
.

CiE-2012

Topological arguments and Kolmogorov
complexity

Alexander Shen
LIRMM, CNRS & UM2, Montpellier; on leave from

ИППИ РАН, Москва

Supported by ANR NAFIT grant

.

Conditional complexity as distance

I C(x|y), conditional complexity of x given y, minimal
length of a program that maps y to x

I depends on the programming language, is minimal up
to O(1) for some “optimal” languages; one of them is
fixed

I C(x|y) measures “how far is x from y” in a sense, but not
symmetric

I task: given string x and number n, find y such that
C(x|y) = n+ O(1) and C(y|x) = n+ O(1)

I not always possible: C(x) should be at least n

.

Conditional complexity as distance

I C(x|y), conditional complexity of x given y, minimal
length of a program that maps y to x

I depends on the programming language, is minimal up
to O(1) for some “optimal” languages; one of them is
fixed

I C(x|y) measures “how far is x from y” in a sense, but not
symmetric

I task: given string x and number n, find y such that
C(x|y) = n+ O(1) and C(y|x) = n+ O(1)

I not always possible: C(x) should be at least n

.

Conditional complexity as distance

I C(x|y), conditional complexity of x given y, minimal
length of a program that maps y to x

I depends on the programming language, is minimal up
to O(1) for some “optimal” languages; one of them is
fixed

I C(x|y) measures “how far is x from y” in a sense, but not
symmetric

I task: given string x and number n, find y such that
C(x|y) = n+ O(1) and C(y|x) = n+ O(1)

I not always possible: C(x) should be at least n

.

Conditional complexity as distance

I C(x|y), conditional complexity of x given y, minimal
length of a program that maps y to x

I depends on the programming language, is minimal up
to O(1) for some “optimal” languages; one of them is
fixed

I C(x|y) measures “how far is x from y” in a sense, but not
symmetric

I task: given string x and number n, find y such that
C(x|y) = n+ O(1) and C(y|x) = n+ O(1)

I not always possible: C(x) should be at least n

.

Conditional complexity as distance

I C(x|y), conditional complexity of x given y, minimal
length of a program that maps y to x

I depends on the programming language, is minimal up
to O(1) for some “optimal” languages; one of them is
fixed

I C(x|y) measures “how far is x from y” in a sense, but not
symmetric

I task: given string x and number n, find y such that
C(x|y) = n+ O(1) and C(y|x) = n+ O(1)

I not always possible: C(x) should be at least n

.

Conditional complexity as distance

I C(x|y), conditional complexity of x given y, minimal
length of a program that maps y to x

I depends on the programming language, is minimal up
to O(1) for some “optimal” languages; one of them is
fixed

I C(x|y) measures “how far is x from y” in a sense, but not
symmetric

I task: given string x and number n, find y such that
C(x|y) = n+ O(1) and C(y|x) = n+ O(1)

I not always possible: C(x) should be at least n

.

M. Vyugin theorem and its extension

I Theorem: if C(x) > 2n, there exists y such that
C(x|y) = n+ O(1) and C(y|x) = n+ O(1).

I proof uses a game argument
I in fact C(x) > n+ O(log n) is enough
I but for completely different reasons
I simple topological fact: if a continuous mapping of a
circle S1 to R2 turns around some point O, then any its
continuous extension to a mapping of a disk D2 covers O

I strangely, for C(x) ≫ n this argument does not work
(only for C(x) ≤ poly(n))

I so C(x) ≥ n+ O(log n) is enough, but two essentially
different arguments are needed at both ends

.

M. Vyugin theorem and its extension

I Theorem: if C(x) > 2n, there exists y such that
C(x|y) = n+ O(1) and C(y|x) = n+ O(1).

I proof uses a game argument
I in fact C(x) > n+ O(log n) is enough
I but for completely different reasons
I simple topological fact: if a continuous mapping of a
circle S1 to R2 turns around some point O, then any its
continuous extension to a mapping of a disk D2 covers O

I strangely, for C(x) ≫ n this argument does not work
(only for C(x) ≤ poly(n))

I so C(x) ≥ n+ O(log n) is enough, but two essentially
different arguments are needed at both ends

.

M. Vyugin theorem and its extension

I Theorem: if C(x) > 2n, there exists y such that
C(x|y) = n+ O(1) and C(y|x) = n+ O(1).

I proof uses a game argument

I in fact C(x) > n+ O(log n) is enough
I but for completely different reasons
I simple topological fact: if a continuous mapping of a
circle S1 to R2 turns around some point O, then any its
continuous extension to a mapping of a disk D2 covers O

I strangely, for C(x) ≫ n this argument does not work
(only for C(x) ≤ poly(n))

I so C(x) ≥ n+ O(log n) is enough, but two essentially
different arguments are needed at both ends

.

M. Vyugin theorem and its extension

I Theorem: if C(x) > 2n, there exists y such that
C(x|y) = n+ O(1) and C(y|x) = n+ O(1).

I proof uses a game argument
I in fact C(x) > n+ O(log n) is enough

I but for completely different reasons
I simple topological fact: if a continuous mapping of a
circle S1 to R2 turns around some point O, then any its
continuous extension to a mapping of a disk D2 covers O

I strangely, for C(x) ≫ n this argument does not work
(only for C(x) ≤ poly(n))

I so C(x) ≥ n+ O(log n) is enough, but two essentially
different arguments are needed at both ends

.

M. Vyugin theorem and its extension

I Theorem: if C(x) > 2n, there exists y such that
C(x|y) = n+ O(1) and C(y|x) = n+ O(1).

I proof uses a game argument
I in fact C(x) > n+ O(log n) is enough
I but for completely different reasons

I simple topological fact: if a continuous mapping of a
circle S1 to R2 turns around some point O, then any its
continuous extension to a mapping of a disk D2 covers O

I strangely, for C(x) ≫ n this argument does not work
(only for C(x) ≤ poly(n))

I so C(x) ≥ n+ O(log n) is enough, but two essentially
different arguments are needed at both ends

.

M. Vyugin theorem and its extension

I Theorem: if C(x) > 2n, there exists y such that
C(x|y) = n+ O(1) and C(y|x) = n+ O(1).

I proof uses a game argument
I in fact C(x) > n+ O(log n) is enough
I but for completely different reasons
I simple topological fact: if a continuous mapping of a
circle S1 to R2 turns around some point O, then any its
continuous extension to a mapping of a disk D2 covers O

I strangely, for C(x) ≫ n this argument does not work
(only for C(x) ≤ poly(n))

I so C(x) ≥ n+ O(log n) is enough, but two essentially
different arguments are needed at both ends

.

M. Vyugin theorem and its extension

I Theorem: if C(x) > 2n, there exists y such that
C(x|y) = n+ O(1) and C(y|x) = n+ O(1).

