
DECOMPOSITION COMPLEXITY

ALEXANDER SHEN 1

1 LIF Marseille, CNRS & University Aix{Marseille; on leave from IITP RAS, Moscow
E-mail address: Alexander.Shen@lif.univ-mrs.fr
URL: http://www.lif.univ-mrs.fr/~ashen

Abstract. We consider a problem of decomposition of a ternary function into a
composition of binary ones from the viewpoint of communication complexity and
algorithmic information theory as well as some applications to cellular automata.

1. Introduction

The 13th Hilbert problem asks whether all functions can be represented as com-
positions of binary functions. This question can be understood in di�erent ways.
Initially Hilbert was interested in a speci�c function (roots of a polinomial as func-
tion of its coe�cients). Kolmogorov and Arnold (see [4]) gave kind of a positive
answer for continuous functions proving that any continuous function of several real
arguments can be represented as a composition of continuous unary functions and
addition (a binary function). On the other hand, for di�erentiable functions nega-
tive answer was obtained by Vituschkin. Later Kolmogorov interpreted this result
in terms of information theory (see [3]): the decomposition is impossible since we
have \much more" ternary functions than compositions of binary ones. In a dis-
crete setting this information-theoretic argument was used by Hansen, Lachish and
Miltersen ([2]. We consider similar questions in a (slightly) di�erent setting.

Let us start with a simple decomposition problem. An input (say, a binary
string) is divided into three parts x, y and z. We want to represent T (x; y; z) (for
some function T) as a composition of three binary functions:

T (x; y; z) = t(a(x; y); b(y; z)):

In other words, we want to compute T (x; y; z) under the following restrictions:

Key words and phrases: decomposition complexity, 13th Hilbert problem, cellular automata.
Author is grateful to V.V. Podolskii, A.E. Romashchenko, and ESCAPE team in general for

useful discussions. The paper was supported in part by NAFIT ANR -08-EMER-008-01 and RFBR
09-01-00709-a grants.

Submitted to JAC (Symposium on Cellular Automata Journ�ees Automates Cellulaires)

1

2 A. SHEN

x y z

a(x,y) A b(y,z)B

T (x,y,z) = t(a(x,y),b(y,z))

T

node A gets x and y and computes some function a(x; y); node B gets y and z and
computes some function b(y; z); �nally, the output node T gets a(x; y) and b(y; z)
and should compute T (x; y; z).

The two upper channels have limited capacity; the question is how much capacity
is needed to make such a decomposition possible. If a- and b-channels are wide
enough, we may transmit all the available information, i.e., let a(x; y) = 〈x; y〉 and
b(y; z) = 〈y; z〉. Even better, we can split y in an arbitrary proportion and send one
part with x and the other one with z.

Is it possible to use less capacity? The answer evidently depends on the function
T . If, say, T (x; y; z) is xor of all bits in x, y and z, one bit for a- and b-values is
enough. However, for other functions T it is not the case, as we see below.

In the sequel we prove di�erent lower bounds for the necessary capacity of two
upper channels in di�erent settings; then we consider related questions in the frame-
work of multisource algorithmic information theory [6]).

Before going into details, let us note that the de�nition of communication com-
plexity can be reformulated in similar terms: one-round communication complexity
corresponds to the network

x y

p(x,y)

(dotted line indicates channels of limited capacity) while two-rounds communication
complexity corresponds to the network

x y

p(x,y)

etc. Another related setting that appears in communication complexity theory:
three inputs x; y; z are distributed between three participants; one knows x and
y, the other knows y and z, the third one knows x and z; all three participants
send their messages to the fourth one who should compute T (x; y; z) based on their
messages (see [5]).

One can naturally de�ne communication complexity for other networks (we se-
lect some channels and count the bits that go through these channels).

