
.

RuFiDiM-2012

Probablistic proofs of the existence of computable objects

Andrei Rumyantsev, Alexander Shen
Moscow State University, LIRMM CNRS, ИППИ РАН

Supported in part by NAFIT ANR project

.

Philosophy

I Probabilistic proof: we show that some property is true
for a random object with positive probability, and
conclude that objects with this property do exist

I Nonconstructive existence proof
I Can we prove in this way the existence of a computable
object with some property?

I Yes (in a sense)

.

Philosophy

I Probabilistic proof: we show that some property is true
for a random object with positive probability, and
conclude that objects with this property do exist

I Nonconstructive existence proof
I Can we prove in this way the existence of a computable
object with some property?

I Yes (in a sense)

.

Philosophy

I Probabilistic proof: we show that some property is true
for a random object with positive probability, and
conclude that objects with this property do exist

I Nonconstructive existence proof

I Can we prove in this way the existence of a computable
object with some property?

I Yes (in a sense)

.

Philosophy

I Probabilistic proof: we show that some property is true
for a random object with positive probability, and
conclude that objects with this property do exist

I Nonconstructive existence proof
I Can we prove in this way the existence of a computable
object with some property?

I Yes (in a sense)

.

Philosophy

I Probabilistic proof: we show that some property is true
for a random object with positive probability, and
conclude that objects with this property do exist

I Nonconstructive existence proof
I Can we prove in this way the existence of a computable
object with some property?

I Yes (in a sense)

.

Probabilistic proof: an example

I 0/1 n× n matrices
I k× k minors: k rows and k columns selected
I uniform minor: all zeros or all ones
I for k = O(log n) there exists n× n matrix without
uniform k× k minors

I random matrix: all bits are independent fair coin tossings
I given minor is uniform with probability 2 · 2−k2

I at most nk = 2k log n ways to select rows/columns
I at most 22k log n ways to select minors
I condition: k2 − 1 > 2k log n

.

Probabilistic proof: an example

I 0/1 n× n matrices

I k× k minors: k rows and k columns selected
I uniform minor: all zeros or all ones
I for k = O(log n) there exists n× n matrix without
uniform k× k minors

I random matrix: all bits are independent fair coin tossings
I given minor is uniform with probability 2 · 2−k2

I at most nk = 2k log n ways to select rows/columns
I at most 22k log n ways to select minors
I condition: k2 − 1 > 2k log n

.

Probabilistic proof: an example

I 0/1 n× n matrices
I k× k minors: k rows and k columns selected

I uniform minor: all zeros or all ones
I for k = O(log n) there exists n× n matrix without
uniform k× k minors

I random matrix: all bits are independent fair coin tossings
I given minor is uniform with probability 2 · 2−k2

I at most nk = 2k log n ways to select rows/columns
I at most 22k log n ways to select minors
I condition: k2 − 1 > 2k log n

.

Probabilistic proof: an example

I 0/1 n× n matrices
I k× k minors: k rows and k columns selected
I uniform minor: all zeros or all ones

I for k = O(log n) there exists n× n matrix without
uniform k× k minors

I random matrix: all bits are independent fair coin tossings
I given minor is uniform with probability 2 · 2−k2

I at most nk = 2k log n ways to select rows/columns
I at most 22k log n ways to select minors
I condition: k2 − 1 > 2k log n

.

Probabilistic proof: an example

I 0/1 n× n matrices
I k× k minors: k rows and k columns selected
I uniform minor: all zeros or all ones
I for k = O(log n) there exists n× n matrix without
uniform k× k minors

I random matrix: all bits are independent fair coin tossings
I given minor is uniform with probability 2 · 2−k2

I at most nk = 2k log n ways to select rows/columns
I at most 22k log n ways to select minors
I condition: k2 − 1 > 2k log n

.

Probabilistic proof: an example

I 0/1 n× n matrices
I k× k minors: k rows and k columns selected
I uniform minor: all zeros or all ones
I for k = O(log n) there exists n× n matrix without
uniform k× k minors

I random matrix: all bits are independent fair coin tossings

I given minor is uniform with probability 2 · 2−k2

I at most nk = 2k log n ways to select rows/columns
I at most 22k log n ways to select minors
I condition: k2 − 1 > 2k log n

.

