
Circuit Complexity and Multiplicative
Complexity of Boolean Functions ?

Arist Kojevnikov1 and Alexander S. Kulikov1

St. Petersburg Department of Steklov Institute of Mathematics
{arist,kulikov}@logic.pdmi.ras.ru

Abstract. In this note, we use lower bounds on Boolean multiplicative
complexity to prove lower bounds on Boolean circuit complexity. We give
a very simple proof of a 7n/3− c lower bound on the circuit complexity
of a large class of functions representable by high degree polynomials
over GF(2). The key idea of the proof is a circuit complexity measure
assigning different weights to XOR and AND gates.

1 Introduction

Proving lower bounds on the circuit complexity of explicitly defined Boolean
functions is one of the most famous and difficult problems in Theoretical Com-
puter Science. Already in 1949 Shannon [1] showed by a counting argument that
almost all Boolean functions have circuits of size Ω(2n/n) only. Still, we have
no example of an explicit function requiring super linear circuit size. Moreover,
only a few proofs of linear lower bounds are known. Namely, Schnorr [2] proved
a 2n− c lower bound for a class of functions with the property that by fixing the
values of any two variables one gets at least three different subfunctions. Then
Paul [3] proved a 2.5n − c lower bound for a modification of the storage access
function. Stockmeyer [4] obtained the same lower bound for a class of symmetric
functions satisfying a certain simple property. Finally, Blum slightly modified
Paul’s function and proved a 3n− o(n) bound on it. This bound was published
in 1984 and is still the best result for circuits over the full binary basis B2. The
current record lower bound 5n− o(n) for the basis U2 = B2 \ {⊕,≡} was given
in 2002 by Iwama and Morizumi [5].

All bounds mentioned above are proved by the gate elimination method. The
main idea of this method is the following. One considers a Boolean function on
n variables from a certain class of functions and shows (usually by a long case
analysis) that for any circuit computing this function setting some variables to
constants one obtains a subfunction of the same type and eliminates several
gates. Usually, a gate is eliminated just because one of its inputs becomes a
? Research is partially supported by Federal Target Programme “Scientific and

scientific-pedagogical personnel of the innovative Russia” 2009–2013, RFBR (08-
01-00640 and 09-01-12137), RAS Program for Fundamental Research, Grant of the
President of Russian Federation (MK-3912.2009.1 and NSh-5282.2010.1), and ANR,
France (NAFIT ANR-08-EMER-008-01).

constant. By induction, one concludes that the original circuit must have many
gates. Though this method is essentially the only known method for proving
nontrivial lower bounds for general circuit complexity, as many authors note it
is unlikely that it will allow to prove nonlinear bounds.

The multiplicative complexity of a Boolean function f is defined as the min-
imal number of AND gates in a circuit over {∧,⊕, 1} computing f . Again, by
a counting argument one can show that almost all Boolean functions of n vari-
ables have multiplicative complexity 2n/2 − O(n) [6]. As for the constructive
lower bounds, the situation is even worse than with circuit complexity. Namely,
the best known lower bound is n− 1 [7]. This bound holds for any function rep-
resentable by a polynomial over GF(2) of degree n. It is quite easy to see that,
e.g., the conjunction of n variables has multiplicative complexity n− 1. Even a
function with multiplicative complexity at least n is not known.

In this note, we prove a lower bound 7n/3 − c on the circuit complexity of
a large class of functions representable by high degree polynomials over GF(2).
The key idea of the proof is a circuit complexity measure assigning different
weights to XOR and AND gates. Note that while the proven lower bound is
weaker than Stockmeyer’s 2.5n − c bound and Blum’s 3n − o(n) bound, it is
applicable for a much wider class of functions (Stockmeyer’s proof works for
symmetric functions only, Blum’s bound works for a particular single function)
and its proof is much simpler (in particular, contains almost no case analysis).

