RuFiDiM-2012

Probablistic proofs of the existence of computable objects

Andrei Rumyantsev, Alexander Shen

Moscow State University, LIRMM CNRS, UMW PAH
Supported in part by NAFIT ANR project



Philosophy



Philosophy

» Probabilistic proof: we show that some property is true
for a random object with positive probability, and
conclude that objects with this property do exist



Philosophy

» Probabilistic proof: we show that some property is true
for a random object with positive probability, and
conclude that objects with this property do exist

» Nonconstructive existence proof



Philosophy

» Probabilistic proof: we show that some property is true
for a random object with positive probability, and
conclude that objects with this property do exist

» Nonconstructive existence proof

» Can we prove in this way the existence of a computable
object with some property?



Philosophy

» Probabilistic proof: we show that some property is true
for a random object with positive probability, and
conclude that objects with this property do exist

» Nonconstructive existence proof

» Can we prove in this way the existence of a computable
object with some property?

» Yes (in a sense)



Probabilistic proof: an example



Probabilistic proof: an example

» 0/1 n X n matrices



Probabilistic proof: an example

» 0/1 n X n matrices

» k X kminors: krows and k columns selected



Probabilistic proof: an example

» 0/1 n X n matrices
» k X kminors: krows and k columns selected

» uniform minor: all zeros or all ones



Probabilistic proof: an example

v

0/1 n X n matrices

k X k minors: k rows and k columns selected

v

uniform minor: all zeros or all ones

v

v

for k = O(log n) there exists n X n matrix without
uniform k X k minors



Probabilistic proof: an example

v

0/1 n X n matrices

k X k minors: k rows and k columns selected

v

uniform minor: all zeros or all ones

v

v

for k = O(log n) there exists n X n matrix without
uniform k X k minors

v

random matrix: all bits are independent fair coin tossings



Probabilistic proof: an example

» 0/1 n X n matrices
» k x kminors: krows and k columns selected
» uniform minor: all zeros or all ones

» for k = O(log n) there exists n X n matrix without
uniform k X k minors

» random matrix: all bits are independent fair coin tossings

» given minor is uniform with probability 2 - 9K



Probabilistic proof: an example

» 0/1 n X n matrices
» k x kminors: krows and k columns selected
» uniform minor: all zeros or all ones

» for k = O(log n) there exists n X n matrix without
uniform k X k minors

» random matrix: all bits are independent fair coin tossings
» given minor is uniform with probability 2 - 9K

» at most nk = 2€1°8" ways to select rows/columns



Probabilistic proof: an example

» 0/1 n X n matrices
» k x kminors: krows and k columns selected
» uniform minor: all zeros or all ones

» for k = O(log n) there exists n X n matrix without
uniform k X k minors

» random matrix: all bits are independent fair coin tossings
» given minor is uniform with probability 2 - 9K
» at most nk = 2€1°8" ways to select rows/columns

22k|og n

» at most ways to select minors



Probabilistic proof: an example

» 0/1 n X n matrices
» k x kminors: krows and k columns selected
» uniform minor: all zeros or all ones

» for k = O(log n) there exists n X n matrix without
uniform k X k minors

» random matrix: all bits are independent fair coin tossings

» given minor is uniform with probability 2 - 9K

» at most nk = 2€1°8" ways to select rows/columns

> at most 2%klosn

» condition: & — 1 > 2klogn

ways to select minors



General scheme of a probabilistic proof



General scheme of a probabilistic proof

» Random process (a machine with random bit generator)



General scheme of a probabilistic proof

» Random process (a machine with random bit generator)

» generates objects according to some distribution



General scheme of a probabilistic proof

» Random process (a machine with random bit generator)
» generates objects according to some distribution

