
.

CSR-2011

Kolmogorov complexity as a language

Alexander Shen
LIF CNRS, Marseille; on leave from

ИППИ РАН, Москва

.

Kolmogorov complexity

I A powerful tool
I Just a way to reformulate arguments
I three languages: combinatorial/algorithmic/probabilistic

.

Kolmogorov complexity

I A powerful tool

I Just a way to reformulate arguments
I three languages: combinatorial/algorithmic/probabilistic

.

Kolmogorov complexity

I A powerful tool
I Just a way to reformulate arguments

I three languages: combinatorial/algorithmic/probabilistic

.

Kolmogorov complexity

I A powerful tool
I Just a way to reformulate arguments
I three languages: combinatorial/algorithmic/probabilistic

.

Kolmogorov complexity

I A powerful tool
I Just a way to reformulate arguments
I three languages: combinatorial/algorithmic/probabilistic

.

Reminder and notation

I K(x) = minimal length of a program that produces x
I KD(x) = min{|p| : D(p) = x}
I depends on the interpreter D
I optimal D makes it minimal up to O(1) additive term
I Variations:

p = string p = prefix of a sequence
x = string plain prefix

K(x), C(x) KP(x), K(x)
x = prefix decision monotone

of a sequence KR(x), KD(x) KM(x), Km(x)

Conditional complexity C(x|y):
minimal length of a program p : y 7→ x.
There is also a priori probability (in two versions: discrete, on strings;
continuous, on prefixes)

.

Reminder and notation

I K(x) = minimal length of a program that produces x

I KD(x) = min{|p| : D(p) = x}
I depends on the interpreter D
I optimal D makes it minimal up to O(1) additive term
I Variations:

p = string p = prefix of a sequence
x = string plain prefix

K(x), C(x) KP(x), K(x)
x = prefix decision monotone

of a sequence KR(x), KD(x) KM(x), Km(x)

Conditional complexity C(x|y):
minimal length of a program p : y 7→ x.
There is also a priori probability (in two versions: discrete, on strings;
continuous, on prefixes)

.

Reminder and notation

I K(x) = minimal length of a program that produces x
I KD(x) = min{|p| : D(p) = x}

I depends on the interpreter D
I optimal D makes it minimal up to O(1) additive term
I Variations:

p = string p = prefix of a sequence
x = string plain prefix

K(x), C(x) KP(x), K(x)
x = prefix decision monotone

of a sequence KR(x), KD(x) KM(x), Km(x)

Conditional complexity C(x|y):
minimal length of a program p : y 7→ x.
There is also a priori probability (in two versions: discrete, on strings;
continuous, on prefixes)

.

Reminder and notation

I K(x) = minimal length of a program that produces x
I KD(x) = min{|p| : D(p) = x}
I depends on the interpreter D

I optimal D makes it minimal up to O(1) additive term
I Variations:

p = string p = prefix of a sequence
x = string plain prefix

K(x), C(x) KP(x), K(x)
x = prefix decision monotone

of a sequence KR(x), KD(x) KM(x), Km(x)

Conditional complexity C(x|y):
minimal length of a program p : y 7→ x.
There is also a priori probability (in two versions: discrete, on strings;
continuous, on prefixes)

.

Reminder and notation

I K(x) = minimal length of a program that produces x
I KD(x) = min{|p| : D(p) = x}
I depends on the interpreter D
I optimal D makes it minimal up to O(1) additive term

I Variations:

p = string p = prefix of a sequence
x = string plain prefix

K(x), C(x) KP(x), K(x)
x = prefix decision monotone

of a sequence KR(x), KD(x) KM(x), Km(x)

Conditional complexity C(x|y):
minimal length of a program p : y 7→ x.
There is also a priori probability (in two versions: discrete, on strings;
continuous, on prefixes)

.

Reminder and notation

I K(x) = minimal length of a program that produces x
I KD(x) = min{|p| : D(p) = x}
I depends on the interpreter D
I optimal D makes it minimal up to O(1) additive term
I Variations:

p = string p = prefix of a sequence
x = string plain prefix

K(x), C(x) KP(x), K(x)
x = prefix decision monotone

of a sequence KR(x), KD(x) KM(x), Km(x)

Conditional complexity C(x|y):
minimal length of a program p : y 7→ x.
There is also a priori probability (in two versions: discrete, on strings;
continuous, on prefixes)

.

Reminder and notation

I K(x) = minimal length of a program that produces x
I KD(x) = min{|p| : D(p) = x}
I depends on the interpreter D
I optimal D makes it minimal up to O(1) additive term
I Variations:

p = string p = prefix of a sequence
x = string plain prefix

K(x), C(x) KP(x), K(x)
x = prefix decision monotone

of a sequence KR(x), KD(x) KM(x), Km(x)

Conditional complexity C(x|y):
minimal length of a program p : y 7→ x.
There is also a priori probability (in two versions: discrete, on strings;
continuous, on prefixes)

.

Reminder and notation

I K(x) = minimal length of a program that produces x
I KD(x) = min{|p| : D(p) = x}
I depends on the interpreter D
I optimal D makes it minimal up to O(1) additive term
I Variations:

p = string p = prefix of a sequence
x = string plain prefix

K(x), C(x) KP(x), K(x)
x = prefix decision monotone

of a sequence KR(x), KD(x) KM(x), Km(x)

Conditional complexity C(x|y):
minimal length of a program p : y 7→ x.

There is also a priori probability (in two versions: discrete, on strings;
continuous, on prefixes)

.

Reminder and notation

I K(x) = minimal length of a program that produces x
I KD(x) = min{|p| : D(p) = x}
I depends on the interpreter D
I optimal D makes it minimal up to O(1) additive term
I Variations:

p = string p = prefix of a sequence
x = string plain prefix

K(x), C(x) KP(x), K(x)
x = prefix decision monotone

of a sequence KR(x), KD(x) KM(x), Km(x)

Conditional complexity C(x|y):
minimal length of a program p : y 7→ x.
There is also a priori probability (in two versions: discrete, on strings;
continuous, on prefixes)

.

Foundations of probability theory

I Random object or random process?
I “well shuffled deck of cards”: any meaning?

[xkcd cartoon]

I randomness = incompressibility (maximal complexity)
I ω = ω1ω2 . . . is random iff KM(ω1 . . . ωn) ≥ n− O(1)
I Classical probability theory: random sequence satisfies the

Strong Law of Large Numbers with probability 1
I Algorithmic version: every (algorithmically) random

sequence satisfies SLLN
I algorithmic ⇒ classical: Martin-Löf random sequences form

a set of measure 1.

.

Foundations of probability theory

I Random object or random process?

I “well shuffled deck of cards”: any meaning?

[xkcd cartoon]

I randomness = incompressibility (maximal complexity)
I ω = ω1ω2 . . . is random iff KM(ω1 . . . ωn) ≥ n− O(1)
I Classical probability theory: random sequence satisfies the

Strong Law of Large Numbers with probability 1
I Algorithmic version: every (algorithmically) random

sequence satisfies SLLN
I algorithmic ⇒ classical: Martin-Löf random sequences form

a set of measure 1.

.

Foundations of probability theory

I Random object or random process?
I “well shuffled deck of cards”: any meaning?

[xkcd cartoon]

I randomness = incompressibility (maximal complexity)
I ω = ω1ω2 . . . is random iff KM(ω1 . . . ωn) ≥ n− O(1)
I Classical probability theory: random sequence satisfies the

Strong Law of Large Numbers with probability 1
I Algorithmic version: every (algorithmically) random

sequence satisfies SLLN
I algorithmic ⇒ classical: Martin-Löf random sequences form

a set of measure 1.

.

Foundations of probability theory

I Random object or random process?
I “well shuffled deck of cards”: any meaning?

[xkcd cartoon]

I randomness = incompressibility (maximal complexity)
I ω = ω1ω2 . . . is random iff KM(ω1 . . . ωn) ≥ n− O(1)
I Classical probability theory: random sequence satisfies the

Strong Law of Large Numbers with probability 1
I Algorithmic version: every (algorithmically) random

sequence satisfies SLLN
I algorithmic ⇒ classical: Martin-Löf random sequences form

a set of measure 1.

.

Foundations of probability theory

I Random object or random process?
I “well shuffled deck of cards”: any meaning?

[xkcd cartoon]

I randomness = incompressibility (maximal complexity)

I ω = ω1ω2 . . . is random iff KM(ω1 . . . ωn) ≥ n− O(1)
I Classical probability theory: random sequence satisfies the

Strong Law of Large Numbers with probability 1
I Algorithmic version: every (algorithmically) random

sequence satisfies SLLN
I algorithmic ⇒ classical: Martin-Löf random sequences form

a set of measure 1.

.

Foundations of probability theory

I Random object or random process?
I “well shuffled deck of cards”: any meaning?

[xkcd cartoon]

I randomness = incompressibility (maximal complexity)
I ω = ω1ω2 . . . is random iff KM(ω1 . . . ωn) ≥ n− O(1)

I Classical probability theory: random sequence satisfies the
Strong Law of Large Numbers with probability 1

I Algorithmic version: every (algorithmically) random
sequence satisfies SLLN

I algorithmic ⇒ classical: Martin-Löf random sequences form
a set of measure 1.

.

Foundations of probability theory

I Random object or random process?
I “well shuffled deck of cards”: any meaning?

[xkcd cartoon]

I randomness = incompressibility (maximal complexity)
I ω = ω1ω2 . . . is random iff KM(ω1 . . . ωn) ≥ n− O(1)
I Classical probability theory: random sequence satisfies the

Strong Law of Large Numbers with probability 1

I Algorithmic version: every (algorithmically) random
sequence satisfies SLLN

I algorithmic ⇒ classical: Martin-Löf random sequences form
a set of measure 1.

.

Foundations of probability theory

I Random object or random process?
I “well shuffled deck of cards”: any meaning?

[xkcd cartoon]

I randomness = incompressibility (maximal complexity)
I ω = ω1ω2 . . . is random iff KM(ω1 . . . ωn) ≥ n− O(1)
I Classical probability theory: random sequence satisfies the

Strong Law of Large Numbers with probability 1
I Algorithmic version: every (algorithmically) random

sequence satisfies SLLN

I algorithmic ⇒ classical: Martin-Löf random sequences form
a set of measure 1.

.

Foundations of probability theory

I Random object or random process?
I “well shuffled deck of cards”: any meaning?

[xkcd cartoon]

I randomness = incompressibility (maximal complexity)
I ω = ω1ω2 . . . is random iff KM(ω1 . . . ωn) ≥ n− O(1)
I Classical probability theory: random sequence satisfies the

Strong Law of Large Numbers with probability 1
I Algorithmic version: every (algorithmically) random

sequence satisfies SLLN
I algorithmic ⇒ classical: Martin-Löf random sequences form

a set of measure 1.