I proof uses a game argument
I in fact C(x) > n+ O(log n) is enough
I but for completely different reasons
I simple topological fact: if a continuous mapping of a
circle S1 to R2 turns around some point O, then any its
continuous extension to a mapping of a disk D2 covers O

I strangely, for C(x) ≫ n this argument does not work
(only for C(x) ≤ poly(n))

I so C(x) ≥ n+ O(log n) is enough, but two essentially
different arguments are needed at both ends

.

M. Vyugin theorem and its extension

I Theorem: if C(x) > 2n, there exists y such that
C(x|y) = n+ O(1) and C(y|x) = n+ O(1).

I proof uses a game argument
I in fact C(x) > n+ O(log n) is enough
I but for completely different reasons
I simple topological fact: if a continuous mapping of a
circle S1 to R2 turns around some point O, then any its
continuous extension to a mapping of a disk D2 covers O

I strangely, for C(x) ≫ n this argument does not work
(only for C(x) ≤ poly(n))

I so C(x) ≥ n+ O(log n) is enough, but two essentially
different arguments are needed at both ends

.

Why topology can be useful

I simple example: imagine we want C(x|y) = n and know
that C(x) ≥ n.

I let y be x, then C(x|y) = O(1)
I let us remove bits in y one by one (e.g., from right to
left)

I C(x|y) then changes but gradually: C(x|y0) and C(x|y1)
are C(x|y) + O(1)

I at the end y is empty, and C(x|y) = C(x) ≥ n
I discrete intermediate value theorem guarantees that
C(x|y) = n+ O(1) for some y on the way

.

Why topology can be useful

I simple example: imagine we want C(x|y) = n and know
that C(x) ≥ n.

I let y be x, then C(x|y) = O(1)
I let us remove bits in y one by one (e.g., from right to
left)

I C(x|y) then changes but gradually: C(x|y0) and C(x|y1)
are C(x|y) + O(1)

I at the end y is empty, and C(x|y) = C(x) ≥ n
I discrete intermediate value theorem guarantees that
C(x|y) = n+ O(1) for some y on the way

.

Why topology can be useful

I simple example: imagine we want C(x|y) = n and know
that C(x) ≥ n.

I let y be x, then C(x|y) = O(1)

I let us remove bits in y one by one (e.g., from right to
left)

I C(x|y) then changes but gradually: C(x|y0) and C(x|y1)
are C(x|y) + O(1)

I at the end y is empty, and C(x|y) = C(x) ≥ n
I discrete intermediate value theorem guarantees that
C(x|y) = n+ O(1) for some y on the way

.

Why topology can be useful

I simple example: imagine we want C(x|y) = n and know
that C(x) ≥ n.

I let y be x, then C(x|y) = O(1)
I let us remove bits in y one by one (e.g., from right to
left)

I C(x|y) then changes but gradually: C(x|y0) and C(x|y1)
are C(x|y) + O(1)

I at the end y is empty, and C(x|y) = C(x) ≥ n
I discrete intermediate value theorem guarantees that
C(x|y) = n+ O(1) for some y on the way

.

Why topology can be useful

I simple example: imagine we want C(x|y) = n and know
that C(x) ≥ n.

I let y be x, then C(x|y) = O(1)
I let us remove bits in y one by one (e.g., from right to
left)

I C(x|y) then changes but gradually: C(x|y0) and C(x|y1)
are C(x|y) + O(1)

I at the end y is empty, and C(x|y) = C(x) ≥ n
I discrete intermediate value theorem guarantees that
C(x|y) = n+ O(1) for some y on the way

.

Why topology can be useful

I simple example: imagine we want C(x|y) = n and know
that C(x) ≥ n.

I let y be x, then C(x|y) = O(1)
I let us remove bits in y one by one (e.g., from right to
left)

I C(x|y) then changes but gradually: C(x|y0) and C(x|y1)
are C(x|y) + O(1)

I at the end y is empty, and C(x|y) = C(x) ≥ n

I discrete intermediate value theorem guarantees that
C(x|y) = n+ O(1) for some y on the way

.

Why topology can be useful

I simple example: imagine we want C(x|y) = n and know
that C(x) ≥ n.

I let y be x, then C(x|y) = O(1)
I let us remove bits in y one by one (e.g., from right to
left)

I C(x|y) then changes but gradually: C(x|y0) and C(x|y1)
are C(x|y) + O(1)

I at the end y is empty, and C(x|y) = C(x) ≥ n
I discrete intermediate value theorem guarantees that
C(x|y) = n+ O(1) for some y on the way

.

O(log n) precision is easy

I to get C(y|x) = n we need to put some n bits of new
information (that is not in x) into y

I to get C(x|y) = n we need to put in y all the information
about x except for n bits

I let p be the shortest program for x, so |p| = C(x) ≥ n
I p is incompressible
I let y be p without n bits
I plus some random n bits (independent from p)
I then both C(x|y) and C(y|x) are n+ O(log n)
I O(1) cannot be obtained in this way (since all the
arguments about random and independent bits work
with O(log n) precision only)

.

O(log n) precision is easy

I to get C(y|x) = n we need to put some n bits of new
information (that is not in x) into y

I to get C(x|y) = n we need to put in y all the information
about x except for n bits

I let p be the shortest program for x, so |p| = C(x) ≥ n
I p is incompressible
I let y be p without n bits
I plus some random n bits (independent from p)
I then both C(x|y) and C(y|x) are n+ O(log n)
I O(1) cannot be obtained in this way (since all the
arguments about random and independent bits work
with O(log n) precision only)

.

O(log n) precision is easy

I to get C(y|x) = n we need to put some n bits of new
information (that is not in x) into y

I to get C(x|y) = n we need to put in y all the information
about x except for n bits

I let p be the shortest program for x, so |p| = C(x) ≥ n
I p is incompressible
I let y be p without n bits
I plus some random n bits (independent from p)
I then both C(x|y) and C(y|x) are n+ O(log n)
I O(1) cannot be obtained in this way (since all the
arguments about random and independent bits work
with O(log n) precision only)

.

O(log n) precision is easy

I to get C(y|x) = n we need to put some n bits of new
information (that is not in x) into y

I to get C(x|y) = n we need to put in y all the information
about x except for n bits

I let p be the shortest program for x, so |p| = C(x) ≥ n

I p is incompressible
I let y be p without n bits
I plus some random n bits (independent from p)
I then both C(x|y) and C(y|x) are n+ O(log n)
I O(1) cannot be obtained in this way (since all the
arguments about random and independent bits work
with O(log n) precision only)

.