2 General Setting

2.1 Circuit Complexity and Gate Elimination

By Bn we denote the set of all Boolean functions f : {0, 1}n → {0, 1}. A circuit
over a basis Ω ⊆ B2 is a directed acyclic graph with nodes of in-degree 0 or 2.
Nodes of in-degree 0 are marked by variables from {x1, . . . , xn} and are called
inputs. Nodes of in-degree 2 are marked by functions from Ω and are called
gates. There is also a special output gate where the result is computed. The
size of a circuit is its number of gates. By CΩ(f) we denote the minimum size
of a circuit over Ω computing f . The two commonly studied bases are B2 and
U2 = B2 \ {⊕,≡}. In this note we consider circuits over B2 and denote CB2(f)
by just C(f).

We call a function f ∈ Bn degenerated if it does not depend essentially on
some of its variables, i.e., there is a variable xi such that the subfunctions f |xi=0

and f |xi=1 are equal. It is easy to see that a gate computing a degenerated
function from B2 can be easily eliminated from a circuit without increasing its
size (when eliminating this gate one may need to change the functions computed
at its successors). The set B2 contains the following sixteen functions f(x, y):

– six degenerate functions: 0, 1, x, x⊕ 1, y, y ⊕ 1;
– eight functions of the form ((x⊕ a) ∧ (y ⊕ b))⊕ c, where a, b, c ∈ {0, 1}; we

call them type-∧ functions;

– two functions of the form x⊕y⊕a, where a ∈ {0, 1}; these are called type-⊕
functions;

The main difference between type-∧ and type-⊕ functions is that it is always
possible to make a type-∧ binary function constant by assigning a Boolean value
to any of its inputs (e.g., after replacing x by a one gets the constant c; in this
case we say that a gate is trivialized), while this is not possible for a type-⊕
function. Thus, if there is a variable feeding two type-⊕ gates, then by assigning
any value to it one eliminates only these two gates. However, if at least one of
the two successors of a variable is of type-∧, then by assigning an appropriate
value to it one eliminates both these gates and also all successors of this type-∧
gate. This is the reason why currently best lower bounds for circuits over U2 are
stronger than those for circuits over B2.

Fig. 1 shows an example on how assigning values to input variables affects a
circuit. We first replace x1 by 1. Then G5 computes G3 ⊕ 1 and is not needed
anymore, while G6 computes G3 ⊕ G4 ⊕ 1, i.e., G3 ≡ G4. We now assign the
value 0 to x3. Then both G1 and G2 can be eliminated as they compute x2.

2.2 Multiplicative Complexity and Polynomials over GF(2)

The multiplicative complexity of a Boolean function f is defined as the minimal
number of AND gates in a circuit over {∧,⊕, 1} computing f . It is easy to see
that the minimal possible number of type-∧ gates in a circuit over B2 computing
f is exactly the multiplicative complexity of f .

Any function f ∈ Bn can be easily represented as a multilinear polynomial
over GF(2), i.e., a XOR (sum) of conjunctions (monomials). To obtain this rep-
resentation one can take a sum of all “literal monomials” (i.e., conjunctions of
literals, where a literal is either a variable or its negation) corresponding to el-
ements of f−1(1). E.g., the polynomial over GF(2) for the majority function of
three bits is

x1x2x3 + (1 + x1)x2x3 + x1(1 + x2)x3 + x1x2(1 + x3) = x1x2 + x2x3 + x1x3 .

It is well known that such a representation is unique. Indeed, each function has
a representation by a polynomial and the number of functions of n variables is
equal to the number of multilinear polynomials over GF(2) (and is equal to 22n

).
We denote this polynomial by χ(f). The important characteristics of a function
f is the degree of χ(f) denoted by deg(f). Clearly, if a circuit contains only a
few type-∧ gates, then it cannot compute a function of high degree. For example,
to compute the conjunction of n variables n− 1 type-∧ gates are necessary and
sufficient.

Lemma 1 ([7]). Any circuit computing a Boolean function f ∈ Bn contains at
least (deg(f)− 1) type-∧ gates.

x1 x2 x3 x4

⊕G1 ∨G2

∧G3 ⊕G4

⊕G5

⊕G6

x2 x3 x4

⊕G1 ∨G2

∧G3 ⊕G4

≡G6

x2 x4

∧G3 ⊕G4

≡G6

x1 = 1

x3 = 0

Fig. 1. Example of gate elimination.

