
Busy beavers and Kolmogorov complexity

Mikhail Andreev

Moscow Lomonosov State University

Abstract. The idea to find the “maximal number that can be named”
can be traced back to Archimedes (see his Psammit [1]). From the view-
point of computation theory the natural question is “which number can
be described by at most n bits”? This question led to the definition of
the so-called “busy beaver” numbers (introduced by T. Rado). In this
note we consider different versions of the busy beaver-like notions de-
fined in terms of Kolmogorov complexity. We show that these versions
differ depending on the version of complexity used (plain, prefix, or a pri-
ori complexities) and find out how these notions are related, providing
matching lower and upper bounds.

1 Introduction

In 1962 Tibor Radó [5] suggested to consider, for each natural n, the maximal
integer that can be printed by a terminating computation of a Turing machine
that has at most n states. The alphabet of the machine is assumed to be binary
(blank and non-blank symbols). The machine starts on the empty tape and stops
at some time. After that we count the number of non-blank symbols on the tape.
Radó proved that this function grows faster that any computable function (of n).
The same is true for other functions defined in a similar way (e.g., the maximal
number of steps in a terminating computation of a machine with n states on
the empty tape, or the maximal shift of its working head). Still these definitions
look too machine-dependent: even small changes in the model (say, allowing two
tapes or one-sided tape) could give different (but still fast-growing) functions.

A more invariant approach becomes possible if we use the notions for algo-
rithmic information theory (Kolmogorov complexity theory). We assume here
that the reader is familiar with the basic notions of this theory (see, e.g., [7]
or [4], or the short introduction in [6]). We consider the maximal number that
has complexity at most n, i.e., the maximal number that is an output of some
program of length at most n. Here we assume that the programming language
is an optimal decompressor in the sense of algorithmic information theory (that
leads to a minimal complexity function; see [7] or [4] for the formal definitions).
It is easy to show (see, e.g., [7, Section 1.2]) that we get the same function (up
to O(1)-change in the argument) if we consider the maximal running time of the
optimal decompressor on programs of length at most n. (The latter definition
depends on the choice of interpreter for the optimal programming language and
the computation model used to define the running time, but for every choice we
get the same function up to O(1)-change in the argument.)

In other words, we fix optimal (plain) decompressor D and denote the com-
plexity with respect of this decompressor D by C (·) (the plain Kolmogorov com-
plexity). Then B(n) = max{N | C (N) ⩽ n}, so B(n) is the maximum value of
D on arguments of length at most n (we consider inputs as binary strings and
outputs as natural numbers). Define BB (n) as the maximum computation time
for D on the same inputs (for arbitrary fixed machine computing D in arbitrary
fixed computation model). As we have mentioned, the following statement holds:
B(n− c) ⩽ BB (n) ⩽ B(n+ c) for some constant c and for all n (see [7]).

Additive constant in the argument is unavoidable, since the function C (N) is
defined only up to an O(1) additive term (when you replace one optimal decom-
pressor by another, an additive O(1) term appears). So we will not distinguish
B(n) and BB (n) and will use the notation B(n) in the sequel for this plain busy
beaver function.

One can repeat the same definitions for prefix-free decompressors and prefix-
free Kolmogorov complexity (see [7, 6] for the definitions). We define the prefix
busy beaver function BP (n) = max{N | K (N) ⩽ n}.

Again one can consider the maximal computation time of an optimal prefix-
free decompressor (as defined in [7, section 4.4]) on inputs of size at most n, and
again we get two functions that are the same (up to an additive O(1)-term in
the argument), for the same reasons.1

So we may forget about computation time, and consider the functions B and
BP defined as explained above. We will compare the growth rate of the functions
B and BP and show that these functions are different (B grows faster than BP).
We also compare these functions with an intermediate function BP ′ that will be
defined in terms of the a priori probability.