DECOMPOSITION COMPLEXITY 3

2. Decomposition complexity

Now let us give formal de�nitions. Let T = T (x; y; z) be a function de�ned on
Bp×Bq×Br (here Bk is the set of k-bit strings) whose values belong to some set M .
We say that decomposition complexity of T does not exceed n if there exist u+v 6 n
and functions a : Bp × Bq → Bu, b : Bq × Br → Bv and t : Bu × Bv →M such that

T (x; y; z) = t(a(x; y); b(y; z))

for all x ∈ Bp, y ∈ Bq, z ∈ Br. (As in communication complexity, we take into
account the total number of bits transmitted via both restricted links. More detailed
analysis could consider u and v separately.)

2.1. General upper and lower bounds

Since the logarithm of the image cardinality is an evident lower bound for de-
composition complexity, it is natural to consider predicates T (so this lower bound
is trivial). This makes our setting di�erent from [2] where all the arguments and
values have the same size. However, the same simple counting argument can be used
to provide worst-case lower bounds for arbitrary functions.

Theorem 2.1. (Upper bound) Complexity of any function does not exceed n =
p+ q + r; complexity of any predicate does not exceed 2r + r as well as 2p + p.

(Lower bound) If p and r are not too small (at least log n+O(1)), then there

exists a predicate with decomposition complexity n−O(1).

The second statement shows that the upper bounds provided by the �rst one
are rather tight.

Proof. (Upper bounds) For the �rst bound one can let, say, a(x; y) = 〈x; y〉
and b(y; z) = z. (One can also split y between a and b in an arbitrary proportion.)

For the second bound: for each x; y the predicate Tx;y

z 7→ Tx;y(z) = T (x; y; z)

can be encoded by 2r bits, so we let a(x; y) = Tx;y and b(z) = z and get decom-
position complexity at most 2r + r. The bound 2p + p is obtained in a symmetric
way.

(Lower bound) We can use a standard counting argument (in the same way as in
[2]; they consider functions, not predicates, but this does not matter much.) Let us
count how many possibilities we have for a predicate with decomposition complexity
m or less. Choosing such a predicate, we �rst have to choose numbers u and m such
that u+ v 6 m. Without loss of generality we may assume that u+ v = m (adding
dummy bits). First, let us count (for �xed u and v) all the decompositions where
a has u-bit values and b has v-bit values. We have (2u)2

p+q

possible a's, (2v)2
q+r

possible b's and 22
u+v

possible t's, i.e.,

2u2
p+q · 2v2q+r · 22u+v = 2u2

p+q+v2q+r+2u+v 6 2(u+v)2p+q+(u+v)2q+r+2u+v

possibilities (for �xed u; v). In total we get at most

m2m2p+q+m2q+r+2m

predicates of decomposition complexity m or less (the factor m appears since there
are at most m decompositions of m into a sum of positive integers u and v). There-
fore, if all 22

n

predicates Bp×Bq ×Br → B have decomposition complexity at most

4 A. SHEN

m, then
m2m2p+q+m2q+r+2m > 22

n

or
logm+m2p+q +m2q+r + 2m > 2n

At least one of the terms in the left-hand side should be
(2n), therefore either
m > n−O(1), or logm > r −O(1), or logm > p−O(1). �

2.2. Bounds for explicit predicates

As with circuit complexity, an interesting question is to provide a lower bound
for an explicit function; it is usually much harder than proving the existence results.
The following statement provides a lower bound for a simple function.

Consider the predicate T : Bk × B22k × Bk → B de�ned as follows:

T (x; y; z) = y(x; z)

where y ∈ B22k is treated as a function Bk × Bk → B.

Theorem 2.2. The decomposition complexity of T is at least 2k.

(Note that this lower bound almost matches the second upper bound of Theo-
rem 2.1, which is k + 2k.)

