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Abstract The main goal of this article is to put some known results in a common
perspective and to simplify their proofs.

We start with a simple proof of a result from Vereshchagin (Theor. Comput.
Sci. 271(1–2):59–67, 2002) saying that lim supn C(x|n) (here C(x|n) is conditional
(plain) Kolmogorov complexity of x when n is known) equals C0′

(x), the plain Kol-
mogorov complexity with 0′-oracle.

Then we use the same argument to prove similar results for prefix complexity,
a priori probability on binary tree and measure of effectively open sets, and also to
improve results of Muchnik (Theory Probab. Appl. 32:513–514, 1987) about limit
frequencies. As a by-product, we get a criterion of 0′ Martin-Löf randomness (called
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also 2-randomness) proved in Miller (J. Symb. Log. 69(2):555-584, 2004): a sequence
ω is 2-random if and only if there exists c such that any prefix x of ω is a prefix of
some string y such that C(y) ≥ |y| − c. (In the 1960ies this property was suggested
in Kolmogorov, IEEE Trans. Inf. Theory IT-14(5):662–664, 1968, as one of possi-
ble randomness definitions; its equivalence to 2-randomness was shown in Miller, J.
Symb. Log. 69(2):555-584, 2004.) Miller (J. Symb. Log. 69(2):555-584, 2004) and
Nies et al. (J. Symb. Log. 70(2):515–535, 2005) proved another 2-randomness cri-
terion: ω is 2-random if and only if C(x) ≥ |x| − c for some c and infinitely many
prefixes x of ω.

We show that the low-basis theorem can be used to get alternative proofs of our
results on Kolmogorov complexity and to improve the result about effectively open
sets; this stronger version implies the 2-randomness criterion mentioned in the previ-
ous sentence.

Keywords Kolmogorov complexity · Relativization · Limit frequency

1 Plain Complexity

We denote by {0,1}∗ the set of binary strings and by {0,1}∞ the set of infinite binary
sequences. For x ∈ {0,1}∗, we denote by C(x) the plain complexity of x (the length
of the shortest description of x when an optimal description method is fixed, see Li
and Vitanyi [3]; no requirements about prefixes). By C(x|n) we mean conditional
complexity of x when n is given, see for example Li and Vitanyi [3]. Superscript 0′
in C0′

means that we consider the relativized version of complexity to the oracle 0′,
the universal computably enumerable set.

The following result was proved in Vereshchagin [10]. We provide a simple proof
for it.

Theorem 1 For all x ∈ {0,1}∗:

lim sup
n→∞

C(x|n) = C0′
(x) + O(1).

(In this theorem and below “f (x) = g(x)+O(1)” means that there is a constant c

such that |f (x) − g(x)| ≤ c for all x.)

Proof We start in the easy direction. Let 0n be the (finite) set consisting of the ele-
ments of the universal enumerable set 0′ that have been enumerated after n steps of
computation (note that 0n can be computed from n). If C0′

(x) ≤ k, then there exists
a description (program) of size at most k that generates x using 0′ as an oracle. Only
finite part of the oracle can be used, so 0′ can be replaced by 0n for all sufficiently
large n, and oracle 0n can be reconstructed if n is given as a condition. Therefore,
C(x|n) ≤ k + O(1) for all sufficiently large n, and

lim sup
n→∞

C(x|n) ≤ C0′
(x) + O(1).
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For the reverse inequality, fix k and assume that lim sup C(x|n) < k. This means
that for all sufficiently large n the string x belongs to the set

Un = {u | C(u|n) < k}.
The family Un is an enumerable family of sets (given n and k, we can generate Un);
each of these sets has at most 2k elements. We need to construct a 0′-computable
process that given k generates at most 2k elements including all elements that belong
to Un for all sufficiently large n. (Then strings of length k may be assigned as 0′-
computable codes of all generated elements.)

To describe this process, consider the following operation: for some u and N add
u to all Un such that n ≥ N . (In other terms, we add a horizontal ray starting from
(N,u) to the set U = {(n,u) | u ∈ Un}.) This operation is acceptable if all Un still
have at most 2k elements after it (i.e., if before this operation all Un such that n ≥ N

either contain u or have less than 2k elements).
For any given triple u, N , k, we can find out using 0′-oracle whether this operation

is acceptable or not. Indeed, the operation is not acceptable if and only if some Un for
n ≥ N contains at least 2k elements that are distinct from u. Formally, the operation
is not acceptable if

(∃n ≥ N) |Un \ {u}| ≥ 2k,

and this is an enumerable condition as the Un are themselves enumerable. Now for
all pairs (N,u) (in some computable order) we perform the (N,u)-operation if it
is acceptable. (The elements added to some Ui remain there and are taken into ac-
count when next operations are attempted.) This process is 0′-computable since after
any finite number of operations the set U is enumerable (without any oracle) and its
enumeration algorithm can be 0′-effectively found (uniformly in k).

