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Abstract. A theorem of Kučera states that given a Martin-Löf random
infinite binary sequence ω and an effectively open set A of measure less
than 1, some tail of ω is not in A. We show that this result can be seen
as an effective version of Birkhoff’s ergodic theorem (in a special case).
We prove several results in the same spirit and generalize them via an
effective ergodic theorem for bijective ergodic maps.

1 Introduction

The classical setting for the ergodic theorem is as follows. Let X be a space with
a probability measure µ on it, and let T : X → X be a measure-preserving trans-
formation. Let f be a real-valued integrable function on X. Birkhoff’s ergodic
theorem (see for example [Shi96]) says that the time-average

f(x) + f(T (x)) + f(T (T (x))) + . . .+ f(T (n−1)(x))
n

has a limit (as n → ∞) for all x except for some null set, and this limit (the
“time average”) equals the space average

∫
f(x) dµ(x) if the transformation T

is ergodic (i.e., has no non-trivial invariant subsets).
The classical example is the left shift on Cantor space Ω (the set of infinite bi-

nary sequences, denoted also by 2N or 2ω): σ(ω0ω1ω2 . . .) = ω1ω2 . . . It preserves
Lebesgue measure (a.k.a. uniform measure) µ on Ω and is ergodic. Therefore, the
time and space averages coincide for almost every starting point x. For a special
case where f is an indicator function of some (measurable) set A, we conclude
that almost surely (for all x outside some null set) the fraction of terms in the
sequence x, σ(x), σ(σ(x)), . . . that are inside A, converges to the measure of A.
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Assuming that A has positive measure, we conclude that almost surely at least
one element of this sequence belongs to A. Switching to complements: if A has
measure less than 1, then (almost surely) some elements of this sequence are
outside A. Kučera [Kuč85] proved an effective version of this statement:

Theorem 1. If A is an effectively open set of measure less than 1, then for
every Martin-Löf random sequence ω at least one of ω, σ(ω), σ(σ(ω)),. . . does
not belong to A.

Recalling the definition of Martin-Löf randomness (a sequence is random if
it is outside any effectively null set) we can reformulate Kučera’s theorem as
follows:

Let A be an effectively open set of measure less than 1. Consider the set
A∗ of all sequences ω such that every tail σ(n)(ω) belongs to A. Then A∗

is an effectively null set.

Before presenting the proof, let us mention an interpretation of this result.
Recall that the universal Martin-Löf test is a computable sequence U1, U2, . . .
of effectively open sets such that µ(Ui) ≤ 1/2i and the intersection ∩iUi is the
maximal effectively null set, i.e., the set of all non-random sequences. Kučera’s
theorem shows that randomness can be (in a paradoxical way) characterized by
U1 alone: a sequence is non-random if and only if all its tails belong to U1. (In
one direction it is Kučera’s theorem, in the other direction we need to note that
a tail of a non-random sequence is non-random.)

Proof (of Kučera’s theorem). We start with the following observation: it is
enough to show that for every interval I, we can uniformly construct an ef-
fectively open set J ⊂ I that contains I ∩ A∗ and such that µ(J) ≤ rµ(I) for
some fixed r < 1 (here we call an interval any set of type xΩ, where x is some
finite string, which is the set of infinite binary sequences that start with x). Then
we represent the effectively open set A of measure r < 1 as a union of disjoint
intervals I1, I2, . . ., construct the sets Ji for every Ii and note that the union A1

of all Ji is an effectively open set that contains A∗ and has measure r2 or less.
Splitting A1 into disjoint intervals and repeating this argument, we get a set A2

of measure at most r3, etc. In this way we get a effectively open cover for A∗ of
arbitrarily small measure, so A∗ is an effectively null set.

It remains to show how to find J given I. The interval I consists of all
sequences that start with some fixed prefix x, i.e., I = xΩ. Since sequences in
A∗ have all their tails in A, the intersection I ∩ A∗ is contained in xA, and the
latter set has measure rµ(I) (where r = µ(A)). ut

Note that this proof also shows the following: suppose A is an effectively
open set of measure less than 1, and A can be written as a disjoint union of
intervals A = x1Ω∪ x2Ω∪ . . .. Let ω be an infinite sequence that can be written
as ω = w1w2w3 . . . where for all i, wi = xj for some j. Then ω is not random. (If
A contains all non-random sequences, the reverse implication is also true, and
we get yet another criterion of randomness.)