Proof. Assume that some decomposition of T is given:

T (x; y; z) = t(a(x; y); b(y; z));

where a(x; y) and b(y; z) consist of u and v bits respectively. Then every y : Bk ×
Bk → B determines two functions ay : Bk → Bu and by : Bk → Bv obtained from a
and b by �xing y. Knowing these two functions one should be able to reconstruct
T (x; y; z) for all x and z, since

T (x; y; z) = t(ay(x); by(z));

i.e., to reconstruct y. Therefore, the number of possible pairs 〈ay; by〉, which is at
most

2u2
k · 2v2k ;

is at least the number of all y's, i.e. 22
2k

. So we get

(u+ v)2k > 22k;

or u+ v > 2k, therefore the decomposition complexity of T is at least 2k. �
Remarks.
1. In this way we get a lower bound
(

√
n) (where n is the total input size)

for the case when x and z are of size about 1
2
log n. In this case this lower bound

matches the upper bound of Theorem 2.1, as we have noted.
2. Here is another example where upper and lower bounds match. If the predi-

cate t(x; y; z) is de�ned as x = z, we need to transmit x and z completely (pigeon-
hole principle). So there is a trivial (and tight) linear lower bound if we let x and z
be long (of �(n)) size.

3. It would be interesting to get a linear bound for an explicit function in
an intermediate case when x and z are short compared to y (preferable even of
logarithmic size) but not as short. Such a lower bound would mean that a(x; y) or
b(y; z) has to retain a signi�cant part of information in y. Intuitive explanation for
this necessity could be: \since we do not know z when computing a(x; y), we do not

DECOMPOSITION COMPLEXITY 5

know which part of y-information is relevant". Note that for the function T de�ned
above this is not the case: not knowing z, we still know x so only one row (xth row)
in the matrix y is relevant.

The natural candidate is the function T ′ : Bk×B2k×Bk×B de�ned by T ′(x; y; z) =
y(x ⊕ z). Here y is considered as a vector Bk → B, not matrix, and x ⊕ z denotes
bitwise XOR of two k-bit strings x and z. The size of x and z is about log n (where
n is the total input size), and for these input sizes the worst-case lower bound is in-
deed linear. One could think that this lower bound could be obtained for T ′: \when
computing a(x; y) we do not know z, and x⊕ z could be any bit string of length k,
so all the information in y is relevant". However, this intuition is false, and there
exists a sublinear upper bound O(n0:92), see [5], p. 95.1 (This upper bound should
be compared to the
(

√
n) lower bound obtained by reduction to T : in the special

case when the left half of x and right half of z contain only zeros, we get T out of
T ′.)

(Question: what happens if we replace x ⊕ z by x + z mod 2k in the de�nition
of T ′? It seems that the upper bound argument does not work any more.)

3. Probabilistic decomposition

As in communication complexity theory, we may consider also probabilistic and
randomized versions of decomposition complexity. In the probabilistic version we
consider random variables instead of binary functions a; b; t (with shared random bits
or independent random bits). In the randomized version we look for a decomposition
that is Hamming-close to a given function.

It turns out that the lower bounds mentioned above are robust in that sense and
remain valid for randomized (and therefore probabilistic) decomposition complexity
almost unchanged.

Let " be a positive number less than 1=2. We are interested in a minimum
decomposition complexity of a function that "-approximates a given one (coincides
with it with probability at least 1 − " with respect to uniform distribution on in-
puts). For " > 1

2
this question is trivial (either 0 or 1 constant provide the required

approximation). So we assume that some " < 1
2
is �xed (the O()-constants in the

statements will depend on it).

1This upper bound is obtained as follows. Let us consider y as a Boolean function of k variables.
Such a Boolean function can be represented as a multi-linear polynomial of degree k over the 2-
element �eld. This polynomial y(u1; : : : ; uk) has 2

k bit coe�cients and is known when a(x; y) or
b(y; z) are computed. Let us separate terms of \high" and \low" degree in this polynomial:

y(u1; : : :) = ylow(u1; : : :) + yhigh(u1; : : :);

taking 2
3k as the threshold between \low" and \high". The polynomial yhigh is included in a (or b)

as is, just by listing all its coe�cients. (We have about 2H(2
3
)k ≈ n0:92 of them, where H is Shannon

entropy function.) For ylow we use the following trick. Consider y(X1 ⊕ Z1; : : : ; Xk ⊕ Zk) as a
polynomial ~y of 2k variables X1; : : : ; Xk; Z1; : : : ; Zk. Its degree is at most