» we prove that the probability to get a “bad” object is
strictly less than 1



General scheme of a probabilistic proof

v

Random process (a machine with random bit generator)

v

generates objects according to some distribution

» we prove that the probability to get a “bad” object is
strictly less than 1

v

conclusion: good objects exist



General scheme of a probabilistic proof

» Random process (a machine with random bit generator)
» generates objects according to some distribution

» we prove that the probability to get a “bad” object is
strictly less than 1

» conclusion: good objects exist

To speak about computability, we need infinite objects



General scheme of a probabilistic proof

» Random process (a machine with random bit generator)
» generates objects according to some distribution

» we prove that the probability to get a “bad” object is
strictly less than 1

» conclusion: good objects exist

To speak about computability, we need infinite objects (binary
sequences)



Randomized algorithm and its output distribution



Randomized algorithm and its output distribution

» Machine M has access to fair coin



Randomized algorithm and its output distribution

» Machine M has access to fair coin
» has write-only output tape filled bit by bit



Randomized algorithm and its output distribution

» Machine M has access to fair coin
» has write-only output tape filled bit by bit
» output sequence can be finite or infinite



Randomized algorithm and its output distribution

Machine M has access to fair coin

v

v

has write-only output tape filled bit by bit

v

output sequence can be finite or infinite

we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

v



Randomized algorithm and its output distribution

Machine M has access to fair coin

v

v

has write-only output tape filled bit by bit

v

output sequence can be finite or infinite

v

we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

v

function m(x) = probability to get x or some extension



Randomized algorithm and its output distribution

» Machine M has access to fair coin
» has write-only output tape filled bit by bit
» output sequence can be finite or infinite

» we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

» function m(x) = probability to get x or some extension

» m(x) is lower semicomputable



Randomized algorithm and its output distribution

» Machine M has access to fair coin
» has write-only output tape filled bit by bit
» output sequence can be finite or infinite

» we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

» function m(x) = probability to get x or some extension

» m(x) is lower semicomputable

» m(A) =1



Randomized algorithm and its output distribution

» Machine M has access to fair coin
» has write-only output tape filled bit by bit
» output sequence can be finite or infinite

» we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

» function m(x) = probability to get x or some extension
» m(x) is lower semicomputable

» m(A) =1

» m(x) > m(x0) + m(x1) for all binary strings x



Randomized algorithm and its output distribution

» Machine M has access to fair coin
» has write-only output tape filled bit by bit
» output sequence can be finite or infinite

» we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

» function m(x) = probability to get x or some extension
» m(x) is lower semicomputable

» m(A) =1

» m(x) > m(x0) + m(x1) for all binary strings x

» any m with these properties corresponds to some M



Randomized algorithm and its output distribution

» Machine M has access to fair coin
» has write-only output tape filled bit by bit
» output sequence can be finite or infinite

» we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

» function m(x) = probability to get x or some extension
» m(x) is lower semicomputable

» m(A) =1

» m(x) > m(x0) + m(x1) for all binary strings x

» any m with these properties corresponds to some M

» measures m(x) = m(x0) + m(x1) correspond to machines
that generate infinite sequences almost surely



Existence of computable objects



Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable



Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable

Proof:



Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable

Proof:

» assume that probability of {w} is greater than some ¢ > 0



Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable

Proof:

» assume that probability of {w} is greater than some ¢ > 0

» consider maximal set of incomparable strings x such that
m(x) > ¢



Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable

Proof:

» assume that probability of {w} is greater than some ¢ > 0
» consider maximal set of incomparable strings x such that
m(x) > ¢

» each element of this set can be extended uniquely (or
cannot be extended at all)



Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable

Proof:

» assume that probability of {w} is greater than some ¢ > 0

» consider maximal set of incomparable strings x such that
m(x) > ¢

» each element of this set can be extended uniquely (or
cannot be extended at all)

» w can be reconstructed starting from its prefix in the set



Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable

Proof:

» assume that probability of {w} is greater than some ¢ > 0

» consider maximal set of incomparable strings x such that
m(x) > ¢

» each element of this set can be extended uniquely (or
cannot be extended at all)

