
ar
X

iv
:1

00
9.

51
08

v3
 [

cs
.C

C
]

 7
 D

ec
 2

01
0

Improving the Space-Bounded Version of

Muchnik’s Conditional Complexity Theorem via

“Naive” Derandomization⋆

Daniil Musatov

Lomonosov Moscow State University, musatych@gmail.com

Abstract. Many theorems about Kolmogorov complexity rely on exis-
tence of combinatorial objects with specific properties. Usually the prob-
abilistic method gives such objects with better parameters than explicit
constructions do. But the probabilistic method does not give “effective”
variants of such theorems, i.e. variants for resource-bounded Kolmogorov
complexity. We show that a “naive derandomization” approach of re-
placing these objects by the output of Nisan-Wigderson pseudo-random
generator may give polynomial-space variants of such theorems.
Specifically, we improve the preceding polynomial-space analogue of Much-
nik’s conditional complexity theorem. I.e., for all a and b there exists a
program p of least possible length that transforms a to b and is simple
conditional on b. Here all programs work in polynomial space and all
complexities are measured with logarithmic accuracy instead of polylog-
arithmic one in the previous work.

1 Introduction

Many statements about Kolmogorov complexity may be proven by applying
some combinatorial constructions like expanders or extractors. Usually these
objects are characterized by some parameters, and one may say which parameters
are “better”. Very often the probabilistic method allows to obtain these objects
with much better parameters than explicit constructions do. But exploiting the
probabilistic method causes exponential-space brute-force search of an object
satisfying the necessary property. And if this search is performed while describing
some string to obtain an upper bound on its complexity then this bound cannot
be repeated for polynomial-space complexity. On the other hand, replacing the
probabilistic method by an explicit construction weakens the statement due to
worse parameters.

We present a technique that combines advantages of both probabilistic and
explicit-construction methods. The key idea is substitution for a random object
with pseudo-random one obtained by Nisan-Wigderson generator and still pos-
sessing necessary property. We employ indistinguishability of Nisan-Wigderson
generator’s output from a random string by boolean circuits of constant depth

⋆ Supported by ANR Sycomore, NAFIT ANR-08-EMER-008-01 and RFBR 09-01-
00709-a grants.

http://arxiv.org/abs/1009.5108v3

and polynomial size. If the necessary property can be tested by such circuit then
it holds for a pseudo-random object as well as for a truly random object. Unfor-
tunately, it is not clear how to build such a circuit for extractor property and
similar ones, so we relax the property in a way that allows both proving the
theorem and building polynomial constant-depth circuits.

By exploiting our method we improve previous result [10] generalizing Much-
nik’s conditional complexity theorem. The original theorem [7] states that for all
a and b of length n there exists a program p of length C(a|b)+O(logn) that trans-
forms b to a and has complexity O(log n) conditional on a. In [10] this result is
restated for space-bounded complexity with gap rised fromO(log n) to O(log3 n).
The main idea was to employ a property of extractors, proven in [2]: in extractor
graph in every sufficiently big subset S of left part there are few vertices with
all right-part neighbours having indegree from S twice greater than average. We
refer to it as to “low-congesting property”. An explicit extractor construction
yields a space-bounded version of the theorem with polylogarithmic precision. In
this paper we replace explicit extractor by pseudo-random graph, that does not
necessary have the extractor property, but enjoys the low-congesting property
for “relevant” subsets S. This replacement leads to decreasing the precision back
to logarithmic term.

The rest of the paper is organized as follows. In Sect. 2 we give formal def-
initions of all involved objects and formulate necessary results. In Sect. 3 we
formally state our space-bounded variant of Muchnik’s theorem and specify all
details of the proof.

2 Preliminaries

2.1 Kolmogorov complexity

Let V be a two-argument Turing machine. We refer to the first argument as
to the “program” and to the second argument as to the “argument”. (Plain)
Kolmogorov complexity of a string x conditional on y with respect to V is the
length of a minimal program p that transforms y to x, i.e.

CV(x | y) = min{p : V(p, y) = x}

There exists an optimal machine U that gives the least complexity up to an
additive term. Specifically, ∀V∃c∀x, yCU (x|y) < CV(x|y) + c. We employ such
a machine U , drop the subscript and formulate all theorems up to a constant
additive term. The unconditional complexity C(x) is the complexity with empty
condition C(x | ε), or the length of a shortest program producing x.