Probabilistic proof: an example

I 0/1 n× n matrices
I k× k minors: k rows and k columns selected
I uniform minor: all zeros or all ones
I for k = O(log n) there exists n× n matrix without
uniform k× k minors

I random matrix: all bits are independent fair coin tossings
I given minor is uniform with probability 2 · 2−k2

I at most nk = 2k log n ways to select rows/columns
I at most 22k log n ways to select minors
I condition: k2 − 1 > 2k log n

.

Probabilistic proof: an example

I 0/1 n× n matrices
I k× k minors: k rows and k columns selected
I uniform minor: all zeros or all ones
I for k = O(log n) there exists n× n matrix without
uniform k× k minors

I random matrix: all bits are independent fair coin tossings
I given minor is uniform with probability 2 · 2−k2

I at most nk = 2k log n ways to select rows/columns

I at most 22k log n ways to select minors
I condition: k2 − 1 > 2k log n

.

Probabilistic proof: an example

I 0/1 n× n matrices
I k× k minors: k rows and k columns selected
I uniform minor: all zeros or all ones
I for k = O(log n) there exists n× n matrix without
uniform k× k minors

I random matrix: all bits are independent fair coin tossings
I given minor is uniform with probability 2 · 2−k2

I at most nk = 2k log n ways to select rows/columns
I at most 22k log n ways to select minors

I condition: k2 − 1 > 2k log n

.

Probabilistic proof: an example

I 0/1 n× n matrices
I k× k minors: k rows and k columns selected
I uniform minor: all zeros or all ones
I for k = O(log n) there exists n× n matrix without
uniform k× k minors

I random matrix: all bits are independent fair coin tossings
I given minor is uniform with probability 2 · 2−k2

I at most nk = 2k log n ways to select rows/columns
I at most 22k log n ways to select minors
I condition: k2 − 1 > 2k log n

.

General scheme of a probabilistic proof

I Random process (a machine with random bit generator)
I generates objects according to some distribution
I we prove that the probability to get a “bad” object is
strictly less than 1

I conclusion: good objects exist

To speak about computability, we need infinite objects (binary
sequences)

.

General scheme of a probabilistic proof

I Random process (a machine with random bit generator)

I generates objects according to some distribution
I we prove that the probability to get a “bad” object is
strictly less than 1

I conclusion: good objects exist

To speak about computability, we need infinite objects (binary
sequences)

.

General scheme of a probabilistic proof

I Random process (a machine with random bit generator)
I generates objects according to some distribution

I we prove that the probability to get a “bad” object is
strictly less than 1

I conclusion: good objects exist

To speak about computability, we need infinite objects (binary
sequences)

.

General scheme of a probabilistic proof

I Random process (a machine with random bit generator)
I generates objects according to some distribution
I we prove that the probability to get a “bad” object is
strictly less than 1

I conclusion: good objects exist

To speak about computability, we need infinite objects (binary
sequences)

.

General scheme of a probabilistic proof

I Random process (a machine with random bit generator)
I generates objects according to some distribution
I we prove that the probability to get a “bad” object is
strictly less than 1

I conclusion: good objects exist

To speak about computability, we need infinite objects (binary
sequences)

.

General scheme of a probabilistic proof

I Random process (a machine with random bit generator)
I generates objects according to some distribution
I we prove that the probability to get a “bad” object is
strictly less than 1

I conclusion: good objects exist

To speak about computability, we need infinite objects

(binary
sequences)

.

General scheme of a probabilistic proof

I Random process (a machine with random bit generator)
I generates objects according to some distribution
I we prove that the probability to get a “bad” object is
strictly less than 1

I conclusion: good objects exist

To speak about computability, we need infinite objects (binary
sequences)

.

Randomized algorithm and its output distribution

I MachineM has access to fair coin
I has write-only output tape filled bit by bit
I output sequence can be finite or infinite
I we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

I function m(x) = probability to get x or some extension
I m(x) is lower semicomputable
I m(Λ) = 1

I m(x) ≥ m(x0) +m(x1) for all binary strings x
I any m with these properties corresponds to someM
I measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

Randomized algorithm and its output distribution

I MachineM has access to fair coin

I has write-only output tape filled bit by bit
I output sequence can be finite or infinite
I we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

I function m(x) = probability to get x or some extension
I m(x) is lower semicomputable
I m(Λ) = 1

