
On-line probability, complexity and randomness

Alexey Chernov1, Alexander Shen2, Nikolai Vereshchagin3, and Vladimir Vovk1

1 Royal Holloway, University of London, Egham, Surrey,
TW20 0EX, UK, {chernov,vovk}@cs.rhul.ac.uk

2 LIF (Université Aix-Marseille & CNRS), Marseille and Institute
of Information Transmission Problems, Moscow, alexander.shen@lif.univ-mrs.fr

3 Moscow State University, nikolay.vereshchagin@gmail.com

Abstract. Classical probability theory considers probability distribu-
tions that assign probabilities to all events (at least in the finite case).
However, there are natural situations where only part of the process is
controlled by some probability distribution while for the other part we
know only the set of possibilities without any probabilities assigned.
We adapt the notions of algorithmic information theory (complexity,
algorithmic randomness, martingales, a priori probability) to this frame-
work and show that many classical results are still valid.

1 On-line probability distributions

Consider the following “real-life” situation. There is a tournament (say, chess or
football); before each game the referee tosses a coin to decide which player will
start the next game. Assuming the referee is honest, we would be surprised to
learn that, say, all 100 coin tosses have produced a tail. We would be surprised
also if the result of the coin tossing always turned out to be equal to some (simple)
function of the results of previous games. However, it is quite possible that the
results of coin tossing can be easily computed from the results of subsequent
games. Indeed, it may well happen that the coin bit influences the results of the
subsequent games and therefore can be reconstructed if these results are known.

Another similar example: if there were a rule that predicts the lucky numbers
in a lottery using the previous day newspaper, we would not trust the lottery
organizers. However, for the next day newspaper the situation is different (e.g.,
the newspaper may publish the results of the lottery).

Let Xi be the information string available before the start of ith game (say,
the text of the newspaper printed just before the game) and let the bit bi be
the result of coin tossing at the start of ith game. We would like to say that for
every function f and for every i the probability of the event bi = f(Xi) is 1/2,
assuming the referee is honest. And for N games the probability of the event
∀i (bi = f(Xi)) equals 2−N .

However, we cannot directly refer to classical probability theory framework
in this example. Indeed, when speaking about probability of some event, one
usually assumes that some probability distribution is fixed, and this distribu-
tion assigns probabilities to all possible events (at least in the finite case). In



X1, no distribution

b1, uniform distribution

X2, no distribution

b2, uniform distribution

. . .

Fig. 1. The tree of possibilities

our example we do not have a probability distribution for Xi; the only thing
we have is the “conditional probability” of the event bi = 1 for any condition
X1, b1, . . . , Xi−1, bi−1, Xi; this conditional probability equals 1/2.

Formally speaking, we get a “tree of possibilities”. The sons of the root are
possible values of X1. Each of them has two sons that correspond to two possible
outcomes of the first coin tossing (b1 = 0 or 1). Next level branching corresponds
to the values of X2, then each vertex has two sons (b2 = 0 or 1), etc.

In other words, tree vertices are finite sequences (X1, b1, . . . , Xk, bk) for even
layers and (X1, b1, . . . , Xk, bk, Xk+1) for odd layers; Xi are binary strings and bi

are bits. We may consider a finite tree with 2N layers; its leaves are sequences
(X1, b1, . . . , XN , bN ). Or we may consider an infinite tree whose vertices are
sequences of any length.

What we have is not a probability distribution but something that can be
called an on-line probability distribution on this tree. By definition, to specify
an on-line probability distribution one must fix, for each i and for all values of
X1, b1, . . . , Xi, two non-negative reals with sum 1. They are called conditional
probabilities of 0 and 1 after X1, b1, . . . , Xi and denoted by

Pr[bi = 0 or 1|X1, b1, . . . , Xi−1, bi−1, Xi].

For the case of a fair coin all these conditional probabilities are equal to 1/2.
As usual, we can switch to unconditional probabilities (i.e., can multiply

conditional probabilities on the path from the tree root). Then we arrive to
the following version of the definition: an on-line probability distribution is a
function P defined on tree vertices such that P (Λ) = 1 (Λ is the tree root),

P (X1, b1, . . . , Xi, bi, Xi+1) = P (X1, b1, . . . , Xi, bi)

(on vertices where no random choice is made, the function propagates without
change), and

P (X1, b1, . . . , Xi, bi, Xi+1) =
= P (X1, b1, . . . , Xi, bi, Xi+1, 0) + P (X1, b1, . . . , Xi, bi, Xi+1, 1).



The intuitive meaning of P (v) is the probability to arrive at v if the environment
(that chooses X1, X2, . . .) wants this and makes suitable moves in its turn.

This definition makes sense both for finite and infinite trees.
Remark. A technical problem arises when some values of an on-line prob-

ability distribution are zeros: in this case conditional probabilities cannot be
reconstructed from the products. However, in this case they are usually not
important, so we can mostly ignore this problem.

Similar on-line probability distributions can be considered for more general
trees where on the odd levels, instead of 0 and 1, we have a (countable) list of
possible values of bi.