Now we define the notion of resource-bounded Kolmogorov complexity. Roughly
speaking, it is the length of a minimal program that transform y to x effi-
ciently. Formally, Kolmogorov complexity of a string x conditional on y in time
t and space s with respect to V is the length of a shortest program p such that
V(p, y) = x, and V(p, y) works in t steps and uses s cells of memory. This com-
plexity is denoted by Ct,s

V
(x | y). Here the choice of V alters not only complexity,

but also time and space bounds. Specifically, the following theorem holds:

Theorem 1. There exist a machine U such that for any machine V there exists a
constant c such that for all x, y, s and t it is true that Cs,t

U
(x | y) ≤ Ccs,ct log t

V
(x |

y) + c.

In our paper we deal only with space bounds, so we drop the time-bound super-
script in all notations.

2.2 Extractors

An extractor is a function that extracts randomness from weak random sources.
A k-weak random source of length n is a probabilistic distribution on {0, 1}n

with minentropy greater than k, that is, no particular string occurs with proba-
bility greater than 2−k. An extractor with parameters n, m, d, k, ε is a function
Ext: {0, 1}n×{0, 1}d → {0, 1}m, such that for any independent k-weak random
source x of length n and uniform distribution u on {0, 1}d the induced distribu-
tion Ext(x, u) on {0, 1}m is ε-close to uniform, that is, for any set Y ⊂ {0, 1}m

its probability differs from its proportion by at most ε. This is interpreted as
follows: an extractor receives n weakly random bits and d truly random bits
independent from the first argument and outputs m almost random bits.

Like any two-argument function, an extractor may be viewed as a bipartite
(multi-)graph: the first argument indexes a vertex in the left part, the second
argument indexes an edge going from this vertex, and the value indexes a vertex
in the right part which this edge directs to. That is, the graph hasN = 2n vertices
on the left, M = 2m vertices on the left, and all left-part vertices have degree
D = 2d. Throughout the paper, we say that a bipartite graph has parameters
(n, m, d), if the same holds for it. For the sake of clarity we usually omit these
parameters in extractor specification. The extractor property may be formulated
in graph terms: for any left-part subset S of size greater than K = 2k and any
right-part subset Y the fraction of edges directing from S to Y among all edges
directing from S differs from the fraction of Y among all right-part vertices by
at most ε. A proof of equivalence may be found in [13].

It is proven by the probabilistic method (see, for example, [13]) that for all n,
k and ε there exists an extractor with parameters d = log(n− k) + 2 log(1/ε) +
O(1) and m = k + d − 2 log(1/ε) − O(1). Nevertheless, no explicit (that is,
running in polynomial time) construction of such an extractor is known. Best
current results ([14], [16]) for m ≈ k use d = polylogn truly random bits.

2.3 Nisan-Wigderson generators

The Nisan-Wigderson pseudo-random generator is a deterministic polynomal-
time function that generates n pseudorandom bits from polylog(n) truly random
bits. The output of such generator cannot be distinguished from truly random
string by small circuits. Specifically, we exploit the following theorem from [12]:

Theorem 2. For any constant d there exists a family of functions Gn : {0, 1}
k →

{0, 1}n, where k = O(log2d+6 n), such that two properties hold:

Computability: G is computable in workspace poly(k);

Indistinguishability: For any family of circuits Cn of size poly(n) and depth
d for any positive polynomial p for all large enough n it holds that:

|Probx{Cn(Gn(x)) = 1} − Proby{Cn(y) = 1}| <
1

p(n)
,

where x is distributed uniformly in {0, 1}k and y — in {0, 1}n.

By rescaling parameters we get the following

Corollary 1. There exists a family of functions Gn : {0, 1}
k → {0, 1}N , where

k = poly(n) and N = 2O(n), such that two properties hold:

– G is computable in workspace poly(n);

– For any family of circuits Cn of size 2O(n) and constant depth, for any con-
stant c and for all large enough n it holds that:

|Probx{Cn(Gn(x)) = 1} − Proby{Cn(y) = 1}| < 2−cn.

