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Universal functions

Partial function U : N×N→ N

Represented by a table: U(n, x)n

x

Empty cells mean undefined values

Function is computable iff the table can be filled by a
(non-terminating) algorithmic process

n-th row corresponds to unary function Un : x 7→ U(n, x)

Computable U is universal if every unary (partial)
computable function appears among Un
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Programmer’s view

Binary function is an interpreter: U(n, x) is the output of
n-th program on input x

Technical: usually the program n, the input x, and the output
U(n, x) are binary strings; this does not matter

Un is the function computed by n-th program

Each programming language has its interpreter

Programming language is universal if every (computable)
behavior can be implemented by some program

Probably the most practical discovery of XXth century
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Unique numberings

A universal function provides a unique numbering if all Un
are different

Each computable (partial) function appears exactly once
among Un

A bizarre programming language that allows only one
program for any programming task

Does such a thing exist?

Imagine that we do not know the answer. Even then, we can
easily reduce the question to the other one: who wins in
some game
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The game

Alice Bob

n

m

x x

Two players, Alice and Bob, fill two
tables (each player has its own one)

Each player sees both but can
change only her/his own one

Alice and Bob alternate; at each step finite number of cells
can be filled with natural numbers

Numbers already in the tables stay there forever

Game is infinite; the winner is determined by the limit
position

Bob wins if: (1) each A-row equals some B-row;
(2) all B-rows are different
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Why the game is relevant?

If Alice can win by some computable strategy, unique
numberings do not exist

Let Alice play against Bob that ignores her and (step by
step) fills B-table with a universal function that provides a
unique numbering.

Alice actions are computable, so her function is computable,
and she loses.

If Bob can win by some computable strategy, unique
numberings do exist

Let Bob play against Alice that ignores him and (step by
step) fills A-table with some universal function

Bob actions are computable; every computable function is a
row in A-table (may be, several rows) and therefore is a row
in B-table; all B-rows are different
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Who has a winning strategy?

Digression: Borel determinacy theorem (Martin) guarantees
the existence of a winning strategy for one of the players

But it may be non-computable. Then we get the answer
only for universal computable functions with oracle A that
is strong enough to compute the strategy.

Such a strange situation does not occur here

R.M.Friedberg: Bob has a winning strategy (1958)

In fact, Friedberg just proved the existence of unique
numberings
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Bob’s strategy

Bob hires countably many “assistants” C1, C2, . . .

Each Ci is “responsible” for i-th row in A-table

The mission of Ci: if i-th row in A is (in the limit) different
from all preceding rows, ensure that it also appears
somewhere in B-table

This guarantees that every A-row is present in B-table since
it appears somewhere in A-table for the first time

All Ci work with the same B-table. They are hired
sequentially, so at each step only finitely many Ci are active,
and each fills finitely many cells

To avoid interference, each Ci first should “reserve” a row in
B-table (empty at that moment, and not reserved by
anybody else), and work with it; others do not touch this row
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So what?

Naïve picture: each assistant Ci, when hired, selects and
reserves a row in B-table that is not reserved yet (by others),
and then faithfully copies i-th row in A-table into this
reserved row.

Good news: together they will guarantee that all A-rows
appear in B-table

Bad news: the process is trivial and useless: Ci just reserves
row i and copies i-th row of A-table there, so B-table equals
A-table

We need to ensure that all rows in B-table are different

Difficulty: the condition “i-th A-row differs from the
previous ones” cannot be checked at any finite step
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Simplified game
More power for Bob: he can “kill” rows in B-table

Killed row is never touched again and ignored when the
winner is determined

Winning condition for the limit state: Bob wins if (1) every
A-row appears as a live B-row, and (2) all live B-rows are
different

Strategy: each assistant Ci
I keeps a counter Ni: how many B-rows he has killed
I has some B-row reserved by him (the first free one at
the beginning or when the previous one is killed)

I if i-th A-row differs from all previous A-rows if we look
at places 1 . . .Ni only, copies its content into the
reserved row, otherwise kills it (increasing Ni), chooses
a new reserved row and copies i-th A-row there
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Why the strategy works

There are two possibilities for Ci

I either he changes the reserved row infinitely many
times, killing the previous one again and again
(Ni → ∞); in this case no trace among the live rows of
limit B-table is left;

I or starting from some moment, Ci never kills his
reserved row and just copies the contents of i-th row of
A into it; then i-th row of A is among the live rows in
B-table.

