
1D EFFECTIVELY CLOSED SUBSHIFTS AND 2D TILINGS

BRUNO DURAND 1, ANDREI ROMASHCHENKO 2, AND ALEXANDER SHEN 2

1 LIF Marseille, CNRS & University Aix{Marseille
E-mail address: Bruno.Durand@lif.univ-mrs.fr
URL: http://www.lif.univ-mrs.fr/~bdurand

2 LIF Marseille, CNRS & University Aix{Marseille, on leave from IITP RAS
E-mail address: {Andrei.Romashchenko,Alexander.Shen}@lif.univ-mrs.fr

Abstract. Michael Hochman showed that every 1D e�ectively closed subshift
can be simulated by a 3D subshift of �nite type and asked whether the same can
be done in 2D. It turned out that the answer is positive and necessary tools were
already developed in tilings theory.

We discuss two alternative approaches: �rst, developed by N. Aubrun and
M. Sablik, goes back to Leonid Levin; the second one, developed by the authors,
goes back to Peter Gacs.

1. Simulation

Let A be a �nite alphabet and let F be an enumerable set of A-strings. Con-
sider all biin�nite A-sequences (i.e., mappings of type Z → A) that do not contain
substrings from F . The set of these sequences is e�ectively closed (its complement
is a union of an enumerable set of intervals in Cantor topology) and invariant under
(left and right) shifts. Sets constructed in this way are called e�ectively closed 1D

subshifts.

E�ectively closed 2D subshifts are de�ned in a similar way; instead of biin�nite
sequences we have con�gurations, i.e., mappings of type Z2 → A, and instead of
forbidden strings we have forbidden patterns (rectangles �lled with A-letters). Given
the set F of forbidden patterns, we consider the set of all con�gurations where
no elements of F appear. This set of con�gurations is closed under vertical and
horizontal shifts. If F is enumerable, we get e�ectively closed 2D subshifts ; if F is
�nite, we get 2D subshifts of �nite type.

2D subshifts of �nite type are closely related to tilings. A tile is a square with
colored sides (colors are taken from some �nite set C). A tile set is a set of tiles,
i.e., a subset of C4, since each tile is determined by four colors (upper, lower, left,
and right). For a tile set � , we consider all � -tilings, i.e., the tilings of the entire
plane by translated copies of � -tiles with matching colors.

Key words and phrases: e�ectively closed subshifts, subshifts of �nite type,tilings.
The paper was supported in part by NAFIT ANR-08-EMER-008-01 grant.

Submitted to JAC (Symposium on Cellular Automata Journ�ees Automates Cellulaires)

1



2 B. DURAND, A. ROMASHCHENKO, AND A. SHEN

Tilings can be considered as a special case of 2D subshifts of �nite type. In-
deed, subshift is governed by local rules (forbidden pattern say what is not allowed
according to these rules). In tilings the rules are extremely local: they say that the
neighbor tiles should have matching colors, i.e., 1× 2 rectangles where the colors do
not match, are forbidden.

So every tile set determines a subshift of �nite type (the alphabet is a tile set).
The reverse statement is also true if we allow the extension of an alphabet. (It
is natural since we have to simulate any local rule by a more restricted class of
matching rules.) Formally, for every alphabet A and subshift S of �nite type we can
�nd:
• a set of colors C;
• a tile set � ⊂ C4;
• a mapping d : � → A

such that every � -tiling after applying d to each tile becomes an element of S and
every element of S can be obtained in this way from some � -tiling. Such a cor-
respondence between tilings and subshifts of �nite type works in any dimension:
k-dimensional tilings correspond to k-dimensional subshifts of �nite type (modulo
the alphabet extension).