Now let us assume that the tree is finite (has finite height and finite number
of vertices on every level). Consider an event E, i.e., some set of tree leaves.
We cannot define the probability of an event under a given on-line probability
distribution P . However, we can define an upper probability of E. (It may be
called a “worst case probability” if the event E is considered undesirable.) This
notion can be defined in several (equivalent) ways.

Definition.
(1) Consider all probability distributions on the leaves of the tree. Some

of them are consistent with the given on-line probability distribution (i.e., give
the same conditional probabilities for bi when X1, b1, . . . , Xi are given). Upper
probability of E is a maximum of Pr[E] under all these distributions.

(2) Consider the following probabilistic game: a player (“adversary”, if the
event is undesirable) chooses some X1, then b1 is chosen at random with pre-
scribed probabilities (condition X1), then player chooses X2, then b2 is chosen at
random (according to the conditional probabilities with condition X1, b1, X2),
etc. The player wins if the resulting leaf belongs to the event E. The upper
probability of E is the maximal probability that player wins (maximum is taken
over all deterministic strategies).

(3) Let us define the cost of a vertex in the tree inductively starting from
the leaves. For a leaf in E the cost is 1, for a leaf outside E the cost is zero.
For a non-leaf vertex v where the choice of Xi is performed, the cost of v is
the maximal cost of its sons; for a vertex that corresponds to the choice of bi,
the cost is the weighted sum of the sons’ costs where weights are conditional
probabilities. Upper probability of E is the cost of the tree root.

(4) Let us consider on-line martingales with respect to P , i.e., non-negative
functions V defined on tree vertices such that

V (X1, b1, . . . , Xi, bi) = V (X1, b1, . . . , Xi, bi, Xi+1); (1)

V (X1, b1, . . . , Xi) = V (X1, b1, . . . , Xi, 0) · Pr[bi = 0|X1, b1, . . . , Xi]+
+ V (X1, b1, . . . , Xi, 1) · Pr[bi = 1|X1, b1, . . . , Xi]; (2)

these functions correspond to the player’s capital in a fair game (when player
observes Xi, the capital does not change; when player splits the capital be-
tween bets on bi = 0 and bi = 1, the winning bet is rewarded according to
the conditional probabilities determined by the on-line distribution). The upper



probability of E is the minimal value of V (Λ) over all V such that V ≥ 1 for all
leaves that belong to E. In other terms, the upper probability of E is 1 divided
by the fair price of the option to play such a game with initial capital 1 knowing
in advance that the sequence of outcomes belongs to E.

Remark. As we have mentioned, we need some precautions for the case
when some values of P are zeros, since in this case conditional probabilities are
not uniquely defined. However, it is easy to see that all choices of conditional
probabilities compatible with P will lead to the same value of upper probability.

Theorem 1. All four definitions are equivalent.
Proof. Note that player’s strategy in the second definition determines a dis-

tribution on the leaves (Xi is chosen deterministically according to the strategy
while bi is chosen according to the prescribed conditional probabilities). This
distribution is consistent with the given on-line distribution. So the upper prob-
ability as defined in (2) does not exceed the upper probability as defined in (1).
On the other hand, any probability distribution can be considered as a mixed
strategy in the game (player chooses her moves randomly using independent
random bits), and the winning probability of a mixed strategy is the weighted
average of the winning probabilities for pure strategies, so we get the reverse
inequality. The inductive definition (3) computes the winning probability for the
optimal strategy (induction on tree height).

The equivalence with the martingale definition can be proved in the same
way as for the classical off-line setting (this argument goes back to Ville, see,
e.g., [7]). If a martingale V starts with capital p and achieves 1 on every leaf
in E, then for every probability distribution compatible with P and for every
tree vertex the current value of V is an upper bound for the expectation of V
if the game starts at this vertex. Therefore, V (Λ) is an upper bound for the
probability to end the game in E for every probability distribution compatible
with P . The reverse inequality: the vertex cost (defined inductively) satisfies
the conditions in the definition of a martingale if we replace = by ≥ in the
condition (1). Increasing this function, we can get a martingale. �

Remarks. 1. Note that upper probability is not additive: e.g., both the event
and its negation can have upper probabilities 1, just the strategies to achieve
them are different. However, it is sub-additive: the upper probability of A ∪ B
does not exceed the sum of upper probabilities of A and B.

2. We can define supermartingales in the same way as martingales replacing
= by ≥ in (2). We relax the requirement (2) and not (1) since it is more natural
from the game viewpoint: getting information about Xi does not change the
player’s capital. It is easy to see that supermartingales may be used instead of
martingales in the the definition of upper probability.

3. Proving Theorem 1, we assumed that the tree is finite. However, the same
argument shows that it is valid for infinite trees of finite height (and even for
the trees having no infinite branches), if we use supremum instead of maximum.

Classical probability theory says that events with very small probability can
be safely ignored (and when they happen, we have to reconsider our assump-
tions about the probability distribution). In the on-line setting we can say the



same about events that have very small upper probability: believing in the prob-
abilistic assumption, we may safely ignore the possibilities that have negligible
upper probabilities, and if such an event happens, we have to reconsider the
assumption.