Effective versions of the ergodic theorem in a general setting have been stud-
ied in several papers (see for example [V’y97,V’y98,GHR09,HR09a]). In this
paper, we present characterizations of randomness that resemble Kučera’s and
which (to the best of our knowledge) cannot be directly derived from previous
papers.

2 Effective Kolmogorov 0-1-law

Trying to find characterizations of randomness similar to Kučera’s theorem, one
may look at Kolmogorov’s 0-1-law. It says that any measurable subset A of the
Cantor space that is stable under finite changes of bits (i.e. if ω ∈ A and ω′ is
equal to ω up to a finite change of bits, then ω′ ∈ A) has measure 0 or 1. It can
be reformulated as follows: let A be a (measurable) set of measure less than 1.
Consider the set A∗ defined as follows: ω ∈ A∗ if and only if all sequences that
are obtained from ω by changing finitely many terms, belong to A. Then A∗

has measure zero (indeed, A∗ is stable and cannot have measure 1). Note also
that we may assume without loss of generality that A is open (replacing it by
an open cover of measure less than 1).

A natural effective version of Kolmogorov’s 0-1-law can then be formulated
as follows.

Theorem 2. Let A be an effectively open set of measure r < 1. Consider the
set A∗ of all sequences that belong to A and remain in A after changing finitely
many terms. Then A∗ is an effectively null set.

(As we have seen, the last two sentences can be replaced by the following claim:
any Martin-Löf random sequence can be moved outside A by changing finitely
many terms.)

Proof. To prove this effective version of the 0-1-law, consider any interval I. As
before, we want to find an effectively open set U ⊂ I that contains A∗ ∩ I and
has measure at most rµ(I). Let x be a prefix that defines I, i.e., I = xΩ. For
every string y of the same length as x, consider the set Ay = {ω | yω ∈ A}.
It is easy to see that the average measure of Ay (over all y of a given length)
equals µ(A) = r. Therefore, the set B =

⋂
y Ay (which is effectively open as

an intersection of an effectively defined finite family of open sets) has measure
at most r. Now take U = xB. Let us show that U is as wanted. First U is
an effectively open set, contained in I, and of measure rµ(I). Also, it contains
every element of A∗ ∩ I. Indeed, if α ∈ A∗ ∩ I, x is a prefix of α, so one can
write α = xβ. Since α ∈ A∗, any finite variation of α is in A, so for all y of the
same length as x, yβ ∈ A. Therefore, β is in all Ay, and therefore is in B. Since
α = xβ, it follows that α is in xB = U . ut



3 Adding prefixes

We have considered left shifts (deletion of prefixes) and finite changes. Another
natural question is about adding finite prefixes. It turns out that a similar result
can be proven in this case (although the proof becomes a bit more difficult).

Theorem 3. Let A be an effectively open set of measure r < 1. Let A∗ be the
set of all sequences ω such that xω ∈ A for every binary string x. Then A∗ is
an effectively null set.

(Reformulation: for every Martin-Löf random sequence ω there exists a string
x such that xω /∈ A.)

Proof. To prove this statement, consider again some interval I = xΩ. We want
to cover A∗ ∩ I by an effectively open set of measure rµ(I). (In fact, we get a
cover of measure sµ(I) for some constant s ∈ (r, 1), but this is enough.) Consider
some string z. We know that the density of A∗ in I does not exceed the density
of A in zI = zxΩ. Indeed, xω ∈ A∗ implies zxω ∈ A by definition of A∗.

Moreover, for any finite number of strings z1, . . . , zk the set A∗ is contained
in the intersection of sets {ω | ziω ∈ A}, and the density of A∗ in I is bounded
by the minimal (over i) density of A in ziI = zixΩ.

