
Infinite computable version of Lovasz Local Lemma. ∗

Andrey Yu. Rumyantsev

Abstract

Lovász Local Lemma (LLL) is a probabilistic tool that allows us to prove the existence
of combinatorial objects in the cases when standard probabilistic argument does not work
(there are many partly independent conditions).

LLL can be also used to prove the consistency of an infinite set of conditions, using
standard compactness argument (if an infinite set of conditions is inconsistent, then some
finite part of it is inconsistent, too, which contradicts LLL). In this way we show that ob-
jects satisfying all the conditions do exist (though the probability of this event equals 0).
However, if we are interested in finding a computable solution that satisfies all the con-
straints, compactness arguments do not work anymore.

Moser and Tardos [1] recently gave a nice constructive proof of LLL. Lance Fortnow
asked whether one can apply Moser–Tardos technique to prove the existence of a com-
putable solution. We show that this is indeed possible (under almost the same conditions
as used in the non-constructive version).

1 Computable LLL: the statement.
Let X be a sequence of mutually independent random variables; each of them has a finite range.
(In the simplest case xi are independent random bits.)

We consider some family A of forbidden events; each of them depends on a finite set of
variables, denoted vbl(A) (for event A). Informally speaking, the classical LLL together with
the compactness argument guarantee that if the events are of small probability and each of them
is mostly independent with the others, there exists an evaluation for all variables that avoids all
the forbidden events.

To make the statement exact, we need to introduce some terminology and notation. Two
events A and B are disjoint if they do not share variables, i.e., if vbl(A)∩vbl(B) =∅. For every
A ∈A let Γ(A) be the open (punctured) neighborhood of A, i.e., the set of all events E ∈A that
share variables (are not disjoint) with A, except A itself.

Theorem 1 (Infinite version of LLL). Suppose that for every event A ∈ A a rational number
x(A) ∈ (0,1) is fixed such that

Pr[A]≤ x(A) ∏
E∈Γ(A)

(1− x(E)),

for all A ∈A. Then there exists an evaluation of variables that avoids all A ∈A.
∗Supported by RFBR 0901-00709a and NAFIT ANR-08-EMER-008 grants.

1



This is just a combination of finite LLL and compactness argument. Indeed, each event
from A is open the the product topology; if the claim is false, these events cover the entire
(compact) product space, so there exists a finite subset of events that covers the entire space,
which contradicts the finite LLL.

Our goal is to make this theorem effective. For that we assume that we have a count-
able sequence of variables X = x0,x1, . . ., the range of xi is {0,1, . . . ,ni− 1}, and ni and the
probability distribution of xi are computable given i. Then we consider a sequence of events,
A= {A0,A1, . . .}. We assume that these events are effectively presented, i.e., for a given j one
can compute the list of all the variables from vbl(A j) and the event itself (i.e., the list of eval-
uations that belong to that event). Moreover, we assume that for each variable xi only finitely
many events involve this variable, and the list of those variables can be computed given i.

Theorem 2 (Computable version of LLL). Suppose there is a rational constant ε ∈ (0,1) and
a computable assignment of rational numbers x : A→ (0,1) such that

Pr[A]≤ (1− ε)x(A) ∏
E∈Γ(A)

(1− x(E)),

for all A ∈A. Then there exists a computable evaluation of variables that avoids all A ∈A.

Note that the computability restrictions look quite naturally and that we only need to make
the upper bounds for probability just a bit stronger multiplying all the bounds by some fixed
constant 1−ε . (It should not be a problem for typical applications of LLL; usualy this stronger
bound on Pr[A] can be easily established.)

2 The proof
To explain the proof, we recall first how Moser and Tardos prove the finite LLL. (We do not
repeat the argument here and assume that the reader is familiar with [1]: some estimates from
this paper are needed and we assume that the reader knows their proofs from [1].)

The probabilistic algorithm used in [1] for the finite case, is quite natural: it starts by
assigning random values to all variables. Then, while there are some non-satisfied conditions
(=some bad events happen), the algorithm takes one of these events and resamples all the
variables that appear in this event (assigning fresh random values to them).

There is some freedom in this algorithm: the event for resampling can be chosen in an
arbitrary (deterministic or probabilistic) way.

We modify this algorithm for the case of infinitely many variables and events. First we
construct a probabilistic algorithm that with probability 1 generates a satisfying assignment
in the limit (with predictable convergence, see below the exact definitions). Then we use the
existence of such an algorithm to show that there is a computable assignment that satisfies all
the conditions.

The probabilistic algorithm is a natural modification of Moser–Tardos algorithm. We intro-
duce some priority on conditions. For each condition we look at the variables it involves, and
take the variable with maximal index. Then we reorder all the conditions in such a way that

maxvbl(A0)≤maxvbl(A1)≤maxvbl(A2)≤ . . .

2



(Recall that each variable is used only in finitely many conditions, so we can make the rear-
rangement in a computable way. This rearrangement is not unique.)

Then the algorithm works exactly as before, and we choose the first violated condition (in
this new ordering).