The last corollary implies the following basic principle:

Lemma 1. Let Cn be some set of combinatorial objects encoded by boolean strings
of length 2O(n). Let P be some property satisfied for fraction at least α of objects
in Cn that can be tested by a family of circuits of size 2O(n) and constant depth.
Then for sufficiently large n the property P is satisfied for fraction at least α/2
of values of Gn, where Gn is the function from the previous corollary.

2.4 Constant-depth circuits for approximate counting

It is well-known that constant-depth circuits cannot compute the majority func-
tion. All the more they cannot compute a general threshold function that equals
1 if and only if the fraction of 1’s in its input exceeds some threshold α. Neverthe-
less, one can build such circuits that compute threshold functions approximately.
Namely, the following theorem holds:

Theorem 3 ([1]). Let α ∈ (0, 1). Then for any (constant) ε there exists a
constant-depth and polynomial-size circuit C such that C(x) = 0 if the fraction
of 1’s in x is less than α − ε and C(x) = 1 if the fraction of 1’s in x is greater
than α+ ε.

Note that nothing is promised if the fraction of 1’s is between α− ε and α+ ε.
So, the fact that C(s) = 0 guarantees only that the fraction of 1’s is at most
α+ ε, and C(s) = 1 — that it is at least α− ε.

3 Muchnik’s theorem

3.1 Subject overview

An. Muchnik’s theorem [7] on conditional Kolmogorov complexity states that:

Theorem 4. Let a and b be two binary strings such that C(a) < n and C(a|b) <
k. Then there exists a string p such that

• C(a|p, b) = O(log n);
• C(p) ≤ k +O(log n);
• C(p|a) = O(log n).

The constants hidden in O(log n) do not depend on n, k, a, b, p.
Informally, this theorem says that there exists a program p that transforms

b to a, has the minimal possible complexity C(a|b) (up to a logarithmic term)
and, moreover, can be easily obtained from a. (The last requirement is crucial,
otherwise the statement trivially reformulates the definition of conditional Kol-
mogorov complexity.)

Several proofs of this theorem are known. All of them rely on the existence of
some combinatorial objects. The original proof in [7] leans upon the existence of
bipartite graphs with specific expander-like property. Two proofs by Musatov,
Romashchenko and Shen [10] use extractors and graphs allowing large on-line
matchings. Explicit constructions of extractors provide variants of Muchnik’s
theorem for resource-bounded Kolmogorov complexity. Specifically, the following
theorem is proven in [10]:

Theorem 5. Let a and b be binary strings of length n, and k and s be integers
such that Cs(a|b) < k. Then there exists a binary string p, such that

• CO(s)+poly(n)(a|p, b) = O(log3 n);
• Cs(p) ≤ k +O(log n);

• Cpoly(n)(p|a) = O(log3 n),

where all constants in O- and poly-notation depend only on the choice of the
optimal description method.

Application of our derandomization method decreases conditional complexities
from O(log3 n) to O(log n)+O(log log s) but increases the space limit in the last
complexity from poly(n) to O(s) + poly(n).

3.2 Proof overview

Before we proceed with the detailed proof, let us present its high-level descrip-
tion. The main idea is the same in all known proofs: p is a fingerprint (or hash
value) for a constructed in some specific way. This fingerprint is chosen via an
underlying bipartite graph, the left part of which is treated as the set of length-n
strings (i.e., all possible a’s) and the right part of which is treated as the set of
all possible fingerprints. To satisfy the last condition each left-part vertex should

have small outdegree, since in that case the fingerprint is described by its num-
ber among a’s neighbours. To satisfy the first condition each fingerprint should
have small indegree from the strings that have low complexity conditional on b
(for arbitrary b).

If resources are unbounded then the existence of a graph satisfying all con-
ditions may be proven by the probabilistic method and the graph itself may be
found by brute-force search. In the resource-bounded case we suggest to replace
a random graph by a pseudo-random one and prove that it still does the job.
The proof proceeds in several steps. Firstly, in Sect. 3.3 we define the essential
graph property needed to our proof. We call this property low-congestion. It
follows from the extractor property, but not vice versa. Secondly, in Sect. 3.4 we
specify the instrumental notion of space-bounded enumerability and prove some
lemmas about it in connection to low-congesting graphs. Next, in Sect. 3.5 we
employ these lemmas to prove that the low-congesting property is testable by
small circuits. Hence, by applying the main principle (lemma 1) this property
is satisfied for pseudo-random graphs produced by the NW generator as well as
for random ones. Moreover, a seed producing a graph with this property may
be found in polynomial space. Finally, in Sect. 3.6 we formulate our version of
Muchnik’s theorem and prove it using the graph obtained on the previous step.
I.e., we describe the procedure of choosing a fingerprint in this graph and then
calculate all complexities and space requirements and assure that they do not
esceed the respective limitations.