I m(x) ≥ m(x0) +m(x1) for all binary strings x
I any m with these properties corresponds to someM
I measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

Randomized algorithm and its output distribution

I MachineM has access to fair coin
I has write-only output tape filled bit by bit

I output sequence can be finite or infinite
I we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

I function m(x) = probability to get x or some extension
I m(x) is lower semicomputable
I m(Λ) = 1

I m(x) ≥ m(x0) +m(x1) for all binary strings x
I any m with these properties corresponds to someM
I measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

Randomized algorithm and its output distribution

I MachineM has access to fair coin
I has write-only output tape filled bit by bit
I output sequence can be finite or infinite

I we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

I function m(x) = probability to get x or some extension
I m(x) is lower semicomputable
I m(Λ) = 1

I m(x) ≥ m(x0) +m(x1) for all binary strings x
I any m with these properties corresponds to someM
I measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

Randomized algorithm and its output distribution

I MachineM has access to fair coin
I has write-only output tape filled bit by bit
I output sequence can be finite or infinite
I we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

I function m(x) = probability to get x or some extension
I m(x) is lower semicomputable
I m(Λ) = 1

I m(x) ≥ m(x0) +m(x1) for all binary strings x
I any m with these properties corresponds to someM
I measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

Randomized algorithm and its output distribution

I MachineM has access to fair coin
I has write-only output tape filled bit by bit
I output sequence can be finite or infinite
I we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

I function m(x) = probability to get x or some extension

I m(x) is lower semicomputable
I m(Λ) = 1

I m(x) ≥ m(x0) +m(x1) for all binary strings x
I any m with these properties corresponds to someM
I measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

Randomized algorithm and its output distribution

I MachineM has access to fair coin
I has write-only output tape filled bit by bit
I output sequence can be finite or infinite
I we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

I function m(x) = probability to get x or some extension
I m(x) is lower semicomputable

I m(Λ) = 1

I m(x) ≥ m(x0) +m(x1) for all binary strings x
I any m with these properties corresponds to someM
I measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

Randomized algorithm and its output distribution

I MachineM has access to fair coin
I has write-only output tape filled bit by bit
I output sequence can be finite or infinite
I we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

I function m(x) = probability to get x or some extension
I m(x) is lower semicomputable
I m(Λ) = 1

I m(x) ≥ m(x0) +m(x1) for all binary strings x
I any m with these properties corresponds to someM
I measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

Randomized algorithm and its output distribution

I MachineM has access to fair coin
I has write-only output tape filled bit by bit
I output sequence can be finite or infinite
I we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

I function m(x) = probability to get x or some extension
I m(x) is lower semicomputable
I m(Λ) = 1

I m(x) ≥ m(x0) +m(x1) for all binary strings x

I any m with these properties corresponds to someM
I measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

Randomized algorithm and its output distribution

I MachineM has access to fair coin
I has write-only output tape filled bit by bit
I output sequence can be finite or infinite
I we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

I function m(x) = probability to get x or some extension
I m(x) is lower semicomputable
I m(Λ) = 1

I m(x) ≥ m(x0) +m(x1) for all binary strings x
I any m with these properties corresponds to someM

I measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

Randomized algorithm and its output distribution

I MachineM has access to fair coin
I has write-only output tape filled bit by bit
I output sequence can be finite or infinite
I we are interested in infinite sequences, but the probability
to get an infinite sequence may be < 1

I function m(x) = probability to get x or some extension
I m(x) is lower semicomputable
I m(Λ) = 1

I m(x) ≥ m(x0) +m(x1) for all binary strings x
I any m with these properties corresponds to someM
I measures m(x) = m(x0) +m(x1) correspond to machines
that generate infinite sequences almost surely

.

Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable
Proof:

I assume that probability of {ω} is greater than some ε > 0

I consider maximal set of incomparable strings x such that
m(x) > ε

I each element of this set can be extended uniquely (or
cannot be extended at all)

I ω can be reconstructed starting from its prefix in the set
Probably not very useful in proving the existence of
computable objects

.

Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable

Proof:
I assume that probability of {ω} is greater than some ε > 0

I consider maximal set of incomparable strings x such that
m(x) > ε

I each element of this set can be extended uniquely (or
cannot be extended at all)

I ω can be reconstructed starting from its prefix in the set
Probably not very useful in proving the existence of
computable objects

.

Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable
Proof:

I assume that probability of {ω} is greater than some ε > 0

I consider maximal set of incomparable strings x such that
m(x) > ε

I each element of this set can be extended uniquely (or
cannot be extended at all)

I ω can be reconstructed starting from its prefix in the set
Probably not very useful in proving the existence of
computable objects

.

Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable
Proof:

I assume that probability of {ω} is greater than some ε > 0

I consider maximal set of incomparable strings x such that
m(x) > ε

I each element of this set can be extended uniquely (or
cannot be extended at all)

I ω can be reconstructed starting from its prefix in the set
Probably not very useful in proving the existence of
computable objects

.

Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable
Proof:

I assume that probability of {ω} is greater than some ε > 0

I consider maximal set of incomparable strings x such that
m(x) > ε

I each element of this set can be extended uniquely (or
cannot be extended at all)

I ω can be reconstructed starting from its prefix in the set
Probably not very useful in proving the existence of
computable objects

.

Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable
Proof:

I assume that probability of {ω} is greater than some ε > 0

I consider maximal set of incomparable strings x such that
m(x) > ε

I each element of this set can be extended uniquely (or
cannot be extended at all)

I ω can be reconstructed starting from its prefix in the set
Probably not very useful in proving the existence of
computable objects

.

Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable
Proof:

I assume that probability of {ω} is greater than some ε > 0

I consider maximal set of incomparable strings x such that
m(x) > ε

I each element of this set can be extended uniquely (or
cannot be extended at all)

I ω can be reconstructed starting from its prefix in the set

Probably not very useful in proving the existence of
computable objects

.

Existence of computable objects

(de Leeuw, Moore, Shannon, Shapiro): if a single sequence is
generated by some randomized algorithm with positive
probability, it is computable
Proof:

I assume that probability of {ω} is greater than some ε > 0

I consider maximal set of incomparable strings x such that
m(x) > ε

I each element of this set can be extended uniquely (or
cannot be extended at all)

I ω can be reconstructed starting from its prefix in the set
Probably not very useful in proving the existence of
computable objects

.

Existence of computable objects II

I closed set in the Cantor space
I = defined by a family of conditions, each dealing with
finitely many bits

I example: square-free
I not closed: computable or non-computable
I If some randomized machineM with probability 1
generates a sequence in some closed set S, then S contains
a computable element

I proof: construct ω bit by bit in such a way that each
prefix of ω has positive probability

This will be used but some more general machines are needed

.

Existence of computable objects II

I closed set in the Cantor space

I = defined by a family of conditions, each dealing with
finitely many bits

I example: square-free
I not closed: computable or non-computable
I If some randomized machineM with probability 1
generates a sequence in some closed set S, then S contains
a computable element

I proof: construct ω bit by bit in such a way that each
prefix of ω has positive probability

This will be used but some more general machines are needed

.

Existence of computable objects II

I closed set in the Cantor space
I = defined by a family of conditions, each dealing with
finitely many bits

I example: square-free
I not closed: computable or non-computable
I If some randomized machineM with probability 1
generates a sequence in some closed set S, then S contains
a computable element

I proof: construct ω bit by bit in such a way that each
prefix of ω has positive probability

This will be used but some more general machines are needed

.

Existence of computable objects II

I closed set in the Cantor space
I = defined by a family of conditions, each dealing with
finitely many bits

I example: square-free

I not closed: computable or non-computable
I If some randomized machineM with probability 1
generates a sequence in some closed set S, then S contains
a computable element

I proof: construct ω bit by bit in such a way that each
prefix of ω has positive probability

This will be used but some more general machines are needed

.

Existence of computable objects II

I closed set in the Cantor space
I = defined by a family of conditions, each dealing with
finitely many bits

I example: square-free
I not closed: computable or non-computable

I If some randomized machineM with probability 1
generates a sequence in some closed set S, then S contains
a computable element

I proof: construct ω bit by bit in such a way that each
prefix of ω has positive probability

This will be used but some more general machines are needed

.

Existence of computable objects II

I closed set in the Cantor space
I = defined by a family of conditions, each dealing with
finitely many bits

I example: square-free
I not closed: computable or non-computable
I If some randomized machineM with probability 1
generates a sequence in some closed set S, then S contains
a computable element

I proof: construct ω bit by bit in such a way that each
prefix of ω has positive probability

This will be used but some more general machines are needed

.