Therefore the set of all elements u that participate in acceptable operations dur-
ing this process is uniformly 0′-enumerable. This set contains at most 2k elements
(otherwise Un would become too big for large n). Finally, this set contains all u such
that u belongs to the (original) Un for all sufficiently large n. Indeed, the operation is
always acceptable if the element we want to add is already present! �

The proof has the following structure. We have an enumerable family of sets Un

that all have at most 2k elements. This implies that the set

U∞ = lim inf
n→∞ Un

has at most 2k elements where, as usual, the lim inf of a sequence of sets is the set of
elements that belong to almost all sets of the sequence. If U∞ were 0′-enumerable,
we would be done. However, this may be not the case: the criterion

u ∈ U∞ ⇐⇒ ∃N (∀n ≥ N) [u ∈ Un]
has ∃∀ prefix before an enumerable (not necessarily decidable) relation, that is, one
quantifier more than we want (to guarantee that U∞ is 0′-enumerable). However, in
our proof we managed to cover U∞ by a set that is 0′-enumerable and still has at
most 2k elements.
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2 Prefix Complexity and a Priori Probability

We now prove a similar result for prefix complexity (or, in other terms, for a priori
probability). Let us recall the definition. The function a(x) on binary strings (or inte-
gers) with non-negative real values is called a semimeasure if

∑
x a(x) ≤ 1. The func-

tion a is lower semicomputable if there exists a computable total function (x,n) 
→
a(x,n) with rational values such that for every x the sequence a(x,0), a(x,1), . . . is
a nondecreasing sequence that has limit a(x).

There exists a maximal (up to a constant factor) lower semicomputable semimea-
sure m (see, e.g., Li and Vitanyi [3]). The value m(x) is sometimes called the a priori
probability of x. In the same way we can define conditional a priory probability
m(x|n) and 0′-relativized a priori probability m0′

(x) (which is a maximal semimea-
sure among the 0′-lower semicomputable ones).

Theorem 2 For all x ∈ {0,1}∗:

lim inf
n→∞ m(x|n) = m0′

(x)

up to a �(1) multiplicative factor (in other terms, two inequalities with O(1) factors
hold).

Proof If m0′
(x) is greater than some ε, then for sufficiently large n the value m0n(x)

is also greater than ε. (Indeed, this inequality is established at some finite stage when
only a finite part of 0′ is used.) We may assume without loss of generality that the
function x 
→ mA(x) is a semimeasure for any A (recalling the construction of the
maximal semimeasure). Then, similarly to the previous theorem, we have

lim inf
n→∞ m(x|n) ≥ lim inf

n→∞ m0n(x) ≥ m0′
(x)

up to constant multiplicative factors. Indeed, for the first inequality, notice that
we can define a conditional lower semicomputable semimeasure μ by μ(x|n) =
m0n(x). By maximality of m, we have μ(x|n) ≤ m(x|n) for all x,n, up to a mul-
tiplicative factor. For the second inequality, recall that m0′

(x) is the nondecreas-
ing limit of an 0′-computable sequence m0′

(x,0),m0′
(x,1), . . . . Let s be such that

m0′
(x, s) ≥ 1

2m0′
(x). Since the computation of m0′

(x, s) only uses finitely many bits

of 0′, we have for all large enough n: m0n(x, s) = m0′
(x, s) ≥ 1

2m0′
(x) and thus

m0n(x) ≥ 1
2m0′

(x).
The other direction of the proof is also similar to the second part of the proof of

Theorem 1. Instead of enumerable finite sets Un we now have a sequence of (uni-
formly) lower semicomputable functions x 
→ mn(x) = m(x|n). Each of the mn is
a semimeasure. We need to construct an 0′-lower semicomputable semimeasure m′
such that

m′(x) ≥ lim inf
n→∞ mn(x).
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Again, the lim inf itself cannot be used as m′: we do have
∑

x lim infn mn(x) ≤ 1 as∑
x mn(x) ≤ 1 for all n, but unfortunately the equivalence

r < lim inf
n→∞ mn(x) ⇐⇒ (∃r ′ > r) (∃N) (∀n ≥ N) [r ′ < mn(x)]

has too many quantifier alternations (one more than needed; note that the quantity
mn(x) is lower semicomputable making the [. . .] condition enumerable). The similar
trick helps. For a triple (r,N,u) consider an increase operation that increases all
values mn(u) such that n ≥ N up to a given rational number r (not changing them if
they were greater than or equal to r). This operation is acceptable if all mn remain
semimeasures after the increase.

The question whether the increase operation is acceptable is 0′-decidable. And
if it is acceptable, by performing it we get a new (uniformly) lower semicomputable
sequence of semimeasures. We can then try to perform an increase operation for some
other triple. Doing that for all triples (in some computable ordering), we can then
define m′(u) as the upper bound of r for all successful (r,N,u) increase operations
(for all N ). This gives a 0′-lower semicomputable function; it is a semimeasure since
we verify the semimeasure inequality for every successful increase attempt; finally,
m′(u) ≥ lim inf mn(u) since if mn(u) ≥ r for all n ≥ N , then the (r,N,u)-increase
does not change anything and is guaranteed to be acceptable at any step. �

The expression − logm(x), where m is the maximal lower semicomputable semi-
measure, equals the so-called prefix complexity K(x) (up to an additive O(1) term;
see for example Li and Vitanyi [3]). The same is true for relativized and conditional
versions, and we get the following reformulation of the last theorem:

Theorem 3

lim sup
n→∞

K(x|n) = K0′
(x) + O(1).