.

Sampling random strings (S.Aaronson)

I A device that (being switched on) produces N-bit string and
stops

I “The device produces a random string”: what does it mean?
I classical: the output distribution is close to the uniform one
I effective: with high probability the output string is

incompressible
I not equivalent if no assumptions about the device
I but are related under some assumptions

.

Sampling random strings (S.Aaronson)

I A device that (being switched on) produces N-bit string and
stops

I “The device produces a random string”: what does it mean?
I classical: the output distribution is close to the uniform one
I effective: with high probability the output string is

incompressible
I not equivalent if no assumptions about the device
I but are related under some assumptions

.

Sampling random strings (S.Aaronson)

I A device that (being switched on) produces N-bit string and
stops

I “The device produces a random string”: what does it mean?

I classical: the output distribution is close to the uniform one
I effective: with high probability the output string is

incompressible
I not equivalent if no assumptions about the device
I but are related under some assumptions

.

Sampling random strings (S.Aaronson)

I A device that (being switched on) produces N-bit string and
stops

I “The device produces a random string”: what does it mean?
I classical: the output distribution is close to the uniform one

I effective: with high probability the output string is
incompressible

I not equivalent if no assumptions about the device
I but are related under some assumptions

.

Sampling random strings (S.Aaronson)

I A device that (being switched on) produces N-bit string and
stops

I “The device produces a random string”: what does it mean?
I classical: the output distribution is close to the uniform one
I effective: with high probability the output string is

incompressible

I not equivalent if no assumptions about the device
I but are related under some assumptions

.

Sampling random strings (S.Aaronson)

I A device that (being switched on) produces N-bit string and
stops

I “The device produces a random string”: what does it mean?
I classical: the output distribution is close to the uniform one
I effective: with high probability the output string is

incompressible
I not equivalent if no assumptions about the device

I but are related under some assumptions

.

Sampling random strings (S.Aaronson)

I A device that (being switched on) produces N-bit string and
stops

I “The device produces a random string”: what does it mean?
I classical: the output distribution is close to the uniform one
I effective: with high probability the output string is

incompressible
I not equivalent if no assumptions about the device
I but are related under some assumptions

.

Example: matrices without uniform minors

I k× k minor of n× n Boolean matrix: select k rows and k
columns

I minor is uniform if it is all-0 or all-1.
I claim: there is a n× n bit matrix without k× k uniform

minors for k = 3 log n.

.

Example: matrices without uniform minors

I k× k minor of n× n Boolean matrix: select k rows and k
columns

I minor is uniform if it is all-0 or all-1.
I claim: there is a n× n bit matrix without k× k uniform

minors for k = 3 log n.

.

Example: matrices without uniform minors

I k× k minor of n× n Boolean matrix: select k rows and k
columns

I minor is uniform if it is all-0 or all-1.
I claim: there is a n× n bit matrix without k× k uniform

minors for k = 3 log n.

.

Counting argument and complexity reformulation

I ≤ nk × nk positions of the minor [k = 3 log n]
I 2 types of uniform minors (0/1)
I 2n

2−k2 possibilities for the rest
I n2k × 2× 2n

2−k2 = 2log n×2×3 log n+1+(n2−9 log2 n) < 2n
2
.

I log n bits to specify a column or row: 2k log n bits in total
I one additional bit to specify the type of minor (0/1)
I n2 − k2 bits to specify the rest of the matrix
I 2k log n+ 1 + (n2 − k2) = 6 log2 n+ 1 + (n2 − 9 log2 n) < n2.

.

Counting argument and complexity reformulation

I ≤ nk × nk positions of the minor [k = 3 log n]

I 2 types of uniform minors (0/1)
I 2n

2−k2 possibilities for the rest
I n2k × 2× 2n

2−k2 = 2log n×2×3 log n+1+(n2−9 log2 n) < 2n
2
.

I log n bits to specify a column or row: 2k log n bits in total
I one additional bit to specify the type of minor (0/1)
I n2 − k2 bits to specify the rest of the matrix
I 2k log n+ 1 + (n2 − k2) = 6 log2 n+ 1 + (n2 − 9 log2 n) < n2.

.

Counting argument and complexity reformulation

I ≤ nk × nk positions of the minor [k = 3 log n]
I 2 types of uniform minors (0/1)

I 2n
2−k2 possibilities for the rest

I n2k × 2× 2n
2−k2 = 2log n×2×3 log n+1+(n2−9 log2 n) < 2n

2
.

I log n bits to specify a column or row: 2k log n bits in total
I one additional bit to specify the type of minor (0/1)
I n2 − k2 bits to specify the rest of the matrix
I 2k log n+ 1 + (n2 − k2) = 6 log2 n+ 1 + (n2 − 9 log2 n) < n2.

.

Counting argument and complexity reformulation

I ≤ nk × nk positions of the minor [k = 3 log n]
I 2 types of uniform minors (0/1)
I 2n

2−k2 possibilities for the rest

I n2k × 2× 2n
2−k2 = 2log n×2×3 log n+1+(n2−9 log2 n) < 2n

2
.

I log n bits to specify a column or row: 2k log n bits in total
I one additional bit to specify the type of minor (0/1)
I n2 − k2 bits to specify the rest of the matrix
I 2k log n+ 1 + (n2 − k2) = 6 log2 n+ 1 + (n2 − 9 log2 n) < n2.

.

Counting argument and complexity reformulation

I ≤ nk × nk positions of the minor [k = 3 log n]
I 2 types of uniform minors (0/1)
I 2n

2−k2 possibilities for the rest
I n2k × 2× 2n

2−k2 =

2log n×2×3 log n+1+(n2−9 log2 n) < 2n
2
.

I log n bits to specify a column or row: 2k log n bits in total
I one additional bit to specify the type of minor (0/1)
I n2 − k2 bits to specify the rest of the matrix
I 2k log n+ 1 + (n2 − k2) = 6 log2 n+ 1 + (n2 − 9 log2 n) < n2.

.

Counting argument and complexity reformulation

I ≤ nk × nk positions of the minor [k = 3 log n]
I 2 types of uniform minors (0/1)
I 2n

2−k2 possibilities for the rest
I n2k × 2× 2n

2−k2 = 2log n×2×3 log n+1+(n2−9 log2 n) < 2n
2
.

I log n bits to specify a column or row: 2k log n bits in total
I one additional bit to specify the type of minor (0/1)
I n2 − k2 bits to specify the rest of the matrix
I 2k log n+ 1 + (n2 − k2) = 6 log2 n+ 1 + (n2 − 9 log2 n) < n2.

.

Counting argument and complexity reformulation

I ≤ nk × nk positions of the minor [k = 3 log n]
I 2 types of uniform minors (0/1)
I 2n

2−k2 possibilities for the rest
I n2k × 2× 2n

2−k2 = 2log n×2×3 log n+1+(n2−9 log2 n) < 2n
2
.

I log n bits to specify a column or row: 2k log n bits in total

I one additional bit to specify the type of minor (0/1)
I n2 − k2 bits to specify the rest of the matrix
I 2k log n+ 1 + (n2 − k2) = 6 log2 n+ 1 + (n2 − 9 log2 n) < n2.

.

Counting argument and complexity reformulation

I ≤ nk × nk positions of the minor [k = 3 log n]
I 2 types of uniform minors (0/1)
I 2n

2−k2 possibilities for the rest
I n2k × 2× 2n

2−k2 = 2log n×2×3 log n+1+(n2−9 log2 n) < 2n
2
.

I log n bits to specify a column or row: 2k log n bits in total
I one additional bit to specify the type of minor (0/1)

I n2 − k2 bits to specify the rest of the matrix
I 2k log n+ 1 + (n2 − k2) = 6 log2 n+ 1 + (n2 − 9 log2 n) < n2.

.

Counting argument and complexity reformulation

I ≤ nk × nk positions of the minor [k = 3 log n]
I 2 types of uniform minors (0/1)
I 2n

2−k2 possibilities for the rest
I n2k × 2× 2n

2−k2 = 2log n×2×3 log n+1+(n2−9 log2 n) < 2n
2
.

I log n bits to specify a column or row: 2k log n bits in total
I one additional bit to specify the type of minor (0/1)
I n2 − k2 bits to specify the rest of the matrix

I 2k log n+ 1 + (n2 − k2) = 6 log2 n+ 1 + (n2 − 9 log2 n) < n2.

.

Counting argument and complexity reformulation

I ≤ nk × nk positions of the minor [k = 3 log n]
I 2 types of uniform minors (0/1)
I 2n

2−k2 possibilities for the rest
I n2k × 2× 2n

2−k2 = 2log n×2×3 log n+1+(n2−9 log2 n) < 2n
2
.

I log n bits to specify a column or row: 2k log n bits in total
I one additional bit to specify the type of minor (0/1)
I n2 − k2 bits to specify the rest of the matrix
I 2k log n+ 1 + (n2 − k2) = 6 log2 n+ 1 + (n2 − 9 log2 n) < n2.

.

One-tape Turing machines

I copying n-bit string on 1-tape TM requires Ω(n2) time

I complexity version: if initially the tape was empty on the
right of the border, then after n steps the complexity of a
zone that is d cells far from the border is O(n/d).

K(u(t)) ≤ O(n/d)
I proof: border guards in each cell of the border security zone write down the

contents of the head of TM; each of the records is enough to reconstruct u(t) so the

length of it should be Ω(K(u(t)); the sum of lengths does not exceed time

.

One-tape Turing machines
I copying n-bit string on 1-tape TM requires Ω(n2) time

I complexity version: if initially the tape was empty on the
right of the border, then after n steps the complexity of a
zone that is d cells far from the border is O(n/d).

K(u(t)) ≤ O(n/d)
I proof: border guards in each cell of the border security zone write down the

contents of the head of TM; each of the records is enough to reconstruct u(t) so the

length of it should be Ω(K(u(t)); the sum of lengths does not exceed time

.

One-tape Turing machines
I copying n-bit string on 1-tape TM requires Ω(n2) time

I complexity version: if initially the tape was empty on the
right of the border, then after n steps the complexity of a
zone that is d cells far from the border is O(n/d).

K(u(t)) ≤ O(n/d)

I proof: border guards in each cell of the border security zone write down the

contents of the head of TM; each of the records is enough to reconstruct u(t) so the

length of it should be Ω(K(u(t)); the sum of lengths does not exceed time

.

One-tape Turing machines
I copying n-bit string on 1-tape TM requires Ω(n2) time

I complexity version: if initially the tape was empty on the
right of the border, then after n steps the complexity of a
zone that is d cells far from the border is O(n/d).

