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Abstract. This paper studies Dawid’s prequential framework from the
point of view of the algorithmic theory of randomness. The main result is
that two natural notions of randomness coincide. One notion is the pre-
quential version of the standard definition due to Martin-Lof, and the
other is the prequential version of the martingale definition of random-
ness due to Schnorr. This is another manifestation of the close relation
between the two main paradigms of randomness, typicalness and un-
predictability. The algorithmic theory of randomness can be stripped of
the algorithms and still give meaningful results; the typicalness paradigm
then corresponds to Kolmogorov’s measure-theoretic probability and the
unpredictability paradigm corresponds to game-theoretic probability. It
is an open problem whether the main result of this paper continues to
hold in the stripped version of the theory.

1 Introduction

The two fundamental paradigms of randomness are unpredictability and typical-
ness (see, e.g., [1], Chapter 1). Unpredictability is based on the idea of gambling:
a sequence is regarded random if there is no computable way to become infinitely
rich betting on its elements. Typicalness is based on the idea of measure: a se-
quence is regarded random if there is no computable way to specify a set of
measure zero containing this sequence. The standard formal definition of un-
predictability is due to Schnorr [19] and Levin [12], and the standard formal
definition of typicalness is due to Martin-Lof [14]. Schnorr and Levin [19, 12]
also established equivalence between unpredictability and typicalness.

The standard definitions of randomness are given relative to a stochastic
mechanism supposedly generating the sequence. In this paper we ask the question
whether the equivalence will still hold in the “prequential framework”, i.e., when
no such stochastic mechanism is assumed.

The first prequential definition of randomness was proposed by Dawid [4].
Dawid’s definition, however, was based on von Mises’s idea of subsequence selec-
tion rules, which Ville [22] showed to be inadequate in some important respects.
Dawid ([4], Section 13.2) also gave a brief description of a prequential definition
based on Ville’s martingales, but did not elaborate on it. This paper provides



the details of this definition, which belongs to the unpredictability paradigm. It
also gives a Bayesian definition of typicalness. Its main mathematical result says
that the prequential notions of unpredictability and typicalness coincide.

Prequential framework for randomness

Set IT := ([0,1] x {0,1})°°; this will sometimes be referred to as the pre-
quential space. A typical element (p1,y1,p2,ys,...) of II is interpreted as the
record of predictions pi,ps,... output by a forecaster and the observed out-
comes ¥Y1,%2,..., assumed binary. Intuitively, p, is the forecaster’s subjective
probability that y, = 1 after having observed y1,...,y,_1 and taking account
of all other information available at the time of issuing the forecast.

Dawid’s prequential principle ([3]; it is called “M2” in [4] and “weak prequen-
tial principle” in [6,7]) says that our evaluation of the quality of the forecasts
p1, P2, ... in light of the observed outcomes y1,ys, ... should not depend on the
forecaster’s probability model (typically, a probability measure describing the
forecaster’s beliefs about the stochastic mechanism generating the data). The
prequential principle is satisfied automatically in our framework, since the pre-
quential space does not involve the forecaster’s probability model at all.

In the following two sections we will introduce two different notions of ran-
domness of a sequence m € II. Intuitively, (p1,y1,p2,¥s2,...) is random if the
P are good predictions of y,; slightly more precisely, if there is no computable
way to detect inadequacy of p,. The first definition, in Section 2, belongs to
the unpredictability paradigm and the second, in Section 3, to the typicalness
paradigm. The equivalence between the two definitions, which is the main result
of the paper, is stated in Section 4 and proved in Section 5. The concluding
Section 6 discusses directions for further research.

For understanding the intuitive meaning of our statements, the following
intuitive idea of lower semicontinuity will suffice: a function f : X — R is
lower semicomputable if there is an algorithm that, for all z € X and r € R,
will eventually tell us that f(x) > r if this inequality is indeed true. (Lower
semicomputable functions are not necessarily computable as the algorithm can
work arbitrarily long.) Understanding the proofs requires precise definitions, as
given in, e.g., Appendix A.

Some other notation

The set of all natural (i.e., positive integer) numbers is denoted N, N :=
{1,2,...}; N is N extended by adding co. As always, Q and R are the sets
of all rational and real numbers, respectively.

Let {2 := {0, 1}* be the set of all infinite binary sequences and 2° := {0,1}*
be the set of all finite binary sequences. Set II® := ([0, 1] x {0,1})*. The empty
element (sequence of length zero) of both §2° and IT° will be denoted O. In
our applications, the elements of IT°® will be finite sequences of predictions and
outcomes, and the elements of {2 and 2° will be sequences of outcomes (infinite
or finite).



