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Reminder and notation

I K(x) = minimal length of a program that produces x
I KD(x) = min{|p| : D(p) = x}
I depends on the interpreter D
I optimal D makes it minimal up to O(1) additive term
I Variations:

p = string p = prefix of a sequence
x = string plain prefix

K(x), C(x) KP(x), K(x)
x = prefix decision monotone

of a sequence KR(x), KD(x) KM(x), Km(x)

Conditional complexity C(x|y):
minimal length of a program p : y 7→ x.
There is also a priori probability (in two versions: discrete, on strings;
continuous, on prefixes)
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Foundations of probability theory

I Random object or random process?
I “well shuffled deck of cards”: any meaning?

[xkcd cartoon]

I randomness = incompressibility (maximal complexity)
I ω = ω1ω2 . . . is random iff KM(ω1 . . . ωn) ≥ n− O(1)
I Classical probability theory: random sequence satisfies the

Strong Law of Large Numbers with probability 1
I Algorithmic version: every (algorithmically) random

sequence satisfies SLLN
I algorithmic ⇒ classical: Martin-Löf random sequences form

a set of measure 1.
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Sampling random strings (S.Aaronson)

I A device that (being switched on) produces N-bit string and
stops

I “The device produces a random string”: what does it mean?
I classical: the output distribution is close to the uniform one
I effective: with high probability the output string is

incompressible
I not equivalent if no assumptions about the device
I but are related under some assumptions
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I k× k minor of n× n Boolean matrix: select k rows and k
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I minor is uniform if it is all-0 or all-1.
I claim: there is a n× n bit matrix without k× k uniform

minors for k = 3 log n.
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Counting argument and complexity reformulation

I ≤ nk × nk positions of the minor [k = 3 log n]
I 2 types of uniform minors (0/1)
I 2n

2−k2 possibilities for the rest
I n2k × 2× 2n

2−k2 = 2log n×2×3 log n+1+(n2−9 log2 n) < 2n
2
.

I log n bits to specify a column or row: 2k log n bits in total
I one additional bit to specify the type of minor (0/1)
I n2 − k2 bits to specify the rest of the matrix
I 2k log n+ 1 + (n2 − k2) = 6 log2 n+ 1 + (n2 − 9 log2 n) < n2.
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One-tape Turing machines

I copying n-bit string on 1-tape TM requires Ω(n2) time

I complexity version: if initially the tape was empty on the
right of the border, then after n steps the complexity of a
zone that is d cells far from the border is O(n/d).

K(u(t)) ≤ O(n/d)
I proof: border guards in each cell of the border security zone write down the

contents of the head of TM; each of the records is enough to reconstruct u(t) so the

length of it should be Ω(K(u(t)); the sum of lengths does not exceed time
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Everywhere complex sequences

I Random sequence has n-bit prefix of complexity n
I but some factors (substrings) have small complexity
I Levin: there exist everywhere complex sequences: every

n-bit substring has complexity 0.99n− O(1)

I Combinatorial equivalent: Let F be a set of strings that has at
most 20.99n strings of length n. Then there is a sequence ω
s.t. all sufficiently long substrings of ω are not in F.

I combinatorial and complexity proofs not just translations of
each other (Lovasz lemma, Rumyantsev, Miller, Muchnik)
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Gilbert-Varshamov complexity bound

I coding theory: how many n-bit strings x1, . . . , xk one can find
if Hamming distance between every two is at least d

I lower bound (Gilbert–Varshamov)
I then < d/2 changed bits are harmless
I but bit insertion or deletions could be
I general requirement: C(xi|xj) ≥ d
I generalization of GV bound: d-separated family of size

Ω(2n−d)
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I The same for entropy:
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I there exist p : a 7→ b that is simple relative to b, e.g., “map

everything to b”
I Muchnik theorem: it is possible to combine these two

conditions: there exists p : a 7→ b such that C(p) ≈ C(b|a) and
C(p|b) ≈ 0

I information theory analog: Wolf–Slepian
I similar technique was developed by Fortnow and Laplante

(randomness extractors)
I (Romashchenko, Musatov): how to use explicit extractors and

derandomization to get space-bounded versions
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I Most strings are not simple ⇒ infinite complement
I Let x1, x2, . . . be a computable sequence of different

non-simple strings
I May assume wlog that |xi| > i and therefore C(xi) > i/2
I but to specify xi we need O(log i) bits only
I “Minimal integer that cannot be described in ten English
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Lower semicomputable random reals

I
∑

ai computable converging series with rational terms
I is α =

∑
ai computable (ε → ε-approximation)?