Let us first recall the definition of a priori probability. A priori probability
m(k) of number k can be defined as the k-th term of a maximal (up to multi-
plicative constant) converging lower semicomputable non-negative series. Levin
showed that such a series exists, and proved that m(k) = 2−K (k)+O(1) (see,
e.g., [7, chapter 4] for the details). Now we consider the modulus of convergence
for this series: for every n we find minimal N such that

∑
k>N m(k) < 2−n. De-

note this N by BP ′(n). The difference between BP and BP ′ can be explained
as follows: after BP (n) all terms of the series

∑
m(k) are small enough (less

than 2−n), and after BP ′(n) the tail of this series is small enough. Obviously
BP (n) ⩽ BP ′(n), or, more accurately, BP (n) ⩽ BP ′(n + c) due to O(1) addi-
tive terms in both definitions (Kolmogorov complexity is defined up to an O(1)
additive term, and a priori probability is defined up to an Θ(1) factor).

1 One can define prefix complexity in different ways, using prefix-free decompressors
(no element of the domain is a prefix of another element of the domain) or prefix-
stable decompressors (if D(x) is defined, then D(y) = D(x) for every y that has
prefix x). The argument works only for prefix-free decompressors; the problem with
the prefix-stable ones is that computation time of a prefix-stable decompressor is not
a prefix-stable function. It would be interesting to know whether the result remains
true for prefix-stable decompressors.

This three functions share basic computational properties with classical busy
beaver function: they are not computableand grow faster than any computable
function. All three functions are computable with oracle for the halting problem
(as well as the classical busy beaver function.

In this article we compare growth rates of these functions. Theorem 1 shows
that all three functions are relatively close to each other: all three functions are
equal up to at most (1+ε) log n argument shift. Theorem 2 shows that the bound
provided by Theorem 1 is quite tight. For example, one cannot remove ε from
the previous statement: a gap greater than log n appears between BP and BP ′

for some values of n, as well as between BP ′ and B for some (other) values of n.

Theorem 1. (i) There exists a constant c such that BP (n) ⩽ BP ′(n + c) and
BP ′(n) ⩽ B(n+ c) for all n.

(ii) There exists a constant c such that B(n) ⩽ BP (n+K (n) + c) for all n.
(iii) Let (xn, yn) be a sequence of pairs of natural numbers such that xn ⩽ yn,

the sequence xn is lower semicomputable, and the sequence yn is upper semi-
computable. Assume that

∑
n 2

xn−yn < +∞. Then there exists c such that
B(xn) ⩽ BP (yn + c) for all n.

This theorem uses the notion of lower and upper semicomputable sequences.
Recall that a sequence yn of real numbers is lower semicomputable if yn is a
(point-wise) limit of some total computable non-decreasing (in k) rational-valued
function of two arguments: yn = limk y(n, k); upper semicomputability is defined
in a symmetric way using non-increasing functions. If yn are natural numbers,
the function y(·, ·) can be chosen in such a way that its values are also natural
numbers, and convergence means that for each n the equality yn = y(n, k) is
true for all sufficiently large k. See [7] for the details.2

Items (i) and (ii) are rather simple, and (iii) is a more symmetric way to
present (ii) (as we will see later). Note that (ii) is a special case of (iii) if we
let (xn, yn) = (n, n + K (n)). Another special case of (iii) is obtained if we let
(xn, yn) = (n−K (n), n), so B(n−K (n)) ⩽ BP (n+ c) for some c and all n.

The statement about (1 + ε) log n mentioned above can be obtained as a
corollary of (ii) since K (n) ⩽ (1 + ε) log n for ε > 0 (note that the series∑

2−(1+ε) logn =
∑

(1/n1+ε) converges).
Items (ii) and (iii) are not completely symmetric: why do we add c to the right

side, instead of subtracting it from the left side? We can formulate symmetric
statements:

(ii′) B(n−K (n)− c) ⩽ BP (n) for some c and all n;
(iii′) Under the same assumptions as in (iii) we have B(xn − c) ⩽ BP (yn)

for some c and all n.
These statements are also true; we will return to them after we prove Theo-

rem 1 (they are easy corollaries of it).