K(u(t)) ≤ O(n/d)
I proof: border guards in each cell of the border security zone write down the

contents of the head of TM; each of the records is enough to reconstruct u(t) so the

length of it should be Ω(K(u(t)); the sum of lengths does not exceed time

.

Everywhere complex sequences

I Random sequence has n-bit prefix of complexity n
I but some factors (substrings) have small complexity
I Levin: there exist everywhere complex sequences: every

n-bit substring has complexity 0.99n− O(1)

I Combinatorial equivalent: Let F be a set of strings that has at
most 20.99n strings of length n. Then there is a sequence ω
s.t. all sufficiently long substrings of ω are not in F.

I combinatorial and complexity proofs not just translations of
each other (Lovasz lemma, Rumyantsev, Miller, Muchnik)

.

Everywhere complex sequences

I Random sequence has n-bit prefix of complexity n

I but some factors (substrings) have small complexity
I Levin: there exist everywhere complex sequences: every

n-bit substring has complexity 0.99n− O(1)

I Combinatorial equivalent: Let F be a set of strings that has at
most 20.99n strings of length n. Then there is a sequence ω
s.t. all sufficiently long substrings of ω are not in F.

I combinatorial and complexity proofs not just translations of
each other (Lovasz lemma, Rumyantsev, Miller, Muchnik)

.

Everywhere complex sequences

I Random sequence has n-bit prefix of complexity n
I but some factors (substrings) have small complexity

I Levin: there exist everywhere complex sequences: every
n-bit substring has complexity 0.99n− O(1)

I Combinatorial equivalent: Let F be a set of strings that has at
most 20.99n strings of length n. Then there is a sequence ω
s.t. all sufficiently long substrings of ω are not in F.

I combinatorial and complexity proofs not just translations of
each other (Lovasz lemma, Rumyantsev, Miller, Muchnik)

.

Everywhere complex sequences

I Random sequence has n-bit prefix of complexity n
I but some factors (substrings) have small complexity
I Levin: there exist everywhere complex sequences: every

n-bit substring has complexity 0.99n− O(1)

I Combinatorial equivalent: Let F be a set of strings that has at
most 20.99n strings of length n. Then there is a sequence ω
s.t. all sufficiently long substrings of ω are not in F.

I combinatorial and complexity proofs not just translations of
each other (Lovasz lemma, Rumyantsev, Miller, Muchnik)

.

Everywhere complex sequences

I Random sequence has n-bit prefix of complexity n
I but some factors (substrings) have small complexity
I Levin: there exist everywhere complex sequences: every

n-bit substring has complexity 0.99n− O(1)

I Combinatorial equivalent: Let F be a set of strings that has at
most 20.99n strings of length n. Then there is a sequence ω
s.t. all sufficiently long substrings of ω are not in F.

I combinatorial and complexity proofs not just translations of
each other (Lovasz lemma, Rumyantsev, Miller, Muchnik)

.

Everywhere complex sequences

I Random sequence has n-bit prefix of complexity n
I but some factors (substrings) have small complexity
I Levin: there exist everywhere complex sequences: every

n-bit substring has complexity 0.99n− O(1)

I Combinatorial equivalent: Let F be a set of strings that has at
most 20.99n strings of length n. Then there is a sequence ω
s.t. all sufficiently long substrings of ω are not in F.

I combinatorial and complexity proofs not just translations of
each other (Lovasz lemma, Rumyantsev, Miller, Muchnik)

.

Gilbert-Varshamov complexity bound

I coding theory: how many n-bit strings x1, . . . , xk one can find
if Hamming distance between every two is at least d

I lower bound (Gilbert–Varshamov)
I then < d/2 changed bits are harmless
I but bit insertion or deletions could be
I general requirement: C(xi|xj) ≥ d
I generalization of GV bound: d-separated family of size

Ω(2n−d)

.

Gilbert-Varshamov complexity bound

I coding theory: how many n-bit strings x1, . . . , xk one can find
if Hamming distance between every two is at least d

I lower bound (Gilbert–Varshamov)
I then < d/2 changed bits are harmless
I but bit insertion or deletions could be
I general requirement: C(xi|xj) ≥ d
I generalization of GV bound: d-separated family of size

Ω(2n−d)

.

Gilbert-Varshamov complexity bound

I coding theory: how many n-bit strings x1, . . . , xk one can find
if Hamming distance between every two is at least d

I lower bound (Gilbert–Varshamov)

I then < d/2 changed bits are harmless
I but bit insertion or deletions could be
I general requirement: C(xi|xj) ≥ d
I generalization of GV bound: d-separated family of size

Ω(2n−d)

.

Gilbert-Varshamov complexity bound

I coding theory: how many n-bit strings x1, . . . , xk one can find
if Hamming distance between every two is at least d

I lower bound (Gilbert–Varshamov)
I then < d/2 changed bits are harmless

I but bit insertion or deletions could be
I general requirement: C(xi|xj) ≥ d
I generalization of GV bound: d-separated family of size

Ω(2n−d)

.

Gilbert-Varshamov complexity bound

I coding theory: how many n-bit strings x1, . . . , xk one can find
if Hamming distance between every two is at least d

I lower bound (Gilbert–Varshamov)
I then < d/2 changed bits are harmless
I but bit insertion or deletions could be

I general requirement: C(xi|xj) ≥ d
I generalization of GV bound: d-separated family of size

Ω(2n−d)

.

Gilbert-Varshamov complexity bound

I coding theory: how many n-bit strings x1, . . . , xk one can find
if Hamming distance between every two is at least d

I lower bound (Gilbert–Varshamov)
I then < d/2 changed bits are harmless
I but bit insertion or deletions could be
I general requirement: C(xi|xj) ≥ d

I generalization of GV bound: d-separated family of size
Ω(2n−d)

.

Gilbert-Varshamov complexity bound

I coding theory: how many n-bit strings x1, . . . , xk one can find
if Hamming distance between every two is at least d

I lower bound (Gilbert–Varshamov)
I then < d/2 changed bits are harmless
I but bit insertion or deletions could be
I general requirement: C(xi|xj) ≥ d
I generalization of GV bound: d-separated family of size

Ω(2n−d)

.

Inequalities for complexities and combinatorial
interpretation

I C(x, y) ≤ C(x) + C(y|x) + O(log)

I C(x, y) ≥ C(x) + C(y|x) + O(log)
I C(x, y) < k+ l ⇒ C(x) < k+ O(log) or C(y|x) < l+ O(log)
I every set A of size < 2k+l can be split into two parts

A = A1 ∪ A2 such that w(A1) ≤ 2k and h(A2) ≤ 2l

.

Inequalities for complexities and combinatorial
interpretation

I C(x, y) ≤ C(x) + C(y|x) + O(log)

I C(x, y) ≥ C(x) + C(y|x) + O(log)
I C(x, y) < k+ l ⇒ C(x) < k+ O(log) or C(y|x) < l+ O(log)
I every set A of size < 2k+l can be split into two parts

A = A1 ∪ A2 such that w(A1) ≤ 2k and h(A2) ≤ 2l

.

Inequalities for complexities and combinatorial
interpretation

I C(x, y) ≤ C(x) + C(y|x) + O(log)

I C(x, y) ≥ C(x) + C(y|x) + O(log)
I C(x, y) < k+ l ⇒ C(x) < k+ O(log) or C(y|x) < l+ O(log)
I every set A of size < 2k+l can be split into two parts

A = A1 ∪ A2 such that w(A1) ≤ 2k and h(A2) ≤ 2l

.

Inequalities for complexities and combinatorial
interpretation

I C(x, y) ≤ C(x) + C(y|x) + O(log)

I C(x, y) ≥ C(x) + C(y|x) + O(log)

I C(x, y) < k+ l ⇒ C(x) < k+ O(log) or C(y|x) < l+ O(log)
I every set A of size < 2k+l can be split into two parts

A = A1 ∪ A2 such that w(A1) ≤ 2k and h(A2) ≤ 2l

.

Inequalities for complexities and combinatorial
interpretation

I C(x, y) ≤ C(x) + C(y|x) + O(log)

I C(x, y) ≥ C(x) + C(y|x) + O(log)
I C(x, y) < k+ l ⇒ C(x) < k+ O(log) or C(y|x) < l+ O(log)

I every set A of size < 2k+l can be split into two parts
A = A1 ∪ A2 such that w(A1) ≤ 2k and h(A2) ≤ 2l

.

Inequalities for complexities and combinatorial
interpretation

I C(x, y) ≤ C(x) + C(y|x) + O(log)

I C(x, y) ≥ C(x) + C(y|x) + O(log)
I C(x, y) < k+ l ⇒ C(x) < k+ O(log) or C(y|x) < l+ O(log)
I every set A of size < 2k+l can be split into two parts

A = A1 ∪ A2 such that w(A1) ≤ 2k and h(A2) ≤ 2l

.

One more inequality

I 2C(x, y, z) ≤ C(x, y) + C(y, z) + C(x, z)

I V2 ≤ S1 × S2 × S3
I Also for Shannon entropies; special case of Shearer lemma

.

One more inequality

I 2C(x, y, z) ≤ C(x, y) + C(y, z) + C(x, z)

I V2 ≤ S1 × S2 × S3
I Also for Shannon entropies; special case of Shearer lemma

.

One more inequality

I 2C(x, y, z) ≤ C(x, y) + C(y, z) + C(x, z)

I V2 ≤ S1 × S2 × S3

I Also for Shannon entropies; special case of Shearer lemma

.

One more inequality

I 2C(x, y, z) ≤ C(x, y) + C(y, z) + C(x, z)

I V2 ≤ S1 × S2 × S3
I Also for Shannon entropies; special case of Shearer lemma

.

Common information and graph minors

I mutual information: I(a : b) = C(a) + C(b)− C(a, b)

I common information:

I combinatorial: graph minors

can the graph be covered by 2δ minors of size 2α−δ × 2β−δ?

.

Common information and graph minors

I mutual information: I(a : b) = C(a) + C(b)− C(a, b)

I common information:

I combinatorial: graph minors

can the graph be covered by 2δ minors of size 2α−δ × 2β−δ?

.

Common information and graph minors

I mutual information: I(a : b) = C(a) + C(b)− C(a, b)

I common information:

I combinatorial: graph minors

can the graph be covered by 2δ minors of size 2α−δ × 2β−δ?

.

Common information and graph minors

I mutual information: I(a : b) = C(a) + C(b)− C(a, b)

I common information:

I combinatorial: graph minors

can the graph be covered by 2δ minors of size 2α−δ × 2β−δ?

.

Almost uniform sets

I nonuniformity= (maximal section)/(average section)

I Theorem: every set of N elements can be represented as
union of polylog(N) sets whose nonuniformity is polylog(N).

