: there exist two strings
x and y of length n such that C(x|y) = O(logn) but any total program that transforms y to x has
complexity (and length) n−O(logn). (Note that a total program that maps everything to x has
complexity at most n+O(1).)

3

To prove this statement, we use the following game. Fix some n and consider a game.
We enumerate a graph of some function f : Bn→ Bn (at each move we add some pairs to that
graph). The opponent enumerates a list of at most 2n−1 total functions g1,g2, . . . (at each move
opponent may add some functions to this list). We win the game if there exist strings x,y ∈ Bn

such that f (y) = x but gi(y) 6= x for all i.
Why we can win in this game: First we choose some x and y and declare that f (y) = x.

After every move of the opponent we choose some y where f is still undefined and declare
f (y) = x where x is different from currently known g1(y),g2(y), The number of opponent’s
moves is less than 2n, therefore an unused y still exists (we use only one point for every move
of the opponent) and a value x different from all gi(y) exists.

Why the statement is true: Let us use our strategy against the following opponent strategy:
enumerate all total functions Bn → Bn that have complexity less than n. (Each function is
considered here as a list of its values.) This strategy is computable (given n) and therefore the
game is computable. Therefore, for the winning pair (x,y) we have C(x|y) = O(logn) since
n is enough to describe the process and therefore to compute function f . On the other hand,
any total function that maps y to x has complexity n−O(logn), otherwise the list of its values
would appear in the enumeration.

So if we denote by C(x|y) the length of the shortest program for a total function that maps
x to y, we get a (non-computable) upper bound for C(x|y) that sometimes differs significantly
from C: it is possible that C(x|y) is about n while C is O(logn) (for strings x and y of length n).

Extracting randomness requires Ω(logn) additional bits
Let us consider a question that can be considered as Kolmogorov-complexity version of ran-
domness extraction (though the similarity is superficial). Assume that a string x is “weakly
random” in the following sense: its complexity is high (at least n) but still can be smaller than
its length, which is polynomial in n. We want to “extract” randomness out of x, i.e., to get a
string y such that y is random (=incompressible: its length is close to its complexity) using few
additional bits, i.e., C(y|x) should be small. When is it possible?

The natural approach is to take the shortest program for x as y. Then x is indeed incom-
pressible (C(y) = l(y)+ O(1); here l(y) stands for the length of y). And the complexity of y
when x is known is O(logn): knowing x and the length of a shortest program for x, we can find
this shortest program. Taking the first n bit of this shortest program, we get a string of length
n, complexity n+O(logn) and O(logn) conditional complexity (relative to x).

What if we put a stronger requirement and requiere C(y|x) to be O(1) or o(logn)? It turns
that “randomness extraction” in this stronger sense is not always possible: there exists a string
x of length n2 that has complexity at least n such that every string y of length n that has con-
ditional complexity C(y|x) less than 0.5logn has unconditional complexity O(logn) (i.e., is
highly compressible). (The same is true for all strings y of length less than n, so we cannot
extract even n/2 “good random bits” using o(logn) advice bits.)

To prove this statement, consider the following game. There are two sets L = Bn (“left
part”) and R = Bn2

(“right part”). The opponent at each move may choose some elements l ∈ L
and r ∈ R and add an edge between them (declaring l to be a neighbor of r). The restriction is
that every element in R should have at most d = d

√
ne neighbors. We may mark some elements

of L (at most O(
√

n) elements) as “simple”. We win if there are at least 2n elements in R that
have the following property: all their neighbors are marked.

4

Why the statement is true if we can win the game (using a computable strategy): let the
opponent declare x ∈ L to be a neighbor of y ∈ R if C(x|y) < 0.5logn. Then every y has at most
d neighbors. The process is computable, so the game can be effectively simulated. Therefore,
all x declared as “simple” indeed have complexity O(logn) since each x can be described by n
and its ordinal number in the enumeration of simple elements (the latter requires 0.5logn bits).
Among 2n elements in R that have winning property there is one that has complexity at least n,
and this is exactly what we claimed.

How to win the game. We do nothing while there are at least 2n elements in R that
have no neighbors (since this implies the required property). After 2n2 − 2n elements get
neighbors in L, we mark the neighbor that is used most often. It is a neighbor of at least
(2n2−2n)/2n = 2n2−n−1 > 2n2−2n elements in R, and restrict our attention to these “selected”
elements ignoring all other elements of R. Then we do nothing while more than 2n of (selected)
elements have no second neighbor. After that we mark the most used second neighbor and have
at least (2n2−2n−2n)/2n > 2n2−4n elements that have two marked neighbors. In this way we
either wait indefinitely at some step (and in this case we have at least 2n elements that have
only marked neighbors) or finally get 2n2−2dn > 2n element who have d marked neighbors and
therefore cannot have non-marked ones.