Existence of computable objects II

I closed set in the Cantor space
I = defined by a family of conditions, each dealing with
finitely many bits

I example: square-free
I not closed: computable or non-computable
I If some randomized machineM with probability 1
generates a sequence in some closed set S, then S contains
a computable element

I proof: construct ω bit by bit in such a way that each
prefix of ω has positive probability

This will be used but some more general machines are needed

.

Existence of computable objects II

I closed set in the Cantor space
I = defined by a family of conditions, each dealing with
finitely many bits

I example: square-free
I not closed: computable or non-computable
I If some randomized machineM with probability 1
generates a sequence in some closed set S, then S contains
a computable element

I proof: construct ω bit by bit in such a way that each
prefix of ω has positive probability

This will be used but some more general machines are needed

.

Lovasz local lemma (special case)

I CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

I each clause excludes some combination of variables
appearing in it

I assume each clause has exactly m variables
I if there are less than 2m clauses then CNF is satisfiable
I LLL: if each clause has at most 2m−2 neighbors, then CNF
is satisfiable

I neighbors: clauses that have common variables
I classical proof uses induction to prove some bound on
conditional probabilities

I Moser’s proof that uses Kolmogorov complexity

.

Lovasz local lemma (special case)

I CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

I each clause excludes some combination of variables
appearing in it

I assume each clause has exactly m variables
I if there are less than 2m clauses then CNF is satisfiable
I LLL: if each clause has at most 2m−2 neighbors, then CNF
is satisfiable

I neighbors: clauses that have common variables
I classical proof uses induction to prove some bound on
conditional probabilities

I Moser’s proof that uses Kolmogorov complexity

.

Lovasz local lemma (special case)

I CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

I each clause excludes some combination of variables
appearing in it

I assume each clause has exactly m variables
I if there are less than 2m clauses then CNF is satisfiable
I LLL: if each clause has at most 2m−2 neighbors, then CNF
is satisfiable

I neighbors: clauses that have common variables
I classical proof uses induction to prove some bound on
conditional probabilities

I Moser’s proof that uses Kolmogorov complexity

.

Lovasz local lemma (special case)

I CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

I each clause excludes some combination of variables
appearing in it

I assume each clause has exactly m variables

I if there are less than 2m clauses then CNF is satisfiable
I LLL: if each clause has at most 2m−2 neighbors, then CNF
is satisfiable

I neighbors: clauses that have common variables
I classical proof uses induction to prove some bound on
conditional probabilities

I Moser’s proof that uses Kolmogorov complexity

.

Lovasz local lemma (special case)

I CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

I each clause excludes some combination of variables
appearing in it

I assume each clause has exactly m variables
I if there are less than 2m clauses then CNF is satisfiable

I LLL: if each clause has at most 2m−2 neighbors, then CNF
is satisfiable

I neighbors: clauses that have common variables
I classical proof uses induction to prove some bound on
conditional probabilities

I Moser’s proof that uses Kolmogorov complexity

.

Lovasz local lemma (special case)

I CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

I each clause excludes some combination of variables
appearing in it

I assume each clause has exactly m variables
I if there are less than 2m clauses then CNF is satisfiable
I LLL: if each clause has at most 2m−2 neighbors, then CNF
is satisfiable

I neighbors: clauses that have common variables
I classical proof uses induction to prove some bound on
conditional probabilities

I Moser’s proof that uses Kolmogorov complexity

.

Lovasz local lemma (special case)

I CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

I each clause excludes some combination of variables
appearing in it

I assume each clause has exactly m variables
I if there are less than 2m clauses then CNF is satisfiable
I LLL: if each clause has at most 2m−2 neighbors, then CNF
is satisfiable

I neighbors: clauses that have common variables

I classical proof uses induction to prove some bound on
conditional probabilities

I Moser’s proof that uses Kolmogorov complexity

.

Lovasz local lemma (special case)

I CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

I each clause excludes some combination of variables
appearing in it

I assume each clause has exactly m variables
I if there are less than 2m clauses then CNF is satisfiable
I LLL: if each clause has at most 2m−2 neighbors, then CNF
is satisfiable

I neighbors: clauses that have common variables
I classical proof uses induction to prove some bound on
conditional probabilities

I Moser’s proof that uses Kolmogorov complexity

.