3.3 Low-congesting graphs

In fact, the proof in [10] does not use the extractor property, but employs only
its corollary. In this section we accurately define this corollary in a way that
allows derandomization.

Fix some bipartite graph with parameters (n, m, d) and an integer k < n.
Let there be a system S of subsets of its left part with the following condition:
each S ∈ S contains less than 2k vertices, and the whole system S contains 2O(n)

sets (note that there are
∑2k

i=1 C
i
2n > 2O(n) different sets of required size, so the

last limitation is not trivial). We refer to such systems as to “relevant” ones.
Having a system S fixed, let us call the sets in it relevant also.

Lemma 2. Let Sk = {S ⊂ {0, 1}n | ∃b ∃s |b| = n and S = {x | Cs(x|b) < k}}.
Then the system Sk is relevant.

Proof. By a standard counting argument, each set S ∈ Sk contains less than 2k

elements. If b is fixed then the described sets are expanding while s is rising.
Since the largest set is also smaller than 2k, there are less than 2k different sets
for fixed b. Since there are 2n different b, the total size of Sk is bounded by
2n2k = 2O(n).

Considering a modification of the upper system Sk,s̄ = {S ⊂ {0, 1}n | ∃b ∃s <
s̄ S = {x | Cs(x|b) < k}}, one may note that it is relevant either.

Now fix some relevant system S and take an arbitrary set S in it. Call the α-
clot for S the set of right-part vertices that have more than αDK/M neighbours
in S (that is, at least α times more than on average). Call a vertex x ∈ S
α-congested (for S) if all its neighbours are in the α-clot for S. Say that G
is (α, β)-low-congesting if there are less than βK α-congested vertices in any
relevant S.

Following [2], we prove the next lemma:

Lemma 3. Let G be an extractor graph for parameters n, m, d, k, ε. Then for
any α > 1 the graph G is (α, α

α−1ε)-low-congesting.

Proof. In fact in an extractor graph there are less than α
α−1K α-congested ver-

tices in any set S of size K, not only in relevant ones. We may treat S as an
arbitrary set of size exactly K: since a congested vertex in a subset is also a con-
gested vertex in the set, an upper bound for the number of congested vertices in
the set holds also for a subset.

Let Y be the α-clot for S, and |Y | = δM . Then the fraction of vertices in Y
equals δ and the fraction of edges directing from S to Y is greater than αδ (by
the definition of clot). A standard counting argument implies only δ < 1

α , but
by the extractor property these fractions differ by at most ε, so (α−1)δ < ε, i.e.
δ < 1

α−1ε. Next, let T ⊂ S be the set of α-congested vertices in S, and |T | = βK.
All edges from T direct to vertices in Y , so at least D|T | = βDK edges direct
from S to Y . In other words, the fraction of edges from S to Y is at least β.
By the extractor property it must differ from the fraction of vertices in Y (that
equals δ) by at most ε. So, β < δ + ε < 1

α−1ε+ ε = α
α−1ε. Putting all together,

the number of α-congested vertices in any relevant S is less than α
α−1εK, so the

graph is (α, α
α−1ε)-low-congesting, q.e.d.

3.4 Space-bounded enumerability

Say that a system S is enumerable in space q if there exists an algorithm with
two inputs i and j working in space q that either outputs the jth element of the
ith set from S or indicates that at least one of the inputs falls out of range. Note
that for a polynomial space bound enumeration is equivalent to recognition:
if one may enumerate a set then she may recognize whether a given element
belongs to it by sequentially comparing it to all enumerated strings, and if one
may recognize membership to a set then she may enumerate it by trying all
possible strings and including only those accepted by the recognition algorithm.
Only small auxiliary space is needed to perform these modifications.