For x € 02°, let I, C {2 be the set of all infinite continuations of z. Similarly,
for x € II°, I, C II is the set of all infinite continuations of x. For each w =
(y1,y2,...) € 2 and n € N, set w" := (y1,...,Yn). Similarly, for each 7 =
(p1,Y1,P2,Y2,...) € I and n € N, set 7" := (p1,Y1, .-, DnsYn)-

2 Unpredictability
A farthingale is a function V' : IT® — [0, 0o] satisfying

V(p17y17 s 7pn—1ayn—1)
=1 =p)V(P1, 91, -, Pn—1,Yn—1,Pn, 0)
+pnv(p17y17-'~7pn717yn717pn71) (1)

for all n and all (p1,y1,p2,Y2,...) € II. If we replace “=" by “>” in (1), we get
the definition of superfarthingales. These are prequential versions of the standard
notions of martingale and supermartingale; we are following the terminology of
[7].

The value of a farthingale can be interpreted as the capital of a gambler
betting according to the odds announced by the forecaster. In the case of super-
farthingales, the gambler is allowed to throw away part of his capital.

Lemma 1. Let V be the class of all non-negative lower semicomputable super-
farthingales V with initial value V(O) = 1. There exists a largest superfarthingale
in YV to within a constant factor.

Proof. Fix a universal sequence of lower semicomputable functions fi, fo,... on
IT° (see Lemma 6 in Appendix A). It is easy to construct a new computable
sequence of semicontinuous functions f{, f3,... such that each of f] is a super-
farthingale in V and that f] = f; whenever f; is already in V, | € N. Then
S, 27t f] will be a largest superfarthingale in V. O

Let us fix a largest superfarthingale U in V and call it the universal superfar-
thingale. A sequence 7 € II is unpredictable if U(x™) stays bounded as n — oo.
The following lemma gives an equivalent definition of unpredictable sequences.

Lemma 2. A sequence m € II is unpredictable if and only if U(x™) does not
tend to infinity as n — oo.

Proof. Following the proof of Lemma 3.1 in [21], we can construct a superfar-
thingale V' € V such that liminf,, . V(7™) = oo whenever sup,, U(7") = occ.
(Therefore, liminf,, . U(n™) = oo whenever sup,, U(7") = o0.) Indeed, for
each m € N, the function U : II® — [0, 00) defined by

U™ (2) 2m if U(y) > 2™ for some prefix y of
x) =
U(z) otherwise



is a superfarthingale; it is clear that it is lower semicomputable and so belongs to
V. Since U',U?, ... is a computable sequence of lower semicontinuous functions,
we can set

m=1

3 Typicalness

We can also adapt the standard definition of typicalness to the prequential frame-
work. First we give an informal version of the definition.

A forecasting system is a function ¢ : £2° — [0,1]. Let @ be the set of all
forecasting systems. For each ¢ € @ there exists a unique probability measure
P4 on 2 such that, for each x € 2°, Py(I;1) = ¢(x) Py(I%). (In other words,
such that ¢(x) is a version of the conditional probability, according to Py, that
x will be followed by 1.) The notion of a forecasting system is close to that of a
probability measure on {2: the correspondence ¢ — P, becomes an isomorphism
if we only consider forecasting systems taking values in the open interval (0, 1)
and probability measures taking positive values on the sets I, x € §2°.

Informally, we say that a sequence w € 2 is typical w.r. to a forecasting
system ¢ if it is typical (i.e., random in the sense of Martin-Lof [14]) w.r. to Py
when ¢ is given as an oracle. We will formalize “given as an oracle” using some
simplest notions of effective topology (see Appendix A). The following definition
is a version of Levin’s “uniform test of randomness” [13,9].

Definition 1. A uniform test of typicalness is a lower semicomputable function
T: 0 x®— N such that, for all p € @ and all m € N,

Py{w e 2| T(w,¢) > m} <27™. (2)

Intuitively, T'(w, ¢) is the number of anomalies (measured in bits, according
to (2)) discovered in w w.r. to ¢. The requirement of lower semicomputability
means that the anomalies have to be genuine: a discovery of anomaly can never
be undone.

Lemma 3. There exists a largest, to within an additive constant, test of typical-
ness. In other words, there exists a test of typicalness T such that, for any other
test of typicalness T', there exists a constant C' such that, for any (w, @) € 2 x P,

Proof. The proof is similar to the standard one given by Martin-Lof [14]; it
will, however, crucially depend on the compactness of @, as in [13]. For each set

G C 2 x @ and each ¢ € & we will use the notation

Glo] ={we 2| (v, ¢) G}



for the ¢-cut of G. A convenient alternative representation of a test of typicalness
T is as a computable sequence of nested open sets G; D G5 D - -+ in {2 X @ such
that

Py(Gmlg]) <27™ 3)

for all ¢ € & and m € N. It is easy to see that the representations are indeed
equivalent: when given T' we can set G, := {(w, ) | T(w,$) > m}, and when
given G1,Ga, ..., we can set T'(w, @) := max{m | (w,®) € G,,}. Such sequences
G1,Ga,... will also be referred to as tests of typicalness (dropping the word
“uniform”).