» w can be reconstructed starting from its prefix in the set

Probably not very useful in proving the existence of
computable objects



Existence of computable objects Il



Existence of computable objects Il

» closed set in the Cantor space



Existence of computable objects Il

» closed set in the Cantor space

» = defined by a family of conditions, each dealing with
finitely many bits



Existence of computable objects Il

» closed set in the Cantor space

» = defined by a family of conditions, each dealing with
finitely many bits

» example: square-free



Existence of computable objects Il

v

closed set in the Cantor space

v

= defined by a family of conditions, each dealing with
finitely many bits

v

example: square-free

v

not closed: computable or non-computable



Existence of computable objects Il

» closed set in the Cantor space

» = defined by a family of conditions, each dealing with
finitely many bits

» example: square-free

» not closed: computable or non-computable

» If some randomized machine M with probability 1
generates a sequence in some closed set S, then S contains
a computable element



Existence of computable objects Il

» closed set in the Cantor space

» = defined by a family of conditions, each dealing with
finitely many bits

» example: square-free

» not closed: computable or non-computable

» If some randomized machine M with probability 1
generates a sequence in some closed set S, then S contains
a computable element

» proof: construct w bit by bit in such a way that each
prefix of w has positive probability



Existence of computable objects Il

» closed set in the Cantor space

» = defined by a family of conditions, each dealing with
finitely many bits

» example: square-free

» not closed: computable or non-computable

» If some randomized machine M with probability 1
generates a sequence in some closed set S, then S contains
a computable element

» proof: construct w bit by bit in such a way that each
prefix of w has positive probability

This will be used but some more general machines are needed



Lovasz local lemma (special case)



Lovasz local lemma (special case)

» CNF: (aV—-bVc)A(maVvdV—eA...



Lovasz local lemma (special case)

» CNF: (aV-bVc)A(maVvdV—eA...

» each clause excludes some combination of variables
appearing in it



Lovasz local lemma (special case)

» CNF: (aV-bVc)A(maVvdV—eA...
» each clause excludes some combination of variables
appearing in it

» assume each clause has exactly m variables



Lovasz local lemma (special case)

» CNF: (aV-bVc)A(maVvdV—eA...

» each clause excludes some combination of variables
appearing in it

» assume each clause has exactly m variables

» if there are less than 2™ clauses then CNF is satisfiable



Lovasz local lemma (special case)

» CNF: (aV-bVc)A(maVvdV—eA...

» each clause excludes some combination of variables
appearing in it

» assume each clause has exactly m variables

» if there are less than 2™ clauses then CNF is satisfiable

» LLL: if each clause has at most 22 neighbors, then CNF
is satisfiable



Lovasz local lemma (special case)

» CNF: (aV-bVc)A(maVvdV—eA...

» each clause excludes some combination of variables
appearing in it

» assume each clause has exactly m variables

» if there are less than 2™ clauses then CNF is satisfiable

» LLL: if each clause has at most 22 neighbors, then CNF
is satisfiable

» neighbors: clauses that have common variables



Lovasz local lemma (special case)

» CNF: (aV-bVc)A(maVvdV—eA...

» each clause excludes some combination of variables
appearing in it

» assume each clause has exactly m variables

» if there are less than 2™ clauses then CNF is satisfiable

» LLL: if each clause has at most 22 neighbors, then CNF
is satisfiable

» neighbors: clauses that have common variables

» classical proof uses induction to prove some bound on
conditional probabilities



Lovasz local lemma (special case)

» CNF: (aV-bVc)A(maVvdV—eA...