Remarks. 1. In fact upper probability (though not with this name) is used
in the definition of the Arthur – Merlin class in computational complexity the-
ory where a tree of polynomial height and a polynomially decidable event are
considered and we distinguish between events of low and high upper probability.

2. It is easy to see that on-line martingales with respect to on-line probability
distribution P are just the ratios Q/P where Q is some other on-line probability
distribution. (Some evident precautions are needed if P can be zero somewhere.)

2 On-line Kolmogorov complexity KR

We can adapt the standard definition of Kolmogorov complexity (see, e.g., [3, 5]
for the definition and discussion of different versions of Kolmogorov complexity)
for the on-line setting. Consider a sequence X1, b1, X2, b2, . . . , Xn, bn where Xi

are binary strings and bi are bits. Look for a shortest interactive program that
after getting input X1 produces b1, then after getting X2 (in addition to X1) pro-
duces b2, then after getting X3 produces b3 etc. We call its length the on-line de-
cision complexity with respect to the programming language π used, and denote
it by KRπ(X1 → b1;X2 → b2; . . . ;Xn → bn). The reason for the name “decision
complexity”: if all Xi are empty, we get the standard notion of decision complex-
ity of a bit string b1 . . . bn (the length of the shortest program that generates bi

given i). It is easy to see that a natural version of optimality theorem holds (there
exists an optimal “programming language”), so the on-line decision complexity
(for an optimal programming language) KR(X1 → b1;X2 → b2; . . . ;Xn → bn)
is well defined (up to an additive O(1)-term).

Theorem 2. The on-line complexity KR(X1 → b1; . . . ;Xn → bn) does not
exceed the decision complexity KR(b1b2 . . . bn) and is greater than the conditional
complexity KS(b1b2 . . . bn|X1, X2, . . . , Xn) up to O(1) terms.

In other terms, knowing Xi in an on-line setting may help to describe
b1, . . . , bn, but knowing all Xi in advance is even better. (The proof is straight-
forward.)

3 On-line a priori probability and KA

It is well known that Kolmogorov complexity is related to the a priori probabil-
ity (maximal lower semicomputable semimeasure). The latter can be naturally
defined in the on-line setting. Let us give two equivalent definitions.

Consider an interactive probabilistic machine T that has internal random bit
generator. This machine gets some binary string X1 (say, on the tape where the
end of X1 is marked by a special separator), performs a computation that uses X1

and random bits and may produce bit b1 (or hang). After b1 is produced, T gets



the second input string X2, continues its work (using fresh random bits) and may
produce second output bit b2, etc. In other words, we write X1#X2# . . .#Xn

on the input tape, but T cannot get access to Xi before it produces i− 1 output
bits b1, . . . , bi−1.

For a given T consider a function MT : Let MT (X1, b1, . . . , Xn, bn) be the
probability that T outputs b1, . . . , bn getting X1, X2, . . . , Xn as input (with re-
strictions described above). We extend the function MT to the sequences of odd
length: MT (X1, b1, . . . , Xn, bn, Xn+1) is equal to MT (X1, b1, . . . , Xn, bn). We let
MT (Λ) = 1. It is easy to see that if T never hangs (or hangs with zero probabil-
ity), then MT is an on-line probability distribution. In general, MT is an on-line
semimeasure in the sense of the following

Definition. An on-line semimeasure is a function M that maps tree ver-
tices to non-negative reals such that M(Λ) = 1, M(X1, b1, . . . , Xi, bi, Xi+1) =
M(X1, b1, . . . , Xi, bi) (on vertices where no random choice is made, the function
propagates without change), and the inequality M(X1, b1, . . . , Xi, bi, Xi+1) ≥
M(X1, b1, . . . , Xi, bi, Xi+1, 0)+M(X1, b1, . . . , Xi, bi, Xi+1, 1) holds. (We have re-
placed “=” by “≥” in the definition of an on-line probability distribution.)

It is easy to see that semimeasure MT that corresponds to a probabilistic
machine T of described type is a lower semicomputable function, i.e., there is
an algorithm that gets its input and produces an increasing sequence of rational
numbers that converges to the value of the function.

Theorem 3. Every lower semicomputable on-line semimeasure corresponds
to some probabilistic machine.

Proof is similar to the off-line case. For an on-line semimeasure M we per-
form a “memory allocation”, so that for each finite sequence X1, b1, . . . an open
subset of [0, 1] that has measure M(X1, b1, . . .) is allocated. Adding Xi to the
end of the sequence does not change the set; adding bits 0 and 1 replaces the
corresponding set by two its disjoint subsets. (Note that these subsets may de-
pend not only on bi, but also on Xi.) If M is lower semicomputable, these sets
can be made uniformly effectively open. Then we consider a machine T that
generates a uniformly distributed random real number α ∈ [0, 1] bit by bit and
generates T (X1, b1, . . . , Xi) = bi if the effectively open set that corresponds to
X1, b1, . . . , Xi, bi contains α. �

Theorem 4. There exists the largest (up to O(1)-factor) lower semicom-
putable on-line semimeasure.