I not necessarily (Specker example)
I lower semicomputable reals
I Solovay classification: α � β if ε-approximation to β can be

effectively converted to O(ε)-approximation to α

I There are maximal elements = random lower
semicomputable reals

I = slowly converging series
I modulus of convergence: ε 7→ N(ε) = how many terms are

needed for ε-precision
I maximal elements: N(2−n) > BP(n− O(1)), where BP(k) is

the maximal integer whose prefix complexity is k or less.
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Lovasz local lemma: constructive proof

I CNF: (a ∧ ¬b ∧ . . .) ∨ (¬c ∧ e ∧ . . .) ∨ . . .

I neighbors: clauses having common variables
I several clauses with k literals in each
I each clause has o(2k) neighbors
I ⇒ CNF is satisfiable
I Non-constructive proof: lower bound for probability, Lovasz

local lemma
I Naïve algorithm: just resample false clause (while they exist)
I Recent breakthrough (Moser): this algorithm with high

probability terminates quickly
I Explanation: if not, the sequence of resampled clauses

would encode the random bits used in resampling making
them compressible
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Berry, Gödel, Chaitin, Raz

I There are only finitely many strings of complexity < n
I for all strings (except finitely many ones) x the statement

K(x) > n is true
I Can all true statements of this form be provable?
I No, otherwise we could effectively generate string of

complexity > n by enumerating all proofs
I and get Berry’s paradox: the first provable statement

C(x) > n for given n gives some x of complexity > n that can
be described by O(log n) bits

I (Gödel theorem in Chaitin form): There are only finitely many
n such that C(x) > n is provable for some x. (Note that
∃x C(x) > n is always provable!)

I (Gödel second theorem, Kritchman–Raz proof): the
“unexpected test paradox” (a test will be given next week but
it won’t be known before the day of the test)
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13th Hilbert’s problem

I Function of ≥ 3 variables: e.g., solution of a polynomial of
degree 7 as function of its coefficients

I Is it possible to represent this function as a composition of
functions of at most 2 variables?

I Yes, with weird functions (Cantor)
I Yes, even with continuous functions (Kolmogorov, Arnold)
I Circuit version: explicit function Bn × Bn × Bn → Bn

(polynomial circuit size?) that cannot be represented as
composition of O(1) functions Bn × Bn → Bn. Not known.

I Kolmogorov complexity version: we have three strings a, b, c
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Secret sharing

I secret s and three people; any two are able to reconstruct the
secret working together; but each one in isolation has no
information about it

I assume s ∈ F (a field); take random a and tell the people a,
a+ s and a+ 2s (assuming 2 6= 0 in F)

I other secret sharing schemes; how long should be secrets
(not understood)

I Kolmogorov complexity settings: for a given s find a, b, c
such that

C(s|a), C(s|b), C(s|c) ≈ C(s); C(s|a, b), C(s|a, c), C(s|b, c) ≈ 0

I Some relation between Kolmogorov and traditional settings
(Romashchenko, Kaced)
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Quasi-cryptography

I Alice has some information a
I Bob wants to let her know some b
I by sending some message f
I in such a way that Eve gets minimal information about b
I Formally: for given a, b find f such that C(b|a, f) ≈ 0 and

C(b|f) → max.
I Theorem (Muchnik): it is always possible to have

C(b|f) ≈ min(C(b), C(a))
I Full version: Eve knows some c and we want to send

message of a minimal possible length C(b|a)
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