Another corollary improves a result of Muchnik [5]. For any (partial) function f

from N to N let us define the limit frequency qf (x) of an integer x as

qf (x) = lim inf
n→∞

#{i < n | f (i) = x}
n

.

In other words, we look at the fraction of terms equal to x among the first n values
f (0), . . . , f (n−1) of f (undefined values are also listed) and take the lim inf of these
fractions. It is easy to see that for a total computable f the function qf is a lower
0′-semicomputable semimeasure. Moreover, it is shown in Muchnik [5] that any 0′-
semicomputable semimeasure μ can be represented as μ = qf for some computable
function f . In particular this implies that there exists a total computable function f

such that qf = m0′
.

We would like to extend Muchnik’s result to partial computable functions f . The
problem is that if f is only partial computable, the function qf is no longer guaran-
teed to be lower semicomputable. Using the second part of the proof of Theorem 2,
we can nonetheless prove:
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Theorem 4 For any partial computable function f , the function qf is upper bounded
by a lower 0′-semicomputable semimeasure.

Indeed, given a partial computable function f , we can define for all n a semimea-
sure μn as

μn(x) = #{i < n | f (i) = x}
n

;
μn is lower semicomputable uniformly in n. Then qf = lim infμn; on the other
hand we know from the proof of Theorem 2 that the lim inf of a sequence of (uni-
formly) lower semicomputable semimeasures is bounded by a 0′-lower semicom-
putable semimeasure. The result follows.

The same type of argument also is applicable to the so-called a priori complexity
defined as negative logarithm of a maximal lower semicomputable semimeasure on
the binary tree (see Zvonkin and Levin [11]). This complexity is sometimes denoted
as KA (x) and we get the following statement:

Theorem 5

lim sup
n→∞

KA (x|n) = KA 0′
(x) + O(1).

(To prove this we define an increase operation in such a way that, for a given lower
semicomputable semimeasure on the binary tree a, it increases not only a(x) but also
a(y) for y that are prefixes of x, if necessary. The increase is acceptable if a(�) still
does not exceed 1.)

It would be interesting to find out whether similar results are true for monotone
complexity or not (the authors do not know this).

3 Open Sets of Small Measure

In Sect. 1 we covered the lim inf of a sequence of finite uniformly enumerable sets
Ui by a 0′-enumerable set V that is essentially no bigger than the Ui . It was done in a
uniform way, i.e., V can be effectively constructed given the enumerations of the Ui

and an upper bound for their cardinalities. We now look at the continuous version of
this problem where the Ui are open sets of small measure.

We consider open sets in the Cantor space {0,1}∞ (the set of all infinite sequence
of zeros and ones). An interval [x] (for a binary string x) is formed by all sequences
that have prefix x. Open sets are unions of intervals. An effectively open subset of
{0,1}∞ is an enumerable union of intervals, i.e., the union of intervals [x] where
strings x are taken from some enumerable set.

We consider standard (uniform Bernoulli) measure on {0,1}∞: the interval [x] has
measure 2−l where l is the length of x.

A classical theorem of measure theory says: if U0,U1,U2, . . . are open sets of
measure at most ε, then lim infn Un has measure at most ε, and this implies that for
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every ε′ > ε there exists an open set of measure at most ε′ that covers lim infn Un.
Indeed,

lim inf
n→∞ Un =

⋃

N

⋂

n≥N

Un,

and the measure of the union of an increasing sequence

VN =
⋂

n≥N

Un,

equals the limit of measures of VN , and all these measures do not exceed ε since
VN ⊂ UN . It remains to note that for any measurable subset X of {0,1}∞ its measure
μ(X) is the infimum of the measures of open sets that cover X.

We now can try to “effectivize” this statement in the same way as we did before.
In Sect. 1 we started with an (evident) statement: if Un are finite sets of at most
2k elements, then lim infn Un has at most 2k elements and proved its effective (in the
halting problem) version: for a uniformly enumerable family of finite sets Un that have
at most 2k elements, the set lim infn Un is contained in a uniformly 0′-enumerable set
that has at most 2k elements.

In Sect. 2 we did a similar thing with semimeasures. Again, the non-effective ver-
sion is trivial: it says that if

∑
x mn(x) ≤ 1 for every n, then

∑
x lim infn mn(x) ≤ 1.

We have proved the effective version that provides a 0′-semicomputable semimeasure
that is an upper bound for lim infmn.

For the statement about lim inf of open sets the effective version could look like
this. Let ε > 0 be a rational number and let U0,U1, . . . be an enumerable family of
effectively open sets of measure at most ε each. Then for every rational ε′ > ε there
exists a 0′-effectively open set V of measure at most ε′ that contains lim infn→∞ Un =⋃

N

⋂
n≥N Un.

We cannot prove this general statement and do not know whether it is true (see
Sect. 8 for some partial negative results). However, some weaker statements can be
proven if we put extra requirements on the sets Un or weaken the conclusion. Let us
start with the simple case where the Un form a computable family of clopen (closed
and open) sets. Such a set is a finite union of intervals, and we assume that the list of
these intervals can be computed given n.

