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1 Source of aperiodicity

Consider the following game: we have a real
number in [1,6]; at each step we can either
multiply it by 3 or divide it by 2.

Observation: starting with arbitrary num-
ber, we can do infinitely many steps (without
leaving the interval), but the sequence of oper-
ations is aperiodic.

Indeed, the numbers less that 2 can be mul-
tiplied by 3, and all others can be divided by 2
without leaving the interval. If the operations
are periodic, the cumulative effect of one pe-
riod will be multiplication by 3% /2! for some
integer k and [. This factor is different from 1,
so the numbers will converge either to zero or
to infinity.

Of course, the numbers 2 and 3 can be re-
placed by others; we use only that log3/log2
is irrational (i.e., 2F # 3! except for k = [ = 0).

2 Idea of the construction

In a tiling, each row will represent some real
number in [1,6]. If some row represents a, the
row below it should represent either a/2 or
3, and this guarantees vertical aperiodicity.
(If a tileset has a periodic tiling, it has a dou-
ble periodic tiling, and this tiling has a vertical
period, which is impossible, see the previous
section.)

The question is what encoding should be
used and what auxiliary information should be
added to ensure that this property can be en-
forced by local rules.

3 Encoding

Each cell contains an integer number in the
range 1..6; a line in a tiling encodes the av-
erage of the numbers in this line. More for-
mally, the average in the line is o if for every
€ > 0 there exists some N such that the aver-
age in each substring of length at least N is in
(a—¢,a+e).

Warning: a line may have no average,
so some line mays encode nothing, and we
should remember that (see below).

4 Encoding of operations

To check the consistency between two neigh-
bor lines, we need to know which operation
(multiplication or division) is performed along
this line, and we will have this information (in
fact, one bit) everywhere along the line. It is
easy to check locally that this bit is the same
along the line.

5 Checking densities

The average value is a non-local notion, so
we cannot locally check the required property.
However, we may check a stronger local prop-
erty. Imagine that want to check that the num-
bers in the lower line in average are twice big-
ger than the numbers in the upper line. Con-
sider the sum of numbers in some interval [/, r]
in both lines;
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the stronger property that we want to check is
that X, [1,r] = 2%[l,r] + O(1) (or, vice versa,
Zi[l,r] = 3%,[l,r] + O(1), depending on the
operation).

This is guaranteed if we have a bounded se-
quence of integers d; such that

Zz[l,r] —221[1,)’] = dr—dl

for any interval [/, r]. Both sides of this equa-
tion are additive functions of the interval, so it
is enough to check it for intervals of length 1,
which is a local check.

The checks for the other operation (division
by 3) are similar.

6 What is achieved and
what is needed

We have described the information included
in the tiling (the 1..6 numbers, the operation
bit, the numbers d;); the only thing that is not
fixed is the range for d;: we said that |d;| are
bounded but have not fixed a specific upper
bound D.

We need to show that

(1) this tile set (=set of local rules) has no
periodic tilings (for every D);

(2) this set has a tiling, if D is large enough.

7 No periodic tilings

The problem here is that (a priori) the line may
not have an average.! However, if a periodic
tiling exist, a tiling with two independent pe-
riods also exists, and it has vertical and hori-
zontal periods. In this case all the horizontal
averages exist and we get a contradiction.

n fact, for the specific parameters chosen, i.e., for
range 1..6, multiplication by 3 and division by 2, the
lines are guaranteed to have an average, but this requires
an additional argument. See the Appendix for more de-
tails.

8 Why tilings exist

To construct a tiling, we first assign the real
numbers for each line and corresponding op-
erations. We can start by assigning an arbi-
trary number in [1,6] for some line and the go
in both directions choosing an operation that
does not move us outside [1,6]. It is always
possible (we have discussed this for the for-
ward direction, but a similar argument works
for backward direction).

