
Probabilistic constructions of
computable objects

Andrei Rumyantsev, Alexander Shen*

August 20, 2012

Abstract

A nonconstructive proof can be used to prove the existence of an object with
some properties without providing an explicit example of such an object. A special
case is a probabilistic proof where we show that the object with required properties
appears with some positive probability in a random process. Can we use such an
argument to prove the existence of a computable infinite object? Sometimes yes:
we show how the notion of a layerwise computable mapping can be used to prove a
constructive version of Lovasz local lemma. This paper is a survey based on [2, 1, 4].

1 Probabilistic generation of infinite sequences
We want to show the one can use probabilistic arguments to prove the existence of inifinite
objects (say, infinite sequences of zeros and ones) with some properties. So we should
discuss first in which sense a probabilistic algorithm can generate such a sequence. The
most natural approach: Turing machine has an output write-only tape where it can print
bits sequentially. Using fair coin tosses, it generates a (finite or infinite) sequence of
output bits. The output distribution of such a machine T is some probability distribution
Q on the set of all finite and infinite sequences. Distributions of this class are determined
by their values on sets Σx (of all finite and infinite extensions of a binary string x).
The function q(x) = Q(Σx) that corresponds to the measure Q satisfies the following
conditions:

q(Λ) = 1; q(x) ≥ q(x0) + q(x1) for all x.
(Here Λ denotes the empty string.) Any non-negative real function that satisfies these
conditions corresponds to some probability distribution on the set of finite and infinite
binary sequences. The output distributions of probabilistic machines correspond to func-
tions q that are lower semicomputable; this means that some algorithm, given a binary
string x, computes a non-decreasing sequence of rational numbers that converge to q(x).

Now we are ready to look at the classical result of de Leeuw – Moore – Shannon –
Shapiro: if some individual sequence ω appears with positive probability as an output of a
probabilistic Turing machine, this sequence is computable. Indeed, let this probability be
some ε > 0; take a rational threshold r such that r < ε < 2r, and consider some prefix w
of ω such that q(w) < 2r. (Such a prefix exists, since q(x) for prefixes of ω converges to

*LIRMM CNRS, Marseille; on leave from IITP RAS, Moscow. Supported by ANR NAFIT-008-01/2
grant. E-mail: azrumuyan@gmail.com, alexander.shen@lirmm.fr

1



ε.) Starting from w, we can select the next prefix of ω by finding a son where q exceeds
r. The correct direction satisfies this condition, and no branching is possible: if for two
sons the value exceeds r, then it should exceed 2r for the father.

This result can be interpreted as follows: if our task is to produce some specific
infinite sequence of zeros and ones, randomization does not help (at least if we ignore
the computational resources). However, if our goal is to produce some sequence with
required properties, randomization can help: to construct a noncomputable sequence
with probability 1 it is enough to output the random bits.

All these observations are well known, see, e.g., the classical paper of Zvonkin and
Levin [5]. For a less trivial example, let us consider another result (of N.V. Petri) men-
tioned in this paper: there exists a probabilistic machine that with positive probability
generates a sequence with two properties: (1) it contains infinitely many ones but (2) the
function i 7→ the position of i-th one has no computable upper bound. (In the language of
recursion theory, machine generates with positive probability a characteristic sequence of
a hyperimmune set.) A nice proof of this result was given by Peter Gacs; it is reproduced
in the next section (we thank M. Bondarko for some improvements in the presentation).

2 Fireworks and hyperimmune sequences
Consider the following “real-life” problem. We come to a shop where fireworks of some
type are sold. After we buy one, we can test it in place (then we know whether it was
good or not, but it is not usable anymore, so we have to buy a new one after that), or go
home, taking the untested firework with us. We look for a probabilistic strategy in this
game that with 99% probability either finds a bad firework during the testing or takes
home a good one.

Solution: take a random number k in 0..99 range, make k tests (less if the failure
happens earlier) and then take the next firework. The seller does not get any information
from our behavior: he sees only that we are buying and testing the fireworks (when we
take the next one home instead of testing, it is too late for him to do something). So
his strategy is reduced to choosing some number K of good fireworks sold before the bad
one. He wins only if K = k, i.e., with probability at most 1%.

Another description of the same strategy: we take the first firework home with proba-
bility 1/100 and test it with probability 99/100; if it is good, we take the second one with
probability 1/99 and test it with probability 98/99 etc.