Proof. Again we can use standard trick: a universal machine first generates
randomly a machine of described type in such a way that every machine appears
with a positive probability, and then simulates this machine. �

We call this maximal semimeasure an on-line a priori probability and denote
it by A(X1, b1, . . . , Xn, bn). (If all Xi are empty strings, we get a standard a priori
probability on a binary tree.) Minus logarithm of this semimeasure is called on-
line a priori complexity and denoted by KA(X1 → b1;X2 → b2; . . . ;Xn → bn).



4 Relations between KR and KA

Now, when two complexities KA and KR are defined in the on-line framework,
one may ask how they are connected. Their off-line versions are close to each
other: it is known that KR(x) ≤ KA(x) ≤ KR(x) + 2 log KR(x) (up to O(1)-
terms) for all binary strings x.

These inequalities remain true for the on-line setting (with the same O(1)-
precision):

Theorem 5. KR(. . .) ≤ KA(. . .) ≤ KR(. . .) + 2 log KR(. . .); here “. . . ”
stands for X1 → b1;X2 → b2; . . . ;Xn → bn.

Proof of the second inequality goes in the same way as usual; we consider a
randomized algorithm that chooses machine number i with probability 1/i2.

The first inequality needs more care, since in the on-line case we are more
restricted and need to ensure that programs are indeed on-line and do not refer
to the inputs that are not yet available.

We need to allocate 2n strings of length n to objects that have KA-complexity
less than n (=have a priori probability greater than 2−n). We do it inductively
(first for X1 → b1, then for X2 → b2, etc.) and ensure a stronger requirement:
if a priori probability of some object exceeds k2−n for some k, then there are at
least k different programs of length n allocated to this object.

So we start looking at the approximations (from below) to the (a priori)
probabilities of X1 → 0 and X1 → 1 (independently for each n and each X1);
when probability of X1 → b1 exceeds k2−n, we allocate a new (kth) program
of length n that transforms X1 to b1. On top of this process we look at the
approximations to a priori probabilities of X1 → b1;X2 → b2 and add new
programs that map X2 to b2 among the programs that mapped X1 to b1; we have
enough programs for that since M(X1, b1, X2, 1)+M(X1, b1, X2, 0) ≤ M(X1, b1),
so if k1 programs are needed for the first term and k0 are needed for the second,
then there are already k0 + k1 programs allocated to X1 → b1 to choose from.
On top of that, we allocate programs for X1 → b1;X2 → b2;X3 → b3 etc. �

5 On-line randomness

Let us return to the “real-life” example and make it less real: imagine that we
observe an infinite sequence of games and (for every i) know the bit bi produced
by the referee when ith game starts and the string Xi that is known before
ith game. There are cases when we intuitively reject the fair coin assumption.
Can we make the intuition more formal and define a notion “in the sequence
X1, b1, X2, b2, X3, b3, . . . the bits b1, b2, . . . are random”? For the off-line case the
most popular notion is called Martin-Löf randomness (ML-randomness; see [3,
6] for details). Now we want to extend it to the on-line setting.

Assume that a computable on-line probability distribution P (on the infinite
tree) is fixed. Martin-Löf definition starts with a notion of an “effectively null”
set. Adapting this definition to on-line setting, we need to remember that proba-
bility of events is now undefined; moreover, the notion of upper probability (that
replaces it) has been defined for finite case only.



Consider the space Π of all (infinite) sequences X1, b1, X2, b2, . . .. A cone in
this set is a set of all sequences with given finite prefix.

Definition. Let U be a finite union of cones. Then the upper probability of U
with respect to P is defined as the upper probability of the corresponding event
in the finite part of the tree (large enough to contain all the roots of the cones).

(It is easy to see that this probability does not change if we increase the size
of the finite part of the tree. The upper probability is monotone with respect to
set inclusion.)

Then we can define an on-line version of null sets.
Definition. A set Z ⊂ Π is an on-line null set if for any ε > 0 there exists

a sequence of cones such that: (1) the union of cones covers Z; (2) the union of
any finite number of these cones has upper probability less than ε.

Martin-Löf definition of randomness deals with effectively null sets, so our
next step is to define them in an on-line setting.

Definition. A set Z is an on-line effectively null set if there exists an al-
gorithm that for any given rational ε > 0 generates a sequence of vertices such
that the corresponding cones cover Z and the union of any finite number of
these cones has upper probability less than ε. (Note that we require the upper
probability of the union of the cones to be small, not the sum of upper probabili-
ties of the cones. This difference matters since upper probability, unlike classical
probability, is not additive.)

Theorem 6. There exists an on-line effectively null set that contains every
other on-line effectively null set.