O(log n) precision is easy

I to get C(y|x) = n we need to put some n bits of new
information (that is not in x) into y

I to get C(x|y) = n we need to put in y all the information
about x except for n bits

I let p be the shortest program for x, so |p| = C(x) ≥ n
I p is incompressible

I let y be p without n bits
I plus some random n bits (independent from p)
I then both C(x|y) and C(y|x) are n+ O(log n)
I O(1) cannot be obtained in this way (since all the
arguments about random and independent bits work
with O(log n) precision only)

.

O(log n) precision is easy

I to get C(y|x) = n we need to put some n bits of new
information (that is not in x) into y

I to get C(x|y) = n we need to put in y all the information
about x except for n bits

I let p be the shortest program for x, so |p| = C(x) ≥ n
I p is incompressible
I let y be p without n bits

I plus some random n bits (independent from p)
I then both C(x|y) and C(y|x) are n+ O(log n)
I O(1) cannot be obtained in this way (since all the
arguments about random and independent bits work
with O(log n) precision only)

.

O(log n) precision is easy

I to get C(y|x) = n we need to put some n bits of new
information (that is not in x) into y

I to get C(x|y) = n we need to put in y all the information
about x except for n bits

I let p be the shortest program for x, so |p| = C(x) ≥ n
I p is incompressible
I let y be p without n bits
I plus some random n bits (independent from p)

I then both C(x|y) and C(y|x) are n+ O(log n)
I O(1) cannot be obtained in this way (since all the
arguments about random and independent bits work
with O(log n) precision only)

.

O(log n) precision is easy

I to get C(y|x) = n we need to put some n bits of new
information (that is not in x) into y

I to get C(x|y) = n we need to put in y all the information
about x except for n bits

I let p be the shortest program for x, so |p| = C(x) ≥ n
I p is incompressible
I let y be p without n bits
I plus some random n bits (independent from p)
I then both C(x|y) and C(y|x) are n+ O(log n)

I O(1) cannot be obtained in this way (since all the
arguments about random and independent bits work
with O(log n) precision only)

.

O(log n) precision is easy

I to get C(y|x) = n we need to put some n bits of new
information (that is not in x) into y

I to get C(x|y) = n we need to put in y all the information
about x except for n bits

I let p be the shortest program for x, so |p| = C(x) ≥ n
I p is incompressible
I let y be p without n bits
I plus some random n bits (independent from p)
I then both C(x|y) and C(y|x) are n+ O(log n)
I O(1) cannot be obtained in this way (since all the
arguments about random and independent bits work
with O(log n) precision only)

.

Putting pieces together

I let p be the shortest program for x, so |p| = C(x) ≥ n
I let q be a random (incompressible) string of length 2n
when p is known (independent from p)

I for every k ∈ [0, C(x)] and every l ∈ [0, 2n] consider

yk,l = (k-bit prefix of p, l-bit prefix of q)

I mapping (k, l) 7→ (C(x|yk,l), C(yk,l|x))

|p|

|q|

C(x)
A B

CD2m

A′B′

C′ D′

C(x|y)

C(y|x)

C(x)

2n

(n,n)

.

Putting pieces together
I let p be the shortest program for x, so |p| = C(x) ≥ n

I let q be a random (incompressible) string of length 2n
when p is known (independent from p)

I for every k ∈ [0, C(x)] and every l ∈ [0, 2n] consider

yk,l = (k-bit prefix of p, l-bit prefix of q)

I mapping (k, l) 7→ (C(x|yk,l), C(yk,l|x))

|p|

|q|

C(x)
A B

CD2m

A′B′

C′ D′

C(x|y)

C(y|x)

C(x)

2n

(n,n)

.

Putting pieces together
I let p be the shortest program for x, so |p| = C(x) ≥ n
I let q be a random (incompressible) string of length 2n
when p is known (independent from p)

I for every k ∈ [0, C(x)] and every l ∈ [0, 2n] consider

yk,l = (k-bit prefix of p, l-bit prefix of q)

I mapping (k, l) 7→ (C(x|yk,l), C(yk,l|x))

|p|

|q|

C(x)
A B

CD2m

A′B′

C′ D′

C(x|y)

C(y|x)

C(x)

2n

(n,n)

.

Putting pieces together
I let p be the shortest program for x, so |p| = C(x) ≥ n
I let q be a random (incompressible) string of length 2n
when p is known (independent from p)

I for every k ∈ [0, C(x)] and every l ∈ [0, 2n] consider

yk,l = (k-bit prefix of p, l-bit prefix of q)

I mapping (k, l) 7→ (C(x|yk,l), C(yk,l|x))

|p|

|q|

C(x)
A B

CD2m

A′B′

C′ D′

C(x|y)

C(y|x)

C(x)

2n

(n,n)

.

Putting pieces together
I let p be the shortest program for x, so |p| = C(x) ≥ n
I let q be a random (incompressible) string of length 2n
when p is known (independent from p)

I for every k ∈ [0, C(x)] and every l ∈ [0, 2n] consider

yk,l = (k-bit prefix of p, l-bit prefix of q)

I mapping (k, l) 7→ (C(x|yk,l), C(yk,l|x))

|p|

|q|

C(x)
A B

CD2m

A′B′

C′ D′

C(x|y)

C(y|x)

C(x)

2n

(n,n)

.

Putting pieces together
I let p be the shortest program for x, so |p| = C(x) ≥ n
I let q be a random (incompressible) string of length 2n
when p is known (independent from p)

I for every k ∈ [0, C(x)] and every l ∈ [0, 2n] consider

yk,l = (k-bit prefix of p, l-bit prefix of q)

I mapping (k, l) 7→ (C(x|yk,l), C(yk,l|x))

|p|

|q|

C(x)
A B

CD2m

A′B′

C′ D′

C(x|y)

C(y|x)

C(x)

2n

(n,n)

.

Topological details

I mapping is defined on a grid (rectangle)
I and maps neighbor points to a points at O(1) distance
I “Lipschitz continuity”
I covers (n, n) with O(1) precision
I reduction to continuous version: interpolation on
triangles (linear)

I preimage may be not in the grid, but neighbor grid
point gives O(1)-precision

I Alternative: repeat the proof for discrete case

.

Topological details

I mapping is defined on a grid (rectangle)

I and maps neighbor points to a points at O(1) distance
I “Lipschitz continuity”
I covers (n, n) with O(1) precision
I reduction to continuous version: interpolation on
triangles (linear)

I preimage may be not in the grid, but neighbor grid
point gives O(1)-precision

I Alternative: repeat the proof for discrete case

.

Topological details

I mapping is defined on a grid (rectangle)
I and maps neighbor points to a points at O(1) distance

I “Lipschitz continuity”
I covers (n, n) with O(1) precision
I reduction to continuous version: interpolation on
triangles (linear)

I preimage may be not in the grid, but neighbor grid
point gives O(1)-precision

I Alternative: repeat the proof for discrete case

.