I multidimensional version
I how to construct parts using Kolmogorov complexity: take

strings with given complexity bounds
I so simple that it is not clear what is the combinatorial

translation
I but combinatorial argument exists (and gives even a stronger

result)

.

Almost uniform sets

I nonuniformity= (maximal section)/(average section)

I Theorem: every set of N elements can be represented as
union of polylog(N) sets whose nonuniformity is polylog(N).

I multidimensional version
I how to construct parts using Kolmogorov complexity: take

strings with given complexity bounds
I so simple that it is not clear what is the combinatorial

translation
I but combinatorial argument exists (and gives even a stronger

result)

.

Almost uniform sets

I nonuniformity= (maximal section)/(average section)

I Theorem: every set of N elements can be represented as
union of polylog(N) sets whose nonuniformity is polylog(N).

I multidimensional version
I how to construct parts using Kolmogorov complexity: take

strings with given complexity bounds
I so simple that it is not clear what is the combinatorial

translation
I but combinatorial argument exists (and gives even a stronger

result)

.

Almost uniform sets

I nonuniformity= (maximal section)/(average section)

I Theorem: every set of N elements can be represented as
union of polylog(N) sets whose nonuniformity is polylog(N).

I multidimensional version

I how to construct parts using Kolmogorov complexity: take
strings with given complexity bounds

I so simple that it is not clear what is the combinatorial
translation

I but combinatorial argument exists (and gives even a stronger
result)

.

Almost uniform sets

I nonuniformity= (maximal section)/(average section)

I Theorem: every set of N elements can be represented as
union of polylog(N) sets whose nonuniformity is polylog(N).

I multidimensional version
I how to construct parts using Kolmogorov complexity: take

strings with given complexity bounds

I so simple that it is not clear what is the combinatorial
translation

I but combinatorial argument exists (and gives even a stronger
result)

.

Almost uniform sets

I nonuniformity= (maximal section)/(average section)

I Theorem: every set of N elements can be represented as
union of polylog(N) sets whose nonuniformity is polylog(N).

I multidimensional version
I how to construct parts using Kolmogorov complexity: take

strings with given complexity bounds
I so simple that it is not clear what is the combinatorial

translation

I but combinatorial argument exists (and gives even a stronger
result)

.

Almost uniform sets

I nonuniformity= (maximal section)/(average section)

I Theorem: every set of N elements can be represented as
union of polylog(N) sets whose nonuniformity is polylog(N).

I multidimensional version
I how to construct parts using Kolmogorov complexity: take

strings with given complexity bounds
I so simple that it is not clear what is the combinatorial

translation
I but combinatorial argument exists (and gives even a stronger

result)

.

Shannon coding theorem

I ξ is a random variable; k values, probabilities p1, . . . , pk
I ξN: N independent trials of ξ
I Shannon’s informal question: how many bits are needed to

encode a “typical” value of ξN?
I Shannon’s answer: NH(ξ), where

H(ξ) = p1 log(1/p1) + . . .+ pn log(1/pn).

I formal statement is a bit complicated
I Complexity version: with high probablity the value of ξN has

complexity close to NH(ξ).

.

Shannon coding theorem

I ξ is a random variable; k values, probabilities p1, . . . , pk

I ξN: N independent trials of ξ
I Shannon’s informal question: how many bits are needed to

encode a “typical” value of ξN?
I Shannon’s answer: NH(ξ), where

H(ξ) = p1 log(1/p1) + . . .+ pn log(1/pn).

I formal statement is a bit complicated
I Complexity version: with high probablity the value of ξN has

complexity close to NH(ξ).

.

Shannon coding theorem

I ξ is a random variable; k values, probabilities p1, . . . , pk
I ξN: N independent trials of ξ

I Shannon’s informal question: how many bits are needed to
encode a “typical” value of ξN?

I Shannon’s answer: NH(ξ), where

H(ξ) = p1 log(1/p1) + . . .+ pn log(1/pn).

I formal statement is a bit complicated
I Complexity version: with high probablity the value of ξN has

complexity close to NH(ξ).

.

Shannon coding theorem

I ξ is a random variable; k values, probabilities p1, . . . , pk
I ξN: N independent trials of ξ
I Shannon’s informal question: how many bits are needed to

encode a “typical” value of ξN?

I Shannon’s answer: NH(ξ), where

H(ξ) = p1 log(1/p1) + . . .+ pn log(1/pn).

I formal statement is a bit complicated
I Complexity version: with high probablity the value of ξN has

complexity close to NH(ξ).

.

Shannon coding theorem

I ξ is a random variable; k values, probabilities p1, . . . , pk
I ξN: N independent trials of ξ
I Shannon’s informal question: how many bits are needed to

encode a “typical” value of ξN?
I Shannon’s answer: NH(ξ), where

H(ξ) = p1 log(1/p1) + . . .+ pn log(1/pn).

I formal statement is a bit complicated
I Complexity version: with high probablity the value of ξN has

complexity close to NH(ξ).

.

Shannon coding theorem

I ξ is a random variable; k values, probabilities p1, . . . , pk
I ξN: N independent trials of ξ
I Shannon’s informal question: how many bits are needed to

encode a “typical” value of ξN?
I Shannon’s answer: NH(ξ), where

H(ξ) = p1 log(1/p1) + . . .+ pn log(1/pn).

I formal statement is a bit complicated

I Complexity version: with high probablity the value of ξN has
complexity close to NH(ξ).

.

Shannon coding theorem

I ξ is a random variable; k values, probabilities p1, . . . , pk
I ξN: N independent trials of ξ
I Shannon’s informal question: how many bits are needed to

encode a “typical” value of ξN?
I Shannon’s answer: NH(ξ), where

H(ξ) = p1 log(1/p1) + . . .+ pn log(1/pn).

I formal statement is a bit complicated
I Complexity version: with high probablity the value of ξN has

complexity close to NH(ξ).

.

Complexity, entropy and group size

I 2C(x, y, z) ≤ C(x, y) + C(y, z) + C(x, z) + O(log)
I The same for entropy:

2H(ξ, η, τ) ≤ H(ξ, η) + H(ξ, τ) + H(η, τ)
I …and even for the sizes of subgroups U, V,W of some finite

group G: 2 log(|G|/|U ∩ V ∩W|) ≤
log(|G|/|U ∩ V|) + log(|G|/|U ∩W|) + log(|G|/|V ∩W|).

I in all three cases inequalities are the same (Romashchenko,
Chan, Yeung)

I some of them are quite strange:

I(a : b) ≤
≤ I(a : b|c)+I(a : b|d)+I(c : d)+I(a : b|e)+I(a : e|b)+I(b : e|a)

I Related to Romashchenko’s theorem: if three last terms are
zeros, one can extract common information from a, b, e.

.

Complexity, entropy and group size

I 2C(x, y, z) ≤ C(x, y) + C(y, z) + C(x, z) + O(log)

I The same for entropy:
2H(ξ, η, τ) ≤ H(ξ, η) + H(ξ, τ) + H(η, τ)

I …and even for the sizes of subgroups U, V,W of some finite
group G: 2 log(|G|/|U ∩ V ∩W|) ≤
log(|G|/|U ∩ V|) + log(|G|/|U ∩W|) + log(|G|/|V ∩W|).

I in all three cases inequalities are the same (Romashchenko,
Chan, Yeung)

I some of them are quite strange:

I(a : b) ≤
≤ I(a : b|c)+I(a : b|d)+I(c : d)+I(a : b|e)+I(a : e|b)+I(b : e|a)

I Related to Romashchenko’s theorem: if three last terms are
zeros, one can extract common information from a, b, e.

.

Complexity, entropy and group size

I 2C(x, y, z) ≤ C(x, y) + C(y, z) + C(x, z) + O(log)
I The same for entropy:

2H(ξ, η, τ) ≤ H(ξ, η) + H(ξ, τ) + H(η, τ)

I …and even for the sizes of subgroups U, V,W of some finite
group G: 2 log(|G|/|U ∩ V ∩W|) ≤
log(|G|/|U ∩ V|) + log(|G|/|U ∩W|) + log(|G|/|V ∩W|).

I in all three cases inequalities are the same (Romashchenko,
Chan, Yeung)

I some of them are quite strange:

I(a : b) ≤
≤ I(a : b|c)+I(a : b|d)+I(c : d)+I(a : b|e)+I(a : e|b)+I(b : e|a)

I Related to Romashchenko’s theorem: if three last terms are
zeros, one can extract common information from a, b, e.

.

Complexity, entropy and group size

I 2C(x, y, z) ≤ C(x, y) + C(y, z) + C(x, z) + O(log)
I The same for entropy:

2H(ξ, η, τ) ≤ H(ξ, η) + H(ξ, τ) + H(η, τ)
I …and even for the sizes of subgroups U, V,W of some finite

group G: 2 log(|G|/|U ∩ V ∩W|) ≤
log(|G|/|U ∩ V|) + log(|G|/|U ∩W|) + log(|G|/|V ∩W|).

I in all three cases inequalities are the same (Romashchenko,
Chan, Yeung)

I some of them are quite strange:

I(a : b) ≤
≤ I(a : b|c)+I(a : b|d)+I(c : d)+I(a : b|e)+I(a : e|b)+I(b : e|a)

I Related to Romashchenko’s theorem: if three last terms are
zeros, one can extract common information from a, b, e.

.

Complexity, entropy and group size

I 2C(x, y, z) ≤ C(x, y) + C(y, z) + C(x, z) + O(log)
I The same for entropy:

2H(ξ, η, τ) ≤ H(ξ, η) + H(ξ, τ) + H(η, τ)
I …and even for the sizes of subgroups U, V,W of some finite

group G: 2 log(|G|/|U ∩ V ∩W|) ≤
log(|G|/|U ∩ V|) + log(|G|/|U ∩W|) + log(|G|/|V ∩W|).

I in all three cases inequalities are the same (Romashchenko,
Chan, Yeung)

I some of them are quite strange:

I(a : b) ≤
≤ I(a : b|c)+I(a : b|d)+I(c : d)+I(a : b|e)+I(a : e|b)+I(b : e|a)

I Related to Romashchenko’s theorem: if three last terms are
zeros, one can extract common information from a, b, e.

.

Complexity, entropy and group size

I 2C(x, y, z) ≤ C(x, y) + C(y, z) + C(x, z) + O(log)
I The same for entropy:

2H(ξ, η, τ) ≤ H(ξ, η) + H(ξ, τ) + H(η, τ)
I …and even for the sizes of subgroups U, V,W of some finite

group G: 2 log(|G|/|U ∩ V ∩W|) ≤
log(|G|/|U ∩ V|) + log(|G|/|U ∩W|) + log(|G|/|V ∩W|).