3 7n/3 Lower Bound

In this section, we give a proof of a 7n/3 − c lower bound. It is as simple as
Schnorr’s proof of a 2n − c lower bound [2]. We first define a class of functions
Skn similar to the one used by Schnorr. We then define a circuit complexity
measure by putting different weights to type-⊕ and type-∧ gates and prove a
lower bound for it. This lower bound is then used to prove a lower bound on the
circuit complexity of a class of functions obtained by taking the sum of functions
from Skn and a function of full degree.

Definition 1. For a constant k, let Skn be the class of all functions f ∈ Bn,
n ≥ k, with the following properties:

1. for any two variables xi and xj one obtains at least three different subfunc-
tions of f by fixing the values of xi and xj;

2. for any variable xi and any constant c ∈ {0, 1}, f |xi=c ∈ Skn−1.

A natural function satisfying both these properties is a modular function
MODn

m,r defined as follows:

MODn
m,r(x1, . . . , xn) = 1 iff

n∑
i=1

xi ≡ r (mod m) .

It is easy to see that, for any m ≥ 3 and r, MODn
m,r ∈ Sm+2

n . Indeed,

MODn
m,r|xi=0,xj=0 = MODn−2

m,r , MODn
m,r|xi=1,xj=1 = MODn−2

m,r−2 ,

MODn
m,r|xi=0,xj=1 = MODn

m,r|xi=1,xj=0 = MODn−2
m,r−1 .

For m ≥ 3 and n ≥ m + 2, MODn−2
m,r , MODn−2

m,r−1, MODn−2
m,r−2 are not constant

and pairwise different (note that for m = 2 this is not true as MODn−2
2,r−2 =

MODn−2
2,r). Also, MODn

m,r|xi=c = MODn−1
m,r−c.

In order to prove the stated lower bound we use the following circuit com-
plexity measure: µ(D) = 3X(D) + 2A(D), where X(D) and A(D) denote, re-
spectively, the number of type-⊕ and type-∧ gates in a circuit D.

Lemma 2. For any circuit D computing a function f ∈ Skn,

µ(D) ≥ 6(n− k − 1) .

Proof. We prove the statement by induction on n. The case n ≤ k+1 is obvious.
Assume that n > k + 1 and let D be an optimal (w.r.t. µ) circuit computing f .
We show that it is possible to assign a value to one of the variables such that
µ is reduced by at least 6. Since the resulting subfunction belongs to Skn−1, the
required inequality follows by induction. Note that the resulting subfunction is
not a constant (otherwise it would not have three different subfunctions w.r.t.
any two variables). Thus, if a gate is replaced by a constant during such a

xi xj

⊕P ⊕Q

(a)

xi xj

∧P Q

(b)

xi xj

P ∧Q

(c)

xi xj

P

∧Q

(d)

Fig. 2. Different cases of Lemma 2.

substitution, then this gate is not an output and hence has at least one successor
that is also eliminated.

All degenerate gates can be eliminated from D without increasing µ(D). Let
Q be a top-gate of D and xi and xj be its input variables. These variables
are different as Q is non-degenerate. Since there are at least three different
subfunctions of f w.r.t. xi and xj , one of them must feed at least one other gate.
W.l.o.g. we assume that xi feeds also a gate P 6= Q. There exist two cases.

1. If both P and Q are type-⊕ gates (see Fig. 2(a); note that only the types
of gates are shown, but not the exact functions computed at them), we just
assign a value to xi. Clearly µ is reduced by at least 6.

2. If one of P and Q is a type-∧ gate (Fig. 2(b–d)), we assign to xi the value
which trivializes this gate. This eliminates both P and Q and at least one of
their successors. Note that P can be a successor of Q (Fig. 2(d)). In this case
after assigning xi the right constant, not only Q becomes a constant, but
also the gate P , as both its inputs are constants. Hence all successors of P
are eliminated. Since at least three gates are eliminated, µ is again reduced
by at least 6. ut

Lemma 3. Let f ∈ Skn and deg(f) = n. Then C(f) ≥ 7n/3− c(k).