Let G; ., be a universal computable family of sequences of open sets (cf.
Lemma 5 in Appendix A). Put Gy, := N%;Gy;, so that G}, is a computable
family of nested sequences of open sets containing all nested computable se-
quences of open sets. We can further “trim” each G7,, to G, so that:

— Py(Gl,,[0]) <27 for all ¢ € &;
- G, = Gy, whenever Py(G7,[¢]) <27 for all ¢ € ©.

Indeed, let G7,, = U{Uy | (I,m,k) € A} be the representation of G}, as the
union of basm sets. Set Hg = U{U;c | (I,m,k) € A,k < K}, so that Hy, Hy, . ..
is a non-decreasing sequence of simple sets whose union is G} 1,m- Remember that,
by (15), Hgx C Gf,m. We may “quarantine” new Hp until they are “cleared”,
i.e.,

Vo e d:Py(Hglp]) <27 (4)

is established. The open set G7,, is defined as the union of the Hy that are
cleared.

Let us check that condition (4) can indeed be eventually established by a
computable procedure when it is satisfied. Suppose (4) is satisfied. The set

S:={¢ € ®|Py(Hxlg]) <27}

is effectively open, so that we can effectively generate a sequence of basic sets
U], C & whose union is S. By the compactness of &, already a finite number
of U;, will cover S when S = @, and so (4) can be established in a computable
manner.

Therefore, we can list all tests of typicalness, in the following sense: there is a
computable sequence (G, )oo_1, 1 = 1,2, ..., of tests of typicalness that contains
all “strict” tests of typicalness (i.e., those satisfying the required inequality with
“<” instead of “<”). To obtain a largest test of typicalness G,,, it suffices to set

Gm = U?ilal’erl.

Indeed, the computability of the sequence of open sets G, is obvious,

oo

i (Grmle]) <> 27 =27" VYoed,vmeN,

=1



and, for each [ € N,
T(w,¢) = max{m | (w,¢) € Gp,} > max{m | (w,d) € Gy} =T (w,¢) — 1,

where T is the functional representation of the test (Gp,)5_; and T is the
functional representation of the test (G m)5o_;. O

Let us fix a largest uniform test of typicalness T and call it the universal
test of typicalness. A sequence w € (2 is said to be typical w.r. to ¢ € @ if
T(w, ) < cc.

Definition 2. We say that m = (p1,y1,p2, Y2, .. .) € II is typical if there exists
a forecasting system ¢ such that (y1,ya,...) s typical w.r. to ¢ and ¢ agrees
with 7, in the sense that p, = ¢(y1,-..,Yn—1) for all n.

4 Main result

Theorem 1. A sequence m € II is unpredictable if and only if it is typical.

This theorem will be proved in the next section. The proof will be based on
Levin’s [13] ideas (see also [9]).

The philosophical significance of Theorem 1 is that it establishes the equiva-
lence of the purely prequential and Bayesian viewpoints in the framework of the
algorithmic theory of randomness. The definition of typicalness is Bayesian, in
that the forecaster is modelled as a coherent decision maker, computing his fore-
casts by conditioning a probability measure; rejecting the forecasts is the same
as rejecting all probability measures that could have produced those forecasts.
The definition of unpredictability is purely prequential, in that it does not see
any probability measures behind the forecasts; the latter are used for testing
directly.

A simple corollary of Theorem 1 is the following observation:

Corollary 1. Let ¢ be a computable forecasting system. A binary sequence
(Yy1,Y2,...) is random w.r. to Py in the sense of Martin-Lof if and only if
the sequence (p1,y1,P2,Ys,--.) s unpredictable (equivalently, typical), where
Pn = ¢(y1a cee 7yn—1)7 ne€N.

Therefore, the prequential notions of unpredictability and typicalness generalize
Martin-Lo6f’s notion of randomness.

Remark 1. Notice that we have never assumed that the past observations
Y1,---,Yn—1 are the only information available to the forecaster when choosing
the prediction p,, for the next outcome y,. The forecaster is allowed to (and
typically does) use all kinds of “side information” in addition to the past ob-
servations. It is easy to extend all our definitions and results to the case where
some of this side information, x,, is also known to the gambler. (As in [4],
Section 9.) As an example, the definition of a superfarthingale, (1), becomes



V(xlapla y17 . 7$n—17pn—1a yn—l)
= (1 - pn)V(xlaph Y1, 7$n717pn717yn71axn7pn70)
+PuV (T1,P1, Y15+ -+, Tn—1, Pn—1,Yn—1, Tns Pny 1)