We need to prove: the second case happens iff i-th row in
the limit A-table differs from all the previous rows in it.
(Then only the first occurence of each A-row will be copied
into B-table, and all live B-rows are different.)
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Why the strategy works (continued)

We should prove that two things are not possible:

I i-th row is different from all previous rows in the limit
A-table, but Ni → ∞. Indeed, look at all places where
i-th row differs from the preceding ones. Let N be an
upper bound for them. Wait until first i rows stabilize at
first N places and until Ni exceeds N. Then Si sees that
i-th row is different from preceding ones in one of the
first Ni places. Why would he kill the reserved row and
increase Ni?

I Ni has finite limit value, but i-th row appears earlier in
the limit A-table. Let N = limNi; wait until rows 1 . . . i
stabilize up to position N, and Ni reaches N. Then Si
sees the coincidence, why doesn’t he increase Ni?
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How to win without killing rows

Some additional tricks needed…

First, we agree that each A-row can contain only even
number of non-empty cells, so cells are filled in pairs (we
postpone adding a number until another one arrives).

This may destroy the winning condition for “odd” A-rows
(with finite odd number of non-empty cells = functions with
finite domain of odd cardinality). We add all such functions
(they can be easily enumerated) to B-table one by one: a
special assistant looks for the first missing one and adds it
in a fresh row, then again, etc. No clashes with copied rows.

Finally, instead of killing a row, we can fill some other cells
in it to get an odd row that has not appeared yet, with the
same result. (This should be coordinated with the previous
step, so no row is added twice.)
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What is wrong with unique numberings?

I Are the universal functions (programming languages)
with uniqueness property useful?

I No. The problem is that “s-m-n theorem” does not work
for them

I In programming terms: there is no compiler from a
normal language to such a strange one

I (Gödel property for a universal function) for every
function V(m, x) there exists a total computable c
(compiler) such that V(m, x) = U(c(m), x) for all m and x
(both sides are defined or undefined at the same time,
and equal if defined)

I Another classical result: all universal functions with
Gödel property are isomorphic (and do not have the
uniqueness property).
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2: conditional and total conditional complexity

I Kolmogorov complexity of x is a length of a minimal
program (without input) that produces x

I Depends on the programming language
I There is an optimal one that makes complexity minimal
(up to O(1) additive term)

I Fix an optimal one and denote complexity by C(x)
I Defined up to O(1) additive term
I Conditional complexity of x given y: the minimal length
of a program that transforms input y to output x (for an
optimal language). Notation: C(x|y)

I Let us replace minimal length by minimal complexity;
then any language is OK (optimality not needed).

I Total conditional complexity: minimal complexity of a
total program that transforms y to x; notation CT(x|y)
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Do they differ?

I Evidently, conditional complexity does not exceed total
conditional complexity

I How big the difference could be?
I The difference could be maximal: for a given n there
exist strings x and y of length n such that C(x|y) = O(1)
but CT(x|y) ≥ n. (Two extreme cases.)

(Digression) CT attracted attention recently (Bauwens,
Vereshchagin). If information distance between x and y is
small (C(x|y) ≈ 0 and C(y|x) ≈ 0), still x and y can have
different properties. But if CT(x|y) ≈ 0 and CT(y|x) ≈ 0,
then x is mapped to y by a simple computable permutation,
so x and y are very similar.
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The game

I Two sets X and Y of 2n elements, e.g., n-bit strings
I Alice and Bob alternate and see each other’s moves
I Alice constructs a partial function a : Y → X; at each
move she may define several (may be, zero) values of a
(but cannot change already defined values)

I Bob constructs total functions b1, b2, . . . : Y → X; at
each step several functions may be added, but the
length of the list should be less than 2n.

I Alice wins if in the limit there exists some y ∈ Y such
that a(y) is defined and different from all bi(y)



. . . . . .

The game

I Two sets X and Y of 2n elements, e.g., n-bit strings

I Alice and Bob alternate and see each other’s moves
I Alice constructs a partial function a : Y → X; at each
move she may define several (may be, zero) values of a
(but cannot change already defined values)

I Bob constructs total functions b1, b2, . . . : Y → X; at
each step several functions may be added, but the
length of the list should be less than 2n.

I Alice wins if in the limit there exists some y ∈ Y such
that a(y) is defined and different from all bi(y)



. . . . . .