2
3k, and each monomial

includes at most 2
3k variables. So we can split ~y again:

~y(X1; : : : ; Z1; : : :) = ~yx-low(X1; : : : ; Z1; : : :) + ~yz-low(X1; : : : ; Z1; : : :);

here the �rst term has small X-degree (Z-variables are treated as constants), and the second term
has small Z-degree. All this could be done in both nodes (computing a and b), since y is known
there; Xi and Zi are just variables. Now we include in a(x; y) the coe�cients of the polynomial
~yz-low(x1; : : : ; xk; Z1; : : : ; Zk), and do the symmetric thing for b(y; z). Both polynomial have degree
at most 2

3k, so we again need only O(n0:92) bits to specify them.

6 A. SHEN

A standard argument shows that lower bounds established for randomized de-
composition complexity remain true for probabilistic complexity (where a; b; t use
random bits and for every input x; y; z the random variable t(a(x; y); b(y; z)) should
coincide with a given function with probability at least 1− ").

Theorem 3.1. (1) Let n = p + q + r and p; r > log n + O(1). Then there exists

a predicate T : Bp × Bq × Br → B such that decomposition complexity of any its

"-approximation is at least n−O(1).
(2) For the predicate T used in Theorem 2.2 we get the lower bound
(2k) (in

the same setting).

Proof. 1. Assume this is not the case. We repeat the same counting argument
as in Theorem 2.1. Now we have to count not only the predicates that have decom-
position complexity at most m, but also their "-approximations. The volume of an
"-ball in B2n is about 2H(")2n , so the number of the centers of the balls that cover the
entire space is at least 2(1−H("))2n . So after taking the logarithms we get a constant
factor (1−H(")), and the lower bound for m remains n−O(1).

2. If the computation is correct for 1−" fraction of all triples (x; y; z), then there
exist "′ < 1

2
and "′′ > 0 such that for at least "′′-fraction of all y the computation

is correct with probability at least 1− "′ (with respect to uniform distribution on x
and z). This means that "′-balls around functions (x; z) 7→ t(ay(x); by(z)) cover at
least "′′-fraction of all functions y. (See the proof of Theorem 2.2.) Again this gives
us a constant factor before 22k, but here we do not take the logarithm second time,
so we get u+ v >
(2k), not 2k −O(1). �

4. Applications to cellular automata

An (one-dimensional) cellular automata is a linear array of cells. Each of the
cells can be in some state from a �nite set S of states (the same for all cells). At each
step all the cells update their state; new state of a cell is some �xed function of its old
state and the states of its two neighbors. All the updates are made synchronously.

Using a cellular automaton to compute a predicate, we assume that there are
two special states 0 and 1 and a neutral state that is stable (the cell remains neutral
if it is neutral together with its two neighbors). To compute P (x) for a n-bit string
x, we assemble n cells and put them into states that correspond to x; the rest of the
(biin�nite) cell array is in a neutral state.

Then we start the computation; the answer should appear in some prede�ned
cell (see below about the choice of this cell).

There is a natural non-uniform version of cellular automata: we assume that
in each vertex of the time-space diagram an arbitrary transition function is used.
Then the only restriction is caused by the limited capacity of links: we require that
inputs/outputs of all functions (in all vertices) belong to some �xed set S.

In this non-uniform setting a predicate P on binary strings is considered as a
family of Boolean functions Pn (where Pn is a restriction of P onto n-bit strings) and
for each Pn we measure the minimal size of a set S needed to compute Pn in a non-
uniform way described above. If this size is an unbounded function of n, we conclude
that predicate P is not computable by a cellular automaton. (In complexity theory
we use the same approach when we try to prove that some predicate is not in P
since it needs superpolinomial circuits in a non-uniform setting.)

DECOMPOSITION COMPLEXITY 7

As usual, getting lower bounds for nonuniform model is di�cult, but it turns out
that the decomposition complexity can be used if the cellular automaton is obliged
to produce the answer as soon as possible.