Lemma 4. The system Sk,s̄ = {S ⊂ {0, 1}n | ∃b ∃s < s̄ |b| = n and S = {x |
Cs(x|b) < k}} is enumerable in space O(s̄) + poly(n).

Proof. Assume firstly that a set S is given (by specifying b and s < s̄) and show
how to enumerate it. Look through all programs shorter than k and launch them
on b limiting the space to s and counting the number of steps. If this number
exceeds cs (for some constant c depending only on the computational model)

then the current program has looped. In this case or if the program exceeds the
space limit we terminate it and go to the next one. Otherwise, if the program
produces an output, then we check whether it has not been produced by any
previous program. This check is performed as follows: repeat the same procedure
for all previous programs and compare their results with that of the current one.
If no result coincides then include the current result in enumeration, otherwise
skip it and turn to the next program. Emulation of a program requires O(s)
space and no two emulations should run in parallel. All intermediate results are
polynomial in n, so a total space limit O(s̄) + poly(n) holds.

Specifying a set S by b and s is not reasonable because a lot of values of s
lead to the same sets. (And if s̄ = 2ω(n) then the number of possible indexes
(b, s) exceeds the limit 2O(n) on the size of S.) Instead, call a limit s pivotal if
{x | Cs(x|b) < k} 6= {x | Cs−1(x|b) < k} and consider only pivotal limits in the
definition of Sk,s̄. Clearly, the latter modification of definition does not affect
the system itself. The advantage is that there are less than 2k pivotal limits, and
the ith pivotal limit si may be found algorithmically in space O(si) + poly(n).
It is sufficient to construct an algorithm recognizing whether a given limit is
pivotal, and the latter is done by a procedure similar to one described in the
first paragraph: try all possible programs in space s, and in case they produce an
output, check whether it is produced by any program in space s− 1. If at least
one result is new then s is pivotal, otherwise it is not. Putting all together, a set
S in Sk,s̄ is defined by a word b and the ordinal number i of a pivotal space limit
si. Knowing these parameters, one may enumerate it in space O(s̄) + poly(n),
as claimed.

The next lemma indicates that if a system S is enumerable in small space,
then the same holds for the system of congested subsets of its members. We call
a bipartite graph computable in space q if there exists an algorithm working in
space q that receives an index of a left-part vertex and an index of an incident
edge and outputs the right-part vertex this edge directs to.

Lemma 5. Let S be a system of relevant sets enumerable in space s, G be a
bipartite graph computable in space q and α > 1 be a (rational) number. Then the
system Conα S = {T | ∃S ∈ S for which T is the set of α-congested vertices} is
computable in space O(max{s, q}) + poly(n). Moreover, the iteration (Conα)

rS
is also computable in space O(max{s, q}) + poly(n) with constants in O- and
poly- notations not depending on r, but possibly depending on α.

Proof. Since for space complexity enumeration and recognition are equivalent, it
is sufficient to recognize that a vertex x is α-congested. The recognizing algorithm
works as follows: having a set S and a vertex x ∈ S fixed, search through all
neighbours of x (this requires space O(q) + poly(n)) and for each neighbour
check whether it lies in the α-clot for S. If all neighbours do then x is congested,
otherwise it is not. Having a neighbour y fixed, the check is performed in the
following way: enumerate all members of S (using O(s) + poly(n) space), for
each member search through all its neighbours (using O(q)+poly(n) space) and
count the number of these neighbours coinciding with y. Finally, compare this

number with the threshold αDK/M . Note that no two computations requiring
space s or q run in parallel and all intermediate results need only polynomial
space, so the total space requirement is O(max{s, q})+poly(n), as claimed. Note
also that O- notation is used only due to the possibility of computational model
change, not because of the necessity of looping control. If a computational model
is fixed then the required space is just max{s, q}+ poly(n).

The last observation is crucial for the “moreover” part of lemma. Indeed, by
a simple counting argument the fraction of α-congested vertices in S is at most
1/α. That is why after at most logα 2n = O(n) iterations the set of congested
variables becomes empty. Each iteration adds poly(n) to the space requirement,
so the overall demand is still max{s, q}+ poly(n) (with greater polynomial), as
claimed.