Why this game is relevant? Assume we have a program of some computable function
f and want to construct probabilistically a total function g not bounded by f if f is total.
(It is convenient to consider a machine that constructs a total integer-valued function and
then use this function to determine the numbers of zeros between consecutive ones.) We
consider f(0), f(1), . . . as “fireworks”; f(i) is a good one if computation f(i) terminates.
First we buy f(0); with probability 1/100 we “take” it and with probability 99/100 we
“test” it. Taking f(0) means that we run this computation until it terminates and then let
g(0) := f(0) + 1. If this happens, we may relax and let all the other values of g be zeros.
(If it does not, i.e., if we take a bad firework, we are out of luck.) Testing f(0) means
that we run this computation and at the same time let g(0) := 0, g(1) := 0, etc. until
the computation terminates. If f(0) is undefined, g will be zero function, and this is OK
since we do not care about non-total f . But if f(0) is defined, at some point testing stops,
we have some initial fragment of zeros g(0), g(1), . . . , g(u), and then consider f(u+ 1) as
the next firework bought (testing it with probability 98/99 and taking it with probability

2



1/99, etc.).
In this way we can beat one computable function f with probability arbitratily close

to 1. To construct with positive probability a function not bounded by any total com-
putable function, we consider all the functions as functions of two natural arguments
(tables), and use ith row to beat ith potential upper bound with error probability ε2−i.
To beat the upper bound, it is enough to beat it in some row, so we can deal with all the
rows in parallel, and get error probability at most ε

∑
i 2

−i = ε.

3 Computable elements of closed sets
Let us return now to the original question: can we use probabilistic arguments to construct
a computable sequence with some property? As we have seen, if we are able to construct
a probabilistic machine that generates some specific sequence with positive probability,
we can then conclude that this specific sequence is computable. However, we do not
know arguments of this type, and it is difficult to imagine how one can describe a specific
sequence that it is actually computable, and prove that it has positive probability —
without actually constructing an algorithm that computes it.

Here is a more general statement that may be easier to apply: If F is some closed
set of infinite sequences, and if output of some probabilistic machine belongs to F with
probability 1, then F contains a computable element. Indeed, consider the output dis-
tribution and take a computable branch along which the probabilities remains positive
(this is possible since the measure function is lower semicomputable). We get some com-
putable sequence ω. If ω /∈ F , then some prefix of ω has no extensions in F (recall that
F is closed). This prefix has positive probability by construction, so our machine cannot
generate elements in F with probability 1. This contradiction shows that ω ∈ F .

In the following sections we give a specific example when this approach (in a signifi-
cantly modified form) can be used.

4 Computable Lovasz Local Lemma
Every closed set F of infinite sequences can be described by an infinite conjuctive normal
form:

ω1ω2ω2 . . . ∈ F ⇔ P (ωi1 , . . . , ωik) ∧Q(ωj1 , . . . , ωjl) ∧ . . . ,

where each clause in the right hand side excludes some combination of variables used in
this clause. To show that F is not empty means to find an (infinite) assignment that makes
all clauses true. Lovasz local lemma says that in some cases this can be established by
“quantitative” reasons, just because there are few clauses, each involving a lot of variables
and therefore only few combinations of values are prohibited.

We do not go here into the details of the full version of Lovasz local lemma (see [4, 2]
for more details) and just state some corollary of it as an example. Assume that each
clause (disjunction) contains exactly m variables for some m (and therefore is true for
random assignment with probability 1− 2−m). Assume also that each clause has at most
2m−2 neighbors (two clauses are neighbors if they have common variables).

Then Lovasz lemma guarantees the existence of a satisfying assignment.
To formulate the constructive version, we need to assume that the right hand side

(infinite CNF) is presented effectively. Namely, we assume that (1) the set of variables is
countable and they are indexed by natural numbers; (2) the clauses in the CNF are also

3



numbered; (3) for each clause, knowing its number, we can effectively compute the clause
(the list of variables and the excluded combination of their values); (4) for each variable
we can compute a list of clauses that include this variable. (By our assumption, this list
is finite.)

Constructive version of Lovasz local lemma guarantees that under these assumptions
there exists a computable satisfying assignment.