Remark 2. Since we do not record side information in the main part of this
paper, the forecasting systems that we consider are never assumed computable:
even if the forecaster computes each forecast from the past outcomes and the side
information, typically the forecast cannot be computed from the past outcomes
alone. It is not even obvious that the notion of a forecasting system ¢ as we
defined it (a function of past outcomes) is meaningful. It involves the following
controversial picture along the lines of Pearl’s “local surgeries”. To elicit the value
of the function ¢ on a binary sequence y1, ..., y,, we act as follows. First we wait
until the nature produces the first piece of side information x1 and, in response,
the forecaster produces p;. Then we perform a “local surgery” replacing the
nature’s outcome by gy (if it is different from y;). Now the nature produces o
and the forecaster produces ps. Another local surgery replaces the outcome by
y2. Etc. Finally, the forecaster produces p,,, which is taken to be the value of ¢ on
Y1, .- -, Yn. According to Theorem 1, this philosophically questionable approach
(see, e.g., Section 4 of Pearl’s response in [18] and Dawid’s and Shafer’s critique
of Pearl’s use of counterfactuals) leads to the same notion of randomness as the
philosophically immaculate approach of Section 2.

Remark 3. There is a feature of our definition of typicalness which some readers
might find counterintuitive. Consider a sequence (p1,y1,p2,Y2,...) € I gener-
ated from the Markov chain Py, ., where

1/3 ifn>0andy, =0
AMark(Y1,- -+, Yn) =1 2/3 ifn>0andy, =1 (5)
1/2 ifn=0

for all (y1,...,yn) € £2°. Therefore, p; = 1/2, y,, is obtained by tossing a biased
coin so that y, = 1 with probability p,, n =1,2,..., and p,, = 1/3 or p,, = 2/3
according to whether y,,_1 = 0ory,—1 =1,n=2,3,.... When will the universal
test of typicalness declare such a sequence untypical? Of course, this will always
happen if the test is given the sequence of forecasts (pi,pa,...): the sequence
of outcomes (y1,ys,...) is computable from (p1,p2,...) (y1 is determined by
D2, Y2 is determined by ps, etc.) but the set {(y1,y2,...)} has measure zero.
According to our definition of typicalness at the end of Section 3, for the sequence
(p1,Y1,P2,Y2,...) to be typical there should exist a forecasting system ¢ such
that p1,pa,... are produced by ¢ along the sequence (yi,¥s,...) and such that
(y1,Y2,...) is typical w.r. to ¢. This works because we can choose a ¢ that
“hides” (p1,p2,...) very well: the Markov forecasting system (5) will do so. The
quantifier “exist” is essential: it cannot be replaced by “for all”. In particular,
we cannot take as ¢ Dawid’s ([5], Section 7.3) prequential model

Gpreq(T) ==pn, YneN,Vze ot



The problem is that the prequential model is too honest and does not try to
hide the p,, at all; consequently, T'((y1,Y2, - - .); Ppreq) = 00, where T is the uni-
versal test of typicalness. This is a manifestation of the fact that the univer-
sal test of typicalness violates Dawid’s strong prequential principle [6, 7], which
recommends, roughly, the following procedure for testing agreement between
(p1,p2,--.) and (y1,¥2,...). Choose a test of typicalness T'(w, ¢) that depends
on (w, ¢) only via (w, p(w)), where ¢(w) is the sequence of forecasts made by ¢
on w (cf. (7) in the proof of Theorem 1 below). There might be some restric-
tions (regarded as mild in a given context) on the class of forecasting systems
¢ considered. Now the disagreement between (pi,pe,...) and (y1,y2,...) can
be defined as T'(w, ¢) being large, where ¢ is any forecasting system that agrees
with (p1,y1,D02,¥2, - - .). It does not matter which ¢ is chosen; e.g., the prequential
model will do.

5 Proof of Theorem 1 and Corollary 1

The proof of the theorem will depend on a fundamental result called Ville’s
inequality. Let ¢ be a forecasting system. A martingale w.r. to ¢ is a function
Vi 2° — [0, 00] satisfying

V() = (1= ¢(x))V(2,0) + o)V (z,1) (6)

for all z € 2°. If we replace “=” by “>" (respectively, “<”) in (6), we get the
definition of a supermartingale (respectively, submartingale) w.r. to ¢.

Proposition 1 (Ville’s inequality, [22], p. 100). If ¢ is a forecasting system,
V' is a non-negative supermartingale w.r. to ¢ with initial value V(O) = 1, and

C >0,

1
P, {w € 2| supV(w") > C’} < yolk

Fix € II.

Part “if” of Theorem 1

Suppose 7 is not unpredictable. Then 7w € G, for all m € N, where
G ={rell|In:U(x")>2"}

and U is the universal superfarthingale.