3.5 Derandomization

In this section we show that, firstly, the low-congesting property may be (ap-
proximately) recognized by 2O(n)-sized constant-depth circuits, secondly, that
there are low-congesting graphs in output of Nisan-Wigderson pseudo-random
generator and, thirdly, one can recognize in polynomial space whether the NW-
generator produces a low-congesting graph on a given seed. Being put together,
last two lemmas provide a seed on which the NW-generator produces a low-
congested graph.

Let us encode a bipartite graph with parameters (n, m, d) by a list of edges.
The length of this list is 2n2dm: for each of 2n left-part vertices we specify 2d

neighbours, each being m-bit long.

Lemma 6. Let G be the set of all bipartite graphs with parameters (n, m, d)
encoded as described above. Let k be an integer such that 1 < k < n, and ε > 0.
Then there is a circuit C of size 2O(n) and constant depth, defined on G, such
that:

– If G is a (k, ε)-extractor then C(G)=1;
– If C(G) = 1 then G is a (2.01, 2.01ε)-low-congesting graph for Sk from

lemma 2.

Proof. We build a non-uniform circuit, so we may think that Sk is given. We con-
struct a single circuit approximately counting the number of congested vertices
in a given set, then replicate it for each relevant set and take conjunction. Since
there are less than 2n+k relevant sets, this operation keeps the size of circuit
beeing 2O(n). We proceed by constructing a circuit for a given set S.

The size of the input is |S| · 2dm. We think of it as of being divided into
|S| blocks of 2d segments of length m. We index all blocks with elements x ∈ S
and index all segments of the block x by vertices y incident to x. It is easy
to see that there is a constant-depth circuit that compares two segments (that
is, has 2m inputs and outputs 1 if and only if the first half of inputs coincides
with the second half). On the first stage we apply this circuit to every pair
of segments, obtaining a long 0-1-sequence. On the second stage we employ a

counting circuit with |S|D− 1 arguments that is guaranteed to output 1 if more
than 2.01DK/M of its arguments are 1’s and to output 0 if the number of 1’s is
less than 2DK/M . By theorem 3 there exists such circuit of polynomial (in the
number of arguments) size and constant depth. For all segments y a copy of this
circuit is applied to the results of comparing y to all other segments. If y lies
in 2.01-clot then the respective copy outputs 1, and if it outputs 1, then y lies
in 2-clot. On the third stage we take a conjuction of all second-stage results for
segments lying in the same block x. If this conjunction equals 1 then all images
of x lie in 2-clot, that is, x is 2-congested. Conversely, if x is 2.01-congested then
the conjunction equals 1. Finally, we utilize another counting circuit with |S|
inputs that outputs 0 if more than 2.01εK of its inputs are 1’s and outputs 1
if less than 2εK of its inputs are 1’s. This circuit is applied to all outputs of
the third stage. If the final result is 1 then less than 2.01εK elements of S are
2.01-congested; and if less than 2εK elements of S are 2-congested then the final
result is 1.

The last claim holds for any relevant S. On the very last stage we take a
conjunction of results for all S. If this conjunction is 1 then less than 2.01εK
elements in each S are 2.01-congested, and if G is a (k, ε)-extractor then by
lemma 3 less than 2εK elements in each S are 2-congested and hence this con-
junction equals 1.

Since there are at most 2O(n) gates on every stage and each stage has constant
depth, the overall circuit has also 2O(n) gates and constant depth, as claimed.

Lemma 7. Let n, m = k, d = O(log n) and ε be such parameters that a random
bipartite graph with parameters (n, d, m) is a (k, ε)-extractor with constant
probability p > 0. Let q be the depth of the circuit from the previous lemma. Let
NW : {0.1}l → {0, 1}N , where l = O(log2q+6) and N = 2n2dm, be the Nisan-
Wigderson generator from corollary 1. Then Probu{C(NW (u)) = 1} > p

2 for
sufficiently large n, where C is the circuit from previous lemma.

Proof. This is a straightforward application of lemma 1. By the previous lemma
if a graph G is an extractor then C(G) = 1, so ProbG{C(G) = 1} ≥ p. Since C
is a constant-depth circuit, the property C(G) = 1 is tautologically testable by
a constant-depth circuit. By lemma 1 Probu{C(NW (u)) = 1} > p

2 , q.e.d.