Proof is similar to the off-line case. Having any algorithm that given rational
ε > 0 generates sequences of vertices, we can “trim” it so that the union of any
finite number of generated cones has upper probability less than ε. (Indeed, for
a computable on-line measure the upper probability of the finite union of cones
is computable, and we may quarantine new strings until they are cleared.) So
we can enumerate all the algorithms that satisfy these restrictions and then take
the union of corresponding on-line effectively null sets (combining covers of size
ε/2, ε/4 etc. to get the cover of size ε; here we use the subadditivity of upper
probability). �

Now we can give a
Definition. Bits b1, b2, . . . are on-line ML-random in a sequence ω = X1, b1,

X2, b2, . . . if ω does not belong to the maximal on-line effectively null set.
In other words, b1, b2, . . . are not random in ω if and only if {ω} is an on-line

effectively null set (if and only if some on-line effectively null set contains ω).

6 On-line randomness criterion

A classical Levin – Schnorr theorem gives a criterion of randomness in terms of
complexity (in particular, a priori complexity KA) or supermartingales. Similar
criterion exists for the on-line version.

Theorem 7. (Levin – Schnorr theorem, on-line version). Assume that a
computable on-line probability distribution P is fixed. Bits b1, b2, . . . are on-line



ML-random (with respect to P ) in a sequence ω = X1, b1, X2, b2, . . . if and only
if KA(X1 → b1; . . . , Xn → bn) ≥ − log2 P (X1, b1, . . . , Xn, bn)− c for some c and
all n.

Recalling that KA is the minus logarithm of a priori probability A, we can re-
formulate the criterion: bits bi are random in (X1, b1, X2, b2, . . .) if and only if the
ratio A(X1, b1, . . . , Xn, bn)/P (X1, b1, . . . , Xn, bn) has a constant upper bound.
(Note that A is the maximal semimeasure and P is a measure (and therefore a
semimeasure), so this ratio always has a positive lower bound.)

One more reformulation of the same result uses on-line supermartingales.
As we have noted, on-line (super)martingales with respect to P are ratios Q/P
where Q is an on-line (semi)measure. It allows us to reformulate the criterion as
follows: bits bi are random in a sequence ω = X1, b1, X2, b2, . . . if and only if any
lower semicomputable supermartingale is bounded on prefixes of ω.

For a more advanced (and more difficult to prove) version of Theorem 7,
see [8].

Proof of the on-line version of Levin – Schnorr randomness criterion follows
the off-line argument with some changes: we have to be more careful since we
have to deal with upper probability instead of an (additive) measure.

First, we have to show that if a sequence is not random, then the ratio A/P
is unbounded on its prefixes. Since A is maximal, it is enough to construct some
lower semicomputable semimeasure Q such that Q/P is unbounded.

Lemma. Assume that some algorithm enumerates a sequence of cones C1,
C2, . . . and the upper probability of the union C1∪. . .∪CN is less than ε for some
rational ε > 0 and for all N . Knowing this algorithm and ε, we can construct
a lower semicomputable semimeasure S that exceeds P/ε at any finite sequence
that belongs to one of the cones.

Proof of the Lemma. For any vertex v let us consider the cone C(v) with
root v and for any N let us compute the upper probability of the intersec-
tion C(v) ∩ (C1 ∪ C2 ∪ . . . ∪ CN ). Since P is computable, doing this for N =
1, 2, . . ., we get an increasing computable sequence of computable reals, and
its limit is lower semicomputable. Let S(v) be this limit divided by ε. This
limit is not technically a semimeasure since S(X1, b1, . . . , Xi, bi) can be big-
ger than S(X1, b1, . . . , Xi, bi, Xi+1). But if we increase the latter by letting
S(X1, b1, . . . , Xi, bi, Xi+1) := S(X1, b1, . . . , Xi, bi), and also let S(Λ) = 1, we
do get a lower semicomputable semimeasure that satisfies the requirements of
the Lemma. �

Now we can finish the proof of the first part of Levin – Schnorr on-line
randomness criterion. Let εn = 2−2n. Since ω belongs to an on-line effectively
null set, we can get a sequence of cones with upper probability bounded by εn;
applying the Lemma to it, we get a lower semicomputable semimeasure Sn that
exceeds 22nP on any vertex that belongs to one of the cones. Then the sum
S =

∑
n 2−nSn exceeds 2nP on any vertex that belongs to some of the cones

generated for εn. By assumption ω has a prefix of this type for every n, so S/P
is unbounded on prefixes of ω.



In remains to prove the second part of the theorem. For any lower semicom-
putable semimeasure S we have to show that the set of all sequences ω such that
S/P is unbounded on the prefixes of ω is an on-line effectively null set.

For a given ε > 0 let us consider all the vertices where S/P exceeds 1/ε.
They can be enumerated if ε is given since S is lower semicomputable and P is
computable. We need to check that the upper probability of the union of any
finite number of corresponding cones is less than ε. Indeed, while computing the
costs inductively in a top-down fashion, the cost is upper-bounded by ε times
the value of S in the vertex. (Induction base is guaranteed by the assumption:
we start with vertices where S/P is greater that 1/ε; the induction step works
since S is a semimeasure and P is a measure.) �

Remarks. 1. In the off-line setting the similar construction almost gives a
lower semicomputable measure (with one exception: the measure of the entire
space may be less than 1) or, in other terms, a martingale whose initial amount
is lower semicomputable. In the on-line setting it is no more true (at least for
this construction), and we get a semimeasure (or supermartingale).