Note that we could change the game allowing the opponent to declare 2n elements in R as
simple and requiring in the winning condition that there is one non-simple element in R that
has no non-simple neighbors. This would make the game closer to original statement about
Kolmogorov complexity but a bit more complicated.

This example is adapted from [8].

The compexity of a bijection
For any two strings x and y one may look for a shortest program for a bijective function that
maps x to y. Evidently, it is not shorter than a shortest program for a total function that maps x to
y, therefore we get a lower bound C(y|x)−O(1). Since bijection can be effectively reversed, the
length of a program for a bijection is at least max(C(x|y),C(y|x))−O(1). What about upper
bounds? Imagine there exists a simple total function that maps x to y and other simple total
function that maps y to x. Can we guarantee that there exists a simple bijective total function
that maps x to y?

To simplify the discussion, let us assume that x and y are of length n, the bijection should
be length-preserving and n is known (used as a condition in all the complexities).

This question corresponds to a game. Our opponent produces some total functions

f1, f2, . . . : Bn→ Bn and g1,g2, . . . : Bn→ Bn

claiming that one of fi maps (unknown) x to (unknown) y, and one of g j maps y to x. We have
to produce bijections

h1,h2, . . . : Bn→ Bn

and guarantee that one of them maps x to y. (More precisely, the opponent wins if there exist x,
y, i and j such that fi(x) = y and g j(y) = x but hk(x) 6= y for all k.) The question now is: how
many bijections do we need to beat the opponent that can produce at most m total functions of
each type (for each direction)?

5

At first it seems that m bijections are enough. Indeed, let us consider a (undirected) bipartite
graph where x and y are connected by an edge if fi(x) = y and g j(y) = x for some i and j. This
graph has degree at most m at both sides (e.g., x can be connected only to f1(x), . . . , fm(x)).
Each bipartite graph where each vertex has degree at most m and both parts are of the same
size, can be covered by m bijection graphs (we may add edges to get degrees exactly m and
then use König’s theorem: every bipartite graph where all vertices have the same degree is a
sum of bijections).

This argument, if correct, would imply the upper bound max(C(x|y),C(y|x)) + O(logn)
for the minimal complexity of the program that computes a bijection that maps x to y. (Here
O(logn) is added to take into account that we need to know n for all our constructions.) Indeed,
let the opponent to enumerate all the total functions Bn→ Bn that have complexity at most

u = max(C(x|y),C(y|x)).

It is a computable process that involves at most 2u functions. Beating this strategy of the op-
ponent, we computably generate at most 2u bijections (as we have assumed) and each bijection
can be encoded by its ordinal number (at most u bits) and n (this requires O(logn) bits). Win-
ning condition guarantees that one of this bijections maps x to y.

However, this argument (and the result itself) is wrong. The problem is that the opponent
does not tell us all its mappings at once but gives them one by one and we have to react imme-
diately (otherwise we lose if the opponent does not make anything else). So we need to repeat
this procedure after each move of the opponent, which gives Θ(m2) bijection if opponent makes
m moves.

And this bound can be obtained by a much more simple strategy: for every fi and g j con-
sider a bijection hi j that extents a partial matching

x↔ y ⇔ fi(x) = y and g j(y) = x.

This strategy gives upper bound C(x|y)+C(y|x)+O(logn).
The main point of this example is that game arguments work in both directions: the absense

of the winning strategy for us (and the existence of the winning strategy for the opponent)
implies that the upper bound we wanted to prove is not true at all.

As I. Mezhirov noted, the winning strategy in this game (for us) exists only if the number
of our bijections is Ω(m2) where m is the maximal number of opponent’s moves. It can be
shown as follows. Let us assume that all the opponent’s functions are constant functions (i.e.,
map all the elements Bn into one element). In other terms, the opponent just selects vertices
at both sides of the graph, and our goal is to provide bijections between each pair of selected
vertices. It is easy to see that we would need Ω(m2) bijections: indeed, if the opponent at
each move selects a vertex that is not connected yet to any vertex already selected (which is
always possible if the number of vertices is large than m3) then we need Ω(m) new bijections
to provide these new connections.

Translating this observation into Kolmogorov complexity language, we get the following
statement: for every k and n such that n > 3k there exist two strings x and y of length n such
that C(x),C(y) ≤ k + O(logn) but any bijection that maps x to y has complexity 2k−O(1).
To show this, use the trivial strategy for our side (we list all programs of length less than 2k
that turn out to be a bijection Bn → Bn) and let opponent use the winning strategy described
above (choosing elements not connected to already chosen elements by known bijections; the

6

inequality n > 3k guarantees that Ω(2k) steps are possible ((2k)3 < 2n). All chosen elements
have complexity at most k +O(logn) and by the winning condition they are some of them not
connected by a bijection of complexity less than 2k.