Remark: for some n consider all the conditions that depend on variables x0,x1, . . . ,xn only.
These conditions form a prefix in our ordering. Therefore, while not all of them are satisfied,
we will not consider the other conditions, so our infinite algorithm will behave (up to some
point) like a Moser–Tardos finite algorithm. They give a bound x(A)/(1−x(A)) for an average
number of resamples for condition A, so the expected total number of resamples for this finite
algorithm is finite. We come to the following conclusion:

Lemma 1. With probability 1 our algorithm will at some point satisfy all the conditions
depending on x0, . . . ,xn.

Therefore, with probability 1 the actions of the infinite probabilistic algorithm can be split
into stages: at ith stage we resample conditions that depend on x0, . . . ,xi only until all of them
are satisfied. Let xi

0, . . . ,x
i
i be the values of the variables x0, . . . ,xn at the end of the ith stage,

i.e., at the first moment when all the conditions depending only on x0, . . . ,xi are satisfied.
These x j

i are random variables defined with probability 1 (due to Lemma 1). The values
xi

0, . . . ,x
i
0 form a satisfying assignment for all the conditions that depend only on them. How-

ever, these values are not “final”: when we start to work with other variables, this may lead to
changes in the previous variables. So, e.g., x j+1

i can differ from x j
i .

The compactness argument (that proves the existence of a satisfying assignment for all
condition) then takes the limit point of these assignments. This is not enough for us, we need
the following

Lemma 2. For every i with probability 1 the sequence

xi
i,x

i+1
i ,xi+2

i , . . .

stabilizes.
Moreover, for every variable with probability 1 there exists some moment in our algorithm

such that after this moment it will never be changed. (This is formally even a stronger statement
since a variable can change during some stage but return to its previous value at the end of the
stage.)

Proof of Lemma 2. It is enough to show that for every i and sufficiently large j the proba-
bility of them event “xi is changed after stage j” is small. To show this, we need to refer to the
details of Moser–Tardos argument. Consider all the events that involve the variable xi. Then
consider all the neighbors of these events, all neighbors of their neighbors, etc. (m times for
some large m). Let j be the maximal variable that appears in all these events (up to distance m).

We claim that for every event A that involves xi, the probability of being resampled after
stage j does not exceed (1− ε)m. Indeed, consider such a resample and its tree (constructed
as in [1]). This tree should contain some event that involves variable with index greater than i
(since a new resample became necessary after all variables up to x j have satisfactory values).
The choice of j guarantees then that the size of the tree is at least m, and the sum of probabilities
of all those trees to appear during the algorithm is bounded by (1− ε)mx(A)/(1− x(A)). By a
suitable choice of m we can make this probability as small as we wish. Lemma 2 is proven.

Note that at this stage we have shown the existence of an evaluation (=assignment) that sat-
isfies all the conditions, since such an assignment is produced by our algorithm with probability
1. To show that there exists a computable assignment, we need some additional work.

3



Lemma 3. The convergence in Lemma 2 has predictable speed: for every i and for every ε

one can compute some N(i,ε) such that the probability of the event “xi will change after N(i,ε)
steps of the algorithm” is less than ε .

Proof of Lemma 3. The estimate in the proof of Lemma 2 gives some bound in terms of
the number of stages. At the same time we know the bounds for the expected length of each
stage, and can use Chebyshev inequality. Lemma 3 is proven.

Lemma 2 allows us to define an almost everywhere defined mapping that maps the Cantor
space Ω= {0,1}N into evaluations and maps the sequence of random bits used by our algorithm
to the sequence (x∞

0 ,x
∞
1 , . . .) of limit values of the variables.

Lemma 3 guaranteed that the output distribution of this mapping (the image of the uniform
distribution on sequences of random bits) is computable. This means that the probability of the
event x∞

0 = a0, . . . ,x∞
s = as can be effectively computed (with any given precision) given s and

a0, . . . ,as. Indeed, due to Lemma 3 we know how many steps of the algorithm are needed to
get the output value with given certainty level, and can simulate our algorithm for this number
of steps. (Here we use the computability assumptions.)

This computable output distribution is concentrated on the set of satisfying assignments. It
remain to use the following simple remark.

Lemma 4. If a computable probability distribution is concentrated on some closed set (i.e.
the measure of its complement is zero), then this set contains a computable element.

Proof. Computing this distribution, we can choose sequentially the values a0,a1,a2, . . . in
such a way that the measure of the event x0 = a0, . . . , xk = ak (according to the distribution)
is positive for every k. The sequence a0,a1,a2, . . . is computable; if it does not belongs to
the closed set, then finitely many a0, . . . ,ak ensure this, and this contradicts the assumption
(the probability should remain positive). Lemma 4 is proved, and this finishes the proof of
Theorem 2.

3 Infinite CNFs
A standard illustration for LLL is the following result: a CNF where all clauses contain m
different variables and each clause has at most 2m−2 neighbors, is always satisfiable.