I in all three cases inequalities are the same (Romashchenko,
Chan, Yeung)

I some of them are quite strange:

I(a : b) ≤
≤ I(a : b|c)+I(a : b|d)+I(c : d)+I(a : b|e)+I(a : e|b)+I(b : e|a)

I Related to Romashchenko’s theorem: if three last terms are
zeros, one can extract common information from a, b, e.

.

Complexity, entropy and group size

I 2C(x, y, z) ≤ C(x, y) + C(y, z) + C(x, z) + O(log)
I The same for entropy:

2H(ξ, η, τ) ≤ H(ξ, η) + H(ξ, τ) + H(η, τ)
I …and even for the sizes of subgroups U, V,W of some finite

group G: 2 log(|G|/|U ∩ V ∩W|) ≤
log(|G|/|U ∩ V|) + log(|G|/|U ∩W|) + log(|G|/|V ∩W|).

I in all three cases inequalities are the same (Romashchenko,
Chan, Yeung)

I some of them are quite strange:

I(a : b) ≤
≤ I(a : b|c)+I(a : b|d)+I(c : d)+I(a : b|e)+I(a : e|b)+I(b : e|a)

I Related to Romashchenko’s theorem: if three last terms are
zeros, one can extract common information from a, b, e.

.

Muchnik and Slepian–Wolf

I a, b: two strings
I we look for a program p that maps a to b
I by definition C(p) is at least C(b|a) but could be higher
I there exist p : a 7→ b that is simple relative to b, e.g., “map

everything to b”
I Muchnik theorem: it is possible to combine these two

conditions: there exists p : a 7→ b such that C(p) ≈ C(b|a) and
C(p|b) ≈ 0

I information theory analog: Wolf–Slepian
I similar technique was developed by Fortnow and Laplante

(randomness extractors)
I (Romashchenko, Musatov): how to use explicit extractors and

derandomization to get space-bounded versions

.

Muchnik and Slepian–Wolf

I a, b: two strings

I we look for a program p that maps a to b
I by definition C(p) is at least C(b|a) but could be higher
I there exist p : a 7→ b that is simple relative to b, e.g., “map

everything to b”
I Muchnik theorem: it is possible to combine these two

conditions: there exists p : a 7→ b such that C(p) ≈ C(b|a) and
C(p|b) ≈ 0

I information theory analog: Wolf–Slepian
I similar technique was developed by Fortnow and Laplante

(randomness extractors)
I (Romashchenko, Musatov): how to use explicit extractors and

derandomization to get space-bounded versions

.

Muchnik and Slepian–Wolf

I a, b: two strings
I we look for a program p that maps a to b

I by definition C(p) is at least C(b|a) but could be higher
I there exist p : a 7→ b that is simple relative to b, e.g., “map

everything to b”
I Muchnik theorem: it is possible to combine these two

conditions: there exists p : a 7→ b such that C(p) ≈ C(b|a) and
C(p|b) ≈ 0

I information theory analog: Wolf–Slepian
I similar technique was developed by Fortnow and Laplante

(randomness extractors)
I (Romashchenko, Musatov): how to use explicit extractors and

derandomization to get space-bounded versions

.

Muchnik and Slepian–Wolf

I a, b: two strings
I we look for a program p that maps a to b
I by definition C(p) is at least C(b|a) but could be higher

I there exist p : a 7→ b that is simple relative to b, e.g., “map
everything to b”

I Muchnik theorem: it is possible to combine these two
conditions: there exists p : a 7→ b such that C(p) ≈ C(b|a) and
C(p|b) ≈ 0

I information theory analog: Wolf–Slepian
I similar technique was developed by Fortnow and Laplante

(randomness extractors)
I (Romashchenko, Musatov): how to use explicit extractors and

derandomization to get space-bounded versions

.

Muchnik and Slepian–Wolf

I a, b: two strings
I we look for a program p that maps a to b
I by definition C(p) is at least C(b|a) but could be higher
I there exist p : a 7→ b that is simple relative to b, e.g., “map

everything to b”

I Muchnik theorem: it is possible to combine these two
conditions: there exists p : a 7→ b such that C(p) ≈ C(b|a) and
C(p|b) ≈ 0

I information theory analog: Wolf–Slepian
I similar technique was developed by Fortnow and Laplante

(randomness extractors)
I (Romashchenko, Musatov): how to use explicit extractors and

derandomization to get space-bounded versions

.

Muchnik and Slepian–Wolf

I a, b: two strings
I we look for a program p that maps a to b
I by definition C(p) is at least C(b|a) but could be higher
I there exist p : a 7→ b that is simple relative to b, e.g., “map

everything to b”
I Muchnik theorem: it is possible to combine these two

conditions: there exists p : a 7→ b such that C(p) ≈ C(b|a) and
C(p|b) ≈ 0

I information theory analog: Wolf–Slepian
I similar technique was developed by Fortnow and Laplante

(randomness extractors)
I (Romashchenko, Musatov): how to use explicit extractors and

derandomization to get space-bounded versions

.

Muchnik and Slepian–Wolf

I a, b: two strings
I we look for a program p that maps a to b
I by definition C(p) is at least C(b|a) but could be higher
I there exist p : a 7→ b that is simple relative to b, e.g., “map

everything to b”
I Muchnik theorem: it is possible to combine these two

conditions: there exists p : a 7→ b such that C(p) ≈ C(b|a) and
C(p|b) ≈ 0

I information theory analog: Wolf–Slepian

I similar technique was developed by Fortnow and Laplante
(randomness extractors)

I (Romashchenko, Musatov): how to use explicit extractors and
derandomization to get space-bounded versions

.

Muchnik and Slepian–Wolf

I a, b: two strings
I we look for a program p that maps a to b
I by definition C(p) is at least C(b|a) but could be higher
I there exist p : a 7→ b that is simple relative to b, e.g., “map

everything to b”
I Muchnik theorem: it is possible to combine these two

conditions: there exists p : a 7→ b such that C(p) ≈ C(b|a) and
C(p|b) ≈ 0

I information theory analog: Wolf–Slepian
I similar technique was developed by Fortnow and Laplante

(randomness extractors)

I (Romashchenko, Musatov): how to use explicit extractors and
derandomization to get space-bounded versions

.

Muchnik and Slepian–Wolf

I a, b: two strings
I we look for a program p that maps a to b
I by definition C(p) is at least C(b|a) but could be higher
I there exist p : a 7→ b that is simple relative to b, e.g., “map

everything to b”
I Muchnik theorem: it is possible to combine these two

conditions: there exists p : a 7→ b such that C(p) ≈ C(b|a) and
C(p|b) ≈ 0

I information theory analog: Wolf–Slepian
I similar technique was developed by Fortnow and Laplante

(randomness extractors)
I (Romashchenko, Musatov): how to use explicit extractors and

derandomization to get space-bounded versions

.

Computability theory: simple sets

I Simple set: enumerable set with infinite complement, but no
algorithm can generate infinitely many elements from the
complement

I Construction using Kolmogorov complexity: a simple string x
has C(x) ≤ |x|/2.

I Most strings are not simple ⇒ infinite complement
I Let x1, x2, . . . be a computable sequence of different

non-simple strings
I May assume wlog that |xi| > i and therefore C(xi) > i/2
I but to specify xi we need O(log i) bits only
I “Minimal integer that cannot be described in ten English

words” (Berry)

.

Computability theory: simple sets

I Simple set: enumerable set with infinite complement, but no
algorithm can generate infinitely many elements from the
complement

I Construction using Kolmogorov complexity: a simple string x
has C(x) ≤ |x|/2.

I Most strings are not simple ⇒ infinite complement
I Let x1, x2, . . . be a computable sequence of different

non-simple strings
I May assume wlog that |xi| > i and therefore C(xi) > i/2
I but to specify xi we need O(log i) bits only
I “Minimal integer that cannot be described in ten English

words” (Berry)

.

Computability theory: simple sets

I Simple set: enumerable set with infinite complement, but no
algorithm can generate infinitely many elements from the
complement

I Construction using Kolmogorov complexity: a simple string x
has C(x) ≤ |x|/2.

I Most strings are not simple ⇒ infinite complement
I Let x1, x2, . . . be a computable sequence of different

non-simple strings
I May assume wlog that |xi| > i and therefore C(xi) > i/2
I but to specify xi we need O(log i) bits only
I “Minimal integer that cannot be described in ten English

words” (Berry)

.

Computability theory: simple sets

I Simple set: enumerable set with infinite complement, but no
algorithm can generate infinitely many elements from the
complement

I Construction using Kolmogorov complexity: a simple string x
has C(x) ≤ |x|/2.

I Most strings are not simple ⇒ infinite complement

I Let x1, x2, . . . be a computable sequence of different
non-simple strings

I May assume wlog that |xi| > i and therefore C(xi) > i/2
I but to specify xi we need O(log i) bits only
I “Minimal integer that cannot be described in ten English

words” (Berry)

.

Computability theory: simple sets

I Simple set: enumerable set with infinite complement, but no
algorithm can generate infinitely many elements from the
complement

I Construction using Kolmogorov complexity: a simple string x
has C(x) ≤ |x|/2.

I Most strings are not simple ⇒ infinite complement
I Let x1, x2, . . . be a computable sequence of different

non-simple strings

I May assume wlog that |xi| > i and therefore C(xi) > i/2
I but to specify xi we need O(log i) bits only
I “Minimal integer that cannot be described in ten English

words” (Berry)

.

Computability theory: simple sets

I Simple set: enumerable set with infinite complement, but no
algorithm can generate infinitely many elements from the
complement

I Construction using Kolmogorov complexity: a simple string x
has C(x) ≤ |x|/2.

I Most strings are not simple ⇒ infinite complement
I Let x1, x2, . . . be a computable sequence of different

non-simple strings
I May assume wlog that |xi| > i and therefore C(xi) > i/2

I but to specify xi we need O(log i) bits only
I “Minimal integer that cannot be described in ten English

words” (Berry)

.

Computability theory: simple sets

I Simple set: enumerable set with infinite complement, but no
algorithm can generate infinitely many elements from the
complement

I Construction using Kolmogorov complexity: a simple string x
has C(x) ≤ |x|/2.

I Most strings are not simple ⇒ infinite complement
I Let x1, x2, . . . be a computable sequence of different

non-simple strings
I May assume wlog that |xi| > i and therefore C(xi) > i/2
I but to specify xi we need O(log i) bits only

I “Minimal integer that cannot be described in ten English
words” (Berry)

.