Then each number should be represented as
the average of integers in the corresponding
line. This can be done in many ways, but we
choose a specific one: to represent ¢, we con-
sider the sequence |om| for integer n; then
o equals the average of differences between
neighbor integers in this sequence:

o = average of(|(m+1)a| — [mo]).
For such a sequence we have
Ll =|ra]—|la];

note that the right hand side differs from de-
sired value (r —I)a by O(1) (in fact, at most
by 1).

Now look at two neighbor lines that corre-
spond, say, to & and 2¢. In the notation used
above we have

Lill,rj=(r—Da+0(1)
L(lr]=2(r—Ho+0(1),

SO
Ez[l,r]—zzl[l,r]

in bounded by some (absolute) constant. This
difference is a bounded additive function of
the interval [/,r], so it can be represented as
d, — d; for some bounded d,, (e.g., we can let
dp = 0 and then define all other d,,, as the func-
tion of the interval [0, m]; when m is negative,
we reverse the sign).



9 Appendix

1. This construction follows the paper of
Kari [1]; the only difference is that Kari
wanted to beat a record on the minimal number
of tiles (and did beat it, getting first 14 tiles and
then reducing the number to 13 by noting that
one tile is not used [2]). So he explicitly lists
all the tiles (using factors 2 and 2/3 instead of
2 and 1/3; in this way the interval 1/2..2 is
enough and only digits 0..2 are needed).

2. As we have mentioned, in our construc-
tion one can guarantee the existence of average
in every tiling (though it is not needed for the
argument); let us sketch the proof.

First, some preparations. Let o and B are
two positive real numbers and let I = [L,R] be
some interval on the real line (both endpoints
L, R are positive). Starting with some point in
I, we want to construct a sequence of points
in I such that each next point is obtained from
the previous one either by multiplication by o
or division by f3.

Lemma.

() IfR/L > af, then it is possible for every
starting point; more over, the sequence can be
extended to the left.

(2) If R/L = aB, the choice of the next op-
eration is unique (except for one exceptional
case: BL can be both divided by S or multi-
plied by o).

(3) If logB/log & is irrational, for R/L <
o3 we cannot stay in I = [L, R] indefinitely.

The statements (1) and (2) are obvious. To
prove (3), note that that choice of the next op-
eration is unique in this case. In logarithmic
scale, we start with some number and that ei-
ther add log o or subtract log B (choosing the
operation that does not move the point outside
[logL,logR]). Let us increase the interval in
such a way that R/L is af (so in logarith-
mic scale the length is loga 4 log ) and the
sequence never comes very close to the end-
points of the interval. Then the process is de-
terministic: we iterate the transformation that
is an irrational rotation of a circle. It is well

known that the orbits for an irrational rotation
are dense, so we cannot avoid coming arbitrar-
ily close to the endpoints, which contradicts
our assumption.

It remains to explains how all this is related
to the existence of line averages. Assume that
some line in some tiling does not have an av-
erages. This means that for some p < g this
line has arbitrarily long substrings with aver-
age less than p as well as arbitrarily long sub-
strings with average greater than g. The tiling
also determines a sequence of operations that
are applied to lines (whether multiplication by
3 or division by 2 happens). Let us apply this
sequence of operation to some real inbetween
p and g; the statement (3) guarantees that we
will either almost exceed R = 6 or go almost
below L = 1. Therefore, either we signifi-
cantly exceed R starting from ¢ (or any greater
number) or get significantly below L starting
from p (or any smaller number). Assume, for
example, that we are in the first case. Now we
come to a contradiction: take a very long seg-
ment where average is g or higher; the local
consistency rules guarantee that the average in
the subsequent lines will be very close to the
transformation result; if the segment is long
enough, at some point we get average more
than R = 6 which is impossible since all cells
are at most 6.

3. Even if we do not want to force the exis-
tence of averages, we still can finish the proof
without using 2-periodicity: take long frag-
ment of the sequence of reals where the den-
sity changes significantly, and for long enough
finite intervals we get a contradiction, since
boundary effects are negligible (after time in-
terval is fixed and space interval goes to infin-
ity). This assumes that the period is not hor-
izontal; if it is horizontal, we have limit fre-
quency in each line, and we have only finitely
many different lines.
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