Topological details

I mapping is defined on a grid (rectangle)
I and maps neighbor points to a points at O(1) distance
I “Lipschitz continuity”

I covers (n, n) with O(1) precision
I reduction to continuous version: interpolation on
triangles (linear)

I preimage may be not in the grid, but neighbor grid
point gives O(1)-precision

I Alternative: repeat the proof for discrete case

.

Topological details

I mapping is defined on a grid (rectangle)
I and maps neighbor points to a points at O(1) distance
I “Lipschitz continuity”
I covers (n, n) with O(1) precision

I reduction to continuous version: interpolation on
triangles (linear)

I preimage may be not in the grid, but neighbor grid
point gives O(1)-precision

I Alternative: repeat the proof for discrete case

.

Topological details

I mapping is defined on a grid (rectangle)
I and maps neighbor points to a points at O(1) distance
I “Lipschitz continuity”
I covers (n, n) with O(1) precision
I reduction to continuous version: interpolation on
triangles (linear)

I preimage may be not in the grid, but neighbor grid
point gives O(1)-precision

I Alternative: repeat the proof for discrete case

.

Topological details

I mapping is defined on a grid (rectangle)
I and maps neighbor points to a points at O(1) distance
I “Lipschitz continuity”
I covers (n, n) with O(1) precision
I reduction to continuous version: interpolation on
triangles (linear)

I preimage may be not in the grid, but neighbor grid
point gives O(1)-precision

I Alternative: repeat the proof for discrete case

.

Topological details

I mapping is defined on a grid (rectangle)
I and maps neighbor points to a points at O(1) distance
I “Lipschitz continuity”
I covers (n, n) with O(1) precision
I reduction to continuous version: interpolation on
triangles (linear)

I preimage may be not in the grid, but neighbor grid
point gives O(1)-precision

I Alternative: repeat the proof for discrete case

.

Comments

I why we need C(x) be polynomial? if C(x) is very large,
the value of k may contain a lot of information about z

I it is not necessary (unlike for original Vyugin argument)
to have the same targets for C(x|y) and C(y|x)

I other applications of the same type of argument: for
every x, y that are almost independent (I(x : y) is small
compared to C(x) and C(y)) one can find z such that
C(x|z) = C(x)/2 + O(1) and C(y|z) = C(y)/2 + O(1)

I similar statement for halving complexity of three or
more strings by adding a condition

I under the assumption of independence (can be
weakened but not eliminated)

I an open problem in the general case

.

Comments

I why we need C(x) be polynomial? if C(x) is very large,
the value of k may contain a lot of information about z

I it is not necessary (unlike for original Vyugin argument)
to have the same targets for C(x|y) and C(y|x)

I other applications of the same type of argument: for
every x, y that are almost independent (I(x : y) is small
compared to C(x) and C(y)) one can find z such that
C(x|z) = C(x)/2 + O(1) and C(y|z) = C(y)/2 + O(1)

I similar statement for halving complexity of three or
more strings by adding a condition

I under the assumption of independence (can be
weakened but not eliminated)

I an open problem in the general case

.

Comments

I why we need C(x) be polynomial? if C(x) is very large,
the value of k may contain a lot of information about z

I it is not necessary (unlike for original Vyugin argument)
to have the same targets for C(x|y) and C(y|x)

I other applications of the same type of argument: for
every x, y that are almost independent (I(x : y) is small
compared to C(x) and C(y)) one can find z such that
C(x|z) = C(x)/2 + O(1) and C(y|z) = C(y)/2 + O(1)

I similar statement for halving complexity of three or
more strings by adding a condition

I under the assumption of independence (can be
weakened but not eliminated)

I an open problem in the general case

.

Comments

I why we need C(x) be polynomial? if C(x) is very large,
the value of k may contain a lot of information about z

I it is not necessary (unlike for original Vyugin argument)
to have the same targets for C(x|y) and C(y|x)

I other applications of the same type of argument: for
every x, y that are almost independent (I(x : y) is small
compared to C(x) and C(y)) one can find z such that
C(x|z) = C(x)/2 + O(1) and C(y|z) = C(y)/2 + O(1)

I similar statement for halving complexity of three or
more strings by adding a condition

I under the assumption of independence (can be
weakened but not eliminated)

I an open problem in the general case

.

Comments

I why we need C(x) be polynomial? if C(x) is very large,
the value of k may contain a lot of information about z

I it is not necessary (unlike for original Vyugin argument)
to have the same targets for C(x|y) and C(y|x)

I other applications of the same type of argument: for
every x, y that are almost independent (I(x : y) is small
compared to C(x) and C(y)) one can find z such that
C(x|z) = C(x)/2 + O(1) and C(y|z) = C(y)/2 + O(1)

I similar statement for halving complexity of three or
more strings by adding a condition

I under the assumption of independence (can be
weakened but not eliminated)

I an open problem in the general case

.

Comments

I why we need C(x) be polynomial? if C(x) is very large,
the value of k may contain a lot of information about z

I it is not necessary (unlike for original Vyugin argument)
to have the same targets for C(x|y) and C(y|x)

I other applications of the same type of argument: for
every x, y that are almost independent (I(x : y) is small
compared to C(x) and C(y)) one can find z such that
C(x|z) = C(x)/2 + O(1) and C(y|z) = C(y)/2 + O(1)

I similar statement for halving complexity of three or
more strings by adding a condition

I under the assumption of independence (can be
weakened but not eliminated)

I an open problem in the general case

.

Comments

I why we need C(x) be polynomial? if C(x) is very large,
the value of k may contain a lot of information about z

I it is not necessary (unlike for original Vyugin argument)
to have the same targets for C(x|y) and C(y|x)

I other applications of the same type of argument: for
every x, y that are almost independent (I(x : y) is small
compared to C(x) and C(y)) one can find z such that
C(x|z) = C(x)/2 + O(1) and C(y|z) = C(y)/2 + O(1)

I similar statement for halving complexity of three or
more strings by adding a condition

I under the assumption of independence (can be
weakened but not eliminated)

I an open problem in the general case

.

Original game argument

I If C(x) > 3n, there exists y such that C(x|y) and C(y|x)
are n+ O(1)

I we replaced 2n by 3n to simplify explanations (and in
any case this is already covered)

I we present some game
I then show why winning this game is enough
I and finally show how to win the game

.

Original game argument

I If C(x) > 3n, there exists y such that C(x|y) and C(y|x)
are n+ O(1)

I we replaced 2n by 3n to simplify explanations (and in
any case this is already covered)

I we present some game
I then show why winning this game is enough
I and finally show how to win the game

.