Computability theory: simple sets

I Simple set: enumerable set with infinite complement, but no
algorithm can generate infinitely many elements from the
complement

I Construction using Kolmogorov complexity: a simple string x
has C(x) ≤ |x|/2.

I Most strings are not simple ⇒ infinite complement
I Let x1, x2, . . . be a computable sequence of different

non-simple strings
I May assume wlog that |xi| > i and therefore C(xi) > i/2
I but to specify xi we need O(log i) bits only
I “Minimal integer that cannot be described in ten English

words” (Berry)

.

Lower semicomputable random reals

I
∑

ai computable converging series with rational terms
I is α =

∑
ai computable (ε → ε-approximation)?

I not necessarily (Specker example)
I lower semicomputable reals
I Solovay classification: α � β if ε-approximation to β can be

effectively converted to O(ε)-approximation to α

I There are maximal elements = random lower
semicomputable reals

I = slowly converging series
I modulus of convergence: ε 7→ N(ε) = how many terms are

needed for ε-precision
I maximal elements: N(2−n) > BP(n− O(1)), where BP(k) is

the maximal integer whose prefix complexity is k or less.

.

Lower semicomputable random reals

I
∑

ai computable converging series with rational terms

I is α =
∑

ai computable (ε → ε-approximation)?
I not necessarily (Specker example)
I lower semicomputable reals
I Solovay classification: α � β if ε-approximation to β can be

effectively converted to O(ε)-approximation to α

I There are maximal elements = random lower
semicomputable reals

I = slowly converging series
I modulus of convergence: ε 7→ N(ε) = how many terms are

needed for ε-precision
I maximal elements: N(2−n) > BP(n− O(1)), where BP(k) is

the maximal integer whose prefix complexity is k or less.

.

Lower semicomputable random reals

I
∑

ai computable converging series with rational terms
I is α =

∑
ai computable (ε → ε-approximation)?

I not necessarily (Specker example)
I lower semicomputable reals
I Solovay classification: α � β if ε-approximation to β can be

effectively converted to O(ε)-approximation to α

I There are maximal elements = random lower
semicomputable reals

I = slowly converging series
I modulus of convergence: ε 7→ N(ε) = how many terms are

needed for ε-precision
I maximal elements: N(2−n) > BP(n− O(1)), where BP(k) is

the maximal integer whose prefix complexity is k or less.

.

Lower semicomputable random reals

I
∑

ai computable converging series with rational terms
I is α =

∑
ai computable (ε → ε-approximation)?

I not necessarily (Specker example)

I lower semicomputable reals
I Solovay classification: α � β if ε-approximation to β can be

effectively converted to O(ε)-approximation to α

I There are maximal elements = random lower
semicomputable reals

I = slowly converging series
I modulus of convergence: ε 7→ N(ε) = how many terms are

needed for ε-precision
I maximal elements: N(2−n) > BP(n− O(1)), where BP(k) is

the maximal integer whose prefix complexity is k or less.

.

Lower semicomputable random reals

I
∑

ai computable converging series with rational terms
I is α =

∑
ai computable (ε → ε-approximation)?

I not necessarily (Specker example)
I lower semicomputable reals

I Solovay classification: α � β if ε-approximation to β can be
effectively converted to O(ε)-approximation to α

I There are maximal elements = random lower
semicomputable reals

I = slowly converging series
I modulus of convergence: ε 7→ N(ε) = how many terms are

needed for ε-precision
I maximal elements: N(2−n) > BP(n− O(1)), where BP(k) is

the maximal integer whose prefix complexity is k or less.

.

Lower semicomputable random reals

I
∑

ai computable converging series with rational terms
I is α =

∑
ai computable (ε → ε-approximation)?

I not necessarily (Specker example)
I lower semicomputable reals
I Solovay classification: α � β if ε-approximation to β can be

effectively converted to O(ε)-approximation to α

I There are maximal elements = random lower
semicomputable reals

I = slowly converging series
I modulus of convergence: ε 7→ N(ε) = how many terms are

needed for ε-precision
I maximal elements: N(2−n) > BP(n− O(1)), where BP(k) is

the maximal integer whose prefix complexity is k or less.

.

Lower semicomputable random reals

I
∑

ai computable converging series with rational terms
I is α =

∑
ai computable (ε → ε-approximation)?

I not necessarily (Specker example)
I lower semicomputable reals
I Solovay classification: α � β if ε-approximation to β can be

effectively converted to O(ε)-approximation to α

I There are maximal elements

= random lower
semicomputable reals

I = slowly converging series
I modulus of convergence: ε 7→ N(ε) = how many terms are

needed for ε-precision
I maximal elements: N(2−n) > BP(n− O(1)), where BP(k) is

the maximal integer whose prefix complexity is k or less.

.

Lower semicomputable random reals

I
∑

ai computable converging series with rational terms
I is α =

∑
ai computable (ε → ε-approximation)?

I not necessarily (Specker example)
I lower semicomputable reals
I Solovay classification: α � β if ε-approximation to β can be

effectively converted to O(ε)-approximation to α

I There are maximal elements = random lower
semicomputable reals

I = slowly converging series
I modulus of convergence: ε 7→ N(ε) = how many terms are

needed for ε-precision
I maximal elements: N(2−n) > BP(n− O(1)), where BP(k) is

the maximal integer whose prefix complexity is k or less.

.

Lower semicomputable random reals

I
∑

ai computable converging series with rational terms
I is α =

∑
ai computable (ε → ε-approximation)?

I not necessarily (Specker example)
I lower semicomputable reals
I Solovay classification: α � β if ε-approximation to β can be

effectively converted to O(ε)-approximation to α

I There are maximal elements = random lower
semicomputable reals

I = slowly converging series

I modulus of convergence: ε 7→ N(ε) = how many terms are
needed for ε-precision

I maximal elements: N(2−n) > BP(n− O(1)), where BP(k) is
the maximal integer whose prefix complexity is k or less.

.

Lower semicomputable random reals

I
∑

ai computable converging series with rational terms
I is α =

∑
ai computable (ε → ε-approximation)?

I not necessarily (Specker example)
I lower semicomputable reals
I Solovay classification: α � β if ε-approximation to β can be

effectively converted to O(ε)-approximation to α

I There are maximal elements = random lower
semicomputable reals

I = slowly converging series
I modulus of convergence: ε 7→ N(ε) = how many terms are

needed for ε-precision

I maximal elements: N(2−n) > BP(n− O(1)), where BP(k) is
the maximal integer whose prefix complexity is k or less.

.

Lower semicomputable random reals

I
∑

ai computable converging series with rational terms
I is α =

∑
ai computable (ε → ε-approximation)?

I not necessarily (Specker example)
I lower semicomputable reals
I Solovay classification: α � β if ε-approximation to β can be

effectively converted to O(ε)-approximation to α

I There are maximal elements = random lower
semicomputable reals

I = slowly converging series
I modulus of convergence: ε 7→ N(ε) = how many terms are

needed for ε-precision
I maximal elements: N(2−n) > BP(n− O(1)), where BP(k) is

the maximal integer whose prefix complexity is k or less.

.

Lovasz local lemma: constructive proof

I CNF: (a ∧ ¬b ∧ . . .) ∨ (¬c ∧ e ∧ . . .) ∨ . . .

I neighbors: clauses having common variables
I several clauses with k literals in each
I each clause has o(2k) neighbors
I ⇒ CNF is satisfiable
I Non-constructive proof: lower bound for probability, Lovasz

local lemma
I Naïve algorithm: just resample false clause (while they exist)
I Recent breakthrough (Moser): this algorithm with high

probability terminates quickly
I Explanation: if not, the sequence of resampled clauses

would encode the random bits used in resampling making
them compressible

.

Lovasz local lemma: constructive proof

I CNF: (a ∧ ¬b ∧ . . .) ∨ (¬c ∧ e ∧ . . .) ∨ . . .

I neighbors: clauses having common variables
I several clauses with k literals in each
I each clause has o(2k) neighbors
I ⇒ CNF is satisfiable
I Non-constructive proof: lower bound for probability, Lovasz

local lemma
I Naïve algorithm: just resample false clause (while they exist)
I Recent breakthrough (Moser): this algorithm with high

probability terminates quickly
I Explanation: if not, the sequence of resampled clauses

would encode the random bits used in resampling making
them compressible

.

Lovasz local lemma: constructive proof

I CNF: (a ∧ ¬b ∧ . . .) ∨ (¬c ∧ e ∧ . . .) ∨ . . .

I neighbors: clauses having common variables

I several clauses with k literals in each
I each clause has o(2k) neighbors
I ⇒ CNF is satisfiable
I Non-constructive proof: lower bound for probability, Lovasz

local lemma
I Naïve algorithm: just resample false clause (while they exist)
I Recent breakthrough (Moser): this algorithm with high

probability terminates quickly
I Explanation: if not, the sequence of resampled clauses

would encode the random bits used in resampling making
them compressible

.

Lovasz local lemma: constructive proof

I CNF: (a ∧ ¬b ∧ . . .) ∨ (¬c ∧ e ∧ . . .) ∨ . . .

I neighbors: clauses having common variables
I several clauses with k literals in each

I each clause has o(2k) neighbors
I ⇒ CNF is satisfiable
I Non-constructive proof: lower bound for probability, Lovasz

local lemma
I Naïve algorithm: just resample false clause (while they exist)
I Recent breakthrough (Moser): this algorithm with high

probability terminates quickly
I Explanation: if not, the sequence of resampled clauses

would encode the random bits used in resampling making
them compressible

.

Lovasz local lemma: constructive proof

I CNF: (a ∧ ¬b ∧ . . .) ∨ (¬c ∧ e ∧ . . .) ∨ . . .

I neighbors: clauses having common variables
I several clauses with k literals in each
I each clause has o(2k) neighbors

I ⇒ CNF is satisfiable
I Non-constructive proof: lower bound for probability, Lovasz

local lemma
I Naïve algorithm: just resample false clause (while they exist)
I Recent breakthrough (Moser): this algorithm with high

probability terminates quickly
I Explanation: if not, the sequence of resampled clauses

would encode the random bits used in resampling making
them compressible

.

Lovasz local lemma: constructive proof

I CNF: (a ∧ ¬b ∧ . . .) ∨ (¬c ∧ e ∧ . . .) ∨ . . .

I neighbors: clauses having common variables
I several clauses with k literals in each
I each clause has o(2k) neighbors
I ⇒ CNF is satisfiable

I Non-constructive proof: lower bound for probability, Lovasz
local lemma

I Naïve algorithm: just resample false clause (while they exist)
I Recent breakthrough (Moser): this algorithm with high

probability terminates quickly
I Explanation: if not, the sequence of resampled clauses

would encode the random bits used in resampling making
them compressible

.