» each clause excludes some combination of variables
appearing in it

» assume each clause has exactly m variables

» if there are less than 2™ clauses then CNF is satisfiable

» LLL: if each clause has at most 22 neighbors, then CNF
is satisfiable

» neighbors: clauses that have common variables

» classical proof uses induction to prove some bound on
conditional probabilities

» Moser’s proof that uses Kolmogorov complexity



Infinite Lovasz local lemma



Infinite Lovasz local lemma

» countably many variables



Infinite Lovasz local lemma

» countably many variables

» each clause involves m of them



Infinite Lovasz local lemma

» countably many variables
» each clause involves m of them

» and has at most 272 neighbors



Infinite Lovasz local lemma

» countably many variables

» each clause involves m of them

2m—2

» and has at most neighbors

» computable CNF: variables and clauses are indexed by
integers



Infinite Lovasz local lemma

» countably many variables
» each clause involves m of them

2m—2

» and has at most neighbors

» computable CNF: variables and clauses are indexed by
integers

» algorithm writes down i-th clause



Infinite Lovasz local lemma

» countably many variables
» each clause involves m of them

2m—2

» and has at most neighbors

» computable CNF: variables and clauses are indexed by
integers

» algorithm writes down i-th clause

» and lists all clauses that involve j-th variable



Infinite Lovasz local lemma

» countably many variables
» each clause involves m of them
» and has at most 272 neighbors

» computable CNF: variables and clauses are indexed by
integers

» algorithm writes down i-th clause
» and lists all clauses that involve j-th variable

» Computable LLL: such a CNF has a computable satisfying
assignment



Infinite Lovasz local lemma

» countably many variables
» each clause involves m of them
» and has at most 272 neighbors

» computable CNF: variables and clauses are indexed by
integers

» algorithm writes down i-th clause

» and lists all clauses that involve j-th variable

» Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set;



Infinite Lovasz local lemma

» countably many variables
» each clause involves m of them
» and has at most 272 neighbors

» computable CNF: variables and clauses are indexed by
integers

» algorithm writes down i-th clause

» and lists all clauses that involve j-th variable

» Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1;



Infinite Lovasz local lemma

» countably many variables

» each clause involves m of them

» and has at most 272 neighbors

» computable CNF: variables and clauses are indexed by
integers

» algorithm writes down i-th clause

» and lists all clauses that involve j-th variable

» Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser—Tardos algorithm for finding a solution for finite LLL;



Infinite Lovasz local lemma

» countably many variables
» each clause involves m of them
» and has at most 272 neighbors

» computable CNF: variables and clauses are indexed by
integers

» algorithm writes down i-th clause
» and lists all clauses that involve j-th variable

» Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser—Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine



Rewriting machines



Rewriting machines

» Machine has a random bit generator



Rewriting machines

» Machine has a random bit generator

» and rewritable output tape



Rewriting machines

» Machine has a random bit generator
» and rewritable output tape

» restriction: each output bit stabilizes (to 0 or to 1) with
probability 1



Rewriting machines

» Machine has a random bit generator

» and rewritable output tape

» restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

» Defines an almost everywhere defined mapping



Rewriting machines

» Machine has a random bit generator

» and rewritable output tape

» restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

» Defines an almost everywhere defined mapping

» stronger condition: for each bit position i and every ¢ > 0
we can compute N(i,€) such that change in i-th bit after
N(i, €) steps has probability less than ¢



Rewriting machines

» Machine has a random bit generator

» and rewritable output tape

» restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

» Defines an almost everywhere defined mapping

» stronger condition: for each bit position i and every ¢ > 0
we can compute N(i,€) such that change in i-th bit after
N(i, €) steps has probability less than ¢

» output distribution is still computable:



Rewriting machines

» Machine has a random bit generator

» and rewritable output tape

» restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

» Defines an almost everywhere defined mapping

» stronger condition: for each bit position i and every ¢ > 0
we can compute N(i,€) such that change in i-th bit after
N(i, €) steps has probability less than ¢

» output distribution is still computable:

» m(x) = the probability that output starts with x



Rewriting machines

» Machine has a random bit generator

» and rewritable output tape

» restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

» Defines an almost everywhere defined mapping

» stronger condition: for each bit position i and every ¢ > 0
we can compute N(i,€) such that change in i-th bit after
N(i, €) steps has probability less than ¢