We will not distinguish between (p1,y1,p2,y2,...) € II and the pair of se-
quences ((p1,p2,---), (Y1,Y2,...)) € [0,1]° x 2. For ¢ € P and w = (y1,¥y2,...) €
2 we set

o(w) = (¢(0), 0(y1), ¢(y1,92), - --) € [0,1]. (7)
The mapping (w, ¢) — ¢(w) from 2 x @ to [0,1]*° is continuous. Therefore, the
mapping (w, @) — (¢(w),w) from 2 x @ to II is also continuous. Therefore, the
set

G =A{(w,9) | (p(w),w) € Gm}



is open.

Let us check that G/, is a test of typicalness. The computability requirement
is obvious. Fix m € N and ¢ € &. To check (3), i.e., Py(G),[¢]) < 27™ in the
current notation, notice that the function U? : 2° — [0, o] defined by

U¢(y1a e ;yn) = U(¢(D)vy17¢(y1)7y27 .. ‘7¢(y17 cee 7yn71)7yn)

is a martingale w.r. to ¢. Now Ville’s inequality implies

Py(Grald]) =Py {w € 2| (w,9) € G}, } =Py {w € 2] ($(w),w) € G}
=Py {we Q| 3In:UW") >2mL <27 Vo e d.

Suppose 7 is not only unpredictable but also typical. Then there exists ¢ € @
such that 7 = (¢(w),w) for some w typical w.r. to ¢. Since m € G,,, we have
(w, @) € G!; since this is true for each m € N, w is not typical w.r. to ¢, and so
we have arrived at a contradiction.

Corollary 1

To see that a sequence w = (y1,y2,...) € £2 is random w.r. to Py in the sense of
Martin-Lof if and only if 7 := (p1,y1,p2,¥2,-..) is unpredictable, where p,, :=
d(Y1,---yYn—1), n € N, notice that the unpredictability of 7 is equivalent to
Schnorr and Levin’s reformulation of Martin-Lof randomness of w w.r. to Py
(i.e., to the universal lower semicomputable supermartingale w.r. to ¢ being
bounded on w™).

Part “only if” of Theorem 1

Let G, = U{Uy | (m,k) € A} be a representation of the universal test of
typicalness via basic sets, with A C N? a recursively enumerable set. Without
loss of generality we can assume that each basic set Uy in this representation
has the form I, x {¢ € @ | a(z) < ¢(z) < b(z),Vx € 25"} for some ¢ € 2",
a,b: 25" — Q, and n € N. Define G’ to be the set of all (py,y1, p2, y2,-..) € 1T
such that ((y1,92,...),9) € G, for all ¢ that agree with (p1,y1,p2, Y2, - - .)-

The compactness of @ easily implies that each set G, C II is open. Indeed,
suppose ™ = (p1,Y1,D02,Y2,-..) € G.. For each ¢ € P, either ¢ disagrees with
7w or ((y1,y2,-..),9) € Gu. In both cases there is a neighbourhood O;5 of
and a neighbourhood Og of ¢ such that either all elements of Og disagree with
all elements of Oy or ((y1,y3,...),¢") € G for all (p},y1,p3,95,...) € Oy
and all ¢’ € Of. Since @ is compact, there is a finite set ¢1,...,¢; such that
U}J:lOgj = ¢. We can see that the neighbourhood ﬁleO(’m of 7 is a subset of
G;n'

The same argument shows that the G/, form a computable sequence of open
sets. Let us show that there exists a non-negative superfarthingale V,,, with initial
value 27™ or less that eventually exceeds 1 on each sequence in GJ,. (In this
sense G, form a prequential test of typicalness.)



Let GI, = U{Uy | (m, k) € A} be a representation of G/, via basic sets, where
A C N? is a recursively enumerable set. Let A = U°; A; be a representation of
A as the union of a computable sequence ) C Ay C Ay C --- of finite sets. Fix
an m. For each i € N, define a superfarthingale W; as follows. Let N be so large
that, for all x € ITYN and (m,k) € A;, either I, C Uy or I, N U, = (). (For
example, we can set N to the largest ny in (14) over k such that (m, k) € A;.)
Forn > N and x € II"™, set

Wi(z) = {1 if I, g. Uy, for some k with (m, k) € A;
0 otherwise.

After that proceed by backward induction. If W;(z) is already defined for z €
II",n=N,N—1,...,1, set, for each x € [I" !,

Wi(x) = il[tpu((l — p)Wi(x,p,0) + pWi(z,p, 1)). (8)

It is clear that W; is a superfarthingale that does not depend on the choice of
N.

We will need to establish several properties of W;. First, it is lower semicon-
tinuous. Indeed, there is an N (e.g., the largest ng in (14) over (m,k) € A;)
such that W;(z) is lower semicontinuous when z is restricted to II™ with n > N.
(It will even be lower semicomputable when z is restricted to IT=".) And the
operation sup preserves lower semicontinuity:

Lemma 4. If a function f: X xY — R defined on the product of topological
spaces X and Y is lower semicontinuous, then the function x € X — g(x) :=
sup,cy f(x,y) is also lower semicontinuous.

