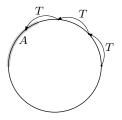
Ergodic-type characterization of randomness

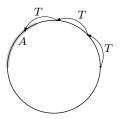
Laurent Bienvenu (LIAFA, Paris), Adam Day (Victoria University, Wellington) Ilya Mezhirov (Technical Univ., Kaiserslautern) Alexander Shen (LIF, Marseille)¹

CiE 2010 (July 2010)

¹on leave from IITP, Moscow

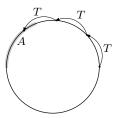


X: space with measure μ T: X \rightarrow X: measure preserving x, T(x), T(T(x)), T³(x), ... how often in A?



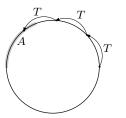
X: space with measure μ T: X \rightarrow X: measure preserving x, T(x), T(T(x)), T³(x), ... how often in A?

Ergodic theorem: for almost every x there exists a limit frequency;



X: space with measure μ T: X \rightarrow X: measure preserving x, T(x), T(T(x)), T³(x), ... how often in A?

Ergodic theorem: for almost every x there exists a limit frequency; it is $\mu(A)$ if T is ergodic (no invariant subspace)

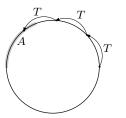


X: space with measure μ T: X \rightarrow X: measure preserving x, T(x), T(T(x)), T³(x), ... how often in A?

(日本)(四本)(日本)(日本)

Ergodic theorem: for almost every x there exists a limit frequency; it is $\mu(A)$ if T is ergodic (no invariant subspace)

Example: how many powers of 2 start with digit 3?



X: space with measure μ $T: X \to X$: measure preserving $x, T(x), T(T(x)), T^3(x), \dots$ how often in A?

Ergodic theorem: for almost every x there exists a limit frequency; it is $\mu(A)$ if T is ergodic (no invariant subspace) Example: how many powers of 2 start with digit 3? answer: $log_{10}4 - log_{10}3$

Classical: "for almost every x..."

Classical: "for almost every x..." Effective: "for every algorithmicall random x..."

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Classical: "for almost every x..." Effective: "for every algorithmicall random x..." Effective ergodic theorems: if T and A are good enough, for every (Martin-Löf) random x the limit frequency exists and is equal to $\mu(A)$

Classical: "for almost every x..." Effective: "for every algorithmicall random x..." Effective ergodic theorems: if T and A are good enough, for every (Martin-Löf) random x the limit frequency exists and is equal to $\mu(A)$ (Vyugin, Hoyrup, Rojas et al.)

Classical: "for almost every x..." Effective: "for every algorithmicall random x..." Effective ergodic theorems: if T and A are good enough, for every (Martin-Löf) random x the limit frequency exists and is equal to $\mu(A)$ (Vyugin, Hoyrup, Rojas et al.) What we do: wider class of As, but weaker statement:

 $\mu(A) < 1 \Rightarrow$ for every random x at least one of x, T(x), $T^2(x)$, ... is not in A

Ω : Cantor space of infinite binary sequences

 Ω : Cantor space of infinite binary sequences μ : uniform Bernoulli measure on Ω (independent fair coins)

 Ω : Cantor space of infinite binary sequences μ : uniform Bernoulli measure on Ω (independent fair coins)

T: left shift, $T(x_0x_1x_2...) = x_1x_2x_3...$

 Ω : Cantor space of infinite binary sequences μ : uniform Bernoulli measure on Ω (independent fair coins)

- $T: \text{ left shift, } T(x_0x_1x_2\ldots) = x_1x_2x_3\ldots$
- T preserves μ

- Ω : Cantor space of infinite binary sequences μ : uniform Bernoulli measure on Ω (independent fair coins)
- $T: \text{ left shift, } T(x_0x_1x_2\ldots) = x_1x_2x_3\ldots$
- T preserves μ
- $A \subset \Omega$: an effectively open set (union of a computable sequence of intervals); $\mu(A) < 1$.