2. On the other hand, the proof gives more than we claimed: if a sequence
is not random, then some lower semicomputable on-line supermartingale is not
only unbounded but also tends to infinity. It implies that if some lower semi-
computable on-line supermartingale is unbounded on some ω, then some other
semicomputable on-line supermartingale tends to infinity on ω.

The notion of randomness of bi in a sequence X1, b1, X2, b2, . . . lies in-between
Martin-Löf randomness and Martin-Löf randomness with respect to an oracle.
Indeed, it implies ML-randomness since we can consider semimeasures (super-
martingales) that do not depend on Xi at all. On the other hand, each on-line
supermartingale can be transformed into a supermartingale that uses the entire
sequence X1, X2, . . . as an oracle (getting access not only to the past Xi, but also
to the future ones). Both inclusions are strict for evident reasons: a ML-random
sequence bi is not on-line random if Xi = bi; it is on-line random if Xi = bi−1

but not random with oracle X1, X2, . . ..
Other observations (the proof is straightforward):
Theorem 8.
(a) If the sequence Xi is computable (or if Xi is a computable function of

X1, b1, . . . , Xi−1, bi−1 ) then on-line randomness is equivalent to (standard) ML-
randomness with respect to induced measure where Xi are fixed.

(b) Changing finitely many terms among bi or Xi does not make a random
sequence non-random or vice versa, assuming that all conditional probabilities
are not zeros.

(c) The on-line random sequence remains on-line random if we replace Xi

by some Yi that is a computable function of b1, X1, . . . , bi−1, Xi.

7 Muchnik’s paradox

In this section we consider the case of fair coin (all conditional probabilities are
equal to 1/2). Let b1, b2, . . . be a ML-random sequence. It is easy to see that



then the sequence b2, b4, b6, . . . is on-line ML-random if b1, b3, b5 . . . are used as
external information. Indeed, any lower semicomputable on-line supermartingale
can be transformed into a (lower semicomputable) off-line supermartingale that
makes no bets on b1, b3, b5 etc. For the same reason the sequence b1, b3, b5, . . . is
on-line random inside the sequence Λ, b1, b2, b3, . . . (bits b2, b4, . . . are treated as
external information).

One may naturally expect that the reverse is also true: if both odd and even
bits are unpredictable (with all previous bits used as the external information),
then the entire sequence should be random. Indeed, our intuition says that if
the coin tossing is performed by two referees that alternate (each of them works
every second day), and both referees do their job perfectly, the resulting sequence
of bits should be also perfectly random.

This would make a nice on-line version of van Lambalgen theorem that says
that if a sequence b1, b3, b5, . . . is ML-random and at the same time b2, b4, b6, . . .
is ML-random with oracle b1, b3, b5, . . ., then the entire sequence b1, b2, b3, b4, . . .
is ML-random.

We may note also that if we replace semicomputable supermartingales by
computable supermartingales, the corresponding statement becomes true. In-
deed, assume that a computable supermartingale S is unbounded on some se-
quence. We may assume without loss of generality that it is at least 1 on ev-
ery sequence (just by adding 1). At each vertex it splits the current capital in
computable proportions (since the ratio of two computable numbers separated
from zero is uniformly computable). So we can consider two computable super-
martingales S1 and S2; one does not make any bet on odd steps and follows the
proportions of S at the even steps, the other does the opposite. Then the capital
of S is the product of S1 and S2, so if S is unbounded on some sequence, then
at least one of S1 and S2 is unbounded on it.

However, all these arguments do not make the desired statement true, as
An. Muchnik [4] has shown. He showed that there is a sequence which is not ML-
random but still both odd and even terms are on-line random. This construction
is rather delicate and we do not explain it here.

8 Selection rules and on-line randomness

The classical definition of randomness (for the case of independent fair coin
tossing) suggested by R. von Mises is based on selection rules: each subsequence
that is selected by an “admissible selection rule” should have limit frequency
1/2. It can also be naturally transferred into the on-line framework.

In Mises – Church definition of randomness an admissible selection rule is a
total computable function that can be applied to any binary string and produces
one of two answers: S (“selected”) or O (“observed”). An application of this rule
to a sequence ω goes as follows: the value of selection rule on n-bit prefix of ω
determines if the next bit should be selected or just observed. Another version
that goes back to R.P. Daley considers partial functions as selection rules; if such



a function is undefined at some prefix of ω, then the selection process hangs and
the selected subsequence is finite.