Contrasting prefix and plain complexity
Here we give a game-flavoured proof of J. Miller’s result [4]. (The original proof in [4] uses
recursion theorem.)

Let Q be a co-enumerable set (i.e., the complement is enumerable) of strings that for every
n contains at least one string of length n. Then for every c there exists n and x of length n
such that K(x) < n+K(n)−c. Here K stands for prefix complexity; the contrast with the plain
complexity arises because for plain complexity the set of incompressible strings (that have
maximal possible complexity) is co-enumberable. (Note that the maximal value of K(x) for
strings of length n is n+K(n)+O(1).)

To prove this statement, let us consider the following game specified by a natural number
C and a finite family of disjoint finite sets S1, . . . ,SN . During the game each element s ∈ S =
∪N

j=1S j is labeled by two non-negative rational numbers A(s) and B(x) called “Alice weight”
and “Bob’s weight”. Initially all weights are zeros. Alice and Bob make alternate moves. On
each move each player may increase her/his weight of several s ∈ S.

Both players must obey the following restrictions:

∑
s∈S

A(s)≤ 1 and ∑
s∈S

B(s)≤ 1.

In addition, Bob must be “fair”: for every j Bob’s weights of all s ∈ S j must be equal. That
means that basically Bob assigns weights to j ∈ {1, . . . ,N} and Bob’s weight B(j) of j is then
automatically distributed among all s ∈ S j so that

B(s) = B(j)/#S j

for all s ∈ S j. Alice need not be fair.
This extra requirement is somehow compensated by allowing Bob to “disable” certain s∈ S.

Once an s is disabled it cannot be “enabled” any more. Alice cannot disable or enable anything.
For every j Bob is not allowed to disable all s ∈ S j: every set S j should contain at least one
element that is not disabled.

The game is infinite. Alice wins if at the end of the game (or, better to say, in the limit)
there exists an enabled s ∈ S such that

A(s)
B(s)

≥C.

Now we have (as usual) to explain two things: why Alice has a (computable) winning
strategy in the game (with some assumptions on the parameters of the game) and why this
implies Miller’s theorem.

Lemma. Alice has a computable winning strategy if N ≥ 28C and #S j ≥ 8C for all j ≤ N.
Let us show first why this statement implies the theorem. Let

C = 2c and N = 28C = 22c+3

7

Let us take the sets of all strings of length

log8C +1, . . . , log8C +N

as S1, . . . ,SN . Then S j consists of 2 j · 8C elements; the conditions of the lemma are satisfied
and hence Alice has a computable winning strategy.

Consider the following Bob’s strategy in this game: he enumerates the complement of Q
and disables all its elements; in parallel, he approximates the prefix complexity from above and
once he finds out that K(n) does not exceed some l, he increases the weights of all 2n strings of
length n up to 2−l−n. Thus at the end of the game B(x) = 2−K(n)−n for all s ∈ S that have length
n (i.e., for s ∈ S j where j = n− log8C).

Alice’s limit weight function x 7→ A(x) is lower semi-computable given c, as both Alice’s
and Bob’s strategies are computable given c. Therefore

K(s|c)≤− logA(s)+O(1)

for all s ∈ S. As Alice wins, there exists a string s ∈ Q of some length n ≤ N + log(8C) such
that A(s)/B(s)≥C, i.e.,

− logA(s)≤− logB(s)− c = K(n)+n− c.

This implies that
C(s|c)≤ C(n)+n− c+O(1),

and
K(s)≤ K(n)+n− c+2logc+O(1).

This is a bit weaker statement that we need: we wanted

K(s) < K(n)+n− c.

To fix this, apply this argument to c′ = c + 3logc in place of c. For all large enough c we will
then have K(s) < K(n)+n− c.

It remains to prove the Lemma by showing a winning strategy for Alice.
Proof of the Lemma. The strategy is rather straighforward. The main idea is that playing

with one Si, Alice can force Bob to spend twice more weight than she does. Then she switches
to next Si and so on until Bob’s weight is exhausted while she has solid reserves. To achieve
her goal on one set of M elements, Alice assigns sequentially weights 1/2M,2/2M, . . . ,1/2 and
after each move waits until Bob increases his weight or disables the corresponding element.
Since he cannot disable all elements and is forced to use the same weights for all elements
while Alice puts more than half of the weight on the last element, Alice has factor M as a
handicap, and we may assume that M beats C-factor that Bob has in his favor.

Now the formal details. Assume first that #S j = M = 4C for all j and N = 2M. (We will
show later how to adjust the proof to the case when |S j| ≥ 8C and N ≥ 28C.)