- Ω : Cantor space of infinite binary sequences μ : uniform Bernoulli measure on Ω (independent fair coins)
- T: left shift, $T(x_0x_1x_2\ldots) = x_1x_2x_3\ldots$
- T preserves μ

 $A \subset \Omega$: an effectively open set (union of a computable sequence of intervals); $\mu(A) < 1$. Kucera's theorem: if $x \in \Omega$ is Martin-Löf random, some tail $T^n(x)$ is outside A.

- Ω : Cantor space of infinite binary sequences μ : uniform Bernoulli measure on Ω (independent fair coins)
- $T: \text{ left shift, } T(x_0x_1x_2\ldots) = x_1x_2x_3\ldots$
- T preserves μ

 $A \subset \Omega$: an effectively open set (union of a computable sequence of intervals); $\mu(A) < 1$. Kucera's theorem: if $x \in \Omega$ is Martin-Löf random, some tail $T^n(x)$ is outside A.

 \Leftrightarrow If $T^n(x) \in A$ for every *n*, then *x* is not Martin-Löf random effectively null set N: for every $\varepsilon > 0$ one can effectively generate a sequence of intervals that cover N and have total measure $< \varepsilon$

Martin-Löf randomness

effectively null set N: for every $\varepsilon > 0$ one can effectively generate a sequence of intervals that cover N and have total measure $< \varepsilon$ Martin-Löf random: a sequence x that does not belong to effectively null set.

effectively null set N: for every $\varepsilon > 0$ one can effectively generate a sequence of intervals that cover N and have total measure $< \varepsilon$ Martin-Löf random: a sequence x that does not belong to effectively null set. Reformulation of Kucera's theorem: the set of all sequences x such that all tails of x are in A, is an effectively null set.

Let A be an effectively open set in Cantor space; $\mu(A) < 1$. Then for every ML-random x one may:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let A be an effectively open set in Cantor space; $\mu(A) < 1$. Then for every ML-random x one may:

• (Kucera): delete some prefix of x to get $x' \notin A$

Let A be an effectively open set in Cantor space; $\mu(A) < 1$. Then for every ML-random x one may:

• (Kucera): delete some prefix of x to get $x' \notin A$

 change finitely many bits in x to get x' ∉ A (effective Kolmogorov 0-1-law)

Let A be an effectively open set in Cantor space; $\mu(A) < 1$. Then for every ML-random x one may:

• (Kucera): delete some prefix of x to get $x' \notin A$

- change finitely many bits in x to get x' ∉ A (effective Kolmogorov 0-1-law)
- ▶ add some finite prefix to x to get $x' \notin A$

Each of these properties can be used as characterization of randomness

Let $T: \Omega \to \Omega$ be a computable almost everywhere defined measure-preserving ergodic transformation of Cantor space (or the space of bi-infinite sequences) with a computable measure.

Let $T: \Omega \to \Omega$ be a computable almost everywhere defined measure-preserving ergodic transformation of Cantor space (or the space of bi-infinite sequences) with a computable measure. Let A be an effectively open subset of Ω and $\mu(A) < 1$.

Let $T: \Omega \to \Omega$ be a computable almost everywhere defined measure-preserving ergodic transformation of Cantor space (or the space of bi-infinite sequences) with a computable measure. Let A be an effectively open subset of Ω and $\mu(A) < 1$. Then for every Martin-Löf random x there exists

some $n \ge 0$ such that $T^n(x) \notin A$.

Let $T: \Omega \to \Omega$ be a computable almost everywhere defined measure-preserving ergodic transformation of Cantor space (or the space of bi-infinite sequences) with a computable measure. Let A be an effectively open subset of Ω and $\mu(A) < 1.$ Then for every Martin-Löf random x there exists some n > 0 such that $T^n(x) \notin A$.

(In the proceedings T is required to be bijective; M. Hoyrup noted that it is not important.)

