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Amount of information

I Kolmogorov, 1965: “Three approaches to the
definition of the amount of information”

I Shannon approach: entropy of a random variable

I 0.1 : 0.9 random variable: about 0.47 bits/value

I 0.5 : 0.5 random variable: 1 bit/value

I Not usable for finite object (e.g., DNA, files,
etc.)
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I Original file F contains f bits

I Compressed file G = C (F ) contains g bits (we
hope that g < f )

I Decompressing produces original file:

F = D(G ) = D(C (F ))
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I How good the compression could be? Is it
possible that every string (of length, say,
100000) is compressed by at least 10%?

I Compressor should be injective:
X 6= Y ⇒ C (X ) 6= C (Y )

I Trade-off: for any string there is a
compressor/decompressor pair that compresses
this string well



Choosing a (de)compressor

I How good the compression could be?

Is it
possible that every string (of length, say,
100000) is compressed by at least 10%?

I Compressor should be injective:
X 6= Y ⇒ C (X ) 6= C (Y )

I Trade-off: for any string there is a
compressor/decompressor pair that compresses
this string well



Choosing a (de)compressor

I How good the compression could be? Is it
possible that every string (of length, say,
100000) is compressed by at least 10%?

I Compressor should be injective:
X 6= Y ⇒ C (X ) 6= C (Y )

I Trade-off: for any string there is a
compressor/decompressor pair that compresses
this string well



Choosing a (de)compressor

I How good the compression could be? Is it
possible that every string (of length, say,
100000) is compressed by at least 10%?

I Compressor should be injective:
X 6= Y ⇒ C (X ) 6= C (Y )

I Trade-off: for any string there is a
compressor/decompressor pair that compresses
this string well



Choosing a (de)compressor

I How good the compression could be? Is it
possible that every string (of length, say,
100000) is compressed by at least 10%?

I Compressor should be injective:
X 6= Y ⇒ C (X ) 6= C (Y )

I Trade-off: for any string there is a
compressor/decompressor pair that compresses
this string well



Comparing (de)compressors

I C1/D1 is better than C2/D2 if |C1(F )| ≤ |C2(F )|
for every F

I C1/D1 is asymptotically better than C2/D2 if
|C1(F )| ≤ |C2(F )|+ c for every F and some c
(not depending on F )

I Combining two compressors: for every two
C1/D1 and C2/D2 there exists C/D
asymptotically better than both

I Proof: use C1 or C2 (whichever is better) and
use the first bit to record this choice.

I Does an optimal compressor/decompressor pair
exist?
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I For every C/D there is C ′/D ′ that is much
better than C/D on some strings. Why?

I For any length n there exists C-incompressible
string of length n. (Pigeon-hole principle)

I New C ′ compresses the first C -incompressible
string of length n into 0binary(n) and any other
x of length n into 1x .
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I Decompressor = any partial computable function
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I D1 is (asymptotically) better that D2 if
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Optimal decompressor exists

I Idea: self-extracting archive

I Decompressor:
• Read from left to right until a self-delimited
program is found
• Run this program on the rest of input

I Universal interpreter U

I KU(x) ≤ KD(x) + the length of D program
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I Fix some optimal decompressor D

I Call KD(x) the Kolmogorov complexity of D

I K (x) is not really defined for an individual x , but

I function K is defined up to a O(1) additive term

I “natural” choices of D lead to KD that differ
not very much
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I Theorem: complexity function is not computable

I Theorem: there is no algorithmic way to
generate strings of high complexity.
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Information in X about Y

I Conditional complexity of Y when X is known:
KD(Y |X ) = min{l(P) : D(P , X ) = Y }

I Optimal conditional decompressor exists;
conditional Kolmogorov complexity K (Y |X )

I K (X |X ) ≈ 0

I K (XX |X ) ≈ 0

I K (Y |X ) ≤ K (Y ) + O(1)

I I (X : Y ) = K (Y )− K (Y |X )
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Randomness=incompressibility

I Why we don’t belive in a fair coin that produces
0101010101 . . . 01?

I Random string = incompressible string

I Theorem: random string has frequency of ones
about 50%

I Other laws of probability theory (e.g.,
frequencies of groups)
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Probabilistic proofs

I To prove existence of something: show that this
event has positive probability

I Example: bit string of length 1000 that is
square-free for substrings of size 100

I Complexity version: prove that incompressible
string of length 1000 is square free. Large
square means compressibility
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Best paper of STOC’2009 (Robin Moser)

I N bit variables b1, . . . , bN

I some number of clauses of size m:

((¬)bi1 ∨ (¬)bi2 ∨ . . . ∨ (¬)bim)

I Neighbor clauses: clauses that share some
variable

I Each clause has at most r neighbors; r = o(2m)

I Then there exists a satisfying assignment
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Proof inspired by Kolmogorov complexity

I Start with an incompressible source of random
bits

I Use them to initialize variables

I If all clauses are satisfied, then OK

I If not, “fix” all of them sequentially

I Fix a clause: reinitialize it with fresh random
bits until it is true; fix neighbor clauses that are
damaged

I If this does not terminate for a long time, the
random source is compressible (it is determined
by the list of corrected clauses)
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