Theorem 6 Let Un be a uniformly computable family of clopen sets. Suppose also
that for all n the set Un has measure at most ε for some rational ε. Then for every
rational ε′ > ε there exists a 0′-effectively open set V of measure at most ε′ such that

U∞ = lim inf
n→+∞Un ⊆ V.

Proof By definition

U∞ =
⋃

N

⋂

n≥N

Un,
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therefore U∞ is a union of the pairwise disjoint sets

F0 =
⋂

i

Ui, F1 =
⋂

i≥1

Ui \ U0, F2 =
⋂

i≥2

Ui \ U1, . . .

(in other terms, a given x ∈ U∞ belongs to Fk if and only if the last Ui to which x

does not belong is Uk−1). Each of Fk is an effectively closed set (recall that each Ui

is a finite union of intervals hence is closed). Since the sets Fk are disjoint and

lim inf
n→+∞ Un =

⋃

k

Fk,

we conclude that

μ
(

lim inf
n→+∞ Un

)
=

∑

k

μ(Fk).

For each k the value μ(Fk) is the limit over r of the (non-increasing) quantity
μ(

⋂r
i=k Ui \ Uk−1) which is computable uniformly in (i, r). Thus, with oracle 0′,

one can compute μ(Fk) for every k (with arbitrary precision) and find a stage rk such
that

μ

(
rk⋂

i=k

Ui \ Uk−1

)

< μ(Fk) + (ε′ − ε)/2k+1.

Set F ′
k = ⋂rk

i=k Ui \ Uk−1. Notice that F ′
k contains Fk , and is itself an clopen set, and

the list of corresponding intervals can be 0′-effectively computed given k. Thus,

V =
⋃

k

F ′
k

is a 0′-effectively open set, contains
⋃

k Fk = U∞ and has measure at most

∑

k

μ(Fk)

︸ ︷︷ ︸
=μ(U∞)≤ε

+
∑

k

(ε′ − ε)/2k+1

︸ ︷︷ ︸
= ε′−ε

,

i.e. at most ε′. Hence, V satisfies all the requirements. �

As we have said, instead of putting additional requirements on the sequence Ui (re-
quiring it to be a computable sequence of clopen sets) we can weaken the conclusion.
The techniques presented in the previous sections allow us to prove the following:

Theorem 7 Let ε > 0 be a rational number and let Un be a uniformly enumerable
family of effectively open sets of measure at most ε each. Then there exists a 0′-
effectively open set of measure at most ε that contains

⋃

N

Int

( ⋂

n≥N

Un

)
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(and the construction is uniform given ε and an index for the sequence Un).

Here Int(X) denotes the interior part of X, i.e., the largest open subset of X. In
this case we do not need to consider ε′ > ε (not a surprise, since the union of open
sets is open).

Proof Following the same scheme as in Sects. 1 and 2, for every string x and integer
N we consider (x,N)-operation that adds [x] to all Un such that n ≥ N . This opera-
tion is acceptable if the measures of all the Un remain at most ε for each n. This can
be checked using 0′ as an oracle (if the operation is not acceptable, this fact becomes
known after a finite number of steps).

We attempt to perform this operation (if acceptable) for all pairs in some com-
putable order. The union of all added intervals for all accepted pairs is 0′-effectively
open. If some sequence belongs to the union of the interior parts, then it is covered by
some interval [u] that is a subset of Un for all sufficiently large n. Then some (u,N)-
operation is acceptable since it actually does not change anything and therefore [u] is
a part of an 0′-open set that we have constructed. �

In Sect. 6 we will return to this topic and state in Theorem 10 one more result
about the lim inf of small sets.

4 Kolmogorov and 2-Randomness

Theorem 7 has an historically remarkable corollary. When Kolmogorov tried to define
randomness in 1960ies, he started with the following approach. A string x of length n

is “random” if its complexity C(x) (or conditional complexity C(x|n); in fact, these
requirements are almost equivalent) is close to n: its randomness deficiency d(x) is
defined as

d(x) = |x| − C(x)

(here |x| stands for the length of x). This sounds reasonable, but if we then define
an infinite random sequence as a sequence whose prefixes have deficiencies bounded
by a constant, such a sequence does not exist at all: Martin-Löf showed that every
infinite sequence has prefixes of arbitrarily large deficiency, and suggested a differ-
ent definition of randomness using effectively null sets. Later more refined versions
of randomness deficiency (using monotone or prefix complexity) appeared that make
the criterion of randomness in terms of deficiencies possible. But before that, in 1968,
Kolmogorov wrote: “The most natural definition of infinite Bernoulli sequence is the
following: x is considered m-Bernoulli type if m is such that all xi are initial segments
of the finite m-Bernoulli sequences. Martin-Löf gives another, possibly narrower de-
finition”, see Kolmogorov [2, p. 663].