Now let us choose z1, . . . , zk in such a way that the intervals zixΩ are disjoint
and cover Ω except for a set of small measure. This is possible for the same
reason as in a classic argument that explains why the Cantor set in [0, 1] has
zero measure. We start, say, with z1 = Λ and get the first interval xΩ. The rest
of Ω can be represented as a union of disjoint intervals, and inside each interval
uΩ we select a subinterval uxΩ thus multiplying the size of the remaining set by
(1 − 2−|x|). Since this procedure can be iterated indefinitely, we can make the
rest as small as needed.

Then we note that the density of A in the union of disjoint intervals (and this
density is close to r if the union covers Ω almost entirely) is greater than or equal
to the density of A in one of the intervals, so the intersection (an effectively open
set) has density at most s for some constant s ∈ (r, 1), as we have claimed. (We
need to use the intersection and not only one of the sets since our construction
should be effective even when we do not know for which interval the density is
minimal.) ut

4 Bidirectional sequences and shifts

Recall the initial discussion in terms of ergodic theory. In this setting it is more
natural to consider bi-infinite binary sequences, i.e., mappings of type Z→ B =
{0, 1}; the uniform Bernoulli measure µ can be naturally defined on this space,
too. On this space the transformation T corresponding to the shift to the left is
reversible: any sequence can be shifted left or right.

The result of Theorem 1 remains true in this setting.



Theorem 4. Let A be an effectively open set of measure r < 1. The set A∗

of all sequences that remain in A after any arbitrary shift (any distance in any
direction) is an effectively null set.

To prove this statement, consider any s ∈ (r, 1). As usual, it is enough to find
(effectively) for every interval Ix an effectively open subset of Ix that contains
A∗∩Ix and has measure at most sµ(Ix). Here x is a finite partial function from Z
to B and Ix is the set of all its extensions. (One may assume that x is contiguous,
since every other interval is a finite union of disjoint contiguous intervals, but
this is not important for us.) Then we may iterate this construction, replacing
each interval of an effectively open set by an open set inside this interval, and
so on until the total measure (sk, where k is the number of iterations) becomes
smaller than any given ε > 0.

Assume that some Ix is given. Note that A∗ is covered by every shift of A,
so any intersection of Ix with a finite collection of shifted versions of A (i.e. sets
of type Tn(A) for n ∈ Z) is a cover for Ix ∩ A∗. It remains to show that the
intersection of properly chosen shifts of A has density at most s inside Ix. To
estimate the measure of the intersection, it is enough to consider the minimum of
measures, and the minimum can be estimated by estimating the average measure.

More formally, we first note that by reversibility of the shift and the invari-
ance of the measure, we have

µ
(
Ix ∩ T−n(A)

)
= µ

(
A ∩ Tn(Ix)

)
for all n. Then we prove the following lemma:

Lemma 1. Let J1, . . . , Jk be independent intervals of the same measure d cor-
responding to disjoint functions x1, . . . , xk of the same length. Then the average
of the numbers

µ(A ∩ J1), . . . , µ(A ∩ Jk)

does not exceed sd if k is large enough. Moreover such a k can be found effectively.

Proof (of Lemma 1). The average equals

1
k

∑
i

E(χA · χi)

where χA is the indicator function of A and χi is the indicator function of Ji.
Rewrite this as

E

(
χA ·

1
k

∑
i

χi

)
,

and note that
1
k

∑
i

χi

is the frequency of successes in k independent trials with individual probability d.
(Since the functions xi are disjoint, the corresponding intervals Ji are indepen-
dent events.) This frequency (as a function on the bi-infinite Cantor space) is



close to d everywhere except for a set of small measure (by the central limit
theorem; in fact Chebyshev’s inequality is enough). The discrepancy and the
measure of this exceptional set can be made as small as needed using a large k,
and the difference is then covered by the gap between r and s. This ends the
proof of the lemma.

Now, given an interval Ix, we cover Ix ∩ A∗ as follows. First, we take a
integer N larger than the size of the interval Ix. The intervals

TN (Ix), T 2N (Ix), T 3N (Ix), . . .

are independent and have the same measure as Ix, so we can apply the above
lemma and effectively find a k such that the average of

µ(A ∩ TN (Ix)), . . . , µ(A ∩ T kN (Ix))

does not exceed sµ(Ix). This means that for some i ≤ k one has

µ(Ix ∩ T−iN (A)) = µ(A ∩ T iN (Ix)) ≤ sµ(Ix)

Therefore, Ix ∩
⋂
i≤k T

−iN (A) is an effectively open cover of A∗ of measure at
most sµ(Ix). ut

The statement can be strengthened: we can replace all shifts by any infinite
enumerable family of shifts.