The next results say that if
∑

n 2
xn−yn = +∞ (for lower semicomputable xn

and upper semicomputable yn) then (iii) is not true anymore. Moreover, in this

2 One may also speak about semicomputability for sequences that have terms +∞
and/or −∞; in this case we allow the values of the function y(·, ·) to be infinite.

case a large gap may appear both between B and BP ′ and between BP ′ and
BP (but in different places).

Theorem 2. Assume that (xn, yn) is a sequence of different pairs of natural
numbers, xn ⩽ yn, the sequence xn is enumerable from below, and the sequence
yn is enumerable from above. Assume also that

∑
2xn−yn = +∞. In this case

(i) there exists n such that B(xn) > BP ′(yn);
(ii) there exists n such that BP ′(xn) > BP (yn).

There is no constant c in this theorem (in contrast to the previous one), but
one can easily put it on any side (or even both): changing all xn or all yn by an
additive constant does not change the divergence condition. For example, it is
true that for all c there exists n such that B(xn) > BP ′(yn+ c) or for all c there
exists n such that BP ′(xn − c) > BP (yn), and so on.

Using Theorems 1 and 2 one can easily deduce that for every upper semi-
computable sequence an the following six conditions are equivalent:

• BP (n) ⩽ BP ′(n+ an + c) for some c and for all n;
• BP ′(n) ⩽ B(n+ an + c) for some c and for all n;
• BP (n) ⩽ B(n+ an + c) for some c and for all n;
• BP (n− an) ⩽ BP ′(n+ c) for some c and for all n;
• BP ′(n− an) ⩽ B(n+ c) for some c and for all n;
• BP (n− an) ⩽ B(n+ c) for some c and for all n;

Moreover, all these conditions are equivalent to the condition
∑

2−an < +∞
(which, in its turn, is equivalent to an ⩾ K (n)−O(1), see [7]).

The meaning of Theorems 1 and 2 can be explained as follows. In these results
we compare slow-growing functions that are inverse to the functions B, BP , and
BP ′. We show that they are equal up to (1 + ε) times the logarithm of their
values, and that this ε cannot be omitted: without it both inequalities between
neighbor functions may be violated. As Theorem 1 shows, these big gaps cannot
happen at the same places (otherwise the total gap between lowest and highest
functions exceeds the upper bound).

Statement (ii) from Theorem 2 has been proven by P. Gács [3] for the case
(xn, yn) = (n − an, n) (and the general case may be derived as a consequence
of this special one, as we will see later), so our main result is item (i) from
Theorem 2. Still we provide all the proofs in the next section for uniformity and
reader’s convenience.

How can we modify our definitions? One can look at the maximal N such
that C (N |n) ⩽ n or such that K (N |n) ⩽ n. But we do not get new notions in
this way: this quantity is still equal to B(n) up to a O(1)-change in the argument.
Indeed, the conditional complexity C (x|n) is bounded by the unconditional com-
plexity C (x); on the other hand, if C (N |n) = n, then the conditional program of
length n for N may be considered as a conditional prefix-free program with the
same condition n (if n is given as a condition, we know when to stop reading the
program of length n). Moreover, this program also can be used as unconditional
program for N , since n (its length) is determined by the program. In general,
K (x| C (x)) = C (x| C (x)) = C (x) (up to O(1) additive term), see [7]

To finish our introduction, let us mention that BP ′ can be equivalently de-
fined as the modulus of convergence for computable non-negative series of ratio-
nal numbers with Martin-Löf random sums.

Theorem 3. Let
∑

an be a computable series of rational non-negative numbers
whose sum is Martin-Löf random. Let N(ε) be the modulus of convergence of this
series, i.e., the minimal value of N such that

∑
n>N an < ε. Then BP ′(n− c) ⩽

N(2−n) ⩽ BP ′(n+ c) for some c and all n.

The first inequality was proven in [2, Theorem 19], while the second one
follows from the definition of the a priori probability (recall that m is bigger
than any computable converging sequence, up to O(1) factor). In [2] it was
also shown that if N(ε) is the modulus of convergence for some computable
converging series

∑
an with non-negative terms, and BP (n − c) ⩽ N(2−n) for

some c and all n, then the same property holds for BP ′ (for a different value
of c).