Proof. Tt suffices to notice that, for each ¢ € R, {z | g(z) > ¢} = {= | y :
f(z,y) > ¢}, and projections of open sets are open.

The lower semicontinuity of W; implies its lower semicomputability: indeed, we
can restrict p to QN [0,1] in (8).

Let us check that W;(O) < 27™. Suppose that, on the contrary, W;(O)
27™. Construct a forecasting system ¢ as follows. For each x € 2", n
0,1,...,N — 1, choose ¢(x) such that

v

(1 = o(2))Wilz, ¢(x),0) + (x)Wi(z, ¢(x), 1)
> zl[z‘)pl}((l _p)Wi(vaaO) +pWi($,p, 1)) - 6/]V = Wl(x) - 6/N7

where € > 0 satisfies W;(0) > 2~™+e. For each z € 22V define ¢(x) arbitrarily,
say ¢(z) := 0. Since (¢(w),w) ¢ G, for all w ¢ G,,[¢], we have Wf’(wN) =0 for
all w ¢ G, [¢]. Combining the fact that

{wlmle™) =1} cauld



with the fact that the function z € 2° — S(z) := W;ﬁ(x) + en/N, where n is
the length of z, is a submartingale w.r. to ¢, we obtain

Py (Gmld]) 2 Py {w | WP (") = 1} = By W (") = Ey(S(@™) - )
>8(0) —e=WP(O) —e>2"™, (9)

where E, stands for the expectation of a function of w € 2 w.r. to Py. The
inequality between the extreme terms of (9) fails by the definition of a test of
typicalness.

Define V,,,(z) := sup, W;(z), © € II°, to be the limit of the non-decreasing
sequence of superfarthingales W;. It is clear that V,, is also a superfarthingale
and V,,,(0) <27™. Set V := Y~ | V,,; this is a lower semicomputable super-
farthingale with initial value V(O) <1 (so that V' € V if we redefine V(O) := 1).

Now it is easy to finish the proof of the theorem. Suppose that 7 is not
typical. Then w € G}, for all m € N. Then V(7™) — oo as n — oo, and so 7 is
not unpredictable.

6 Conclusion

In this section we will discuss some open problems and directions of further
research (for further open problems and background information, see [17]).

Quantitative prequential randomness

Let U be the universal superfarthingale. Let us denote its binary logarithm
logU(p1,y1s---+DnsYn) by DU(D1, Y1, ., Pn,yn) and call it the deficiency of
unpredictability of (p1,y1,.-.,Pn,Yn). For m € II, set DU(7) := sup,, DU(x"™).
Let T be the universal test of typicalness. Let us denote its value T'(w, ¢) by
DT(w, ¢) and call it the deficiency of typicalness. The deficiency of typicalness
DT(x) of m € IT can now be defined as infy, DT(w, ¢), ¢ ranging over the forecast-
ing systems that agree with 7. We can further define DT (p1,y1,. .., Pn, Yn) as the
infimum of DT(r), m € II ranging over all continuations of (p1,y1, ..., Pn, Yn)-
In this paper we have demonstrated the equivalence of unpredictability and
typicalness in the prequential setting: DU(7) < oo if and only if DT(7) < oc.
A natural next step is to study inequalities between the deficiency of unpre-
dictability and the deficiency of typicalness. The arguments of this paper show
that DU ~ DT. It would be interesting to establish optimal explicit inequalities.

Stripped algorithmic theory of randomness

The non-algorithmic counterpart of the notion of randomness is Cournot’s prin-
ciple (see, e.g., [20]): a data sequence is not random if it belongs to a pre-specified
event of small probability. Therefore, the non-algorithmic counterpart of equiv-
alence of various notions of randomness is the closeness of various notions of



probability. As the notion of randomness branches into unpredictability and typ-
icalness, the notion of probability branches into game-theoretic probability and
measure-theoretic probability. Unfortunately, the equivalence of unpredictability
and typicalness does not translate automatically into equivalence between game-
theoretic and measure-theoretic probability. In this subsection we will give some
definitions, and in the next will state an open problem.

Measure-theoretic probability, as formalized by Kolmogorov [11], is standard.
The game-theoretic approach to probability is as old as measure-theoretic (see,
e.g., von Mises [16] and Ville [22]) but game-theoretic probability was formalized
only recently [23,7,21]. Game-theoretic probability can be introduced as either
upper or lower probability; its natural home is the prequential framework.