Theorem 5. Let A be an effectively open set (of bi-infinite sequences) of mea-
sure α < 1. Let S be an computably enumerable infinite set of integers. Then the
set

A∗ = {ω | ω remains in A after shift by s, for every s ∈ S}
is an effectively null set.

(Reformulation: let A be an effectively open set of measure less than 1; let
S be an infinite computably enumerable set of integers; let α be a Martin-Löf
random bi-infinite sequences. Then there exists s ∈ S such that the s-shift of ω
is not in A.)

Proof. The proof remains the same: indeed, having infinitely many shifts, we
can choose as many disjoint shifts of a given interval as we want. ut

Our last argument is more complicated than the previous ones (that do not
refer to the central limit theorem): previously we were able to use disjoint inter-
vals instead of independent ones. In fact the results about shifts in unidirectional
sequences (both) are corollaries of the last statement. Indeed, let A be an ef-
fectively open set of right-infinite sequences of measure less than 1. Let ω be
a right-infinite Martin-Löf random sequence. Then it is a part of a bi-infinite
random sequence ω̄ (one may use, e.g., van Lambalgen’s theorem [vL87] on the
random pairs, see last section for a precise statement). So there is a right shift
that moves ω̄ outside Ā, and also a left shift with the same property (here by Ā
we denote the set of bi-infinite sequences whose right halves belong to A).



5 A generalization: computable ergodic transformations

First let us recall the notion of a computable transformation of Cantor space Ω.
Consider a Turing machine with a read-only input tape and write-only output
tape (where head prints a bit and moves to the next blank position). Such
a machine determines a computable mapping of Ω into the space of all finite
and infinite binary sequences. Restricting this mapping to the inputs where the
output sequence is infinite, we get a (partial) computable mapping from Ω into Ω.

Theorem 6. Let µ be a computable measure on Ω. Let T : Ω → Ω be a com-
putable almost every defined measure-preserving ergodic transformation of Ω.
Let A be an effectively open subset of Ω of measure less than 1. Let A∗ be the set
of points x ∈ X such that Tn(x) ∈ A for all n ≥ 0. Then, A∗ is an effectively
null set.

Proof. Let r be a real number such that µ(A) < r < 1. As before, given an
interval I, we want to effectively find an n such that I∩

⋂
i≤n T

−i(A) has measure
at most rµ(I). This gives us an effectively open cover of A∗ ∩ I having measure
at most rµ(I); iterating this process, we conclude that A∗ is an effectively null
set.

(A technical clarification is needed here. If we consider T only on inputs
where output sequence is infinite, the set T−1(A) (and in general T−i(A)) is no
more open in Ω. But since T is almost everywhere defined, we may extend T to
the space of finite and infinite sequence in a natural way and get an effectively
open cover of the same measure.)

To estimate µ(I ∩
⋂
i T
−i(A)), we note that it does not exceed the minimal

value of µ(I∩T−i(A)), which in its turn does not exceed the average (over i ≤ n)
of µ(I ∩ T−i(A)). This average,

1
n+1

[
µ(I ∩A) + µ(I ∩ T−1(A)) + . . .+ µ(I ∩ T−n(A))

]
can be rewritten as

1
n+1

[
µ(T−n(I) ∩ T−n(A)) + µ(T−(n−1)(I) ∩ T−n(A)) + . . .+ µ(I ∩ T−n(A))

]
since T is measure preserving. The latter expression is the scalar product of the
characteristic function of T−n(A) and the average (χ0 + . . .+χn)/(n+1), where
χi is the characteristic function of T−i(I).

This average pointwise converges to µ(I) due to ergodic theorem and there-
fore converges in L2. This means that the scalar product converges to µ(A)µ(I)
and therefore does not exceed rµ(I) for large n.