Since each cell gets information only from itself and its two neighbors, the �rst
occasion to use all n input bits happens around time n=2 in the middle of the string:

u1 un

Now we assume that the output of a cellular automaton should be produced
at this place (both in uniform and non-uniform model). (This is a very strong
version of real-time computation by cellular automata; we could call it \as soon as
possible"-computation.)

The next theorem observes that non-uniformly computable family of predicates
is transformed into a function with small decomposition complexity if we split the
input string in three parts.

Theorem 4.1. Let Tk : Bk+f(k)+k = Bk × Bf(k) × Bk → B be a family of predicates

that is non-uniformly computable in this sense. Then the decomposition complexity

of Tk is O(k), and the constant in O-notation is the logarithm of the number of

states.

Proof. Consider Figure 1 where the (nonuniform) computation is presented (we

k

x

f (k)

y

k

z

T (x,y,z)

a(x,y) b(x,y)

Figure 1: Automaton run and its decomposition

use bigger units for time direction to make the picture more clear).
Let us look at the contents of the line of length 2k located k steps before the end

of the computation. The left half is a(x; y), the right half is b(y; z) and the function
t is computed by the upper part of the circuit. It is easy to see that a(x; y) indeed
depends only on x and y since information about z has not arrived yet; for the same
reason b(y; z) depends only on y and z. �

Corollary: The predicate T from Theorem 2.2 cannot be computed in this model.

Note that this predicate is computable by a cellular automaton in linear time
(we combine the string x and z into a 2k-binary string; then we move this string

8 A. SHEN

across the middle part of input subtracting one at each step and waiting until our
counter decreases to zero; then we know where the output bit should be read. So
we get the following result:

Theorem 4.2. There exists a linear-time computable predicate that is not com-

putable \as soon as possible" even in a non-uniform model.

Remark. This result and the intuition behind the proof are not new (see the
paper of V. Terrier [7]; see also [1]). However, the explicit use of decomposition
compleixty helps to formalize the intuition behind the proof. It also allows us to
show (in a similar way) that this predicate cannot be computed not only \as soon
as possible", but even after o(

√
n) steps after this moment (which seems to be an

improvement).
Another improvement that we get for free is that we cannot even "-approximate

this predicate in the \as soon as possible" model.
Question: There could be other ways to get lower bounds for non-uniform

automata (=triangle circuits). Of course, there is a counting lower bound, but this
does not give any explicit function. Are there some other tools?

5. Algorithmic Information Theory

Now we can consider the Kolmogorov complexity version of the same decom-
position problem. Assume that we have four binary strings x; y; z; t such that
K(t|x; y; z) ≈ 0. Here K(�|�) stands for conditional complexity of � when � is
known, i.e., for the minimal length of a program that transforms � to �. (Hence
our requirement says that there is a short program that produces t given x; y; z.)

We are looking for strings a and b such that K(a|x; y) ≈ 0, K(b|y; z) ≈ 0, and
K(t|a; b) ≈ 0. Such a and b always exist, since we may let a = 〈x; y〉 and b = 〈y; z〉
(again, y can also be split between a and b). However, the situation changes if we
restrict the complexities of a and b (or their lengths, this does not matter, since
each string can be replaced by its shortest description). As we shall see, sometimes
we need a and b of total complexity close to K(x) +K(y) +K(z) even if t has much
smaller complexity. (Note the now we cannot restrict ourselves to one-bit strings t
for evident reasons.)

To be speci�c, let us agree that all the strings x; y; z; t have the same length n;
we look for strings a and b of length m, and \small" conditional complexity means
that complexity is less than some c.

Theorem 5.1. If 3c < n−O(1) and 2m+c < 3n−O(1), there exist strings x; y; z; t
of length n such that K(t|x; y; z) = O(log n), but there are no strings a; b of length

m such that

K(a|x; y) < c; K(b|y; z) < c; K(t|a; b) < c:

For example, this is true if c = O(log n) and m is 1:5n−O(log n) (note that for
m = 1:5n we can split y into two halves and combine the �rst half with x, and the
second half with y).