Both definitions (with total and partial selection rules) can be easily extended
to the on-line framework. We just allow the selection rule to use the external
information that is available at the moment (i.e., all previous values of Xi). It
is easy to see that we get a weaker notion of randomness (compared to on-line
Martin-Löf randomness with respect to the uniform Bernoulli on-line measure,
i.e., the measure where all conditional probabilities are equal to 1/2). Moreover,
the following is true:

Theorem 9. Assume that bits bi are on-line ML-random (with respect to the
uniform Bernoulli on-line measure) in a sequence X1, b1, X2, b2, . . . and a (par-
tial) selection rule S is given that is defined on all prefixes of this sequence
and selects infinitely many bits bi1 , bi2 , . . . for increasing sequence of indices
i1 < i2 < . . .. Then the selected bits are on-line ML-random in a sequence
Y1, bi1 , Y2, bi2 , . . . where Yk is the prefix of the original sequence (both Xi and bi)
that precedes bik

.
(This implies, as we have said, that bik

are ML-random and therefore satisfy
the strong law of large numbers.)

Proof. Indeed, a semicomputable on-line supermartingale U that plays with
bik

using information that precedes them can be transformed into a supermartin-
gale that deals with the original sequence. While selection rule is not yet defined,
the supermartingale does not bet anything; if selection rule says “observe”, the
supermartingale keeps the same capital not making any bets; if the selection rule
says “select”, the supermartingale follows U . �

9 Randomness with respect to classes of measures

On-line randomness is connected with the notion of randomness with respect to
effectively closed classes of measures; this notion was introduced by Levin [2]
(see [1] for the detailed exposition).

Consider some class S of measures (probability distributions) on the Cantor
space Ω of infinite sequences of zeros and ones. A set Z ⊂ Ω is called a S-null set
if P (Z) = 0 for every P ∈ S. The effective version of this definition: Z ⊂ Ω is an
effectively S-null set if there is an algorithm that given rational ε > 0 produces
a sequence of intervals I1, I2, . . . ⊂ Ω that covers Z such that P (I1∪I2∪ . . .) ≤ ε
for every P ∈ S.

Levin noted that for an effectively closed class S the union of all effectively
S-null set is an effectively S-null set. (An effectively closed class S is defined in
a natural way: we consider a topology on the set of all measures where basic
open set are the sets Ux,p,q = {P |P (Ωx) ∈ (p, q)} for all binary strings x and
all intervals (p, q) with rational endpoints, as well as their finite intersections. A
class S is effectively closed if its complement is a union of a computable sequence
of basic open sets.) Then we say that a sequence ω is random with respect to S
if it does not belong to largest effectively S-null set.



Now we can relate the definition of the on-line randomness to Levin’s
definition. Consider the class S of measures P that are consistent with the
given online distribution, i.e., have conditional probabilities 1/2 at odd layers:
P (b1b2 . . . b2n+10) = P (b1b2 . . . b2n+11) for every bit string b1 . . . b2n+1 of odd
length. It is easy to see that randomness with respect to S is equivalent to the
on-line randomness. (The strings Xi in the definition of the on-line randomness
are replaced by bits for simplicity, but this is not essential.)

10 On-line and prequential randomness

The classical definition of ML-randomness with respect to a computable measure
P does not really use the ordering of the bits in the sequence: if we perform a
computable permutation of a sequence and change the measure accordingly, then
the sequence remains random. However, for the case when the bits are generated
sequentially, the standard Martin-Löf definition does not look natural. Indeed,
according to the definition, we need to know the measure of any interval in
the Cantor space, including the intervals that can not contain the sequence
in question. If our sequence starts with, say, 01001, it seems that the value
P (Γ100), where Γz is a set of all continuations of a finite string z, should be
totally irrelevant. The only thing that seems to be relevant in this sequential
setting (when a sequence ω is generated bit by bit from left to right) is the
values of conditional probabilities of 0 and 1 after ω1ω2 . . . ωn−1, i.e., the ratios
P (Γx0)/P (Γx) and P (Γx1)/P (Γx) for all x that are prefixes of ω.

This intuition is supported by the following observation: let P and P ′ be two
computable measures that have the same conditional probabilities along some
sequence ω (as defined above). If ω is ML-random with respect to P , then it
is ML-random with respect to P ′. (This is an immediate corollary of Levin –
Schnorr randomness criterion.)

So we come to a natural question: can we give a natural definition of ran-
domness in such a way that only conditional probabilities along ω are used in
the definition?

Imagine an adjustable random bit generator, i.e., a device for generating
random bits with prescribed probabilities. Such a device gets some real number
p ∈ [0, 1] as an input and generates a bit b ∈ {0, 1} claiming that this bit is a
result of a “fresh” random experiment (independent of all the past information)
with probability of success p. Then we can send the next probability value to
the device, it generates the next random bit, and so on.

Assume that we observe the behavior of the device and have its work
recorded. The record (protocol) is a sequence p1, b1, p2, b2, . . . where pi ∈ [0, 1]
and bi ∈ {0, 1}. Can we say whether this random bit generator works prop-
erly or not looking at this protocol? Our intuition says that there are at least
some cases when we don’t trust such a generator. For example, if all pi are
greater than 1/2 but vast majority of bi are zeros, it is clear that something is
wrong with the device. Similarly, if all pi are, say, between 1/3 and 2/3 while



b1b2b3 . . . = 010101 . . . (alternating zeros and ones), again we would not trust
the generator.