It remains to find effectively a value of n when L2-distance between the
average and the constant µ(I) is small. Note that for all i the set T−i(I) is
an effectively open set of measure µ(I) (recall that T is measure preserving).
And µ(I) is computable. Therefore, for any i and ε > 0, one can uniformly
approximate T−i(I) by a subset U which is a finite union of intervals such that
µ(T−i(I) \ U) < ε. This means that the L2-distance between the average and
constant function µ(I) can be computed effectively, and we can wait until we
find a term with any precision needed. ut



Remark 1. Theorem 6 can be easily extended to other natural probability spaces
(e.g., to the space of bi-infinite sequences). It is possible to further extend
Theorem 6 to the general setting of computable probability spaces (see [Gác]
and [HR09b]).

Now we get the previous theorems as corollaries: the effective ergodic theorem
for the bidirectional shift (Theorem 4) immediately follows as the bidirectional
shift is clearly computable, measure-preserving and ergodic. Moreover, we have
already seen that from this theorem one can derive both Theorem 1 (Kučera’s
theorem for deletion of finite prefixes) and Theorem 3 (addition of finite prefixes).

It turns out that even Theorem 2 (finite change of bits) can also be proven
in this setting. Indeed, let us consider the map F defined on Ω by:

F (1n0ω) = 0n1ω for all n, and F (11111 . . .) = 00000 . . .

(F adds 1 to the sequence in the dyadic sense). It is clear that F is computable
and measure-preserving. That it is ergodic comes from Kolmogorov’s 0-1 law,
together with the observation that any two binary sequences ω, ω′ that agree on
all but finitely many bits are in the same orbit: ω′ = Fn(ω) for some n ∈ Z.
The reverse is also true except for the case when sequences have finitely many
zeros or finitely many ones. This cannot happen for a random sequence, so this
exceptional case does not prevent us to derive Theorem 2 from Theorem 5.

Remark 2. Theorem 5 asserts that given a random ω, and a c.e. open set U ,
there exists an n such that Tn(ω) /∈ U (T being the bidirectional shift), and that
moreover n can be taken in a computable enumerable set fixed in advance. This
of course still holds for the unidirectional shift on Ω (by the above discussion),
but this does not hold for all ergodic maps. Indeed, this fact follows from the
so-called strong mixing property of the shift, which not all ergodic maps have
(e.g. a rotation of the circle by an irrational angle is an ergodic map but does
not have this property).

6 An application

The celebrated van Lambalgen theorem [vL87] asserts that in the probability
space Ω2 (pairs of binary sequences with independent uniformly distributed
components) a pair (ω0, ω1) is random if and only if ω0 is random and ω1 is
ω0-random (random relative to the oracle ω0). This can be easily generalized
to k-tuples: an element (ω0, ω1, . . . , ωk−1) of Ωk is random if and only if ω0 is
random and ωi is (ω0, . . . , ωi−1)-random for all i = 1, 2 . . . , k− 1. Can we gener-
alize this statement to infinite sequences? Not completely: there exists an infinite
sequence (ωi)i∈N such that ω0 is random and ωi is (ω0, . . . , ωi−1)-random for all
i ≥ 1 and nevertheless (ωi)i∈N is non-random as an element of ΩN. To construct
such an example, take a random sequence in ΩN and then replace the first i bits
of ωi by zeros.

Informally, in this example all ωi are random, but their “randomness de-
ficiency” increases with i, so the entire sequence (ωi) is not random (in ΩN).



K. Miyabe [Miy] has shown recently that one can overcome this difficulty allow-
ing finitely many bit changes in each ωi (number of changed bits may depend
on i):

Theorem 7 (Miyabe). Let (ωi)i∈N be a sequence of elements of Ω such that
ω0 is random and ωi is (ω0, . . . , ωi−1)-random for all i ≥ 1. Then there exists a
sequence (ω′i)i∈N such that

– For every i the sequence ω′i is equal to ωi except for a finite number of places.
– The sequence (ω′i)i∈N is a random element of ΩN.

Informally, this result can be explained as follows: as we have seen (Theo-
rem 2), a change in finitely many places can decrease the randomness deficiency
(starting from any non-random sequence, we get a sequence that is not covered
by a first set of a Martin-Löf test) and therefore can prevent “accumulation” of
randomness deficiency.