Consider the following problem R: find a string u ∈ {0, 1}l such that the
graph NW (u) is (2.01, 2.01εK)-congested with respect to Sk, s.

Lemma 8. The problem R is solvable in space O(s) + poly(n).

Proof. The existence of a solution follows from the previous lemma. Since we
care only about the space limit, the search problem may be replaced by the cor-
responging recognition problem. The space bound for the latter one arises from
corollary 1, lemma 4 and lemma 5. Indeed, by corollary 1 the graph NW (u) is
computable in polynomial space, and by lemma 4 the system Sk, s is enumerable
in space O(s) + poly(n). Hence by lemma 5 the system Con2.01 Sk, s is also enu-
merable in space O(s)+poly(n), therefore one may easily check whether each set
in Con2.01 Sk, s contains less than 2.01εK elements, thus solving the recognition
analogue of R. Only polynomial extra space is added on the last step.

3.6 Proof of the theorem

Now we proceed by formulating and proving our version of Muchnik’s theorem.

Theorem 6. Let a and b be binary strings of length less than n, and s and k
are numbers such that Cs(a|b) < k. Then there exists a binary string p, such
that

• CO(s)+poly(n)(a|p, b) = O(log log s+ logn);
• Cs(p) ≤ k +O(log n);

• CO(s)+poly(n)(p|a) = O(log log s+ logn),

where all constants in O- and poly-notations depend only on the choice of the
optimal description method.

Proof. Basically the proof proceeds as the respective proof of theorem 5 in [10].
Here we replace an explicitly constructed extractor by a pseudorandom graph
described in Sect. 3.5.

Let a small constant ε and d = O(log n) be such that a random bipartite
graph with parameters (n,m = k, d) is a (k, ε)-extractor with probability greater
than some positive constant µ. Let l be a parameter and NW be a function
from lemma 7. By lemmas 7 and 6 the output of NW is a (2.01, 2.01εK)-low-
congesting graph for Sk with probability at least µ/2. Applying the program
from lemma 8, one may find in O(s) + poly(n) space a seed u for which NW (u)
is a (2.01, 2.01εK)-low-congesting graph for Sk, s. This u has low complexity: to
perform this search one needs to know parameters n, k and l = poly(n), that is,
O(log n) bits, and the space bound s, that requires log s bits. The last number
may be reduced to log log s, because the space bound s may be replaced by the
least degree of 2 exceeding s keeping the needed space to be O(s)+poly(n). For
what follows, fix this seed u and the graph G = NW (u).

By definition of the low-congesting property the number of 2.01-congested
vertices in the set S = {x | Cs(x|b) < k} does not exceed 2.01εK. Clearly,
a belongs to S. Firstly suppose that it is not 2.01-congested. Then it has a
neighbour outside of 2.01-clot for S. This neighbour may be taken as p. Indeed,
the length of p equals m = k, hence its complexity is also less than k + O(1).
To specify p knowing a, one needs to construct the graph NW (u), for which
only O(log n) + O(log log s) bits are necessary, and to know the number of p
among a’s neighbours, which is at most d = O(log n). Finding a given b and p
proceeds as follows: construct G, enumerate S and choose the specified preimage
of p in S. Then a is determined by the information needed to construct G
(O(log n+log log s) bits), information needed to enumerate S (that is, k, log log s
and b) and the number of a among preimages of p (since p is not in 2.01-clot, there
are not more than 2.01DK/M = 2.01D preimages, so O(d) = O(log n) bits are
required). Summarizing, we get O(log n) + O(log log s) bits and O(s) + poly(n)
space needed.

Now we turn to the case when a is 2.01-congested. By lemma 5 the set
Con2.01 S of 2.01-congested vertices is enumerable in O(s)+poly(n) space. Take

parameters n1 = n, m1 = k1 = logK1 = log(2.01εK), d1 = O(log n) and ε1 = ε
such that an extractor with these parameters exists with probability greater
than µ. Lemmas 6, 7 and 8 are applicable to the new situation, so we may find
a new u1 such that the graph G1 = NW (u1) is (2.01, 2.01εK1)-low-congesting
for Con2.01 Sk, s with probability at least µ/2. By assumption, a belongs to the
set Con2.01 S. If it is not 2.01-congested in it then we choose p analogously
to the initial situation. Otherwise we reduce the parameters again and take a
low-congesting graph for Con22.01 Sk, s, and so on. By the “moreover” part of
lemma 5, this reduction may be performed iteratively for arbitrary number of
times keeping the space limit to be O(s) + poly(n).