Original game argument

I If C(x) > 3n, there exists y such that C(x|y) and C(y|x)
are n+ O(1)

I we replaced 2n by 3n to simplify explanations (and in
any case this is already covered)

I we present some game
I then show why winning this game is enough
I and finally show how to win the game

.

Original game argument

I If C(x) > 3n, there exists y such that C(x|y) and C(y|x)
are n+ O(1)

I we replaced 2n by 3n to simplify explanations (and in
any case this is already covered)

I we present some game

I then show why winning this game is enough
I and finally show how to win the game

.

Original game argument

I If C(x) > 3n, there exists y such that C(x|y) and C(y|x)
are n+ O(1)

I we replaced 2n by 3n to simplify explanations (and in
any case this is already covered)

I we present some game
I then show why winning this game is enough

I and finally show how to win the game

.

Original game argument

I If C(x) > 3n, there exists y such that C(x|y) and C(y|x)
are n+ O(1)

I we replaced 2n by 3n to simplify explanations (and in
any case this is already covered)

I we present some game
I then show why winning this game is enough
I and finally show how to win the game

.

Dating agency and its task

I two countable sets X and Y
I game starts with a perfect matching, i.e., one to one
correspondence between X and Y.

I An element of X or Y can refuse the current partner,
then the current relationship (x, y) is dissolved

I y then becomes free; the agency may either
I find a new pair for x from the dissolved pair (among free

elements of Y not tried with x previously) or
I declare x hopeless and do not try to find a pair for x anymore

(#free in Y incremented)
I the refusals appear (and are processed by the agency)
one at a time

I each element can produce < N refusals (parameter of
the game), but no restrictions for #(being refused)

I agency obligations:
I ≤ 2N attempts for each element
I ≤ 2N3 hopeless elements; all others in X are ultimately

connected to some y ∈ Y and this connection lasts forever

.

Dating agency and its task
I two countable sets X and Y

I game starts with a perfect matching, i.e., one to one
correspondence between X and Y.

I An element of X or Y can refuse the current partner,
then the current relationship (x, y) is dissolved

I y then becomes free; the agency may either
I find a new pair for x from the dissolved pair (among free

elements of Y not tried with x previously) or
I declare x hopeless and do not try to find a pair for x anymore

(#free in Y incremented)
I the refusals appear (and are processed by the agency)
one at a time

I each element can produce < N refusals (parameter of
the game), but no restrictions for #(being refused)

I agency obligations:
I ≤ 2N attempts for each element
I ≤ 2N3 hopeless elements; all others in X are ultimately

connected to some y ∈ Y and this connection lasts forever

.

Dating agency and its task
I two countable sets X and Y
I game starts with a perfect matching, i.e., one to one
correspondence between X and Y.

I An element of X or Y can refuse the current partner,
then the current relationship (x, y) is dissolved

I y then becomes free; the agency may either
I find a new pair for x from the dissolved pair (among free

elements of Y not tried with x previously) or
I declare x hopeless and do not try to find a pair for x anymore

(#free in Y incremented)
I the refusals appear (and are processed by the agency)
one at a time

I each element can produce < N refusals (parameter of
the game), but no restrictions for #(being refused)

I agency obligations:
I ≤ 2N attempts for each element
I ≤ 2N3 hopeless elements; all others in X are ultimately

connected to some y ∈ Y and this connection lasts forever

.

Dating agency and its task
I two countable sets X and Y
I game starts with a perfect matching, i.e., one to one
correspondence between X and Y.

I An element of X or Y can refuse the current partner,
then the current relationship (x, y) is dissolved

I y then becomes free; the agency may either
I find a new pair for x from the dissolved pair (among free

elements of Y not tried with x previously) or
I declare x hopeless and do not try to find a pair for x anymore

(#free in Y incremented)
I the refusals appear (and are processed by the agency)
one at a time

I each element can produce < N refusals (parameter of
the game), but no restrictions for #(being refused)

I agency obligations:
I ≤ 2N attempts for each element
I ≤ 2N3 hopeless elements; all others in X are ultimately

connected to some y ∈ Y and this connection lasts forever

.

Dating agency and its task
I two countable sets X and Y
I game starts with a perfect matching, i.e., one to one
correspondence between X and Y.

I An element of X or Y can refuse the current partner,
then the current relationship (x, y) is dissolved

I y then becomes free; the agency may either

I find a new pair for x from the dissolved pair (among free
elements of Y not tried with x previously) or

I declare x hopeless and do not try to find a pair for x anymore
(#free in Y incremented)

I the refusals appear (and are processed by the agency)
one at a time

I each element can produce < N refusals (parameter of
the game), but no restrictions for #(being refused)

I agency obligations:
I ≤ 2N attempts for each element
I ≤ 2N3 hopeless elements; all others in X are ultimately

connected to some y ∈ Y and this connection lasts forever

.

Dating agency and its task
I two countable sets X and Y
I game starts with a perfect matching, i.e., one to one
correspondence between X and Y.

I An element of X or Y can refuse the current partner,
then the current relationship (x, y) is dissolved

I y then becomes free; the agency may either
I find a new pair for x from the dissolved pair (among free

elements of Y not tried with x previously) or

I declare x hopeless and do not try to find a pair for x anymore
(#free in Y incremented)

I the refusals appear (and are processed by the agency)
one at a time

I each element can produce < N refusals (parameter of
the game), but no restrictions for #(being refused)

I agency obligations:
I ≤ 2N attempts for each element
I ≤ 2N3 hopeless elements; all others in X are ultimately

connected to some y ∈ Y and this connection lasts forever

.

Dating agency and its task
I two countable sets X and Y
I game starts with a perfect matching, i.e., one to one
correspondence between X and Y.

I An element of X or Y can refuse the current partner,
then the current relationship (x, y) is dissolved

I y then becomes free; the agency may either
I find a new pair for x from the dissolved pair (among free

elements of Y not tried with x previously) or
I declare x hopeless and do not try to find a pair for x anymore

(#free in Y incremented)

I the refusals appear (and are processed by the agency)
one at a time

I each element can produce < N refusals (parameter of
the game), but no restrictions for #(being refused)

I agency obligations:
I ≤ 2N attempts for each element
I ≤ 2N3 hopeless elements; all others in X are ultimately

connected to some y ∈ Y and this connection lasts forever

.

Dating agency and its task
I two countable sets X and Y
I game starts with a perfect matching, i.e., one to one
correspondence between X and Y.

