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1 Stochastic strings

The goal of statistics is to provide explanations (models) of observed data. We are
given some data and have to infer a plausible probabilistic hypothesis explaining
it. Consider, for example, the following scenario. We are given a “black box”. We
have turned the box on (only once) and it has produced a sequence x of million
bits. Given x, we have to infer a hypothesis about the black box.

Classical mathematical statistics does not study this question. It considers
only the case when we are given results of many independent tests of the box.
However, in the real life, there are experiments that cannot be repeated. In some
such cases the common sense does provide a reasonable explanation of x. Here
are three examples: (1) The black box has printed million zeros. In this case we
probably would say that the box is able to produce only zeros. (2) The box has
produced a sequence without any regularities. In this case we would say that the
box produces million independent random bits. (3) The first half of the sequence
consists of zeros and the second half has no regularities. In this case we would
say that the box produces 500000 zeros and then 500000 independent random
bits.

Let us try to understand the mechanism of such common sense reasoning.
First, we can observe that in each of the three cases we have inferred a finite
set A including x. In the first case, A consists of x only. In the second case, A
consists of all sequences of length million. In the third case, the set includes all
sequences whose first half consists of only zeros. Second, in all the three cases
the set A can be described in few number of bits. That is A has low Kolmogorov
complexity.1 Third, all regularities present in x are shared by all other elements
of A. That is, x is a “typical element of A”.

It seems that the common sense reasoning works as follows: given a string x
of n bits we find a finite set A of strings of length n containing x such that

(1) A has low Kolmogorov complexity (we are interested in simple explana-
tions) and
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1 Roughly speaking, the Kolmogorov complexity of a string x is the length of a shortest

program printing x. The Kolmogorov complexity of a finite set A is defined as the
Kolmogorov complexity of the list of all elements of A in some fixed order, say, in
the lexicographical one. For a rigorous definition we refer to [2, 4]



(2) x is a typical member of A, that is x has no regularities which allow to
single out x from A.

How to define rigorously what means that x is a typical element of A? To
this end we use the notion of the randomness deficiency [5]:

d(x|A) = log
2
|A| − C(x|A).

Here C(x|A) stands for the conditional Kolmogorov complexity of x given the
list of A2. The randomness deficiency has the following properties: d(x|A) is
non-negative for all x ∈ A (up to a O(log n) error term) and for every finite A
for almost all x ∈ A, d(x|A) is negligible. Thus “random” elements of A have
low randomness deficiency in A. We call x a “typical member of A” if d(x|A) is
small.

Strings that have explanations A with properties (1) and (2) are called
stochastic. The first question, raised by Kolmogorov in 1983, was whether all
strings are stochastic. Formally, a string x is called α, β-stochastic (where α, β
are natural parameters) if there is a set A ∋ x of Kolmogorov complexity at most
α such that d(x|A) ≤ β. It turns out that some strings have no explanation: they
are not α, β-stochastic for α and β proportional to n.

Theorem 1. There is a constant c such that for all large enough n the following
holds for all α, β. If α + β < n− c log n, then there is a string x of length n that
is not α, β-stochastic. On the other hand, if α + β > n + c log n then all strings
of length n are α, β-stochastic (which is obvious).

This theorem was first proved, in a weaker form, in [5] (with condition 2α +
β < n− c log n in place of α + β < n− c log n). In the present form the theorem
appeared in [7].

Note that we consider only uniform distributions on finite sets as possible
probabilistic hypotheses. It is not hard to show that general distributions can
be reduced to uniform ones [7].

2 Hypotheses selection

The second question is the following: assume that x is α, β-stochastic for some
small α, β. How do we find a set A ∋ x with small C(A) and d(x|A)? Obviously
we look for sets A ∋ x of low complexity. To see that a set A has low complexity
we somehow find a short description of A. But how can we verify that d(x|A) is
small? We can only verify that d(x|A) is large by describing x conditional to A
in much fewer than log |A| bits. That is, we can refute (2) and not prove it.