Let us restrict ourselves to the case when all pi are rational numbers in
(0, 1). Then we can define the randomness of the sequence p1, b1, p2, b2, . . . in
the following way. Consider an on-line probability distribution on sequences
X1, b1, X2, b2, . . . where strings Xi are identified with rational numbers pi in
(0, 1) using some computable one-to-one correspondence, and the conditional
probability Pr[bi = 1|X1, b1, . . . , Xi] equals pi (where pi is the rational number
that corresponds to Xi). This on-line probability reflects our intuition: the prob-
abilities pi (strings Xi) are chosen in an arbitrary way, and the following bit bi

should follow the declared distribution.
Theorem 10. Let p be a computable function on binary strings with positive

rational values that determines a measure, i.e., p(b1 . . . bn) = p(b1 . . . bn0) +
p(b1 . . . bn1). Then a sequence b1b2 . . . is Martin-Löf random with respect to this
measure if and only if the bits bi are on-line random in a sequence p1, b1, p2, b2, . . .
where pi is a conditional probability of bi = 1 after the prefix b1 . . . bi−1, i.e., the
ratio p(b1 . . . bi−11)/p(b1 . . . bi−1).

Proof. This is a direct consequence of the supermartingale criterion. Assume
that the sequence b1b2 . . . is not random with respect to measure p. Then there
exists a lower semicomputable supermartingale with respect to p that is un-
bounded on the prefixes of this sequence. This supermartingale can be extended
to an on-line lower semicomputable supermartingale: we let it to be zero on finite
sequence p1, b1, . . . , pi, bi where one of pj differs from conditional probability of
1 after b1 . . . bj−1 according to p. Therefore the sequence p1, b1, p2, b2, . . . is not
on-line random.

On the other hand, if the sequence p1, b1, . . . is not on-line random, there
exists a lower semicomputable on-line supermartingale that is unbounded on this
sequence. The restriction of this supermartingale on the subtree that contains
only the vertices compatible with p, is a lower semicomputable on the binary tree
with respect to measure p. This martingale is unbounded on b1b2 . . ., therefore
this sequence is not Martin-Löf random with respect to measure p. �

Remarks. 1. We restrict our attention to the simplest case where the mea-
sure has rational values and is computable as a rational-valued function. More
general definition is analyzed in [8].

2. Note that probabilities pi play a double role in this definition. First, they
determine the coefficients in the definition of on-line supermartingale; this is
their “primary” role. However, they are also source of information that can be
used in the computation of this supermartingale. This was not important, since
if p is a computable rational-valued measure, then the conditional probabilities
can be computed from other available information.

In fact, our randomness intuition is quite contradictory here. Imagine that,
for example, pi are rational numbers that converge very fast to 1/2, e.g., pi =
1/2 + ci/22i

, where ci is equal either to 0 or to 1. Since the convergence is very
fast, we would naturally expect that randomness would be the same as for the
uniform Bernoulli measure (independently of ci). On the other hand, if we watch



the random number generator of the type described and observe that generated
bit bi is always equal to ci, this compromises the fairness of the generator. Our
definition follows the second direction: bi that is equal to ci is not random.

Acknowledgements

We thank the participants of the Kolmogorov seminar (Moscow), Workshop
on effective randomness (Chicago University, 2007) and Workshop on game-
theoretic probability and related topics (Tokyo University, 2008), where some of
these results were presented.

This work was partly supported by EPSRC grant EP/F002998/1, Sycomore
ANR grant and RFBR grants 05-01-02803-CNRS-a, 06-01-00122-a. Alexey Cher-
nov is grateful for support to J. Schmidhuber and IDSIA (Lugano, Switzerland)
where part of the work was done under J. Schmidhuber’s SNF grant 200021-
113364.

References

1. Gacs, P., Lecture notes on descriptional complexity and randomness, see
http://www.cs.bu.edu/faculty/gacs/papers/ait-notes.pdf

2. Levin, L.A., Uniform tests of randomness, Soviet Math. Dokl., 17(2), p. 337–
340 (1976).

3. Li, M., and Vitányi, P., An Introduction to Kolmogorov Complexity and Its Appli-
cations, Second edition, New York: Springer, 1997.

4. Muchnik, An. A. (recorded by A. Chernov, A. Shen), Algorithmic randomness and
splitting of supermartingales, arxiv.org:0807.3156

5. Shen, A., Algorithmic information theory and Kolmogorov complexity, Tech-
nical Report 2000-034. Uppsala Universitet publication, available online at:
http://www.it.uu.se/research/publications/reports/2000-034.

6. Uspensky, V. A., Semenov, A. L., and Shen, A., Can an individual sequence of
zeros and ones be random? Russian Mathematics Surveys, 45, 121–189 (1990).

7. Shafer, G., and Vovk, V., Probability and Finance: It’s only a Game, New York,
Wiley, 2001.

8. Vovk, V., and Shen, A., Prequential randomness. Submitted to ALT 2008.