Lovasz local lemma (special case)

I CNF: (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ . . .

I each clause excludes some combination of variables
appearing in it

I assume each clause has exactly m variables
I if there are less than 2m clauses then CNF is satisfiable
I LLL: if each clause has at most 2m−2 neighbors, then CNF
is satisfiable

I neighbors: clauses that have common variables
I classical proof uses induction to prove some bound on
conditional probabilities

I Moser’s proof that uses Kolmogorov complexity

.

Infinite Lovasz local lemma

I countably many variables
I each clause involves m of them
I and has at most 2m−2 neighbors
I computable CNF: variables and clauses are indexed by
integers

I algorithm writes down i-th clause
I and lists all clauses that involve j-th variable
I Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

Infinite Lovasz local lemma

I countably many variables

I each clause involves m of them
I and has at most 2m−2 neighbors
I computable CNF: variables and clauses are indexed by
integers

I algorithm writes down i-th clause
I and lists all clauses that involve j-th variable
I Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

Infinite Lovasz local lemma

I countably many variables
I each clause involves m of them

I and has at most 2m−2 neighbors
I computable CNF: variables and clauses are indexed by
integers

I algorithm writes down i-th clause
I and lists all clauses that involve j-th variable
I Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

Infinite Lovasz local lemma

I countably many variables
I each clause involves m of them
I and has at most 2m−2 neighbors

I computable CNF: variables and clauses are indexed by
integers

I algorithm writes down i-th clause
I and lists all clauses that involve j-th variable
I Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

Infinite Lovasz local lemma

I countably many variables
I each clause involves m of them
I and has at most 2m−2 neighbors
I computable CNF: variables and clauses are indexed by
integers

I algorithm writes down i-th clause
I and lists all clauses that involve j-th variable
I Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

Infinite Lovasz local lemma

I countably many variables
I each clause involves m of them
I and has at most 2m−2 neighbors
I computable CNF: variables and clauses are indexed by
integers

I algorithm writes down i-th clause

I and lists all clauses that involve j-th variable
I Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

Infinite Lovasz local lemma

I countably many variables
I each clause involves m of them
I and has at most 2m−2 neighbors
I computable CNF: variables and clauses are indexed by
integers

I algorithm writes down i-th clause
I and lists all clauses that involve j-th variable

I Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

Infinite Lovasz local lemma

I countably many variables
I each clause involves m of them
I and has at most 2m−2 neighbors
I computable CNF: variables and clauses are indexed by
integers

I algorithm writes down i-th clause
I and lists all clauses that involve j-th variable
I Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

Infinite Lovasz local lemma

I countably many variables
I each clause involves m of them
I and has at most 2m−2 neighbors
I computable CNF: variables and clauses are indexed by
integers

I algorithm writes down i-th clause
I and lists all clauses that involve j-th variable
I Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set;

it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

Infinite Lovasz local lemma

I countably many variables
I each clause involves m of them
I and has at most 2m−2 neighbors
I computable CNF: variables and clauses are indexed by
integers

I algorithm writes down i-th clause
I and lists all clauses that involve j-th variable
I Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1;

such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

Infinite Lovasz local lemma

I countably many variables
I each clause involves m of them
I and has at most 2m−2 neighbors
I computable CNF: variables and clauses are indexed by
integers

I algorithm writes down i-th clause
I and lists all clauses that involve j-th variable
I Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;

but this is rewriting machine

.

Infinite Lovasz local lemma

I countably many variables
I each clause involves m of them
I and has at most 2m−2 neighbors
I computable CNF: variables and clauses are indexed by
integers

I algorithm writes down i-th clause
I and lists all clauses that involve j-th variable
I Computable LLL: such a CNF has a computable satisfying
assignment

Proof: CNF determines a closed set; it is enough to construct a
machine that generates satisfying assignments with
probability 1; such a machine can be extracted from
Moser–Tardos algorithm for finding a solution for finite LLL;
but this is rewriting machine

.