2 Upper bounds

In this section we prove Theorem 1.
(i) The inequality BP (n) ⩽ BP ′(n + c) follows directly from definitions. If

we define m(n) exactly as 2−K (n), it is true even without c-term.
Now we prove that BP ′(n) ⩽ B(n+ c) for some c and for all n. To do this,

we construct an algorithm that, given n, enumerates at most 2n different inte-
gers, and the last of them is bigger than BP ′(n). The n-bit string that is the
bit representation of the item’s number in this enumeration, identifies the last
number (n is known, being the length of this string), so we get the required
inequality. How the enumeration algorithm works? This algorithm approximates
all m(n) from below in parallel; we assume that at every moment only finitely
many approximations are not zeros. As soon as the tail of the current approxi-
mation for m, starting from the last enumerated integer, becomes greater than
2−n (i.e., the current approximation to BP ′ exceeds the last enumerated inte-
ger) we enumerate a new integer that is bigger than all k with non-zero current
approximations for m(k). Obviously this cannot happen more than 2n times:
every time an integer is enumerated, we leave behind total m-weight at least
2−n.

(ii) It is well known that K (x) ⩽ C (x) + K (C (x)) + O(1) (for example,
see [7, Section 4.6]). The following slightly more general statement is also true:
if C (x) ⩽ n, then K (x) ⩽ n + K (n) + O(1). Let us prove it. Starting with a
program for x that has length at most n, we prepend a block of the form 0k1 to
it (this block is obviously self-delimited) making the total length exactly n+ 2.
Then we prepend a self-delimited code for n (of length K (n)), and the result is a
self-delimited code for x (decode n first, then read exactly n+2 symbols, remove
0k1 leading block, then use C -decompressor). This generalisation immediately
implies that B(n) ⩽ BP (n+K (n) + c) for some c and for all n.

(iii) We will show that this inequality is a consequence of (ii). We start
by showing that we can assume xn and yn to be computable without loss of
generality.

By assumption, the sequences xn [resp. yn] are lower [resp. upper] semicom-
putable. For each n, consider a uniformly computable sequence of pairs (xi

n, y
i
n)

of integers that monotonically converge to (xn, yn) as i → ∞. Combine arbi-
trarily all these sequences into one sequence, leaving only the first appearance
of each pair (removing all duplicates). We get a computable sequence (x̃i, ỹi);
every pair (xn, yn) appears in this sequence together with finitely many its ap-
proximations. Note that

∑
i 2

x̃i−ỹi is at most two times bigger than
∑

n 2
xn−yn :

every time a new approximation for xn or yn appears, the respective term is
the sum is increased by factor 2 or more, so the sum for x̃i, ỹi is at most twice
bigger than the original one, and if the original sum is finite, then the new one
is also finite. Note also that the desired inequality for the new sequence implies
the same inequality for the original sequence (that is a subsequence of the new
one). So we can assume xn, yn is computable without loss of generality.

Now assume that a computable sequence (xi, yi) is given. Define f(n) =
min{yi − n | xi = n}; if n does not appear among xi, the value f(n) is +∞.
The function f is upper semicomputable, and

∑
n 2

−f(n) < +∞, since the pairs
(n, n+ f(n)) are guaranteed to appear among (xi, yi). So f(n) ⩾ K (n)−O(1).
Therefore, xi + K (xi) ⩽ yi + O(1) for the pairs with minimal yi (for a given
xi) and therefore for all pairs. The function BP increases, so we get B(xi) ⩽
BP (xi +K (xi) +O(1)) ⩽ BP (yi +O(1)) for all pairs. The claim (iii) is proven.

Symmetric results (mentioned above) are also easy to prove:

(ii′) B(n−K (n)− c) ⩽ BP (n) for some c and for all n.

(iii′) If xn and yn satisfy the same assumptions as in (iii), then B(xn − c) ⩽
BP (yn) for some c and for all n.