» output distribution is still computable:
» m(x) = the probability that output starts with x

» can be computed with any given precision



Rewriting machines

>

>

>

Machine has a random bit generator

and rewritable output tape

restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

Defines an almost everywhere defined mapping

stronger condition: for each bit position i and every ¢ > 0
we can compute N(i,€) such that change in i-th bit after
N(i, €) steps has probability less than ¢

output distribution is still computable:
m(x) = the probability that output starts with x
can be computed with any given precision

paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1



Moser-Tardos probabilistic machine



Moser-Tardos probabilistic machine

» finds an assignment for infinite computable CNF



Moser-Tardos probabilistic machine

» finds an assignment for infinite computable CNF

» (assuming all clauses have m variables and at most 2™ 2
neighbors)



Moser-Tardos probabilistic machine

» finds an assignment for infinite computable CNF
» (assuming all clauses have m variables and at most 2™ 2

neighbors)

» enumerate all clauses, rank = maximal variable number



Moser-Tardos probabilistic machine

v

finds an assignment for infinite computable CNF

» (assuming all clauses have m variables and at most 2™ 2
neighbors)

» enumerate all clauses, rank = maximal variable number

» start with random values



Moser-Tardos probabilistic machine

v

finds an assignment for infinite computable CNF

» (assuming all clauses have m variables and at most 2™ 2
neighbors)
enumerate all clauses, rank = maximal variable number

v

start with random values

v

v

find first unsatisfied clause and resample it



Moser-Tardos probabilistic machine

» finds an assignment for infinite computable CNF

» (assuming all clauses have m variables and at most 2™ 2
neighbors)

» enumerate all clauses, rank = maximal variable number
» start with random values
» find first unsatisfied clause and resample it

» Moser-Tardos: this converges with probability 1



Moser-Tardos probabilistic machine

» finds an assignment for infinite computable CNF

» (assuming all clauses have m variables and at most 2™ 2
neighbors)

» enumerate all clauses, rank = maximal variable number
» start with random values

» find first unsatisfied clause and resample it

» Moser-Tardos: this converges with probability 1

» they give an estimate for convergence speed



Moser-Tardos probabilistic machine

» finds an assignment for infinite computable CNF

» (assuming all clauses have m variables and at most 2™ 2
neighbors)

» enumerate all clauses, rank = maximal variable number
» start with random values

» find first unsatisfied clause and resample it

» Moser-Tardos: this converges with probability 1

» they give an estimate for convergence speed

» so N(i,e) can be computed



Moser-Tardos probabilistic machine

» finds an assignment for infinite computable CNF

» (assuming all clauses have m variables and at most 2™ 2
neighbors)

» enumerate all clauses, rank = maximal variable number
» start with random values

» find first unsatisfied clause and resample it

» Moser-Tardos: this converges with probability 1

» they give an estimate for convergence speed

» so N(i,e) can be computed

Q.E.D.

v



Remarks



Remarks

» Breakthrough: Moser-Tardos algorithm



Remarks

» Breakthrough: Moser-Tardos algorithm
» better name: Moser—Tardos proof for trivial algorithm



Remarks

» Breakthrough: Moser-Tardos algorithm
» better name: Moser—Tardos proof for trivial algorithm

» layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence



Remarks

» Breakthrough: Moser-Tardos algorithm
» better name: Moser—Tardos proof for trivial algorithm

» layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

» algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)



Remarks

» Breakthrough: Moser-Tardos algorithm
» better name: Moser—Tardos proof for trivial algorithm

» layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

» algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

» Another application: let & < 1 and let A be a decidable set
of strings that contains at most 2" strings of length n;
then there exists a computable sequence o and ¢ such
that o has no a-factors longer than c.