Here Kolmogorov speaks about “m-Bernoulli” finite sequence x (this means that
C(x|n, k) is greater than log

(
n
k

) − m where n is the length of x and k is the number
of ones in x). We restrict ourselves to the case of uniform Bernoulli measure where
p = q = 1/2. In this case Kolmogorov’s idea can be described as follows: an infinite
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sequence is random if each its prefix also appears as a prefix of some random string
(= string with small randomness deficiency). More formal, let us define

d̄(x) = inf{d(y) | x is a prefix of y}
and require that d̄(x) is bounded for all prefixes of an infinite sequence ω. It is shown
by Miller [4] that this definition is equivalent to Martin-Löf randomness relativized
to 0′ (called also 2-randomness):

Theorem 8 A sequence ω is Martin-Löf 0′-random if and only if the quantities d̄(x)

for all prefixes x of ω are bounded from above by a common constant.

It turns out that the forward direction of the equivalence stated in Theorem 8 fol-
lows easily from Theorem 7.

Proof Assume that d̄-deficiencies for prefixes of ω are not bounded. According to
Martin-Löf’s definition, we have to construct for a given c an 0′-effectively open set
that covers ω and has measure at most 2−c.

Fix some c. For each n consider the set Dc
n of all sequences u of length n such

that C(u) < n − c (i.e., sequences u of length n such that d(u) > c). It has at most
2n−c elements. By definition of d̄ , the requirement d̄(x) > c means that every string
extension y of x belongs to Dc

m where m is the length of y. This implies that [x]
(= set of sequences with prefix x) is contained in every Um for m ≥ |x|, where

Uc
m =

⋃

u∈Dc
m

[u]

(in other words Uc
m is the set of all sequences that have prefixes in Dc

m). Therefore, in
this case the interval [x] is a subset of

⋂
m≥|x| Uc

m and (being open) is a subset of its
interior. To sum up, we have proven that if an infinite sequence ω has a prefix x such
that d̄(x) > c, then

ω ∈ Int

( ⋂

m≥|x|
Uc

m

)

.

Now note that each Uc
m is effectively open uniformly in (m, c) as Dc

m is enumer-
able uniformly in (m, c). Moreover, there are at most 2m−c strings in Dc

m, hence the
measure of Uc

m is at most 2−c. Applying Theorem 7, we conclude that there exists a
0′-effectively open (uniformly in c) set Vc that has measure at most 2−c such that

⋃

N

Int

( ⋂

m≥N

Uc
m

)

⊆ Vc.

Note that this tells us in particular that the sequence (Vc)c∈N forms an 0′-Martin-Löf
test. Thus, if a sequence ω is 0′-Martin-Löf random, it only belongs to finitely many
Vc . Let then b be such that ω /∈ Vb . By the above argument, this means that ω has no
prefix x such that d̄(x) > b, or equivalently that for every prefix x of ω, d̄(x) ≤ b.
This proves the forward direction of the equivalence.
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For the sake of completeness, we give the proof of the reverse implication in terms
of Martin-Löf tests (Miller [4] provided a proof solely in terms of Kolmogorov com-
plexity). Assume that a sequence ω is covered (for each c) by a 0′-computable se-
quence of intervals I0, I1, . . . of total measure at most 2−c. (We omit c in our notation,
but the construction below depends on c.)

Using the approximations 0n of 0′ (obtained by performing at most n steps of com-
putation for each n) we get another (now computable) family of intervals I0,n, I1,n, . . .

such that Ii,n = Ii for every i and sufficiently large n. We may assume without loss of
generality that Ii,n either has size at least 2−n (i.e., is determined by a string of length
at most n) or equals ⊥ (a special value that denotes the empty set) since only the
limit behavior is prescribed. Moreover, we may also assume that Ii,n = ⊥ for n < i

and that the total measure of all I0,n, I1,n, . . . does not exceed 2−c for every n (the
latter is achieved by deleting the excessive intervals in this sequence starting from the
beginning; the stabilization guarantees that all limit intervals will be eventually let
through).

Since Ii,n is defined by intervals of size at least 2−n, we get at most 2n−c strings
of length n covered by intervals Ii,n for any given n and all i. This set of strings
is decidable (recall that only i not exceeding n are used), therefore each string in
this set can be defined, assuming c is known, by a string of length n − c, the binary
representation of its ordinal number in this set. Note that this string also determines n

if c is known.
Returning to the sequence ω, we note that it is covered by some Ii and therefore

is covered by Ii,n for this i and all sufficiently large n (after the value of Ii,n is
stabilized), say, for all n ≥ N . Let u be the prefix of ω of length N . All extensions of
u of any length n are covered by Ii,n and thus have complexity less than n−c+O(1),
conditional to c, hence their complexity is at most n− c+2 logc+O(1). This means
that d̄(u) ≥ c − 2 log c − O(1).

Such a string u can be found for every c, therefore ω has prefixes of arbitrarily
large d̄-deficiency. �

In fact a stronger statement than Theorem 8 is proved in Miller [4] and Nies et
al. [6]; our tools are still too weak to get this statement. However, the low basis
theorem helps.

5 The Low Basis Theorem

The low basis theorem is a classical result in recursion theory (see, for example,
Odifreddi [7]). It was used in Nies et al. [6] to prove 2-randomness criterion; analyz-
ing this proof, we get theorems about limit complexities as byproducts. For the sake
of completeness, we state the low-basis theorem and its simple proof.