Alice picks an element x1 ∈ S1 and assigns the weight 1/2M to x1. Bob (to avoid losing
the entire game) has either to assign a weight of more than 1/C2M to all elements in S1, or to
disable x1. In the second case Alice picks another element x2 ∈ S1 and assigns a (twice bigger)
weight of 2/2M to it. Again Bob has a dilemma: either to increase the weight for all elements of
S1 up to 2/C2M, or to disable x2. In the second case Alice picks x3, assigns a weight of 4/2M to
it, and so on. (If this process continues long enough, the last weight would be 2M−1/2M = 1/2.)

8

As Bob cannot disable all the elements of S1, at some step i the first case occurs, and Bob
assigns a weight greater than 2i/C2M to all the elements of S1. The total Alice’s weight of S1
(let us call it β) is the sum of the geometric sequence:

β = 1/2M +2/2M + · · ·+2i−1/2M < 2i/2M ≤ 1.

Thus Alice obeys the rules. Note that total Bob’s weight of S1 is more thanM2i−1/C2M =
2i+1/2M, which exceeds at least 2 times the total Alice’s weight on S1.

Then Alice proceeds to the second set S2 and repeats the procedure. However this time she
uses weights α/2M,2α/2M, . . . , where α = 1−β is the weight still available for Alice. Again
she forces Bob to use twice more weight than she does. Then Alice repeats the procedure for
the third set S3 etc.

Let β j is the the total weight Alice spent on the sets S1, . . . ,S j, and α j = 1−β j the weight
remaining after the first j iterations. By construction, Bob’s total weight spent on sets S1, . . . ,S j
is greater than 2β j, so we have 2β j < 1 and hence α j > 1/2. Consequently, Alice’s total weight
of each S j is more than 1/2M+1. Hence after at most N = 2M iterations Alice wins.

If the size of S j are large but different, we need to make some modification. (We cannot
use the same approach starting with 1/2M where M is the size of the set: if Bob beats the first
element with factor C, he spends twice more weight than Alice but still a small amount, so we
do not have enough sets for a contradiction.)

However, the modification is easy. If the number of elements in S j is a multiple of 4C
(which is the case we use), we can split elements of S j into 4C groups of equal size, and treat
all members of each group G as one element. This means that if the above algorithm asks to
assign to an “element” (group) G a weight w, Alice distributes the weight w uniformly among
members of G and waits until either Bob disables all elements of the group or assigns 4C-bigger
weight to all elements of S j.

If S j is not a multiple of 4C, the groups are not equal (the worst case is when some groups
have one element while other have two elements), so to compensate for this we heed to use 8C
instead of 4C.

Note that excess in the number of sets (when N is bigger than required 8C) does not matter
at all, we just ignore some of them. �

Note that this proof provides also some bound for n (the length of the string); this bound is
(almost) the same as given in Theorem 6.1 in [4]. Note also that instead of classifying strings
according to their length, we could split them (effectively) into arbitrary finite sets Gn whose
cardinalities monotonically increase and are unbounded. Then for every string x ∈ Gn we have
K(x) ≤ #Gn + KP(n)+ O(1) and for every co-enumerable set Q that intersects every Gn there
exists n and x ∈ GN ∩Q such that K(x)≤ #Gn +K(n)− c (for the same reasons).

References
[1] Leonid Levin, Various measures of complexity for finite objects, Soviet Math. Dokl.,

17(2), p. 522-526 (1976). See http://www.cs.bu.edu/fac/lnd/dvi/vm-e.pdf for a
corrected translation.

[2] Ming Li, Paul Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications.
3rd ed., Springer, 2008.

9

[3] Donald Martin, A purely inductive proof of Borel determinacy, Recursion theory, Proceed-
ings of the AMS–ASL summer institute held in Ithaca, New York, 1982, p. 303–308.

[4] Joseph S. Miller, Contrasting plain and prefix-free complexities. Preprint available at
http://www.math.wisc.edu/~jmiller/downloads.html.

[5] Andrej Muchnik, On the basic structures of the descriptive theory of algorithms, Soviet
Math. Dokl., 32, p. 671–674 (1985).

[6] Andrej Muchnik, Alexander Shen, Mikhail Ustinov, Nikolai K. Vereshchagin, Michael V.
Vyugin, Non-reducible descriptions for conditional Kolmogorov complexity, Theoretical
Computer Science, 384 (1), p. 77-86 (2007).

[7] Alexander Shen, Algorithmic Information Theory and Kolmogorov Complexity, Lecture
notes of a course taught at the Uppsala University. Available as Technical Report at
http://www.it.uu.se/research/publications/reports/2000-034/

[8] Nikolay Vereshchagin, Mikhail Vyugin, Independent minimum length programs to trans-
late between given strings, Theoretical Computer Science, 271 (1–2), p. 131–143 (2002).

[9] Nikolay Vereshchagin, Kolmogorov complexity and Games, Bulletin of the European As-
sociation for Theoretical Computer Science, 94, Feb. 2008, p. 51–83.

10