One can indeed prove this fact by showing that closed set of all satisfying assignments
has measure 1 according to some computable distribution on the Cantor space of all
infinite binary sequences. However, this distribution is constructed not as an output
distribution of a randomized Turing machine (though it can be a posteriori represented
in this way), but as an output distribution of a rewriting Turing machine, see the next
section.

5 Rewriting machines and layerwise computability
Now we change the model and make the output tape (re)writable: the machine can change
several times the bit (0 or 1) in a cell, and only the last value matters. (We may assume
that initially all bits are zeros.) The last value is defined if a cell changes finitely many
times. Of course, for some values of random bits it may happen that some cell gets
infinitely many changes. We say that the output sequence of the machine is not defined
in this case.

If the output sequence is defined with probability 1, we get an almost everywhere
defined mapping from Cantor space (of random coin sequences) into itself (input sequence
is mapped to the limit output sequence). This mapping defines the output distribution
on the Cantor space (the image of the uniform distribution on fair coin bits). This
distribution may be not computable (e.g., for every lower semicomputable real α it is easy
to generate 0000 . . . with probability α and 1111 . . . with probability 1−α). However, we
get a computable output distribution if we impose some restrictions on the machine.

The restriction: for every output cell i and for every rational ε > 0 one can effectively
compute integer N = N(i, ε) such that the probability of the event “the contents of cell i
changes after step N”, taken over all possible random bit sequences, is bounded by ε.

Lemma: in this case the limit content of the output is well defined with probability 1,
and the output distribution on the sequences of zeros and ones is computable.

Indeed, to approximate the probability of the event “output starts with z” for a k-bit
string z with error at most δ, we find N(i, δ/k) for k first cells, take n greater than all
these values of N and simulate first n steps of the machine for all possible combinations
of random bits.

An almost everywhere defined mappings of Cantor space into itself, defined by ma-
chines with described properties, are called layerwise computable. Initially they appeared
in the context of algorithmic randomness [3]. One can show that such a mapping is de-
fined on all Martin-Löf random inputs. Moreover, it can be computed by a machine with
write-only output tape if the machine additionally gets the value of randomness deficiency
for the input sequence. This property can be used (and was originally used) as an equiva-
lent definition of layerwise computable mapping. (The word “layerwise” reflects this idea:
the mapping is computable on all “randomness levels”.)

4



6 How the computable version of
Lovasz local lemma is proved

As we have said, to prove that some infinite CNF has a computable assignment, it is
enough to construct a computable distribution where the set of all satisfying assignments
for this CNF has probability 1. This is done by constructing a rewriting machine that
defines a layerwise computable mapping, and taking the output distribution of such a
machine. (One can prove that for some cases we need to take a layerwise computable
machine, the standard machines with write-only output tapes cannot be used, see [1].)

The rewriting algorithm is straightforward. First, we need some ordering on clauses.
For each clause we consider the maximal index of variables that appears in this clause,
and call it the index of the clause. The requirements for the CNF guarantee that for every
index there are only finitely many clauses of this index, so we can write all the clauses in
a sequence with non-decreasing indices.

The algorithm starts by assigning random values to all variables. Then it reads the
sequence of clauses until it finds some clause that is not satisfied. Then all the variables
that appear in this clause are resampled (their values are replaced by fresh random bits).

Moser and Tardos [4] used this algorithm as an efficient probabilistic algorithm for
finite Lovasz local lemma. However, as noted in [2], their upper bounds for the resampling
probability can be used for the infinite case to prove that this algorithm determines
a layerwise semicomputable mapping and therefore to prove the computable version of
Lovasz local lemma.

References
[1] Rumyantsev A., Everywhere complex sequences and probabilistic method,

arxiv.org/abs/1009.3649

[2] Rumyantsev A., Infinite computable version of Lovasz Local Lemma,
arxiv.org/abs/1012.0557

[3] Hoyrup M., Rojas C., Applications of Effective Probability Theory to Martin-Löf
Randomness. Lectures Notes in Computer Science, 2009, v. 5555, p. 549–561.

[4] Robin A. Moser, Gábor Tardos, A constructive proof of the general Lovasz Local
Lemma, http://arxiv.org/abs/0903.0544

[5] Zvonkin A. K., Levin L. A., The complexity of finite objects and the development of
the concepts of information and randomness by means of the theory of algorithms,
Uspekhi Matematicheskikh Nauk, 1970, v. 25, no. 6 (156), p. 85–127.

5