If E is a prequential event (i.e., a subset of IT), the upper probability of E is

P(E) := inf {e :3V:V(O) =€ and Vr € IT : limsup V(7™) > 1} ) (10)

where V' ranges over the non-negative farthingales. It is clear that nothing
changes if limsup is replaced by sup or liminf (we can always stop when 1 is
reached) and/or if we allow V to range over the non-negative superfarthingales.
The lower probability of E is defined as

P(E) :=1— B(E°),

where E° is the complement of E. The ezact probability of E exists if P(E) =
P(E) and is equal to this common value.

Open problem

Consider the situation where the forecaster’s prediction y, is restricted to a
finite set F,, C [0,1] (the most interesting case is where F), is a grid of points in
[0, 1] becoming more and more dense as n — oo; alternatively, we could consider
F, ;= QnN[0,1] instead of finite F,). The sample space, denoted

ﬁ F, x {0,1}), (11)

is the set of all possible sequences of predictions and actual outcomes.

For each set £ C II, we can define its upper probability @(E) as before, by
(10). We can also give the following “dual” definition, in the spirit of [10], Section
10.2. For each forecasting system ¢, let P? be the probability distribution on IT
corresponding to the following process: p; is chosen according to ¢ (p; := ¢(0)),
then y; is chosen according to the Bernoulli distribution with parameter pi,
then po is chosen according to ¢ (p2 := ¢(y1)), then yo is chosen according to
the Bernoulli distribution with parameter ps, etc. Set

P*(E) := supP?(E).
¢



We are mostly interested in the case of a Borel E, in which case the notation
P?(E) is unambiguous. In general, P?(E) can be understood to be the outer
measure of E.

Question 1. Suppose E is Borel. Is it true that P(E) = P*(E)?

The argument of this paper shows that for open E the answer is “yes”. As a
next step, it would be interesting to find the answer for closed E and other F
in the low classes of the Borel hierarchy (such as X9 and I17).

Natural extensions of Question 1 are:

— What is the answer when the upper probabilities are replaced by upper
expectations?

— Can anything be said for F,, = [0, 1], Vn? (Because of measurability issues,
this question might be less clear-cut and, therefore, less interesting than the
case of finite F),: cf. [21], pp. 168-169.)

Randomized forecasting systems

In this paper we only considered deterministic forecasting systems. It would be
interesting to extend Theorem 1 and its future quantitative and non-algorithmic
versions (as discussed in the previous subsections) to the case of randomized
forecasting systems.
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A Effective topology

In this section we will give definitions of various notions connected with com-
putability in topological spaces, mainly following Martin-Lof [15] (see also [9],
Appendix C.2). The details of the definitions become important only in the
proofs. We will use the terminology of Engelking [8].

In this appendix and in some proofs in the main part of the paper we will
be using the following notation for n € N: 2™ := {0,1}" is the set of all finite
binary sequences of length n; £2<" is the set of all finite binary sequences of
length at most n; IT™ := ([0,1] x {0,1})"; =" := UX, ([0,1] x {0,1})%.

An effective topological space is a second-countable topological space with
a fixed numbering (Uy)72, of its countable base. In other words, an effective
topological space is a triple (X, O, (U)?2 ), where (X, O) is a topological space

and (Uy)72; is a numbering of its countable base. The family (Ug)52, is called



the effective base of the effective topological space, and its elements are called
basic sets. Finite unions of basic sets are called simple sets. We do not distinguish
between two effective topological spaces (X, O, (Ug)i2,) and (X', O, (U})2,)
if (X,0) = (X',0’) and there exists a computable bijection f : N — N such
that Uj, = Uy, for all k.

Ezample 1 (N). The usual discrete topology on N has as its base the set of all
singletons {k}, k € N. They can serve as the effective base, Uy, := {k}.

Ezample 2 (N). The effective base of N := NU{0o} consists of both the singletons
{k} and the sets {k, k+1,...,00}. Set Usg—1 := {k} and Uy, := {k, k+1,...,00},
ke N.

Ezample 3 (R). The topology on R has as its base the set of all intervals (a, ),
a < b. To make R into an effective topological space, fix a computable enumer-
ation (ag,br), k = 1,2,..., of all intervals with rational end-points, and take
Uy := (ag, br) as the effective base.

Ezample 4 (2). The topology on {2 := {0,1}*° is the usual product topology,
which makes {2 a compact topological space. To make it into an effective topo-
logical space, fix a computable bijection f : N — 2¢ and take Uy := Iy, as the
effective base.

Ezample 5 (?). The basic sets in @ (the set of all forecasting systems) have the
form

{p€d|a(z) < ¢(z) < b(z),Vz € N7} (12)
for some n € N and a,b : 25" — Q. Let (ng,ar,br), & = 1,2,..., be
a computable enumeration of all such triples (n,a,b). Set Uy to (12) with
(n,a,b) := (ng, ag, by).