I An element of X or Y can refuse the current partner,
then the current relationship (x, y) is dissolved

I y then becomes free; the agency may either
I find a new pair for x from the dissolved pair (among free

elements of Y not tried with x previously) or
I declare x hopeless and do not try to find a pair for x anymore

(#free in Y incremented)
I the refusals appear (and are processed by the agency)
one at a time

I each element can produce < N refusals (parameter of
the game), but no restrictions for #(being refused)

I agency obligations:
I ≤ 2N attempts for each element
I ≤ 2N3 hopeless elements; all others in X are ultimately

connected to some y ∈ Y and this connection lasts forever

.

Dating agency and its task
I two countable sets X and Y
I game starts with a perfect matching, i.e., one to one
correspondence between X and Y.

I An element of X or Y can refuse the current partner,
then the current relationship (x, y) is dissolved

I y then becomes free; the agency may either
I find a new pair for x from the dissolved pair (among free

elements of Y not tried with x previously) or
I declare x hopeless and do not try to find a pair for x anymore

(#free in Y incremented)
I the refusals appear (and are processed by the agency)
one at a time

I each element can produce < N refusals (parameter of
the game), but no restrictions for #(being refused)

I agency obligations:
I ≤ 2N attempts for each element
I ≤ 2N3 hopeless elements; all others in X are ultimately

connected to some y ∈ Y and this connection lasts forever

.

Dating agency and its task
I two countable sets X and Y
I game starts with a perfect matching, i.e., one to one
correspondence between X and Y.

I An element of X or Y can refuse the current partner,
then the current relationship (x, y) is dissolved

I y then becomes free; the agency may either
I find a new pair for x from the dissolved pair (among free

elements of Y not tried with x previously) or
I declare x hopeless and do not try to find a pair for x anymore

(#free in Y incremented)
I the refusals appear (and are processed by the agency)
one at a time

I each element can produce < N refusals (parameter of
the game), but no restrictions for #(being refused)

I agency obligations:

I ≤ 2N attempts for each element
I ≤ 2N3 hopeless elements; all others in X are ultimately

connected to some y ∈ Y and this connection lasts forever

.

Dating agency and its task
I two countable sets X and Y
I game starts with a perfect matching, i.e., one to one
correspondence between X and Y.

I An element of X or Y can refuse the current partner,
then the current relationship (x, y) is dissolved

I y then becomes free; the agency may either
I find a new pair for x from the dissolved pair (among free

elements of Y not tried with x previously) or
I declare x hopeless and do not try to find a pair for x anymore

(#free in Y incremented)
I the refusals appear (and are processed by the agency)
one at a time

I each element can produce < N refusals (parameter of
the game), but no restrictions for #(being refused)

I agency obligations:
I ≤ 2N attempts for each element

I ≤ 2N3 hopeless elements; all others in X are ultimately
connected to some y ∈ Y and this connection lasts forever

.

Dating agency and its task
I two countable sets X and Y
I game starts with a perfect matching, i.e., one to one
correspondence between X and Y.

I An element of X or Y can refuse the current partner,
then the current relationship (x, y) is dissolved

I y then becomes free; the agency may either
I find a new pair for x from the dissolved pair (among free

elements of Y not tried with x previously) or
I declare x hopeless and do not try to find a pair for x anymore

(#free in Y incremented)
I the refusals appear (and are processed by the agency)
one at a time

I each element can produce < N refusals (parameter of
the game), but no restrictions for #(being refused)

I agency obligations:
I ≤ 2N attempts for each element
I ≤ 2N3 hopeless elements; all others in X are ultimately

connected to some y ∈ Y and this connection lasts forever

.

Why computable winning strategy is enough

I X = Y = B∗

I initial matching: identity (x, x)
I u refuses v if C(v|u) < n (here u may be in X or in Y)
I less than N = 2n refusals for each u
I computable behavior
I agency produces O(N3) = O(23n) hopeless elements of
complexity 3n+O(1) (identified by 3n+O(1) bit ordinal
number)

I for every x that is not hopeless its final partner y has
C(y|x) and C(x|y) at most n+ O(1): determined by a
ordinal number that is O(N) = 2n+O(1)

I but both complexities are at least n, otherwise refused

.

Why computable winning strategy is enough

I X = Y = B∗

I initial matching: identity (x, x)
I u refuses v if C(v|u) < n (here u may be in X or in Y)
I less than N = 2n refusals for each u
I computable behavior
I agency produces O(N3) = O(23n) hopeless elements of
complexity 3n+O(1) (identified by 3n+O(1) bit ordinal
number)

I for every x that is not hopeless its final partner y has
C(y|x) and C(x|y) at most n+ O(1): determined by a
ordinal number that is O(N) = 2n+O(1)

I but both complexities are at least n, otherwise refused

.

Why computable winning strategy is enough

I X = Y = B∗

I initial matching: identity (x, x)

I u refuses v if C(v|u) < n (here u may be in X or in Y)
I less than N = 2n refusals for each u
I computable behavior
I agency produces O(N3) = O(23n) hopeless elements of
complexity 3n+O(1) (identified by 3n+O(1) bit ordinal
number)

I for every x that is not hopeless its final partner y has
C(y|x) and C(x|y) at most n+ O(1): determined by a
ordinal number that is O(N) = 2n+O(1)

I but both complexities are at least n, otherwise refused

.

Why computable winning strategy is enough

I X = Y = B∗

I initial matching: identity (x, x)
I u refuses v if C(v|u) < n (here u may be in X or in Y)

I less than N = 2n refusals for each u
I computable behavior
I agency produces O(N3) = O(23n) hopeless elements of
complexity 3n+O(1) (identified by 3n+O(1) bit ordinal
number)

I for every x that is not hopeless its final partner y has
C(y|x) and C(x|y) at most n+ O(1): determined by a
ordinal number that is O(N) = 2n+O(1)

I but both complexities are at least n, otherwise refused

.

Why computable winning strategy is enough

I X = Y = B∗

I initial matching: identity (x, x)
I u refuses v if C(v|u) < n (here u may be in X or in Y)
I less than N = 2n refusals for each u

I computable behavior
I agency produces O(N3) = O(23n) hopeless elements of
complexity 3n+O(1) (identified by 3n+O(1) bit ordinal
number)

I for every x that is not hopeless its final partner y has
C(y|x) and C(x|y) at most n+ O(1): determined by a
ordinal number that is O(N) = 2n+O(1)

I but both complexities are at least n, otherwise refused

.

Why computable winning strategy is enough

I X = Y = B∗

I initial matching: identity (x, x)
I u refuses v if C(v|u) < n (here u may be in X or in Y)
I less than N = 2n refusals for each u
I computable behavior

I agency produces O(N3) = O(23n) hopeless elements of
complexity 3n+O(1) (identified by 3n+O(1) bit ordinal
number)

I for every x that is not hopeless its final partner y has
C(y|x) and C(x|y) at most n+ O(1): determined by a
ordinal number that is O(N) = 2n+O(1)

I but both complexities are at least n, otherwise refused

.