Now we want to compare subshifts in di�erent dimensions. Let S be a 1D
subshift. We can make a 2D subshift from it by copying each letter vertically. It
is easy to see that an e�ectively closed 1D subshift becomes an e�ectively closed
2D subshift (we use rules that guarantee the vertical propagation, i.e., require that
vertical neighbors should have the same letter, and the rules of the original 1D
subshift in horizontal direction). This 2D shift, denoted by �S, is not of �nite type, if
the original 1D shift was not of �nite type. However, �S is so�c, i.e., is a projection
by a subshift of �nite type in extended alphabet:

Theorem 1.1. For every e�ectively closed 1D subshift S in alphabet A there exists

an alphabet A′, a �nite 2D subshift S ′ in alphabet A′, and a mapping d : A′ → A

such that the image of S ′ under d (applied in each place) is �S.

This theorem (with 3D instead of 2D, which makes it easier) was proved by
Michael Hochman [10] who asked whether the same is true for 2D. His motivation
came from ergodic theory.

It turned out that the tools needed to prove theorem 1.1 for 2D tilings were
already developed in the framework of tilings theory when Hochman asked his ques-
tion. Moreover, there are two di�erent sets of tools that can be used; one was used
by Nathalie Aubrun and Mathieu Sablik [1] (and goes back to Leonid Levin [4]), the
other one was used in [6] (and goes back to Peter G�acs [8]). In the sequel we discuss
informally how these tools work, and what are the similarities and the di�erences.

2. Tools

Let us describe informally our problem. In 2D we have local rules that guarantee
that each vertical line contains some letter. We need to add some other rules to
guarantee that the emerging horizontal sequence of letters does not have substrings
from some enumerable set F . We are allowed to superimpose additional structure
to the con�guration (by extending the alphabet: we let A′ be a product of A and
some other �nite set). Rules for this extended con�guration should guarantee that
its base belongs to �S.



1D EFFECTIVELY CLOSED SUBSHIFTS AND 2D TILINGS 3

So we need to run a computation that generates F and some process that com-
pares generated elements with substrings in the horizontal sequence. It is well known
(since the �rst papers of Wang [14, 15] where the notion of a tile set was introduced)
that tile sets can simulate computation easily: indeed, a time-space diagram of a
Turing machine (or a cellular automaton) obeys local rules that guarantee that
computation is performed correctly when started. The problem is to initiate the
computation: there is no special point in the plane where the computation can be
started, so we need to \break the translational symmetry" somehow.

This problem was solved by Berger [2] who proved that there exists an aperiodic
tile set, i.e., a tile set � such that � -tilings exist but all are aperiodic. (A tiling is
periodic if there is a non-zero translation that does not change it. One can show
that if a tile set has a periodic tiling then it has a 2-periodic tiling where some �nite
block is repeated horizontally and vertically.) Berger used a complicated multi-level
construction that was later simpli�ed in di�erent ways by Robinson [13] and others.
The simpli�cation made clear that Berger's construction is essentially based on self-
similarity: any tiling can be divided into blocks that behave like individual tiles.
(In the original construction this similarity was obscured by some irregularities; the
cleaned versions could be found in [12] or [3].)

This self-similarity creates some kind of a skeleton that can be used to initiate
computations. However, the problem is that we necessarily initiate them in many
di�erent places, and these \geometrically parallel" computation should be organized
to achieve some goal. Berger used them to prove the undecidability of the domino
problem (to determine whether a given tile set has at least one tiling); for that pur-
pose it is enough to initiate multiple copies of the same computation: all are limited
in time and space, but among them there are computations of arbitrary length. For
that we split the plane into di�erent zones used for di�erent computations. It is
possible to �nd such an arrangement; in each zone the standard local rules for a
computation are used but zones are not contiguous. So we need additional e�orts to
transmit the information from one zone to another one. This all can be done (with
limited overlap, so the total density of information in a given cell remains �nite).

Then Hanf [9] and Myers [11] proved that there are tile sets that admit only
non-recursive tilings (a much stronger statement than the existence of an aperiodic
tile set). This was done by embedding a separation problem for two inseparable
enumerable sets, and for this we need that all the parallel computations not only
share the same (�nite) program, but also share the same (in�nite) input. Therefore,
some additional machinery is needed to synchronize the inputs of all the computa-
tions (each computation gets a �nite part of the in�nite input sequence, but these
�nite parts are consistent pieces of an in�nite input).