Rewriting machines

I Machine has a random bit generator
I and rewritable output tape
I restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

I Defines an almost everywhere defined mapping
I stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

I output distribution is still computable:
I m(x) = the probability that output starts with x
I can be computed with any given precision
I paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

Rewriting machines

I Machine has a random bit generator

I and rewritable output tape
I restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

I Defines an almost everywhere defined mapping
I stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

I output distribution is still computable:
I m(x) = the probability that output starts with x
I can be computed with any given precision
I paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

Rewriting machines

I Machine has a random bit generator
I and rewritable output tape

I restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

I Defines an almost everywhere defined mapping
I stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

I output distribution is still computable:
I m(x) = the probability that output starts with x
I can be computed with any given precision
I paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

Rewriting machines

I Machine has a random bit generator
I and rewritable output tape
I restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

I Defines an almost everywhere defined mapping
I stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

I output distribution is still computable:
I m(x) = the probability that output starts with x
I can be computed with any given precision
I paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

Rewriting machines

I Machine has a random bit generator
I and rewritable output tape
I restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

I Defines an almost everywhere defined mapping

I stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

I output distribution is still computable:
I m(x) = the probability that output starts with x
I can be computed with any given precision
I paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

Rewriting machines

I Machine has a random bit generator
I and rewritable output tape
I restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

I Defines an almost everywhere defined mapping
I stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

I output distribution is still computable:
I m(x) = the probability that output starts with x
I can be computed with any given precision
I paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

Rewriting machines

I Machine has a random bit generator
I and rewritable output tape
I restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

I Defines an almost everywhere defined mapping
I stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

I output distribution is still computable:

I m(x) = the probability that output starts with x
I can be computed with any given precision
I paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

Rewriting machines

I Machine has a random bit generator
I and rewritable output tape
I restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

I Defines an almost everywhere defined mapping
I stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

I output distribution is still computable:
I m(x) = the probability that output starts with x

I can be computed with any given precision
I paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

Rewriting machines

I Machine has a random bit generator
I and rewritable output tape
I restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

I Defines an almost everywhere defined mapping
I stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

I output distribution is still computable:
I m(x) = the probability that output starts with x
I can be computed with any given precision

I paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

Rewriting machines

I Machine has a random bit generator
I and rewritable output tape
I restriction: each output bit stabilizes (to 0 or to 1) with
probability 1

I Defines an almost everywhere defined mapping
I stronger condition: for each bit position i and every ε > 0
we can compute N(i, ε) such that change in i-th bit aer
N(i, ε) steps has probability less than ε

I output distribution is still computable:
I m(x) = the probability that output starts with x
I can be computed with any given precision
I paradox: the same class of distributions

so it is enough to construct a rewriting machine that solves
LLL with probability 1

.

Moser–Tardos probabilistic machine

I finds an assignment for infinite computable CNF
I (assuming all clauses have m variables and at most 2m−2

neighbors)
I enumerate all clauses, rank = maximal variable number
I start with random values
I find first unsatisfied clause and resample it
I Moser–Tardos: this converges with probability 1
I they give an estimate for convergence speed
I so N(i, ε) can be computed
I Q.E.D.

.

Moser–Tardos probabilistic machine

I finds an assignment for infinite computable CNF

I (assuming all clauses have m variables and at most 2m−2

neighbors)
I enumerate all clauses, rank = maximal variable number
I start with random values
I find first unsatisfied clause and resample it
I Moser–Tardos: this converges with probability 1
I they give an estimate for convergence speed
I so N(i, ε) can be computed
I Q.E.D.

.

Moser–Tardos probabilistic machine

I finds an assignment for infinite computable CNF
I (assuming all clauses have m variables and at most 2m−2

neighbors)

I enumerate all clauses, rank = maximal variable number
I start with random values
I find first unsatisfied clause and resample it
I Moser–Tardos: this converges with probability 1
I they give an estimate for convergence speed
I so N(i, ε) can be computed
I Q.E.D.

.

Moser–Tardos probabilistic machine

I finds an assignment for infinite computable CNF
I (assuming all clauses have m variables and at most 2m−2

neighbors)
I enumerate all clauses, rank = maximal variable number

I start with random values
I find first unsatisfied clause and resample it
I Moser–Tardos: this converges with probability 1
I they give an estimate for convergence speed
I so N(i, ε) can be computed
I Q.E.D.

.

Moser–Tardos probabilistic machine

I finds an assignment for infinite computable CNF
I (assuming all clauses have m variables and at most 2m−2

neighbors)
I enumerate all clauses, rank = maximal variable number
I start with random values

I find first unsatisfied clause and resample it
I Moser–Tardos: this converges with probability 1
I they give an estimate for convergence speed
I so N(i, ε) can be computed
I Q.E.D.