Why computable winning strategy is enough

I X = Y = B∗

I initial matching: identity (x, x)
I u refuses v if C(v|u) < n (here u may be in X or in Y)
I less than N = 2n refusals for each u
I computable behavior
I agency produces O(N3) = O(23n) hopeless elements of
complexity 3n+O(1) (identified by 3n+O(1) bit ordinal
number)

I for every x that is not hopeless its final partner y has
C(y|x) and C(x|y) at most n+ O(1): determined by a
ordinal number that is O(N) = 2n+O(1)

I but both complexities are at least n, otherwise refused

.

Why computable winning strategy is enough

I X = Y = B∗

I initial matching: identity (x, x)
I u refuses v if C(v|u) < n (here u may be in X or in Y)
I less than N = 2n refusals for each u
I computable behavior
I agency produces O(N3) = O(23n) hopeless elements of
complexity 3n+O(1) (identified by 3n+O(1) bit ordinal
number)

I for every x that is not hopeless its final partner y has
C(y|x) and C(x|y) at most n+ O(1): determined by a
ordinal number that is O(N) = 2n+O(1)

I but both complexities are at least n, otherwise refused

.

Why computable winning strategy is enough

I X = Y = B∗

I initial matching: identity (x, x)
I u refuses v if C(v|u) < n (here u may be in X or in Y)
I less than N = 2n refusals for each u
I computable behavior
I agency produces O(N3) = O(23n) hopeless elements of
complexity 3n+O(1) (identified by 3n+O(1) bit ordinal
number)

I for every x that is not hopeless its final partner y has
C(y|x) and C(x|y) at most n+ O(1): determined by a
ordinal number that is O(N) = 2n+O(1)

I but both complexities are at least n, otherwise refused

.

How to win the game

I each element not currently matched keeps “experience”=(#refusals
sent, #refusals received)

I the first is < N; the second a priori is unbounded, but also will be
kept < N due to agency strategy

I when (x, y) is terminated, numbers updated
I invariant: in all pairs people have matching experiences (#sent =

#received for the other)
I corollary: #refusals received < N
I new partner for x is found if possible (=there is y ∈ Y with

matching experience not tried earlier with x)
I otherwise x is declared hopeless
I invariant: for matching experiences the number of non-matched

people in X and Y are the same
I ≤ 2N attempts for each (experience increases each time)
I there are N2 experience classes; if class reaches 2N, it stops

growing since y can be always found in the class (< 2N are tried
earlier with given x), so O(N3) hopeless

.

How to win the game
I each element not currently matched keeps “experience”=(#refusals

sent, #refusals received)

I the first is < N; the second a priori is unbounded, but also will be
kept < N due to agency strategy

I when (x, y) is terminated, numbers updated
I invariant: in all pairs people have matching experiences (#sent =

#received for the other)
I corollary: #refusals received < N
I new partner for x is found if possible (=there is y ∈ Y with

matching experience not tried earlier with x)
I otherwise x is declared hopeless
I invariant: for matching experiences the number of non-matched

people in X and Y are the same
I ≤ 2N attempts for each (experience increases each time)
I there are N2 experience classes; if class reaches 2N, it stops

growing since y can be always found in the class (< 2N are tried
earlier with given x), so O(N3) hopeless

.

How to win the game
I each element not currently matched keeps “experience”=(#refusals

sent, #refusals received)
I the first is < N; the second a priori is unbounded, but also will be

kept < N due to agency strategy

I when (x, y) is terminated, numbers updated
I invariant: in all pairs people have matching experiences (#sent =

#received for the other)
I corollary: #refusals received < N
I new partner for x is found if possible (=there is y ∈ Y with

matching experience not tried earlier with x)
I otherwise x is declared hopeless
I invariant: for matching experiences the number of non-matched

people in X and Y are the same
I ≤ 2N attempts for each (experience increases each time)
I there are N2 experience classes; if class reaches 2N, it stops

growing since y can be always found in the class (< 2N are tried
earlier with given x), so O(N3) hopeless

.

How to win the game
I each element not currently matched keeps “experience”=(#refusals

sent, #refusals received)
I the first is < N; the second a priori is unbounded, but also will be

kept < N due to agency strategy
I when (x, y) is terminated, numbers updated

I invariant: in all pairs people have matching experiences (#sent =
#received for the other)

I corollary: #refusals received < N
I new partner for x is found if possible (=there is y ∈ Y with

matching experience not tried earlier with x)
I otherwise x is declared hopeless
I invariant: for matching experiences the number of non-matched

people in X and Y are the same
I ≤ 2N attempts for each (experience increases each time)
I there are N2 experience classes; if class reaches 2N, it stops

growing since y can be always found in the class (< 2N are tried
earlier with given x), so O(N3) hopeless

.

How to win the game
I each element not currently matched keeps “experience”=(#refusals

sent, #refusals received)
I the first is < N; the second a priori is unbounded, but also will be

kept < N due to agency strategy
I when (x, y) is terminated, numbers updated
I invariant: in all pairs people have matching experiences (#sent =

#received for the other)

I corollary: #refusals received < N
I new partner for x is found if possible (=there is y ∈ Y with

matching experience not tried earlier with x)
I otherwise x is declared hopeless
I invariant: for matching experiences the number of non-matched

people in X and Y are the same
I ≤ 2N attempts for each (experience increases each time)
I there are N2 experience classes; if class reaches 2N, it stops

growing since y can be always found in the class (< 2N are tried
earlier with given x), so O(N3) hopeless

.

How to win the game
I each element not currently matched keeps “experience”=(#refusals

sent, #refusals received)
I the first is < N; the second a priori is unbounded, but also will be

kept < N due to agency strategy
I when (x, y) is terminated, numbers updated
I invariant: in all pairs people have matching experiences (#sent =

#received for the other)
I corollary: #refusals received < N

I new partner for x is found if possible (=there is y ∈ Y with
matching experience not tried earlier with x)

I otherwise x is declared hopeless
I invariant: for matching experiences the number of non-matched

people in X and Y are the same
I ≤ 2N attempts for each (experience increases each time)
I there are N2 experience classes; if class reaches 2N, it stops

growing since y can be always found in the class (< 2N are tried
earlier with given x), so O(N3) hopeless

.

How to win the game
I each element not currently matched keeps “experience”=(#refusals

sent, #refusals received)
I the first is < N; the second a priori is unbounded, but also will be

kept < N due to agency strategy
I when (x, y) is terminated, numbers updated
I invariant: in all pairs people have matching experiences (#sent =

#received for the other)
I corollary: #refusals received < N
I new partner for x is found if possible (=there is y ∈ Y with

matching experience not tried earlier with x)

I otherwise x is declared hopeless
I invariant: for matching experiences the number of non-matched

people in X and Y are the same
I ≤ 2N attempts for each (experience increases each time)
I there are N2 experience classes; if class reaches 2N, it stops

growing since y can be always found in the class (< 2N are tried
earlier with given x), so O(N3) hopeless

.

