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» Probabilistic proof: we show that some property is true
for a random object with positive probability, and
conclude that objects with this property do exist

» Nonconstructive existence proof

» Can we prove in this way the existence of a computable
object with some property?

» Yes (in a sense)
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Probabilistic proof: an example

» 0/1 n X n matrices
» k x kminors: krows and k columns selected
» uniform minor: all zeros or all ones

» for k = O(log n) there exists n X n matrix without
uniform k X k minors

» random matrix: all bits are independent fair coin tossings

» given minor is uniform with probability 2 - 9K

» at most nk = 2€1°8" ways to select rows/columns

> at most 2%klosn

» condition: & — 1 > 2klogn

ways to select minors
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General scheme of a probabilistic proof

» Random process (a machine with random bit generator)
» generates objects according to some distribution

» we prove that the probability to get a “bad” object is
strictly less than 1

» conclusion: good objects exist

To speak about computability, we need infinite objects (binary
sequences)
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Randomized algorithm and its output distribution

» Machine M has access to fair coin
» has write-only output tape filled bit by bit
» output sequence can be finite or infinite

» we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

» function m(x) = probability to get x or some extension
» m(x) is lower semicomputable

» m(A) =1

» m(x) > m(x0) + m(x1) for all binary strings x

» any m with these properties corresponds to some M

» measures m(x) = m(x0) + m(x1) correspond to machines
that generate infinite sequences almost surely
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Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable

Proof:

» assume that probability of {w} is greater than some ¢ > 0

» consider maximal set of incomparable strings x such that
m(x) > ¢

» each element of this set can be extended uniquely (or
cannot be extended at all)

» w can be reconstructed starting from its prefix in the set

Probably not very useful in proving the existence of
computable objects
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» closed set in the Cantor space

» = defined by a family of conditions, each dealing with
finitely many bits

» example: square-free

» not closed: computable or non-computable

» If some randomized machine M with probability 1
generates a sequence in some closed set S, then S contains
a computable element

» proof: construct w bit by bit in such a way that each
prefix of w has positive probability

This will be used but some more general machines are needed
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Lovasz local lemma (special case)

» CNF: (aV-bVc)A(maVvdV—eA...

» each clause excludes some combination of variables
appearing in it

» assume each clause has exactly m variables

» if there are less than 2™ clauses then CNF is satisfiable

» LLL: if each clause has at most 22 neighbors, then CNF
is satisfiable

» neighbors: clauses that have common variables

» classical proof uses induction to prove some bound on
conditional probabilities

» Moser’s proof that uses Kolmogorov complexity
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Infinite Lovasz local lemma

» countably many variables
» each clause involves m of them
» and has at most 272 neighbors

» computable CNF: variables and clauses are indexed by
integers

» algorithm writes down i-th clause
» and lists all clauses that involve j-th variable

» Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser—Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine
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Machine has a random bit generator

and rewritable output tape

restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

Defines an almost everywhere defined mapping

stronger condition: for each bit position i and every ¢ > 0
we can compute N(i,€) such that change in i-th bit after
N(i, €) steps has probability less than ¢

output distribution is still computable:
m(x) = the probability that output starts with x
can be computed with any given precision

paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1
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Moser-Tardos probabilistic machine

» finds an assignment for infinite computable CNF

» (assuming all clauses have m variables and at most 2™ 2
neighbors)

» enumerate all clauses, rank = maximal variable number
» start with random values

» find first unsatisfied clause and resample it

» Moser-Tardos: this converges with probability 1

» they give an estimate for convergence speed

» so N(i,e) can be computed

Q.E.D.

v
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Remarks

» Breakthrough: Moser-Tardos algorithm
» better name: Moser—Tardos proof for trivial algorithm

» layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

» algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

» Another application: let & < 1 and let A be a decidable set
of strings that contains at most 2" strings of length n;
then there exists a computable sequence o and ¢ such
that o has no a-factors longer than c.