Proof. Let D be a circuit computing f . Recall that the number of gates in a
circuit D is at least X(D) + A(D). The required inequality then follows from
the following two inequalities:

3X(D) + 2A(D) ≥ 6n− 6(k + 1) ,
A(D) ≥ n− 1 .

ut

The lemma above provides a 7n/3 − c lower bound for functions from Snk
of degree n. In fact, it can be used to prove the same lower bound for a much

wider class of functions. Assume that f ∈ Skn and deg(f) < n. Consider now
any function g ∈ Bn−1 of degree n− 1 (note that the number of such functions
is 22n−1−1, as we only need that the monomial x1x2 . . . xn−1 is present in χ(g))
and define h ∈ Bn as follows:

h(x1, . . . , xn) = f(x1, . . . , xn)⊕ xng(x1, . . . , xn−1) .

Consider a circuit D computing h. Since deg(h) = n, A(D) ≥ n − 1. Note also
that h|xn=0 = f |xn=0 ∈ Skn−1. Hence µ(D) ≥ µ(D|xn=0) ≥ 6(n − 1) − 6(k + 1)
and a lower bound 7n/3− c(k) for the size of D follows.

4 Further Directions

It would be interesting to give an example of an explicit function with multi-
plicative complexity at least an, for a > 1. Such a function would immediately
give a stronger than 7n/3 lower bound for circuit complexity. As said above, the
best known lower bound n−1 follows from the fact that a function is represented
by a polynomial of high degree over GF(2). Such is, e.g., the function MODn

3,r:
deg(MODn

3,r) ≥ n − 1, for any r and n ≥ 3. Thus, at least n − 2 type-∧ gates
are needed just to compute a high degree monomial in χ(MODn

3,r). It is natural
to expect that to compute the MODn

3,r function more type-∧ gates are needed
in the worst case. Interestingly, this is not true: Boyar et al. [6] showed that the
multiplicative complexity of any symmetric function is at most n+ o(n).

As to the lower bounds on circuit complexity, it would be interesting to im-
prove lower bounds 3n−o(n) by Blum [8] and 5n−o(n) by Iwama and Morizumi
[5] on the circuit complexity over B2 and U2, respectively. An (apparently) easier
problem is to close one of the following gaps (see [4], [9], [10]):

2.5n− c ≤ CB2(MODn
3) ≤ 3n+ c, 4n− c ≤ CU2(MODn

4) ≤ 5n+ c .

Acknowledgments

We would like to thank Edward A. Hirsch for helpful comments.

References

1. Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell System
Technical Journal 28 (1949) 59–98

2. Schnorr, C.: Zwei lineare untere Schranken für die Komplexität Boolescher Funk-
tionen. Computing 13 (1974) 155–171

3. Paul, W.J.: A 2.5n-lower bound on the combinational complexity of Boolean
functions. SIAM Journal of Computing 6(3) (1977) 427–433

4. Stockmeyer, L.J.: On the combinational complexity of certain symmetric Boolean
functions. Mathematical Systems Theory 10 (1977) 323–336

5. Iwama, K., Morizumi, H.: An explicit lower bound of 5n−o(n) for boolean circuits.
In: Proceedings of 27th International Symposium on Mathematical Foundations of
Computer Science (MFCS). Lecture Notes in Computer Science, Springer (2002)
353–364

6. Boyar, J., Peralta, R., Pochuev, D.: On The Multiplicative Complexity of Boolean
Functions over the Basis (∧,⊕, 1). Theoretical Computer Science 235(1) (2000)
1–16

7. Schnorr, C.P.: The Multiplicative Complexity of Boolean Functions. In: Pro-
ceedings of Applied Algebra, Algebraic Algorithms and Error-Correcting Codes.
Volume 357 of Lecture Notes in Computer Science., Springer (1989) 45–58

8. Blum, N.: A Boolean function requiring 3n network size. Theoretical Computer
Science (28) (1984) 337–345

9. Demenkov, E., Kojevnikov, A., Kulikov, A.S., Yaroslavtsev, G.: New upper bounds
on the Boolean circuit complexity of symmetric functions. Information Processing
Letters 110(7) (2010) 264–267

10. Zwick, U.: A 4n lower bound on the combinational complexity of certain symmetric
boolean functions over the basis of unate dyadic Boolean functions. SIAM Journal
on Computing 20 (1991) 499–505