When simulating 1D e�ectively closed subshift, we need more: the input is given
to us externally (the contents of the vertical lines that carry A-letters) and we need
to check this input against all possible forbidden substrings. This means that we
are very limited in space (and cannot distribute pieces of input sparsely over the
entire plane as before).

2.1. Robinson-type solution

The way to do this was developed in [4]. At each level of self-similarity we have
computation squares that are arranged in computational stripes. Such a stripe is in�-
nite in vertical direction and carries an in�nite computation of a �nite-space cellular



4 B. DURAND, A. ROMASHCHENKO, AND A. SHEN

automaton. (One can wonder whether it makes sense to have an in�nite computation
in a �nite space. Indeed, it is not really in�nite; it runs for some time (exponen-
tial in the width of the stripe) and then is restarted. The repeated computations
are not necessarily identical, since they interact with the other computations which
could be di�erent.) Each stripe performs some checks for the part of the horizontal
sequence that is near it. When the level (and the size of the stripe) increases, the
checked zone and the time allowed for the computation increase. Working together,
the stripes can check the horizontal sequence against all forbidded substrings.

In [4] this technique was used for one speci�c 1D e�ectively closed subshift with
a binary alphabet (for some �xed � < 1 we forbid all su�ciently long strings whose
Kolmogorov complexity is less than � times length). However, this technique is
quite general and can be used for any 1D e�ectively close subshift modulo some
technical problem.

This technical problem is that the underlying self-similar structure may be \de-
generate" in the sense that the plane is divided in two parts that have no common
ancestors. In this case we need some additional tricks (extending the zone of re-
sponsibility of each stripe) that were not needed for the speci�c subshift of [4]. The
reason why they were not needed: if a string of low complexity (compared to length)
is split into two parts, one of then has low complexity, too.

So the technique of [4] is not enough. The �nal construction was discovered (in
fact, independently from [4]) by N. Aubrun and M. Sablik.

2.2. Fixed-point solution

There is a di�erent way to organize the computations that uses �xed-point self-
similar tiling. The idea of a self-similar �xed-point tile set can be explained as
follows. We already know (since Wang papers) that tiling can be used to simulate
computations. This computation, in its turn, can be used to guarantee the desired
behavior of bigger blocks, called macro-tiles. So for a desired behavior of macro-
tiles we can construct tiling rules (i.e., tile set) that guarantees this behavior. If, by
chance, these tiling rules coincide with the rules for macro-tiles, we get self-similarity
as a consequence.

But there is a classical tool to get this coincidence intentionally, not by chance:
the Kleene �xed-point construction. It was used by Kleene in the recursion theory
and later by von Neumann to construct self-reproducing automata. Usually it is
illustrated as follows: for every program p (in fact, for every string p) there exists
a program p′ that prints the text of p. Kleene's theorem guarantees that one can
�nd p such that p′ is equivalent to p, i.e., the program p prints its own text. The
same trick (though not just the statement of Kleene's recursion theorem) can be
used for 2D computations. This was done �rst by G�acs [8] in a complicated setting
(error-correction in 2D computations); we use the same idea in a much simpler
environment. For each tile set � one can construct a set � ′ of tiles that force macro-
tiles to behave like � -tiles; Kleene's trick can then be used to make � isomorphic to
� ′. This construction is explained in [5].

Then some additional structure can be superimposed with this self-similar skele-
ton (by adding some other computations); Kleene's trick can still be used to achieve
self-similarity (in some extended sense).



1D EFFECTIVELY CLOSED SUBSHIFTS AND 2D TILINGS 5

This construction is rather 
exible and can be applied to di�erent problems,
see [6]. The di�erences and similiarities between two constructions are summarized
in the following comparison table.