The game

I Two sets X and Y of 2n elements, e.g., n-bit strings
I Alice and Bob alternate and see each other’s moves

I Alice constructs a partial function a : Y → X; at each
move she may define several (may be, zero) values of a
(but cannot change already defined values)

I Bob constructs total functions b1, b2, . . . : Y → X; at
each step several functions may be added, but the
length of the list should be less than 2n.

I Alice wins if in the limit there exists some y ∈ Y such
that a(y) is defined and different from all bi(y)



. . . . . .

The game

I Two sets X and Y of 2n elements, e.g., n-bit strings
I Alice and Bob alternate and see each other’s moves
I Alice constructs a partial function a : Y → X; at each
move she may define several (may be, zero) values of a
(but cannot change already defined values)

I Bob constructs total functions b1, b2, . . . : Y → X; at
each step several functions may be added, but the
length of the list should be less than 2n.

I Alice wins if in the limit there exists some y ∈ Y such
that a(y) is defined and different from all bi(y)



. . . . . .

The game

I Two sets X and Y of 2n elements, e.g., n-bit strings
I Alice and Bob alternate and see each other’s moves
I Alice constructs a partial function a : Y → X; at each
move she may define several (may be, zero) values of a
(but cannot change already defined values)

I Bob constructs total functions b1, b2, . . . : Y → X; at
each step several functions may be added, but the
length of the list should be less than 2n.

I Alice wins if in the limit there exists some y ∈ Y such
that a(y) is defined and different from all bi(y)



. . . . . .

The game

I Two sets X and Y of 2n elements, e.g., n-bit strings
I Alice and Bob alternate and see each other’s moves
I Alice constructs a partial function a : Y → X; at each
move she may define several (may be, zero) values of a
(but cannot change already defined values)

I Bob constructs total functions b1, b2, . . . : Y → X; at
each step several functions may be added, but the
length of the list should be less than 2n.

I Alice wins if in the limit there exists some y ∈ Y such
that a(y) is defined and different from all bi(y)



. . . . . .

Game field

a

b1

b2

b3

y

Alice fills the upper row
(with elements of X, step by step)
Bob adds new (completely filled)
rows to the table, at most 2n − 1 rows
Alice’s goal: some element of her row
does not appear again in the B-column under it
Bob’s goal: every element of A-table appears in one of
B-rows in the same column
Alice’s strategy: choose a free cell, put an element that does
not exist in its column yet, and wait until Bob answers with
a new row
Alice wins: there are enough elements of X, and she has
more moves than Bob
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not exist in its column yet, and wait until Bob answers with
a new row

Alice wins: there are enough elements of X, and she has
more moves than Bob
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Why this is enough

I X and Y are sets of n-bit strings
I Bob ignores Alice and add rows that correspond to total
algoritms of complexity less than n (restricted to Y,
assuming that all the values are in X); there are less
than 2n of them

I Alice uses her strategy
I y is an element where Alice wins, and x is a(y)
I since Alice process is computable given n, and n is
determined by y, we guarantee that C(x|y) = O(1)

I by construction CT(x|y) ≥ n
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3: Muchnik–Vyugin’s result

I C(x|y) measures how “far” is x from information that
exists in y

I not symmetric: C(x|y) and C(y|x) can be very different
I if we need one number as a distance, we can consider
C(x|y) + C(y|x), but pair C(x|y), C(y|x) is more
informative

I Question: for a given x and n, can we find y such that
both C(x|y) and C(y|x) are n+ O(1)?

I Some conditions needed: if C(x) ≪ n, then C(x|y) ≪ n.
I (M. Vyugin) if C(x) > 2n, then such a y exists
I with O(log n) instead of O(1) this is easy: take the
shortest program for x, and replace n first bits in it by
random ones

I topological argument replaces 2n by n+ O(log n).
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More strings

x y
We constructed for a given x some y
that has “distance” n in both directions

x0

x1

x2

Now for a given x0 we want to find
a “right triangle” x0x1x2 where all six
“distances” are n+ O(1)

Muchnik and Vyugin has shown that this is
possible if C(x) > cn for large enough c
(that does not depend on x and n)

Similar statement is true for 4, 5, . . . strings.

Game proof: the game is straightforward, but the strategy is
quite complicated
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Andrej Muchnik (1958-2007)