Theorem 9 Let U ⊂ {0,1}∞ be an effectively open set that does not coincide
with {0,1}∞. Then there exists a sequence ω /∈ U which is low, i.e., ω′ = T0′.

Here ω′ is the jump of ω; the equation ω′ = T0′ means that the universal ω-
enumerable set is 0′-decidable.
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Theorem 9 says that any effectively closed nonempty set contains a low element.
For example, if P,Q ⊂ N are enumerable inseparable sets, then the set of all separat-
ing sequences is an effectively closed set that does not contain computable sequences.
We conclude, therefore, that there exists a non-computable low separating sequence.

Proof Assume that an oracle machine M and an input x are fixed. The computa-
tion of M with oracle ω on x may terminate or not depending on oracle ω. Let us
consider the set T (M,x) of all ω such that Mω(x) terminates (for fixed machine M

and input x). This set is an effectively open set: if termination happens, it happens
due to finitely many oracle values. This set together with U may cover the entire
space {0,1}∞; this means that Mω(x) terminates for all ω /∈ U . If it is not the case,
we can add T (M,x) to U and get a bigger effectively open set Û that still has non-
empty complement such that Mω(x) does not terminate for all ω /∈ Û . Either way,
this operation guarantees that the termination of the computation Mω(x) does not de-
pend on the choice of ω in the remaining nonempty effectively closed set (meaning
that for all ω1,ω2 in the remaining effectively closed set, Mω1(x) terminates if and
only if Mω2(x) terminates).

This increase operation of the effectively open set can be performed for all pairs
(M,x) sequentially. At each stage the effectively open set U stays the same or is
increased but in any case its complement remains nonempty. Hence, by compactness
of {0,1}∞, the open set U∞ obtained in the limit will have nonempty complement.
Note that the set U∞ does not have to be effectively open: though at any stage the
current U is an effectively open set, the construction is not effective (we need to find
out which of the two cases happens).

We claim that any sequence ω /∈ U∞ is low. Indeed, by construction of U∞,
for every M and x the termination of the computation of Mω(x) is independent
on the choice of ω in the complement of U∞ and is determined at some point of
the construction. And the construction is 0′-effective: if during the increase opera-
tion U ∪ T (M,x) covers the entire space {0,1}∞, this happens on some finite stage
(compactness), so 0′ is enough to find out whether this happens or not. Therefore, for
every M and x we can 0′-effectively find out whether Mω(x) terminates or not. This
precisely means that ω′ = T0′, i.e., that ω is low. �

6 Using the Low Basis Theorem

Let us show how Theorem 1 can be proved using the low basis theorem. As we have
seen, we have an enumerable family of sets Un; each of Un has at most 2k elements
(say, strings). We need to construct effectively a 0′-enumerable set that has at most
2k elements and contains U∞ = lim infn Un.

In the special case where the sets Un happen to be (uniformly) decidable, U∞ is
0′-enumerable and we do not need any other set. The low basis theorem allows us to
reduce the general case to this special one.

First, we may assume without loss of generality that for all n the set Un contains
only strings of length at most n. To see why we can do this, consider for all n the
set Ûn of strings in Un that have length at most n. The sequence of Ûn is uniformly
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enumerable and lim infUn = lim inf Ûn (any string x ∈ lim infn Un belongs to almost
all Un and will be allowed to enter Ûn for n ≥ |x|).

Having imposed this restriction on the Un, let us consider the family of all “upper
bounds” for Un: by an upper bound we mean a sequence Vn of finite sets such that
for all n, we have (1) Un ⊆ Vn; (2) #Vn ≤ 2k and (3) Vn contains strings of length at
most n. The sequence V0,V1, . . . can be encoded as an infinite binary sequence: each
Vi contains only strings of length at most n (there are 2n+1 − 1 of them) and can be
encoded as a binary string of length 2n+1 − 1. Then the sequence V0,V1, . . . can be
encoded by concatenation of the individual encodings of the Vi .

For a binary sequence the property “to be an encoding of an upper bound for Un”
is effectively closed (the restriction #Vn < 2k is decidable and the restriction Un ⊂ Vn

is co-enumerable). Therefore the low basis theorem can be applied. We get an upper
bound V that is low. Then V∞ = lim infVn is (uniformly in k) V ′-enumerable (as we
have said: with V -oracle the family Vn is uniformly decidable), but since V is low,
the V ′-oracle can be replaced by the 0′-oracle, and we get the desired result.

This proof though being simple looks rather mysterious: we get something almost
out of nothing! (As far as we know, this idea appeared in a slightly different context
in Nies et al. [6].)