2.3. Comparison table

Problem Solution 1 Solution 2
Breaking the symmetry Use (modi�ed) Berger{

Robinson self-similar
construction where self-
similarity is guaranteed
by geometric arguments

Use �xed-point self-
similar construction,
where self-similiarity is
a byproduct of some
computational structure

Placing the computa-
tions

Computations of di�er-
ent levels are all per-
formed \on the ground",
by individual cells, and
the plane is divided into
regions allocated to each
level

Computations of di�er-
ent levels are performed
at di�erent levels of hi-
erarchy: high level com-
putations deal not with
individual tiles but with
macro-tiles

Arranging arbitrarily
long computations

Computations are in�-
nite in the vertical di-
rection but �nite in hor-
izontal direction, each
computation performs a
space-bounded check of
some part of the horizon-
tal sequence; the bound
increases with the level

Computations are �nite
in both direction; each
computation performs a
time-bounded check of
some part of the horizon-
tal sequence; the bound
increases with the level

Bringing the bits of the
horizontal sequence to
the computation

Recursively from lower
levels; the bits are syn-
chronized explicitly \on
the ground"

Recursively from lower
levels; each level checks
whether the bits at the
next level are recorded
correctly

Dealing with degenerate
case of the self-similar
pattern

Using overlapping zones
of responsibility

Using overlapping zones
of responsibility

Error resistance Not clear (we �rst need
some error-resistant un-
derlying geometric con-
struction)

Adding redundancy at
each level

References

[1] N. Aubrun, M. Sablik, Simulation of recursively enumerable subshifts by two dimensional SFT
and a generalization. Preprint, available from M. Sablik's home page.

[2] R. Berger, The undecidability of the domino problem. Memoirs of the AMS, v. 66 (1966).
[3] B. Durand, L. Levin, A. Shen, Local rules and global order, or aperiodic tilings, The Mathe-

matical Intelligencer, v. 27 (2005), no. 1, p. 64{68.
[4] B. Durand, L. Levin, A. Shen, Complex Tilings. J. Symbolic Logic, 73 (2), 593{613, 2008.



6 B. DURAND, A. ROMASHCHENKO, AND A. SHEN

[5] B. Durand, A. Romashchenko, A. Shen, Fixed Point and Aperiodic Tilings. Proc. 12th Inter-

national Conference of Developments in Language Theory. Kyoto, Japan, 2008, p. 537{548.
[6] B. Durand, A. Romashchenko, A. Shen, Fixed-point tile sets and their applications. CoRR

abs/0910.2415, 2009. http://arxiv.org/abs/0910.2415
[7] B. Durand, A. Romashchenko, A. Shen, E�ective closed subshifts in 1D can be implemented

in 2D. Fields of Logic and Computation, Lecture Notes in Computer Science, v. 6300 (2010),
p. 208{226.

[8] P. G�acs, Reliable Computation with Cellular Automata. J. Comput. Syst. Sci. 32(1), 15{78,
1986.

[9] W. Hanf, Nonrecursive tilings of the plane, i, Journal of Symbolic Logic, v. 39 (1974), no. 2,
p. 283{285.

[10] M. Hochman, On the dynamic and recursive properties of multidimensional symbolic systems.
Inventiones mathematicae, 176, 131{167 (2009).

[11] D. Myers, Nonrecursive tilings of the plane, ii, Journal of Symbolic Logic, v. 39 (1974), no. 2,
p. 286{294.

[12] N. Ollinger, Two-by-two Substitution Systems and the Undecidability of the Domino Problem,
Computability in Europe, 2008 (CiE'2008), Lecture Notes in Computer Science, v. 5028, p. 476{
485.

[13] R. Robinson, Undecidability and nonperiodicity for tilings of the plane, Inventiones Mathe-

maticae, v. 12 (1971), p. 177{209.
[14] H. Wang, Proving theorems by pattern recognition, II, Bell System Technical Journal, v. 40

(1961), p. 1{41.
[15] H. Wang, Dominoes and the ∀∃∀ case of the decision problem. Proceedings of the Symposium

on Mathematical Theory of Automata, Brooklyn Polytechnic Institute, New York, 1962, p. 23{
55.