The total number of iterations is less than log1/2.01ε k = O(log n). Finally
p is defined as a neighbour of a not lying in 2.01-clot in graph Gi. To find p
knowing a one needs to know i and the same information as on the upper level.
To find a knowing p and b also only specifying i is needed besides what has been
specified on the upper level. So, all complexities and space limits are as claimed
and the theorem is proven.

Acknowledgments

I want to thank my colleagues and advisors Andrei Romashchenko, Alexander
Shen and Nikolay Vereshchagin for stating the problem and many useful com-
ments. I also want to thank three anonymous referees for careful reading and
precise comments. I am grateful to participants of seminars in Moscow State
University and Moscow Institute for Physics and Technology for their attention
and thoughtfulness.

References

1. M. Ajtai. Approximate counting with uniform constant-depth circuits. In Advances
in computational complexity theory, pages 1–20. American Mathematical Society,
1993.

2. H. Buhrman, L. Fortnow, S. Laplante, Resource bounded Kolmogorov complexity
revisited, SIAM Journal on Computing, 31(3):887–905, 2002.

3. H. Buhrman, T. Lee, D. van Melkebeek. Language compression and pseudorandom
generators. In Proc. of the 15th IEEE Conference on Computational Complexity,
IEEE, 2004.

4. J. Hitchcock, A. Pavan, N. Vinodchandran. Kolmogorov complexity in randomness
extraction. Electronic Colloquium on Computational Complexity (ECCC) (09–
071) (2009)

5. M. Li, P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applica-
tions, 2 ed., 1997. Springer-Verlag.

6. An.A. Muchnik, On basic structures of the descriptive theory of algorithms. Soviet
Math. Dokl., 32, 671–674 (1985)

7. An. Muchnik, Conditional complexity and codes, Theoretical Computer Science,
v. 271, no. 1–2, p. 97–109 (2002).

8. D. Musatov, Extractors and an effective variant of Muchnik’s theorem.
Diplom (Master thesis). Faculty of Mechanics and Mathematics, MSU, 2006.
http://arxiv.org/abs/0811.3958 (in Russian)

9. D. Musatov, Improving the space-bounded version of Muchnik’s
conditional complexity theorem via “naive” derandomization, 2010,
http://arxiv.org/abs/1009.5108 (Online version of this paper)

10. D. Musatov, A. Romashchenko, A. Shen. Variations on Muchnik’s conditional com-
plexity theorem. In: A. Frid, A. Morozov, A. Rybalchenko, K. Wagner (eds.) CSR.
Lecture Notes in Computer Science, vol. 5675, pp. 250-262 (2009)

11. D. Musatov, A. Romashchenko, A. Shen. Variations on Muchnik’s conditional com-
plexity theorem, to be published in TOCS

12. N. Nisan and A. Wigderson. Hardness vs. Randomness. Journal of Computer and

System Sciences. 49, 1994, pp. 149–167.
13. J. Radhakrishnan, A. Ta-Shma, Bounds for dispersers, extractors, and depth-two

superconcentrators, SIAM Journal on Discrete Mathematics, 13(1): 2–24, 2000
14. O. Reingold, R. Shaltiel, A. Wigderson, Extracting randomness via repeated con-

densing, SIAM Journal on Computing 35(5):1185–1209, 2006.
15. D. Slepian and J. K. Wolf. Noiseless coding of correlated information sources. IEEE

Transactions on information Theory, vol. 19, 1973, pp. 471–480.
16. L. Trevisan. Construction of extractors using pseudo-random generators. In Proc.

45th Annual Symposium on Foundations of Computer Science, pp. 264–275.
17. A. Zvonkin, L. Levin. The complexity of finite objects and the development of the

concepts of information and randomness by means of the theory of algorithms.
Russian Mathematical Surveys 25(6), 83–124 (1970)

	Improving the Space-Bounded Version of Muchnik's Conditional Complexity Theorem via ``Naive'' Derandomization
	Daniil Musatov