Ezample 6 (II). The topology on the prequential space II is the standard prod-
uct topology of [0,1] x {0,1} x [0,1] x {0,1} x ---. The basic sets are

{(playlap%y?v'-') eIl ‘ a; < p1 <b1ay1 =Cly---50np < Pp <bnaynzcn}

(13)

where n ranges over N, a;,b; € Q, and ¢; € {0,1},i=1,...,n. Let
(TLk, a1k, bl,k> Clky«+-sQny ks bnk,ka an,k) (14)
be a computable enumeration of all such sequences (n,a1,b1,c1,. .., an, by, Cn).

We can define Uy, as (13) with (14) in place of (n,a1,b1,¢1,. .., an,bn, Cn).

Let X’ and X" be two effective topological spaces with effective bases (U},)%2
and (U}/)72,, respectively. The Cartesian product of X’ and X" is the product
of the topological spaces X’ and X" equipped with the effective base (Ux)?2 ,
where U oy := U}, x U}J, and f : N> — N is a fixed computable bijection.
We will be particularly interested in the product {2 x @; sometimes we will need
products of more than two spaces, such as 2 X @ X R := (2 x &) x R.



Let X be an effective topological space with effective base (Uy)?2 ;. As de-
scribed in the previous paragraph, we define the structure of an effective topolog-
ical space on the power set X", n € N; let the effective base in X™ be (U]')52,.
For n = 0, X is the trivial one-element effective topological space with all
U, = X°, k € N. The set X* of all finite sequences of elements of X is equipped
with the topology of the direct sum of X", n > 0. An effective base in it can be
defined by Ug(,, 1) := UJ, where f : (NU{0}) x N — N is a computable bijection.

Let X be a fixed effective topological space with effective base (Ug)32,. An
open set G C X is said to be effectively open if it can be represented in the form
U{Uy | k € A} for a recursively enumerable set A C N. For any effectively open
set G we only consider its representations U{U}, | k € A} such that

U, C G; (15)

it is clear that this can be done without loss of generality. A computable sequence
of open sets is a sequence of open sets G1, G, ... such that there exists a recur-
sively enumerable set A C N? satisfying G, = U{Uy | (m, k) € A} for all m € N.
A computable family of sequences of open sets is a family (Gy.,), [, m € N, of se-
quences of open sets such that there exists a recursively enumerable set A C N3
satisfying Gy, = U{Uy | (I, m, k) € A} for all [,m. The existence of a universal
Turing machine immediately implies

Lemma 5. There ezists a computable family (Gim) of sequences of open sets
such that for any computable sequence G', of open sets there exists | € N such
that G, = Gy for allm € N.

Any computable family of sequences of open sets satisfying the condition in
Lemma 5 will be called a universal computable family of sequences of open sets.
A function f: X — R is called lower semicomputable if the set {(x,r) | x €
X,r € R, f(z) > r} is effectively open in X x R. Similarly, a function f : X — N
is lower semicomputable if the set {(z,r) | x € X,r € N, f(z) > r} is effectively
open in X x N. A sequence fi, fa, ... of lower semicomputable functions f; : X —
R is called computable if the set {(I,z,r) |z € X,r € R, fi(z) > r} is effectively
open in N x X x R. The existence of a universal Turing machine also implies

Lemma 6. There exists a computable sequence f1, fo,... of lower semicom-
putable functions that contains every lower semicomputable function.

Any computable sequence of lower semicomputable functions satisfying the con-
dition in Lemma 6 will be called a universal computable sequence of lower semi-
computable functions.

A function f : X — R is called computable if both f and —f are lower
semicomputable. It is easy to see that the analogue of Lemma 6 does not hold
for computable functions.

Weak topology

In this subsection we will establish a connection between the topology of Example
5 and the weak topology on the set of probability measures on {2 ([2], Appendix
III; 9], Appendix C.2).



A computable numbering (Vi)32, of the family of all simple sets in an effective

topological space with effective base (Uy)52, is defined as

Vf(kl,...,kn) = Uk1 U---UUs

where f: N* — N is a computable bijection and (k1,...,k,) ranges over N*.

Lemma 7. Let (Vi) be a computable numbering of the simple sets in (2. The
sequence of functions ¢ € ®+— Py(Vi), k=1,2,..., is a computable sequence of
lower semicomputable functions.

Proof. Suppose that Py(Vy) > r for some ¢ € ¢, k € N, and r € R. We are
required to show that there is a computable way to eventually find basic neigh-
bourhoods of ¢ and r such that Py (Vy) > r’ holds for all ¢’ and 7’ in the
neighbourhoods. The last statement follows from the computability of the basic
arithmetic operations (+ and x). O

Since in the space (2 the complement of each simple set is again simple, we
have the following corollary.

Corollary 2. Let (Vi)32, be a computable numbering of the simple sets in {2.
The function (¢, k) — Py (Vi) is a computable function on & x N.