Here neighbors are clauses that have common variables.
Indeed, we let x(A) = 2−m+2 and note that

2−m ≤ 2−m+2[(1−2−m+2)2m−2
],

since the expression in square brackets is approximately 1/e > 1/22.
This was about finite CNFs; now we may consider effective infinite CNF with countably

many variables and clauses (numbered by natural numbers); we assume that for given i we can
compute the list of clauses where ith variable appears, and for given j we can compute jth
clause.

Theorem 3. For every effective infinite CNF where each clause contains m different variables
and every clause has at most 2m−2 neighbors, one can find a computable assignment that
satisfies it.

Indeed, the same choice of x(A) works, if we choose ε small enough (say, ε = 0.1).

4



Similar argument can be applied in the case where there are clauses of different sizes. The
condition now is as follows: for every variable there are at most 2αn clauses of size that involve
this variable, where α ∈ (0,1) is some constant. Note that here we do not assume that every
variable appears in finitely many clauses, so the notion of effective infinite CNF should be
extended. Instead, we assume that for each i and for each n one can compute the list of clauses
of size n that include xi.

Theorem 4. For every α ∈ (0,1) there exists some N such that every effective infinite CNF
where each variable appears in at most 2αn clauses of size n (for every n) and all clauses have
size at least N, has a computable satisfying assignment.

Proof. Let us consider first a special case when each variable appears only in finitely many
clauses. Then we are in the situation covered by Theorem 2, and we need only to choose the
values of x(A). These value will depend on the size of the clause A: let us choose

x(A) = 2−βk

for clauses of size k, where β is some constant. In fact, any constant between α and 1 will
work, so we can use, e.g., β = (1+α)/2. So we need to check (for clauses of some size k) that

2−k ≤ 2−βk
∏

B∈Γ(A)
(1−2−β#B)

Note that for every of k variables in A there are at most 2αm clauses of size m that involve it.
So together there are at most k2αm neighbors of size m. So it is enough to show that

2−k ≤ 2−βk
∏

m≥N
(1−2−βm)k2αm

Using that (1−h)s ≥ 1−hs and taking kth roots, we see that it is enough to show that

2−1 ≤ 2−β (1− ∑
m≥N

2αm2−βm)

Since the series ∑2(α−β )m is converging, this is guaranteed for large N.
So we have proven Theorem 4 for the special case when each variable appear only in finitely

many clauses (and we can compute the list of those clauses).
The general case is easily reducible to this special one. Indeed, fix some δ > 0 and delete

from each clause δ -fraction of its variables with minimal indices. The CNF becomes only
harder to satisfy. But if δ is small enough, the conditions of the theorem (the number of
clauses with m variables containing a given variable is bounded by 2αn are still true for some
α ′ ∈ (α,1). And in this modified CNF each variable appears only in clauses of limited size (it
is deleted from all large enough clauses).

Theorem 4 is proven.
Let us note some immediate corollaries. Assume that F is a set of binary strings that

contains at most 2αn strings of size n. Then one can use LLL to prove the existence of an
infinite (or bi-infinite) sequence ω and a number N such that ω does not have substrings in
F of length greater than N. There are several proofs of this statement; one may use LLL or
Kolmogorov complexity, see [2, 3].

5



Joseph Miller noted that his proof (given in [4]) can be used to show that for a decidable F
(with this property) one can find a computable ω that avoids long substrings in F . Konstantin
Makarychev extended this argument to bi-infinite strings (personal communication). Now we
get it as an immediate corollary of Theorem 4: places in the sequence correspond to variables,
each forbidden string gives a family of clauses (one per position), and there is at most n2αn

clauses of size n that involve given position (and this number is bounded by 2α ′n for slightly
bigger α ′ and large enough n).

Moreover, we can do the same for 2-dimensional case: having a decidable set F of rect-
angular patterns that contains at most 2αn different patterns of size (=area) n, one can find a
number N and computable 2D configuration (a mapping Z2 → {0,1}) that does not contain
patterns from F of size N or more. (The author does not know how to get this result directly,
not using Moser–Tardos algorithm.)

Author is grateful to Lance Fortnow who suggested to apply Moser–Tardos technique to the
infinite computable version of LLL.

References
[1] Robin A. Moser, Gábor Tardos, A constructive proof of the general Lovász Local Lemma,

Available from http://arxiv.org/abs/0903.0544

[2] Andrey Rumyantsev, Forbidden Substrings, Kolmogorov Complexity and Almost Periodic
Sequences, STACS 2006, 23rd Annual Symposium on Theoretical Aspects of Computer
Science, Marseille, France, February 23–25, 2006. Lecture Notes in Computer Science,
3884, Springer, 2006, p. 396–407.

[3] Andrey Rumyantsev, Kolmogorov Complexity, Lovász Local Lemma and Critical Ex-
ponents. Computer Science in Russia, 2007, Lecture Notes in Computer Science, 4649,
Springer, 2007, p. 349-355.

[4] Joseph Miller, Two notes on subshifts. Available from
http://www.math.wisc.edu/ jmiller/downloads.html

6