It seems that instead of verifying that d(x|A) is small we do what we are
able: we try to refute that. If no such refutation is found for a long time, then it
becomes plausible that d(x|A) is indeed small. On the other hand, assume that
we have found a “constructive refutation”, that is, an easily described property

2 Roughly speaking, the conditional Kolmogorov complexity of a string x given a string
y is the length of a shortest program that prints x given y as an input



P of elements of A such that x has the property P but the majority of elements
of A do not. In this case we can switch to a new hypothesis A′ = {x ∈ A | P (x)}.
We then have C(A′) ≈ C(A) (as P has a simple description) and |A′| ≪ |A| (as
the majority of elements of A do not satisfy P ). Therefore

d(x|A′) = log |A′| − C(x|A′)

is much less than

log |A| − C(x|A′) ≤ log |A| − C(x|A) + C(P ) = d(x|A) + C(P ) ≈ d(x|A)

(the first inequality holds up to an O(log n) error term). Here C(P ) stands for
the Kolmogorov complexity of P , which is assumed to be negligible. Thus A′ is
much better than A as an explanation of x.

Actually, if by any means, in our search for explanations of x, we have found a
hypothesis A′ ∋ x with lower (or equal) complexity than the current explanation
A and such that log |A′| is significantly smaller than log |A|, we usually switch
to such A′. This strategy is essentially based on the Maximal Likelihood (ML)
principle from classical statistics. Recall that ML estimator chooses a distribution
µ that maximises µ(x) (among all contemplated probability distributions). In
the case of uniform probability distributions, the probability that x is obtained
by picking a random element of A is equal to 1/|A|. Thus maximising µ(x)
corresponds to minimising |A|.

So assume that we just look for an explanation that minimises |A| among all
simple explanations. Do we finally obtain a hypothesis with small randomness
deficiency? More specifically, let MLx(α) stand for a set A that minimises |A|
among all A ∋ x of Kolmogorov complexity at most α. Is it true that

d(x|MLx(α)) ≤ β + O(log n)

for all α, β-stochastic x? Below we will show that this is indeed the case.
Let us see what explanations would we infer using the ML strategy in the

examples (1)–(3) from the beginning of the paper. In the first example we would
certainly choose the explanation A = {x}. In the second and third examples
it depends on the complexity level α. If α = 100000, say, then the ML strat-
egy could choose the set A consisting of all sequences having the same prefix
of length α as x has (in the second example) and the set A consisting of all
sequences having the same prefix of length α + 500000 as x has (in the third
example). If α is very small, say α = 0, then there will be no explanations at
all of complexity at most α. For some small α the ML strategy might find the
explanations obtained by common sense reasoning. However we do not know the
right value α in advance.

We see that sometimes we prefer an explanation A′ to an explanation A′

even if log |A′| ≫ log |A| (the explanation A′ is more general than A). This
happens only when C(A′) ≪ C(A). How do we compare hypotheses of different
complexity? It seems that we use the Minimum Description Length principle
(MDL). We prefer that hypothesis A for which C(A) + log |A| is smaller. And



among two hypotheses with the same value of C(A)+log |A| we prefer the simpler
one. The explanation of the term MDL is the following: the pair (the shortest
description A∗ of A, the index i of x in the list of all elements of A) is a two-
part description of x. The total length of this description is C(A) + log |A|. The
minimal possible value for C(A) + log |A| is obviously C(x) (the Kolmogorov
complexity of x). Those A with C(A) + log |A| ≈ C(x) are called sufficient
statistics of x.

In the above examples (1)–(3), the common sense explanations are sufficient
statistics of minimal complexity. Such sufficient statistics are called minimal.

If A is a sufficient statistics of x then d(x|A) is negligible, as

d(x|A) = log |A| − C(x|A) ≤ log |A| + C(A) − C(x) + O(log n). (1)

Note that sufficient statistics always exist, which is witnessed by A = {x}.
Thus MDL based search always returns in the limit a hypothesis with negligible
randomness deficiency.