This informal explanation can be formalized and works not only for finite
changes but also for adding/removing prefixes. In fact, the results of this paper
allow us to get a simple proof of the following generalization of Miyabe’s result
(Miyabe’s original proof used a different approach, namely martingale charac-
terizations of randomness). We restrict ourselves to the uniform measure, but
the same argument works for arbitrary computable measures.

Theorem 8. Let (ωi)i∈N be a sequence of elements of Ω such that ω0 is random
and ωi is (ω0, . . . , ωi−1)-random for all i ≥ 1. Let T : Ω → Ω be a computable
bijective ergodic map. Then, there exists a sequence (ω′i)i∈N such that

– For every i, the sequence ω′i is an element of the orbit of ωi (i.e. ω′i = Tni(ωi)
for some integer ni).

– The sequence (ω′i)i∈N is a random element of ΩN.

Proof. Let U be the first level of a universal Martin-Löf test on ΩN, with µ(U) ≤
1/2. We will ensure that the sequence (ω′i)i∈N is outside U , and this guarantees
its randomness.

Consider the set V0 consisting of those α0 ∈ Ω such that the section

Uα0 = {(α1, α2, . . .) | (α0, α1, α2, . . .) ∈ U}

has measure greater than 2/3. The measure of V0 is less than 1, otherwise we
would have µ(U) > 1/2. It is easy to see that V0 is an effectively open subset
of Ω. Since ω0 is random, by Theorem ?? there exists an integer n0 such that
ω′0 = Tn0(ω0) is outside V0. This ω′0 will be the first element of the sequence we
are looking for.

Now we repeat the same procedure for Uω′
0

instead of U . Note that it is an
open set of measure at most 2/3, and, moreover, an effectively open set with
respect to oracle ω′0. Since ω0 and ω′0 differ by a computable transformation,
the set Uω′

0
is effectively open with oracle ω0. We repeat the same argument

(where 1/2 and 2/3 are replaced by 2/3 and 3/4 respectively) and conclude that



there exists an integer n1 such that the sequence ω′1 = Tn1(ω1) has the following
property: the set

Uω′
0ω

′
1

= {(α2, α3, . . .) | (ω′0, ω′1, α2, α3, . . .) ∈ U}

has measure at most 3/4. (Note that we need to use ω0-randomness of ω1, since
we apply Theorem ?? to an ω0-effectively open set.)

At the next step we get n2 and ω′2 = T (n2)ω2 such that

Uω′
0ω

′
1ω

′
2

= {(α3, α4, . . .) | (ω′0, ω′1, ω′2, α3, α4, . . .) ∈ U}

has measure at most 4/5, etc.
Is it possible that the resulting sequence (ω′0, ω

′
1, ω
′
2, . . .) is covered by U?

Since U is open, it would be then covered by some interval in U . This interval
may refer only to finitely many coordinates, so for some m all sequences

(ω′0, ω
′
1, . . . , ω

′
m−1, αm, αm+1, . . .)

would belong to U (for every αm, αm+1, . . .). However, this is impossible, because
our construction ensures that the measure of the set of all (αm, αm+1, . . .) with
this property is less than 1. ut

Acknowledgements. The preliminary version of this paper (restricted to bi-
jective transformation) appeared in the proceedings of Computability in Europe
2010 conference ??. We are grateful ro anonymous CiE2010 referees for their
very helpful comments and suggestions.

References
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[Kuč85] Antonin Kučera. Measure, Π0
1 classes, and complete extensions of PA. Lecture

Notes in Mathematics, 1141:245–259, 1985.



[Miy] Kenshi Miyabe. An extension of van Lambalgen’s theorem to infinitely many
relative 1-random reals. To appear in the Notre Dame Journal of Formal
Logic.

[Shi96] Albert Shiryaev. Probability. Springer, 2nd edition, 1996.
[vL87] Michiel van Lambalgen. Random sequences. PhD dissertation, University of

Amsterdam, Amsterdam, 1987.
[V’y97] Vladimir V’yugin. Effective convergence in probability and an ergodic the-

orem for individual random sequences. SIAM Theory of Probability and Its
Applications, 42(1):39–50, 1997.

[V’y98] Vladimir V’yugin. Ergodic theorems for individual random sequences. The-
oretical Computer Science, 207(2):343–361, 1998.