.

Moser–Tardos probabilistic machine

I finds an assignment for infinite computable CNF
I (assuming all clauses have m variables and at most 2m−2

neighbors)
I enumerate all clauses, rank = maximal variable number
I start with random values
I find first unsatisfied clause and resample it

I Moser–Tardos: this converges with probability 1
I they give an estimate for convergence speed
I so N(i, ε) can be computed
I Q.E.D.

.

Moser–Tardos probabilistic machine

I finds an assignment for infinite computable CNF
I (assuming all clauses have m variables and at most 2m−2

neighbors)
I enumerate all clauses, rank = maximal variable number
I start with random values
I find first unsatisfied clause and resample it
I Moser–Tardos: this converges with probability 1

I they give an estimate for convergence speed
I so N(i, ε) can be computed
I Q.E.D.

.

Moser–Tardos probabilistic machine

I finds an assignment for infinite computable CNF
I (assuming all clauses have m variables and at most 2m−2

neighbors)
I enumerate all clauses, rank = maximal variable number
I start with random values
I find first unsatisfied clause and resample it
I Moser–Tardos: this converges with probability 1
I they give an estimate for convergence speed

I so N(i, ε) can be computed
I Q.E.D.

.

Moser–Tardos probabilistic machine

I finds an assignment for infinite computable CNF
I (assuming all clauses have m variables and at most 2m−2

neighbors)
I enumerate all clauses, rank = maximal variable number
I start with random values
I find first unsatisfied clause and resample it
I Moser–Tardos: this converges with probability 1
I they give an estimate for convergence speed
I so N(i, ε) can be computed

I Q.E.D.

.

Moser–Tardos probabilistic machine

I finds an assignment for infinite computable CNF
I (assuming all clauses have m variables and at most 2m−2

neighbors)
I enumerate all clauses, rank = maximal variable number
I start with random values
I find first unsatisfied clause and resample it
I Moser–Tardos: this converges with probability 1
I they give an estimate for convergence speed
I so N(i, ε) can be computed
I Q.E.D.

.

Remarks

I Breakthrough: Moser–Tardos algorithm
I beer name: Moser–Tardos proof for trivial algorithm
I layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

I algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

I Another application: let α < 1 and let A be a decidable set
of strings that contains at most 2αn strings of length n;
then there exists a computable sequence α and c such
that α has no α-factors longer than c.

.

Remarks

I Breakthrough: Moser–Tardos algorithm

I beer name: Moser–Tardos proof for trivial algorithm
I layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

I algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

I Another application: let α < 1 and let A be a decidable set
of strings that contains at most 2αn strings of length n;
then there exists a computable sequence α and c such
that α has no α-factors longer than c.

.

Remarks

I Breakthrough: Moser–Tardos algorithm
I beer name: Moser–Tardos proof for trivial algorithm

I layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

I algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

I Another application: let α < 1 and let A be a decidable set
of strings that contains at most 2αn strings of length n;
then there exists a computable sequence α and c such
that α has no α-factors longer than c.

.

Remarks

I Breakthrough: Moser–Tardos algorithm
I beer name: Moser–Tardos proof for trivial algorithm
I layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

I algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

I Another application: let α < 1 and let A be a decidable set
of strings that contains at most 2αn strings of length n;
then there exists a computable sequence α and c such
that α has no α-factors longer than c.

.

Remarks

I Breakthrough: Moser–Tardos algorithm
I beer name: Moser–Tardos proof for trivial algorithm
I layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

I algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

I Another application: let α < 1 and let A be a decidable set
of strings that contains at most 2αn strings of length n;
then there exists a computable sequence α and c such
that α has no α-factors longer than c.

.

Remarks

I Breakthrough: Moser–Tardos algorithm
I beer name: Moser–Tardos proof for trivial algorithm
I layerwise computable mappings = almost everywhere
defined mappings that correspond to rewriting machines
with effective convergence

I algorithmic randomness approach: layerwise computable
mapping can be computed given the sequence and an
upper bound for its randomness deficiency (Hoyrup,
Rojas)

I Another application: let α < 1 and let A be a decidable set
of strings that contains at most 2αn strings of length n;
then there exists a computable sequence α and c such
that α has no α-factors longer than c.