The same trick can be used to prove Theorem 2: here “upper bounds” are distribu-
tions Mn with rational values and finite support that are greater than m(x|n) but still
are semimeasures. (Technical correction: first we have to assume that m(x|n) = 0 if
x is large, and then we have to weaken the restriction

∑
Mn(x) ≤ 1 replacing 1 by,

say, 2; this is needed since the values m(x|n) may be irrational.)
Theorem 5 can be also proved in this way (upper bounds should be semimeasures

on tree with rational values and finite support).
Returning to the topic of Sect. 3, we can use the low basis theorem to improve

Theorem 6:

Theorem 10 Let ε > 0 be a rational number and let Un be a sequence sets that are
effectively open (uniformly in n). Assume that Un has measure at most ε for every n.
Assume also that Ui has “effectively bounded granularity”, i.e., all strings x that
define the intervals in Un have length at most c(n) where c is a total computable
function. Then for every ε′ > ε there exists a 0′-effectively open set V of measure at
most ε′ that contains lim infn→∞ Un and this construction is uniform.

Proof We use the low basis theorem to reduce the general case to the case where the
Un form a computable family of finitely generated open sets.

Indeed, define an “upper bound” as a sequence W of sets Wn where Wn is a set of
strings of length at most c(n) such that Un is covered by the intervals generated by
elements of Wn. Again W can be encoded as an infinite sequence of zeros and ones,
and the property “to be an upper bound” is effectively closed. Applying the low basis
theorem, we choose a low W and add it is an oracle; evidently, Wn is a W -computable
family of finitely generated open sets. By Theorem 6 (relativized to oracle W ) for
every ε′ > ε there exists a W ′-effectively open set V covering lim infn Wn, hence
covering lim infn Un. And since W ′ is Turing-equivalent to 0′, we are done. �
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7 Corollary on 2-Randomness

Theorem 10 can be used to prove 2-randomness criterion from [4, 6]. In fact, this
gives exactly the proof from [6]; the only thing we did is structuring the proof in two
parts (formulating Theorem 10 explicitly and putting it in the context of other results
on limits of complexities). For the sake of completeness, let us reproduce this proof.

Theorem 11 [4, 6] A sequence ω is 0′ Martin-Löf random if and only if

C(ω0ω1 · · ·ωn−1) ≥ n − c

for some c and for infinitely many n.

Proof Let us first understand the relation between this theorem and Theorem 8. If

C(ω0ω1 · · ·ωn−1) ≥ n − c

for infinitely many n and given c, then d̄(x) ≤ c for every prefix x of ω (indeed,
one can find the required continuation of x among prefixes of ω). As we know, this
guarantees that ω is 0′ Martin-Löf random.

It remains to prove that if for all c we have

C(ω0ω1 · · ·ωn−1) < n − c

for all sufficiently large n, then ω is not 0′-random. Using the same notation as in the
proof of Theorem 8, we can say that ω has a prefix in Dn and therefore belongs to Un

for all sufficiently large n. We can apply then Theorem 10 since Un is defined using
strings of length n (so c(n) = n) and cover U∞ (and therefore ω) by a 0′-effectively
open set of small measure. Since this can be uniformly done for all c, the sequence ω

is not 0′-random. �

8 The General Case: �0
3 Sets and lim inf of Open Sets

As we have said before, it would be nice to prove the following statement: if Un are
(uniformly) effectively open sets in Cantor space, all Un have measure less than ε,
and ε′ > ε, then there exists a 0′-effectively open set of measure less than ε′ that
covers lim infUn.

We do not know whether this is true or not. However, some partial negative re-
sult could be obtained. In this section, we prove that there exists a lim inf of uni-
formly effectively open sets Un that has small measure but cannot be covered by a
0′-effectively open set of small measure. (The difference is that only this limit set has
small measure while the sets Un itself can have any measure.)

The first step towards this result is to prove that every �0
3 subset of {0,1}∞ can

be written as the lim inf of a sequence of uniformly effectively open sets. The term
�0

3 refers to the standard effective Borel hierarchy: effectively open sets are the �0
1

sets, effectively closed sets (i.e., the complements of effectively open sets) are �0
1
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sets etc.: by induction, a �0
n set is an effective countable union of �0

n−1 sets and a
�0

n set is an effective (countable) intersection of �0
n−1 sets. It is easy to see from the

definition that a lim inf of a sequence of uniformly effectively open sets is a �0
3 set.

Simpson [9] noted that the converse is also true:

Theorem 12 (Simpson) For every �0
3 set S ⊂ {0,1}∞ there exists a sequence of

uniformly effectively open sets Vn such that S = lim infn→+∞ Vn.

Proof It is sufficient to construct a procedure which, given ω ∈ {0,1}∞ as an oracle,
enumerates a set Xω ⊂ N such that ω ∈ S ⇔ Xω is co-finite. Then we let Vn = {ω |
n ∈ Xω}.

Such a procedure is in fact provided by a proof of �0
3 -completeness of the cofinite-

ness property for enumerable sets (see, e.g., Rogers’ textbook [8], Corollary XIV in
Sect. 14.8). We give a sketch of this proof here.

As S is �0
3 , there exists a collection Un

k of uniformly effectively open sets such
that

S =
⋃

n

⋂

k

Un
k .

For a given ω, let

Zω = {(n, k) | ω ∈ Un
k }.