Proof. Consider the following algorithm. Given n, we generate (in parallel for
all x; y ∈ Bn) lists of m-bit strings that have conditional complexity (with respect
to x and y) less than c. Also we generate (in parallel for all strings a and b of length
m) the lists of strings t that have complexity less than c given a and b. At every

DECOMPOSITION COMPLEXITY 9

step of enumeration we imagine that the lists are �nal and construct a quadruple
x; y; z; t that satis�es the statement of the theorem. It is done as follows: we take
a \fresh" triple x; y; z, take all strings a that are in the list for x; y, take all strings
b that are in the list for y; z, and take all strings t that are in the lists for those as
and bs. Then we choose some t that does not appear in all these lists.

Such a t exists since we have at most 2c strings a (for given x and y), and at
most 2c strings b (for given y and z). For every of 22c pairs (a; b) there are at most
2c strings t, so in total at most 23c values of t are unsuitable, and we can choose a
suitable one.

We also need to ensure that there is enough \fresh" pairs. The new elements in
the �rst series of lists may appear at most 2n×2n×2c times (we have at most 2n×2n
pairs (x; y) and at most 2c values of a for each pair). Then we have 2m × 2m × 2c

events for the second series of lists. On the other hand, we have 23n triples (x; y; z),
so we need the inequality

22n+c + 22m+c < 23n;

which is guaranteed by our assumptions.
To run this process, we need to know only n, so for every x; y; z; t generated by

this algorithm we have K(t|x; y; z) = O(log n). (For given x; y; z only one t may
appear since we take a fresh triple each time.) �

This result can be improved:

Theorem 5.2. Assume that 3c < n − O(1) and m 6 1:5n − O(log n). We can

e�ectively construct for every n a total function T : Bn × Bn × Bn → Bn such that

for random (= incompressible) triple x; y; z and t = T (x; y; z) the strings a and b of
length m that provide a decomposition (as de�ned above) do not exist.

The improvement is two-fold: �rst, we have a total function T (instead of a
partial one provided by the previous construction); second, we claim that all random
triples have the required property (instead of mere existence of such a triple).

Proof. Let us �rst deal with the �rst improvement. Consider multivalued
functions A;B : Bn × Bn → P(Bm) that map every pair of n-bit strings into a 2c-
element set of m-bit strings. Consider also multivalued function F : Bm × Bm →
P(Bn) whose values are 2c-element sets of n-bit strings. We say that A;B; F cover

a total function T : Bn × Bn × Bn → Bn if for every x; y; z ∈ Bn there exist strings
a; b ∈ Bm such that a ∈ A(x; y), b ∈ B(y; z), and T (x; y; z) ∈ F (a; b).

Let us prove �rst the following combinatorial statement: there exists a function

T that is not covered by any triple of functions A;B; F . This can be shown by a
counting argument similar to the proof of Theorem 2.1. Indeed, let us compute
the probability of the event \random function T is covered by some �xed A;B; F".
This event is the intersection of independent events (for each triple x; y; z). For
given x; y; z there are 2c possible as, 2c possible bs, and 2c possible elements in
F (a; b) for each a and b, i.e., 23c possibilities altogether. Since 3c < n− O(1), each
of the independent events has probability less than 1

2
, and their intersection has

probability less than 2−2
3n

.
This probability then should be multiplied by the number of triples A;B; F .

For A and B we have at most (2m)2
n×2n×2c possibilities, for F we have at most

(2n)2
m×2m×2c possibilities. So the existence of a function T not covered by any triple

is guaranteed if
2m22n+c × 2m22n+c × 2n2

2m+c × 2−2
3n

< 1;

10 A. SHEN

i.e.,
m22n+c +m22n+c + n22m+c < 23n;

and this inequality follows from the assumptions.
The property \T can be covered by some triple A;B; F" can be computably

tested by an exhaustive search over all triples A;B; F . So we can (for every n)
computably �nd the �rst (in some order) function T that does not have this property.
For these T there are some x; y; z that do not allow decomposition. Indeed, we can
choose A so that A(x; y) contains all strings a of length m such that K(a|x; y) < c,
etc.