However we are interested in simple explanations and not only in those having
negligible randomness deficiency. If there is a simple sufficient statistic, then the
MDL based search will find such statistic in the limit. But is there always such
statistic provided that x is α, β-stochastic?

2.1 The case of small α

If α is small then, obviously, the question answers in positive. Indeed, let A be
a set witnessing α, β-stochasticity of x? Then

log |A| + C(A) ≤ log |A| + α ≤ C(x|A) + β + α ≤ C(x) + β + α (2)

(the last inequality holds up to an O(1) error term). Thus A itself is a sufficient
statistic (we assume that β is small, too). Besides, A witnesses that MLx(α) ≤
log |A|, which together with (1) and (2) implies that

d(x|MLx(α)) ≤ β + α (3)

(with logarithmic precision). Thus d(x|MLx(α)) is always small provided x is
α, β-stochastic for small α, β.

2.2 The case of arbitrary α

Assume now that x was drawn at random from a set A that has large complexity.
Say, x was obtained by adding noise to a clean musical record y. In other words, x
was drawn at random from the set A consisting of all x′ that can by obtained from
y by adding noise of certain type. Then with high probability d(x|A) is small.
That is, we may assume that x is α, β-stochastic for small β and α = C(A) ≈
C(y). Does MDL or ML based search work well for such x? The inequalities (2)
and (3) do not guarantee that any more, if C(y) is large. Nevertheless, the
following theorem shows that both MDL search and ML search work well.



Theorem 2 ([7]). If x is α, β-stochastic and α ≤ C(x), then there is a set A ∋ x
with C(A) ≤ α+O(log n) and log |A| ≤ C(x)−α+β and hence C(A)+log |A| ≤
C(x) + β + O(log n) (the set A is a sufficient statistic).

Note that the explanation A from the theorem witnesses

d(x|MLx(α + O(log n))) ≤ β + O(log n). (4)

3 Structure sets of a string

The next question is whether the inequality (4) is indeed an improvement over
the inequality (3). That is, are there α, β-stochastic strings (for small β and large
α) that are not α′, β′-stochastic for much smaller α′ and, may be, slightly larger
β′. More generally, what shape can have the “ structure set”

Sx = {〈α, β〉 | x is α, β-stochastic}?

The next theorem shows that Sx can have almost any shape. For instance, for
all large enough n there is n/2, O(log n)-stochastic string that is not n/3, n/3-
stochastic.

Theorem 3 ([7]). For every string x of length n and Kolmogorov complexity
k the set Sx is upward closed and contains some pairs that are O(log n)-close3

to the pairs 〈k, 0〉 and 〈0, n − k〉. On the other hand, for all n and k ≤ n, if an
upward closed set S ⊂ N×N contains the pairs 〈k, 0〉, 〈0, n−k〉, then there is x of
length n and complexity k+O(log n+C(S̃)) such that Sx is O(log n+C(S̃))-close
to S. Here S̃ stands for the set of minimal points in S.

By Theorem 2 the set Sx is O(log n)-close to another structure set

Lx = {〈α, γ〉 | there is A ∋ x with C(A) ≤ α, C(A) + log |A| − C(x) ≤ γ}.

Thus Theorem 3 describes also all possible shapes of the set Lx. Theorem 3 also
provides a description of possible shapes of the following set:

Px = {〈α, δ〉 | there is A ∋ x with C(A) ≤ α, log |A| ≤ δ}.

This set is called the Kolmogorov’s structure set, as it was defined by Kolmogorov
in [3]. Indeed, by Theorem 2, the set Px is O(log n)-close to the set

{〈α, C(x) − α + β〉 | α ≤ C(x), 〈α, β〉 ∈ Sx} ∪ {〈α, 0〉 | α ≥ C(x)}.

3 We say that u is ε-close to v if the Euclidean distance between u and v is at most
ε. Sets U, V are ε-close if for every u ∈ U there is v ∈ V at the distance at most ε

from u and vice versa.
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