How to win the game
I each element not currently matched keeps “experience”=(#refusals

sent, #refusals received)
I the first is < N; the second a priori is unbounded, but also will be

kept < N due to agency strategy
I when (x, y) is terminated, numbers updated
I invariant: in all pairs people have matching experiences (#sent =

#received for the other)
I corollary: #refusals received < N
I new partner for x is found if possible (=there is y ∈ Y with

matching experience not tried earlier with x)
I otherwise x is declared hopeless

I invariant: for matching experiences the number of non-matched
people in X and Y are the same

I ≤ 2N attempts for each (experience increases each time)
I there are N2 experience classes; if class reaches 2N, it stops

growing since y can be always found in the class (< 2N are tried
earlier with given x), so O(N3) hopeless

.

How to win the game
I each element not currently matched keeps “experience”=(#refusals

sent, #refusals received)
I the first is < N; the second a priori is unbounded, but also will be

kept < N due to agency strategy
I when (x, y) is terminated, numbers updated
I invariant: in all pairs people have matching experiences (#sent =

#received for the other)
I corollary: #refusals received < N
I new partner for x is found if possible (=there is y ∈ Y with

matching experience not tried earlier with x)
I otherwise x is declared hopeless
I invariant: for matching experiences the number of non-matched

people in X and Y are the same

I ≤ 2N attempts for each (experience increases each time)
I there are N2 experience classes; if class reaches 2N, it stops

growing since y can be always found in the class (< 2N are tried
earlier with given x), so O(N3) hopeless

.

How to win the game
I each element not currently matched keeps “experience”=(#refusals

sent, #refusals received)
I the first is < N; the second a priori is unbounded, but also will be

kept < N due to agency strategy
I when (x, y) is terminated, numbers updated
I invariant: in all pairs people have matching experiences (#sent =

#received for the other)
I corollary: #refusals received < N
I new partner for x is found if possible (=there is y ∈ Y with

matching experience not tried earlier with x)
I otherwise x is declared hopeless
I invariant: for matching experiences the number of non-matched

people in X and Y are the same
I ≤ 2N attempts for each (experience increases each time)

I there are N2 experience classes; if class reaches 2N, it stops
growing since y can be always found in the class (< 2N are tried
earlier with given x), so O(N3) hopeless

.

How to win the game
I each element not currently matched keeps “experience”=(#refusals

sent, #refusals received)
I the first is < N; the second a priori is unbounded, but also will be

kept < N due to agency strategy
I when (x, y) is terminated, numbers updated
I invariant: in all pairs people have matching experiences (#sent =

#received for the other)
I corollary: #refusals received < N
I new partner for x is found if possible (=there is y ∈ Y with

matching experience not tried earlier with x)
I otherwise x is declared hopeless
I invariant: for matching experiences the number of non-matched

people in X and Y are the same
I ≤ 2N attempts for each (experience increases each time)
I there are N2 experience classes; if class reaches 2N, it stops

growing since y can be always found in the class (< 2N are tried
earlier with given x), so O(N3) hopeless

.

Thanks

I to the organizers who invited me to present these
arguments

I to Misha Vyugin and Andrej Muchnik who invented the
game argument and its generalization for several
strings yi

I to Andrei Romashchenko who invented a generalization
of the topological argument (much more ingenious)

I to Laurent Bienvenu who convinced me to write this
simple argument down

I to all colleagues (ESCAPE team in Marseille and
Montpellier, participants of Kolmogorov seminar in
Moscow)

I to the audience for following the talk to that point :-)

.

Thanks

I to the organizers who invited me to present these
arguments

I to Misha Vyugin and Andrej Muchnik who invented the
game argument and its generalization for several
strings yi

I to Andrei Romashchenko who invented a generalization
of the topological argument (much more ingenious)

I to Laurent Bienvenu who convinced me to write this
simple argument down

I to all colleagues (ESCAPE team in Marseille and
Montpellier, participants of Kolmogorov seminar in
Moscow)

I to the audience for following the talk to that point :-)

.

Thanks

I to the organizers who invited me to present these
arguments

I to Misha Vyugin and Andrej Muchnik who invented the
game argument and its generalization for several
strings yi

I to Andrei Romashchenko who invented a generalization
of the topological argument (much more ingenious)

I to Laurent Bienvenu who convinced me to write this
simple argument down

I to all colleagues (ESCAPE team in Marseille and
Montpellier, participants of Kolmogorov seminar in
Moscow)

I to the audience for following the talk to that point :-)

.

Thanks

I to the organizers who invited me to present these
arguments

I to Misha Vyugin and Andrej Muchnik who invented the
game argument and its generalization for several
strings yi

I to Andrei Romashchenko who invented a generalization
of the topological argument (much more ingenious)

I to Laurent Bienvenu who convinced me to write this
simple argument down

I to all colleagues (ESCAPE team in Marseille and
Montpellier, participants of Kolmogorov seminar in
Moscow)

I to the audience for following the talk to that point :-)

.

Thanks

I to the organizers who invited me to present these
arguments

I to Misha Vyugin and Andrej Muchnik who invented the
game argument and its generalization for several
strings yi

I to Andrei Romashchenko who invented a generalization
of the topological argument (much more ingenious)

I to Laurent Bienvenu who convinced me to write this
simple argument down

I to all colleagues (ESCAPE team in Marseille and
Montpellier, participants of Kolmogorov seminar in
Moscow)

I to the audience for following the talk to that point :-)

.

Thanks

I to the organizers who invited me to present these
arguments

I to Misha Vyugin and Andrej Muchnik who invented the
game argument and its generalization for several
strings yi

I to Andrei Romashchenko who invented a generalization
of the topological argument (much more ingenious)

I to Laurent Bienvenu who convinced me to write this
simple argument down

I to all colleagues (ESCAPE team in Marseille and
Montpellier, participants of Kolmogorov seminar in
Moscow)

I to the audience for following the talk to that point :-)

.

Thanks

I to the organizers who invited me to present these
arguments

I to Misha Vyugin and Andrej Muchnik who invented the
game argument and its generalization for several
strings yi

I to Andrei Romashchenko who invented a generalization
of the topological argument (much more ingenious)

I to Laurent Bienvenu who convinced me to write this
simple argument down

I to all colleagues (ESCAPE team in Marseille and
Montpellier, participants of Kolmogorov seminar in
Moscow)

I to the audience for following the talk to that point :-)