Changing bits: adding 1 in 2-adic notation (least significant bit is on the left)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Changing bits: adding 1 in 2-adic notation (least significant bit is on the left)

Adding prefix: shifts in the space of biinfinite sequence (van Lambalgen theorem is also needed)

Changing bits: adding 1 in 2-adic notation (least significant bit is on the left)

Adding prefix: shifts in the space of biinfinite sequence (van Lambalgen theorem is also needed)

Stronger claims in special cases: there are infinitely many shifts that move x outside A among any enumerable sequence of integers; statements about density of terms outside A

Application: Mijabe's result made easy

Theorem (Mijabe): let x^0 be a ML-random sequence, let x^1 be a ML-random sequence with oracle x^0 , let x^2 be a ML-random sequence with oracle x^0, x^1 etc. Then one can change finitely many terms in each x^i in such a way that x^0, x^1, \ldots is a random element of $\Omega \times \Omega \times \ldots$

Application: Mijabe's result made easy

Theorem (Mijabe): let x^0 be a ML-random sequence, let x^1 be a ML-random sequence with oracle x^0 , let x^2 be a ML-random sequence with oracle x^0, x^1 etc. Then one can change finitely many terms in each x^i in such a way that x^0, x^1, \ldots is a random element of $\Omega \times \Omega \times \ldots$

Now an easy consequence of the result about finite changes

Application: Mijabe's result made easy

Theorem (Mijabe): let x^0 be a ML-random sequence, let x^1 be a ML-random sequence with oracle x^0 , let x^2 be a ML-random sequence with oracle x^0, x^1 etc. Then one can change finitely many terms in each x^i in such a way that x^0, x^1, \ldots is a random element of $\Omega \times \Omega \times \ldots$

Now an easy consequence of the result about finite changes

Finite changes can be replaced by adding/deleting prefixes

Let $A' = A \cap T^{-1}(A) \cap T^{-2}(A) \cap \ldots$

Let $A' = A \cap T^{-1}(A) \cap T^{-2}(A) \cap \dots$ It is enough to find for every interval I a covering of $I \cap A'$ that has measure at most $(1 - \varepsilon)\mu(I)$

Let $A' = A \cap T^{-1}(A) \cap T^{-2}(A) \cap \dots$ It is enough to find for every interval I a covering of $I \cap A'$ that has measure at most $(1 - \varepsilon)\mu(I)$ We use effectively open set $I \cap (A \cap \dots \cap T^{-N}(A))$ as this covering

Let $A' = A \cap T^{-1}(A) \cap T^{-2}(A) \cap \ldots$ It is enough to find for every interval I a covering of $I \cap A'$ that has measure at most $(1 - \varepsilon)\mu(I)$ We use effectively open set $I \cap (A \cap \ldots \cap T^{-N}(A))$ as this covering Its measure is upperbounded by minimal $\mu(I \cap T^{-s}(A))$

Let $A' = A \cap T^{-1}(A) \cap T^{-2}(A) \cap \ldots$ It is enough to find for every interval I a covering of $I \cap A'$ that has measure at most $(1 - \varepsilon)\mu(I)$ We use effectively open set $I \cap (A \cap \ldots \cap T^{-N}(A))$ as this covering Its measure is upperbounded by minimal $\mu(I \cap T^{-s}(A))$ which is upperbounded by the average taken over all $s = 0, 1, \ldots, N$

Let $A' = A \cap T^{-1}(A) \cap T^{-2}(A) \cap \dots$ It is enough to find for every interval I a covering of $I \cap A'$ that has measure at most $(1 - \varepsilon)\mu(I)$ We use effectively open set $I \cap (A \cap \dots \cap T^{-N}(A))$ as this covering

Its measure is upperbounded by minimal

$$\mu(I\cap T^{-s}(A))$$

which is upper bounded by the average taken over all $s=0,1,\ldots,N$

which is estimated using erdodic theorem for *I* and computability