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Kolmogorov complexity

I A measure of information in a given string.

I One can easily define a set of Martin-Löf random
sequences (the algorithmic law of large numbers, the
algorithmic law of iterated logarithm, etc).

I Analysis of running time of algorithms (Moser-Tardos,
constructive LLL).

I And so on...
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sequences (the algorithmic law of large numbers, the
algorithmic law of iterated logarithm, etc).

I Analysis of running time of algorithms (Moser-Tardos,
constructive LLL).

I And so on...



Kolmogorov complexity

I A measure of information in a given string.

I One can easily define a set of Martin-Löf random
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Decompressors

I A decompressor is a computable partial function
D : {0, 1}∗ → {0, 1}∗.

I Kolmogorov complexity of a string x ∈ {0, 1}∗ with respect
to a decompressor D: CD(x) := min{|y | | D(y) = x}.

I There exists an optimal decompressor U such that CU is
minimal up to O(1). C (x) := CU(x) is a plain complexity of
x .

I A decompressor is called prefix-free if its domain is
prefix-free.

I There exists an optimal prefix-free decompressor V .
K (x) := CV (x) is a prefix complexity of x .

I The difference K (x)− C (x) can be as large as log |x |.
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The main question

I In DLT 2008 paper Calude, Nies, Staiger and Stephan
characterized (supersets of) domains of optimal (prefix-free)
decompressors.

I One of their results: a recursively enumerable set W is a
superset of the domain of an optimal decompressor iff there is
a constant c such that
|A ∩ {0, 1}n|+ . . .+ |A ∩ {0, 1}n+c | ≥ 2n for every n.

I The main question: does the domain of every optimal
decompressor contain the domain of some optimal
prefix-free decompressor?

I We show that the answer is ’NO’.

I We build an optimal decompressor U such that for every
optimal prefix-free decompressor V holds dom V 6⊆ dom U.
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The construction

I We show that there exists a set A such that:

1. A contains the domain of one specific optimal decompressor,
2. A does not contain the domain of any optimal prefix free

decompressor.

I The first part is easy. It is sufficient to require from A the
following two properties:

1. A is recursive,
2. A is sufficiently dense.

I By sufficiently dense we mean that for every n
|A ∩ {0, 1}n| ≥ ε · 2n.

I An easy case of a result from [CNSS]. Consider an arbitrary
optimal decompressor D. A is recursive, so there exists a
computable injective mapping i : {0, 1}∗ → {0, 1}∗ such that:

1. i(x) ∈ A for every x ,
2. |i(x)| ≤ |x |+ c , where c is a fixed constant (one can actually

take c := dlog 1/εe).

I D1(i(x)) := D(x).
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The construction

I It remains to build a recursive set A with the following
properties:

1. A is sufficiently dense,
2. A does not contain the domain of any optimal prefix-free

decompressor.
I A will be, in some sense, a universal set. For every n consider

strings of length n in the set A. They determine some subset
in Cantor space, which is open-closed.
What is needed for A: every open-closed subset of Cantor
space of measure at least 1/3 is represented at some level and
even at many subsequent levels

I Infinite binary tree ↔ {0, 1}∗ ↔ cylinders in {0, 1}ω
I Ωx = {α ∈ {0, 1}ω | α begins with x}
I P ⊆ {0, 1}ω is basic if P =

⋃n
i=1 Ωxi .

I A ⊆ {0, 1}∗ represents P at level n if P =
⋃

x∈A∩{0,1}n Ωx .
I Construction of A: for every basic set P of measure at least

1/3 there are infinitely many n such that A represents P at
levels n, n + 1, . . . , 2n.
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Two games

I Lemma: if ni is a computable sequence such that∑
i 2−ni ≤ 1, then K (i) ≤ ni + O(1).

I ’Memory allocation’ game:
I Alice: ni such that

∑
i 2−ni ≤ 1 (one by one).

I Bob: xi such that |xi | = ni and {xi} is prefix-free set (responds
on-line).

I Bob wins if he is able to allocate desired strings.

Theorem: Bob wins.
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Two games

I The modified game:
I Bob: ε > 0.
I Alice: makes at most 2/3 strings of each length forbidden.
I Alice: ni such that

∑
i 2−ni ≤ ε (one by one).

I Bob: xi such that |xi | = ni and {xi} is prefix-free set.
Moreover, xi must not be forbidden (responds on-line).

I Bob wins if he is able to allocate desired strings.

Theorem: Alice wins.

I Technically, we must consider more complicated game,
because complexity is defined up to a constant.

I The idea of a proof is the following: Alice wins, and her
winning set is more or less A.
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Thank you for your attention.