Lovasz local lemma: constructive proof

I CNF: (a ∧ ¬b ∧ . . .) ∨ (¬c ∧ e ∧ . . .) ∨ . . .

I neighbors: clauses having common variables
I several clauses with k literals in each
I each clause has o(2k) neighbors
I ⇒ CNF is satisfiable
I Non-constructive proof: lower bound for probability, Lovasz

local lemma

I Naïve algorithm: just resample false clause (while they exist)
I Recent breakthrough (Moser): this algorithm with high

probability terminates quickly
I Explanation: if not, the sequence of resampled clauses

would encode the random bits used in resampling making
them compressible

.

Lovasz local lemma: constructive proof

I CNF: (a ∧ ¬b ∧ . . .) ∨ (¬c ∧ e ∧ . . .) ∨ . . .

I neighbors: clauses having common variables
I several clauses with k literals in each
I each clause has o(2k) neighbors
I ⇒ CNF is satisfiable
I Non-constructive proof: lower bound for probability, Lovasz

local lemma
I Naïve algorithm: just resample false clause (while they exist)

I Recent breakthrough (Moser): this algorithm with high
probability terminates quickly

I Explanation: if not, the sequence of resampled clauses
would encode the random bits used in resampling making
them compressible

.

Lovasz local lemma: constructive proof

I CNF: (a ∧ ¬b ∧ . . .) ∨ (¬c ∧ e ∧ . . .) ∨ . . .

I neighbors: clauses having common variables
I several clauses with k literals in each
I each clause has o(2k) neighbors
I ⇒ CNF is satisfiable
I Non-constructive proof: lower bound for probability, Lovasz

local lemma
I Naïve algorithm: just resample false clause (while they exist)
I Recent breakthrough (Moser): this algorithm with high

probability terminates quickly

I Explanation: if not, the sequence of resampled clauses
would encode the random bits used in resampling making
them compressible

.

Lovasz local lemma: constructive proof

I CNF: (a ∧ ¬b ∧ . . .) ∨ (¬c ∧ e ∧ . . .) ∨ . . .

I neighbors: clauses having common variables
I several clauses with k literals in each
I each clause has o(2k) neighbors
I ⇒ CNF is satisfiable
I Non-constructive proof: lower bound for probability, Lovasz

local lemma
I Naïve algorithm: just resample false clause (while they exist)
I Recent breakthrough (Moser): this algorithm with high

probability terminates quickly
I Explanation: if not, the sequence of resampled clauses

would encode the random bits used in resampling making
them compressible

.

Berry, Gödel, Chaitin, Raz

I There are only finitely many strings of complexity < n
I for all strings (except finitely many ones) x the statement

K(x) > n is true
I Can all true statements of this form be provable?
I No, otherwise we could effectively generate string of

complexity > n by enumerating all proofs
I and get Berry’s paradox: the first provable statement

C(x) > n for given n gives some x of complexity > n that can
be described by O(log n) bits

I (Gödel theorem in Chaitin form): There are only finitely many
n such that C(x) > n is provable for some x. (Note that
∃x C(x) > n is always provable!)

I (Gödel second theorem, Kritchman–Raz proof): the
“unexpected test paradox” (a test will be given next week but
it won’t be known before the day of the test)

.

Berry, Gödel, Chaitin, Raz

I There are only finitely many strings of complexity < n

I for all strings (except finitely many ones) x the statement
K(x) > n is true

I Can all true statements of this form be provable?
I No, otherwise we could effectively generate string of

complexity > n by enumerating all proofs
I and get Berry’s paradox: the first provable statement

C(x) > n for given n gives some x of complexity > n that can
be described by O(log n) bits

I (Gödel theorem in Chaitin form): There are only finitely many
n such that C(x) > n is provable for some x. (Note that
∃x C(x) > n is always provable!)

I (Gödel second theorem, Kritchman–Raz proof): the
“unexpected test paradox” (a test will be given next week but
it won’t be known before the day of the test)

.

Berry, Gödel, Chaitin, Raz

I There are only finitely many strings of complexity < n
I for all strings (except finitely many ones) x the statement

K(x) > n is true

I Can all true statements of this form be provable?
I No, otherwise we could effectively generate string of

complexity > n by enumerating all proofs
I and get Berry’s paradox: the first provable statement

C(x) > n for given n gives some x of complexity > n that can
be described by O(log n) bits

I (Gödel theorem in Chaitin form): There are only finitely many
n such that C(x) > n is provable for some x. (Note that
∃x C(x) > n is always provable!)

I (Gödel second theorem, Kritchman–Raz proof): the
“unexpected test paradox” (a test will be given next week but
it won’t be known before the day of the test)

.

Berry, Gödel, Chaitin, Raz

I There are only finitely many strings of complexity < n
I for all strings (except finitely many ones) x the statement

K(x) > n is true
I Can all true statements of this form be provable?

I No, otherwise we could effectively generate string of
complexity > n by enumerating all proofs

I and get Berry’s paradox: the first provable statement
C(x) > n for given n gives some x of complexity > n that can
be described by O(log n) bits

I (Gödel theorem in Chaitin form): There are only finitely many
n such that C(x) > n is provable for some x. (Note that
∃x C(x) > n is always provable!)

I (Gödel second theorem, Kritchman–Raz proof): the
“unexpected test paradox” (a test will be given next week but
it won’t be known before the day of the test)

.

Berry, Gödel, Chaitin, Raz

I There are only finitely many strings of complexity < n
I for all strings (except finitely many ones) x the statement

K(x) > n is true
I Can all true statements of this form be provable?
I No, otherwise we could effectively generate string of

complexity > n by enumerating all proofs

I and get Berry’s paradox: the first provable statement
C(x) > n for given n gives some x of complexity > n that can
be described by O(log n) bits

I (Gödel theorem in Chaitin form): There are only finitely many
n such that C(x) > n is provable for some x. (Note that
∃x C(x) > n is always provable!)

I (Gödel second theorem, Kritchman–Raz proof): the
“unexpected test paradox” (a test will be given next week but
it won’t be known before the day of the test)

.

Berry, Gödel, Chaitin, Raz

I There are only finitely many strings of complexity < n
I for all strings (except finitely many ones) x the statement

K(x) > n is true
I Can all true statements of this form be provable?
I No, otherwise we could effectively generate string of

complexity > n by enumerating all proofs
I and get Berry’s paradox: the first provable statement

C(x) > n for given n gives some x of complexity > n that can
be described by O(log n) bits

I (Gödel theorem in Chaitin form): There are only finitely many
n such that C(x) > n is provable for some x. (Note that
∃x C(x) > n is always provable!)

I (Gödel second theorem, Kritchman–Raz proof): the
“unexpected test paradox” (a test will be given next week but
it won’t be known before the day of the test)

.

Berry, Gödel, Chaitin, Raz

I There are only finitely many strings of complexity < n
I for all strings (except finitely many ones) x the statement

K(x) > n is true
I Can all true statements of this form be provable?
I No, otherwise we could effectively generate string of

complexity > n by enumerating all proofs
I and get Berry’s paradox: the first provable statement

C(x) > n for given n gives some x of complexity > n that can
be described by O(log n) bits

I (Gödel theorem in Chaitin form): There are only finitely many
n such that C(x) > n is provable for some x.

(Note that
∃x C(x) > n is always provable!)

I (Gödel second theorem, Kritchman–Raz proof): the
“unexpected test paradox” (a test will be given next week but
it won’t be known before the day of the test)

.

Berry, Gödel, Chaitin, Raz

I There are only finitely many strings of complexity < n
I for all strings (except finitely many ones) x the statement

K(x) > n is true
I Can all true statements of this form be provable?
I No, otherwise we could effectively generate string of

complexity > n by enumerating all proofs
I and get Berry’s paradox: the first provable statement

C(x) > n for given n gives some x of complexity > n that can
be described by O(log n) bits

I (Gödel theorem in Chaitin form): There are only finitely many
n such that C(x) > n is provable for some x. (Note that
∃x C(x) > n is always provable!)

I (Gödel second theorem, Kritchman–Raz proof): the
“unexpected test paradox” (a test will be given next week but
it won’t be known before the day of the test)

.

Berry, Gödel, Chaitin, Raz

I There are only finitely many strings of complexity < n
I for all strings (except finitely many ones) x the statement

K(x) > n is true
I Can all true statements of this form be provable?
I No, otherwise we could effectively generate string of

complexity > n by enumerating all proofs
I and get Berry’s paradox: the first provable statement

C(x) > n for given n gives some x of complexity > n that can
be described by O(log n) bits

I (Gödel theorem in Chaitin form): There are only finitely many
n such that C(x) > n is provable for some x. (Note that
∃x C(x) > n is always provable!)

I (Gödel second theorem, Kritchman–Raz proof): the
“unexpected test paradox” (a test will be given next week but
it won’t be known before the day of the test)

.

13th Hilbert’s problem

I Function of ≥ 3 variables: e.g., solution of a polynomial of
degree 7 as function of its coefficients

I Is it possible to represent this function as a composition of
functions of at most 2 variables?

I Yes, with weird functions (Cantor)
I Yes, even with continuous functions (Kolmogorov, Arnold)
I Circuit version: explicit function Bn × Bn × Bn → Bn

(polynomial circuit size?) that cannot be represented as
composition of O(1) functions Bn × Bn → Bn. Not known.

I Kolmogorov complexity version: we have three strings a, b, c
on a blackboard. It is allowed to write (add) a new string if it
simple relative to two of the strings on the board. Which
strings we can obtain in O(1) steps? Only strings of small
complexity relative to a, b, c, but not all of them (for random
a, b, c)

.

13th Hilbert’s problem

I Function of ≥ 3 variables: e.g., solution of a polynomial of
degree 7 as function of its coefficients

I Is it possible to represent this function as a composition of
functions of at most 2 variables?

I Yes, with weird functions (Cantor)
I Yes, even with continuous functions (Kolmogorov, Arnold)
I Circuit version: explicit function Bn × Bn × Bn → Bn

(polynomial circuit size?) that cannot be represented as
composition of O(1) functions Bn × Bn → Bn. Not known.

I Kolmogorov complexity version: we have three strings a, b, c
on a blackboard. It is allowed to write (add) a new string if it
simple relative to two of the strings on the board. Which
strings we can obtain in O(1) steps? Only strings of small
complexity relative to a, b, c, but not all of them (for random
a, b, c)

.

13th Hilbert’s problem

I Function of ≥ 3 variables: e.g., solution of a polynomial of
degree 7 as function of its coefficients

I Is it possible to represent this function as a composition of
functions of at most 2 variables?