However, we promised more: we need to show not only the existence of x; y; z
but that all incompressible triples (this means that K(x; y; z) > 3n−O(1)) have the
required property. This is done in two steps. First, we show than (for some F that
computably depends on n) most triples do not allow decomposition. Then we note
that one can enumerate triples that allow decomposition, so they can be encoded
by their ordinal number in the enumeration and therefore are compressible.

To make this plan work, we need to consider other property of function T . Now
we say that T is covered by A;B; F if at least 2−O(1)-fraction of all triples (x; y; z)
admit a and b. The probability of this event should now be estimated by Cherno�
inequality (we guarantee �rst that the probability of each individual event is, say,
twice smaller than the threshold), and we get a bound of the same type, with
23n

instead of 23n, which is enough. �
In fact, this argument provides a decomposition complexity bound similar to

Theorem 2.1, but now the functions a, b and t are multi-valued and we can choose
any of their values to obtain t(x; y; z).

Remarks and questions

1. Similar results can be obtained for more binary operations in the decompo-
sition. Imagine that we have some strings x; y; z; t of length n such that K(t|x; y; z)
is small and want to construct some \intermediate" strings u1; : : : ; us such that in
the sequence

x; y; z; u1; u2; : : : ; us; t

every string, starting from u1, is conditionally simple with respect to some pair of
its predecessors. We can use our technique to show that this is not possible if all ui
have length close to n and the number s is not large.

2. As before, it would be nice to get lower bounds for some explicit function
T (x; y; z) (even a non-optimal lower bound, like in Theorem 2.2) for the algorithmic
information theory version of decomposition problem.

3. Many results of multisource algorithmic information theory have some coun-
terparts in classical information theory. Can we �nd some statement that corre-
sponds to the lower bound for decomposition complexity?

4. Is it possible to use the techniques of [2] to get some bounds for explicit
functions in algorithmic information theory setting?

DECOMPOSITION COMPLEXITY 11

References

[1] C. Cho�rut and K. Culik II, On Real-Time Cellular Automata and Trellis Automata, Acta
Informatica, 21, 393{407 (1984).

[2] Hansen, K.A., Lachish, O., Miltersen P.B., Hilbert's thirteenth problem and circuit complexity.
ISAAC 2009, p. 153{162.

[3] ëÏÌÍÏÇÏÒÏ× á.î., ôÉÈÏÍÉÒÏ× ÷.í., "-ÜÎÔÒÏÐÉÑ É "-£ÍËÏÓÔØ ÍÎÏÖÅÓÔ× × ÆÕÎËÃÉÏÎÁÌØÎÙÈ
ÐÒÏÓÔÒÁÎÓÔ×ÁÈ. õÓÐÅÈÉ ÍÁÔÅÍÁÔÉÞÅÓËÉÈ ÎÁÕË, 14 (2), p. 3{86.

[4] ëÏÌÍÏÇÏÒÏ× á.î., ï ÐÒÅÄÓÔÁ×ÌÅÎÉÉ ÎÅÐÒÅÒÙ×ÎÙÈ ÆÕÎËÃÉÊ ÎÅÓËÏÌØËÉÈ ÐÅÒÅÍÅÎÎÙÈ × ×ÉÄÅ
ÓÕÐÅÒÐÏÚÉÃÉÊ ÎÅÐÒÅÒÙ×ÎÙÈ ÆÕÎËÃÉÊ ÏÄÎÏÇÏ ÐÅÒÅÍÅÎÎÏÇÏ É ÓÌÏÖÅÎÉÑ. äÏËÌÁÄÙ áËÁÄÅÍÉÉ

ÎÁÕË óóóò, 114(5), 953{956 (1957)
[5] Eyal Kushilevitz, Noam Nisan, Communication complexity, Cambridge University Press, 1997.
[6] Shen A., Multisource information theory, Theory and Applications of Models of Computation,

Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 3959 (2006), p. 327-338.
[7] V�eronique Terrier, Language not recognizable in real time by one-way cellular automata. The-

oretical Computer Science, 156(1{2), 281{287 (1996).