Then ω is in S if and only if

there exists an n such that (n, k) ∈ Zω for all k. (∗)

We have to reduce this characterization to a characterization via cofiniteness of
some ω-enumerable set Xω, i.e., we have to transform (effectively and uniformly)
the enumeration of Zω into the enumeration of an Xω in such a way that

ω ∈ S ⇐⇒ ∃n ∀k
[
(n, k) ∈ Zω

] ⇐⇒ Xω is cofinite.

To do so, we use a so-called “movable markers” construction. We first consider a
countable series of counters: at each stage, the nth counter contains the maximal k

such that all k pairs (n,0), . . . , (n, k − 1) have already appeared in Zω. The property
(∗) now means that some counter increases indefinitely.

We also use “markers” that will locate the missing elements in Xω. Markers are
numbered 0,1,2 . . . . Initially the ith marker is located under the number i; then
markers can be moved to the right, but the ith marker is always on the left of (i +1)th
one (so all markers mark different numbers). When the nth counter increases, the
number that was marked by the nth marker is added to Xω, and all the markers
n,n+ 1, n+ 2, . . . are moved to the right (the ith marker moves to the previous place
of the (i + 1)th one). The markers 0,1, . . . , n − 1 do not move. Note the invariant
relation: the currently enumerated part of Xω is the set of all non-marked numbers.

If the nth counter increases indefinitely, then the nth marker is moved infinitely
many times, so Xω is cofinite (its complement consists of the final positions of the
markers 0,1, . . . , n − 1). Conversely, if every counter increases only finitely many
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times, then each marker eventually reaches a final position, and these positions form
an infinite complement of Xω. �

Theorem 12 implies the following result, due to Kjos-Hanssen [1]:

Theorem 13 (Kjos-Hanssen) There exists a sequence Un of uniformly effectively
open sets such that:

• μ(lim infn Un) < 1/2
• lim infn Un cannot be covered by any 0′-effectively open set of measure less than 1.

Proof This can be obtained by relativizing standard results about Martin-Löf random
sequences. The set of non-random sequences can be covered by an effectively open
set of measure less that 1/2 (by definition). Therefore, the set of 0′′-nonrandom se-
quences can be covered by an 0′′-effectively open set, i.e., by �0

3 -set (as the standard
results about the arithmetic hierarchy say, see, e.g., Rogers [8]).

On the other hand, for every effectively open set that has measure less than 1 there
exists a 0′-computable sequence outside this set (e.g., the leftmost path of the binary
tree representing its complement). And this can be relativized: for every 0′-effectively
open set of measure less than 1 there is an 0′′-computable sequence outside it.

Now, combining these two remarks and Theorem 12, we get the desired result. The
�0

3 set mentioned above can be represented as lim inf of effectively open sets. If this
set could be covered by an 0′-effectively open set of measure less than 1, we would
be able to find a 0′′-computable sequence outside it; this sequence is not 0′′-random
but is outside the set that has to cover all nonrandom (relative to 0′′) sequences. �

Another related question: even if the most general statement mentioned at the be-
ginning of the section is not true, may be it is enough to require that Un are clopen
sets (thus removing the hypothesis of “effectively bounded granularity” from Theo-
rem 10)?

9 Fatou’s Lemma

It would be nice to find some general result that could unite several cases that we have
treated separately. Indeed, these results may be considered as constructive version of
classical Fatou’s lemma.

This lemma guarantees that if
∫
fn(x) dμ(x) ≤ ε for μ-measurable functions

f0, f1, f2, . . . , then
∫

lim inf
n→+∞fn(x) dμ(x) ≤ ε.

The constructive version may require that fi are lower semicomputable functions
(probably with some additional conditions), and the statement could say that for every
ε′ > ε there exists a lower 0′-semicomputable function ϕ such that lim inf fn(x) ≤
ϕ(x) for every x and

∫
ϕ(x)dμ(x) ≤ ε′.
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Special case of this lemma appears when fi are indicator functions of some effec-
tively open sets.

However, as we have seen in Sect. 8, some additional requirements may be needed
and we don’t know how to formulate them in a natural and general form. In Theo-
rem 10 instead of computably bounded granularity we may require that for each Ui

we can provide a finite list of “simple” sets that have measure at most ε and guarantee
that Ui is contained in one of them; a similar thing can be done for functions (a list of
upper bounds having small integrals). The source of difficulties here is the low basis
theorem: it uses the compactness of Cantor space, so when choosing upper bound for
the Un or fn we need to have in advance a finite list of possibilities.

Additional complications appear when the measure of the space where fn are
defined is infinite (and this is needed for the results of Sects. 1 and 2). Then we should
artificially cut fn in such a way that lim inf is not changed; this is possible in the
special cases we need, but it is not clear how one can combine all these considerations
into one (preferably not very boring) theorem.

Another open question: classical Fatou lemma usually is formulated in a stronger
form:

∫

lim inf
n→+∞fn(x) dμ(x) ≤ lim inf

n→+∞

∫

fn(x) dμ(x)

there the right hand side has also lim inf. This motivates the question: what happens
if we weaken the condition and require only that

∫
fn(x) dμ(x) ≤ ε for infinitely

many ε? (For the classical version this is not important, since we can delete all the
terms of the sequence that are not bounded by ε; this could only increase lim inf in
the conclusion.)
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