I Yes, with weird functions (Cantor)
I Yes, even with continuous functions (Kolmogorov, Arnold)
I Circuit version: explicit function Bn × Bn × Bn → Bn

(polynomial circuit size?) that cannot be represented as
composition of O(1) functions Bn × Bn → Bn. Not known.

I Kolmogorov complexity version: we have three strings a, b, c
on a blackboard. It is allowed to write (add) a new string if it
simple relative to two of the strings on the board. Which
strings we can obtain in O(1) steps? Only strings of small
complexity relative to a, b, c, but not all of them (for random
a, b, c)

.

13th Hilbert’s problem

I Function of ≥ 3 variables: e.g., solution of a polynomial of
degree 7 as function of its coefficients

I Is it possible to represent this function as a composition of
functions of at most 2 variables?

I Yes, with weird functions (Cantor)

I Yes, even with continuous functions (Kolmogorov, Arnold)
I Circuit version: explicit function Bn × Bn × Bn → Bn

(polynomial circuit size?) that cannot be represented as
composition of O(1) functions Bn × Bn → Bn. Not known.

I Kolmogorov complexity version: we have three strings a, b, c
on a blackboard. It is allowed to write (add) a new string if it
simple relative to two of the strings on the board. Which
strings we can obtain in O(1) steps? Only strings of small
complexity relative to a, b, c, but not all of them (for random
a, b, c)

.

13th Hilbert’s problem

I Function of ≥ 3 variables: e.g., solution of a polynomial of
degree 7 as function of its coefficients

I Is it possible to represent this function as a composition of
functions of at most 2 variables?

I Yes, with weird functions (Cantor)
I Yes, even with continuous functions (Kolmogorov, Arnold)

I Circuit version: explicit function Bn × Bn × Bn → Bn

(polynomial circuit size?) that cannot be represented as
composition of O(1) functions Bn × Bn → Bn. Not known.

I Kolmogorov complexity version: we have three strings a, b, c
on a blackboard. It is allowed to write (add) a new string if it
simple relative to two of the strings on the board. Which
strings we can obtain in O(1) steps? Only strings of small
complexity relative to a, b, c, but not all of them (for random
a, b, c)

.

13th Hilbert’s problem

I Function of ≥ 3 variables: e.g., solution of a polynomial of
degree 7 as function of its coefficients

I Is it possible to represent this function as a composition of
functions of at most 2 variables?

I Yes, with weird functions (Cantor)
I Yes, even with continuous functions (Kolmogorov, Arnold)
I Circuit version: explicit function Bn × Bn × Bn → Bn

(polynomial circuit size?) that cannot be represented as
composition of O(1) functions Bn × Bn → Bn. Not known.

I Kolmogorov complexity version: we have three strings a, b, c
on a blackboard. It is allowed to write (add) a new string if it
simple relative to two of the strings on the board. Which
strings we can obtain in O(1) steps? Only strings of small
complexity relative to a, b, c, but not all of them (for random
a, b, c)

.

13th Hilbert’s problem

I Function of ≥ 3 variables: e.g., solution of a polynomial of
degree 7 as function of its coefficients

I Is it possible to represent this function as a composition of
functions of at most 2 variables?

I Yes, with weird functions (Cantor)
I Yes, even with continuous functions (Kolmogorov, Arnold)
I Circuit version: explicit function Bn × Bn × Bn → Bn

(polynomial circuit size?) that cannot be represented as
composition of O(1) functions Bn × Bn → Bn. Not known.

I Kolmogorov complexity version: we have three strings a, b, c
on a blackboard. It is allowed to write (add) a new string if it
simple relative to two of the strings on the board. Which
strings we can obtain in O(1) steps? Only strings of small
complexity relative to a, b, c, but not all of them (for random
a, b, c)

.

Secret sharing

I secret s and three people; any two are able to reconstruct the
secret working together; but each one in isolation has no
information about it

I assume s ∈ F (a field); take random a and tell the people a,
a+ s and a+ 2s (assuming 2 6= 0 in F)

I other secret sharing schemes; how long should be secrets
(not understood)

I Kolmogorov complexity settings: for a given s find a, b, c
such that

C(s|a), C(s|b), C(s|c) ≈ C(s); C(s|a, b), C(s|a, c), C(s|b, c) ≈ 0

I Some relation between Kolmogorov and traditional settings
(Romashchenko, Kaced)

.

Secret sharing

I secret s and three people; any two are able to reconstruct the
secret working together; but each one in isolation has no
information about it

I assume s ∈ F (a field); take random a and tell the people a,
a+ s and a+ 2s (assuming 2 6= 0 in F)

I other secret sharing schemes; how long should be secrets
(not understood)

I Kolmogorov complexity settings: for a given s find a, b, c
such that

C(s|a), C(s|b), C(s|c) ≈ C(s); C(s|a, b), C(s|a, c), C(s|b, c) ≈ 0

I Some relation between Kolmogorov and traditional settings
(Romashchenko, Kaced)

.

Secret sharing

I secret s and three people; any two are able to reconstruct the
secret working together; but each one in isolation has no
information about it

I assume s ∈ F (a field); take random a and tell the people a,
a+ s and a+ 2s (assuming 2 6= 0 in F)

I other secret sharing schemes; how long should be secrets
(not understood)

I Kolmogorov complexity settings: for a given s find a, b, c
such that

C(s|a), C(s|b), C(s|c) ≈ C(s); C(s|a, b), C(s|a, c), C(s|b, c) ≈ 0

I Some relation between Kolmogorov and traditional settings
(Romashchenko, Kaced)

.

Secret sharing

I secret s and three people; any two are able to reconstruct the
secret working together; but each one in isolation has no
information about it

I assume s ∈ F (a field); take random a and tell the people a,
a+ s and a+ 2s (assuming 2 6= 0 in F)

I other secret sharing schemes; how long should be secrets
(not understood)

I Kolmogorov complexity settings: for a given s find a, b, c
such that

C(s|a), C(s|b), C(s|c) ≈ C(s); C(s|a, b), C(s|a, c), C(s|b, c) ≈ 0

I Some relation between Kolmogorov and traditional settings
(Romashchenko, Kaced)

.

Secret sharing

I secret s and three people; any two are able to reconstruct the
secret working together; but each one in isolation has no
information about it

I assume s ∈ F (a field); take random a and tell the people a,
a+ s and a+ 2s (assuming 2 6= 0 in F)

I other secret sharing schemes; how long should be secrets
(not understood)

I Kolmogorov complexity settings: for a given s find a, b, c
such that

C(s|a), C(s|b), C(s|c) ≈ C(s); C(s|a, b), C(s|a, c), C(s|b, c) ≈ 0

I Some relation between Kolmogorov and traditional settings
(Romashchenko, Kaced)

.

Secret sharing

I secret s and three people; any two are able to reconstruct the
secret working together; but each one in isolation has no
information about it

I assume s ∈ F (a field); take random a and tell the people a,
a+ s and a+ 2s (assuming 2 6= 0 in F)

I other secret sharing schemes; how long should be secrets
(not understood)

I Kolmogorov complexity settings: for a given s find a, b, c
such that

C(s|a), C(s|b), C(s|c) ≈ C(s); C(s|a, b), C(s|a, c), C(s|b, c) ≈ 0

I Some relation between Kolmogorov and traditional settings
(Romashchenko, Kaced)

.

Quasi-cryptography

I Alice has some information a
I Bob wants to let her know some b
I by sending some message f
I in such a way that Eve gets minimal information about b
I Formally: for given a, b find f such that C(b|a, f) ≈ 0 and

C(b|f) → max.
I Theorem (Muchnik): it is always possible to have

C(b|f) ≈ min(C(b), C(a))
I Full version: Eve knows some c and we want to send

message of a minimal possible length C(b|a)

.

Quasi-cryptography

I Alice has some information a

I Bob wants to let her know some b
I by sending some message f
I in such a way that Eve gets minimal information about b
I Formally: for given a, b find f such that C(b|a, f) ≈ 0 and

C(b|f) → max.
I Theorem (Muchnik): it is always possible to have

C(b|f) ≈ min(C(b), C(a))
I Full version: Eve knows some c and we want to send

message of a minimal possible length C(b|a)

.

Quasi-cryptography

I Alice has some information a
I Bob wants to let her know some b

I by sending some message f
I in such a way that Eve gets minimal information about b
I Formally: for given a, b find f such that C(b|a, f) ≈ 0 and

C(b|f) → max.
I Theorem (Muchnik): it is always possible to have

C(b|f) ≈ min(C(b), C(a))
I Full version: Eve knows some c and we want to send

message of a minimal possible length C(b|a)

.

Quasi-cryptography

I Alice has some information a
I Bob wants to let her know some b
I by sending some message f

I in such a way that Eve gets minimal information about b
I Formally: for given a, b find f such that C(b|a, f) ≈ 0 and

C(b|f) → max.
I Theorem (Muchnik): it is always possible to have

C(b|f) ≈ min(C(b), C(a))
I Full version: Eve knows some c and we want to send

message of a minimal possible length C(b|a)

.

Quasi-cryptography

I Alice has some information a
I Bob wants to let her know some b
I by sending some message f
I in such a way that Eve gets minimal information about b

I Formally: for given a, b find f such that C(b|a, f) ≈ 0 and
C(b|f) → max.

I Theorem (Muchnik): it is always possible to have
C(b|f) ≈ min(C(b), C(a))

I Full version: Eve knows some c and we want to send
message of a minimal possible length C(b|a)

.

Quasi-cryptography

I Alice has some information a
I Bob wants to let her know some b
I by sending some message f
I in such a way that Eve gets minimal information about b
I Formally: for given a, b find f such that C(b|a, f) ≈ 0 and

C(b|f) → max.

I Theorem (Muchnik): it is always possible to have
C(b|f) ≈ min(C(b), C(a))

I Full version: Eve knows some c and we want to send
message of a minimal possible length C(b|a)

.

Quasi-cryptography

I Alice has some information a
I Bob wants to let her know some b
I by sending some message f
I in such a way that Eve gets minimal information about b
I Formally: for given a, b find f such that C(b|a, f) ≈ 0 and

C(b|f) → max.
I Theorem (Muchnik): it is always possible to have

C(b|f) ≈ min(C(b), C(a))

I Full version: Eve knows some c and we want to send
message of a minimal possible length C(b|a)

.

Quasi-cryptography

I Alice has some information a
I Bob wants to let her know some b
I by sending some message f
I in such a way that Eve gets minimal information about b
I Formally: for given a, b find f such that C(b|a, f) ≈ 0 and

C(b|f) → max.
I Theorem (Muchnik): it is always possible to have

C(b|f) ≈ min(C(b), C(a))
I Full version: Eve knows some c and we want to send

message of a minimal possible length C(b|a)

.

Andrej Muchnik (1958-2007)