To prove (ii′) we use (ii) for a smaller argument: B(n−K (n)− e) ⩽
⩽ BP (n − K (n) − e + K (n − K (n) − e) + c) holds for some c and all n, e.
Now we want to choose the constant e in such a way that the argument in the
right hand side is at most n for all n (recall that function BP is monotone):
n−K (n)− e+K (n−K (n)− e) + c ⩽ n.
Indeed, K (n−K (n)− e) ⩽ K (n,K (n)) +K (e) +O(1) ⩽ K (n) +K (e) +O(1),
and e − K (e) can be made arbitrary large for large enough e (larger than sum
of O(1) terms in the inequalities).

To derive (iii′) from (ii′), one can use the same technique as used to deduce
(iii) from (ii). The only difference is that one should group pairs with the same
yi (instead of xi, as we did in the proof).

3 Lower bounds

In this section we prove Theorem 2.

3.1 Proof of the claim (i)

We have a sequence of different pairs (xn, yn) of integers such that xn ⩽ yn.
We assume that xn is lower semicomputable, yn is upper semicomputable and
2xn−yn = +∞. We need to show that there exists n such that B(xn) > BP ′(yn).

First we will reduce this statement to its special case where (xn, yn) = (n, n+
an), and an is some upper semicomputable sequence of natural numbers (the
value +∞ is also allowed).

For this reduction we use the same trick as in the previous section. First
we replace (xn, yn) by its approximations (xi

n, y
i
n), and then combine all these

approximations into one computable sequence by removing the duplicates. The
sum of 2xi−yi may only increase (we add new elements), there are no duplicates
(we removed them) and if B(xi

n) > BP ′(yin) then B(xn) > BP ′(yn) since we use
monotone approximations and the busy beaver functions are monotone. So we
may assume without loss of generality that the sequence (xn, yn) is a computable
sequence of different integer pairs.

Let an = min{yi − n | xi = n}. The sequence an is enumerable from above
(since the sequence (xi, yi) is computable). Note that

∑
n 2

−an ⩾ 1
2

∑
i 2

xi−yi .
Indeed, if we group pairs with xi = n, the sum of this group is bounded by a
geometric sequence with common ratio 1/2, so the sum can be replaced by the
maximal element (up to a 2-factor). Therefore,

∑
n 2

−an = +∞, and all pairs
(n, n+ an) appear among (xi, yi), so we get the desired reduction.

Now we use the following lemma: if an is an upper semicomputable sequence
of integers and

∑
n 2

−an = +∞, there exists a computable sequence ãn ⩾ an
such that

∑
n 2

−ãn = +∞. Indeed, we can approximate an from above until some
finite part of the series

∑
2−an exceeds 1, then fix the current approximations

for this part and call them ãn. Then the same argument is used for the tail, etc.
This argument show that we may assume without loss of generality that an is a
computable sequence.

It remains to prove the following statement: if an is a computable sequence of
integers and

∑
2−an = +∞, then there exists n such that B(n) > BP ′(n+ an).

In other words, we need to show that there exists some u such that C (u) ⩽ n
and

∑
i⩾u m(i) < 2−n−an .

To prove an upper bound for C (u), we need to construct a decompressor
that provides a short description for u. However, this gives a bound with some
additive constant term, so we need to construct a decompressor D such that for
every d there exist n and u such that

CD(u) ⩽ n− d and
∑
i⩾u

m(i) < 2n−an .

where CD(u) is the minimal length of p such that D(p) = u.
To prove this, we use the game technique. Consider a game where Alice plays

with Bob. They make alternating moves. Alice enumerates sets D0, D1, . . .; at
each move she adds finitely many integers to finitely many Di (so her move is a
finite object). The set Di may contain at most 2i elements. Bob approximates
from below some sequence µ(0), µ(1), . . .; initially all µ(i) are zeros, and at each

step Bob may increase finitely many of them by some rational numbers, but the
sum

∑
µ(i) should not exceed 1.

Assuming that both players respect the rules, Alice wins if (for limit val-
ues of Di and µ(i)) for every d there exists n and u such that u ∈ Dn−d and∑

i⩾u µ(i) < 2−n−an . One may reformulate this statement eliminating u: for
every d there exist n such that

∑
i⩾max(Dn−d)

µ(i) < 2−n−an . (∗)

We will prove that Alice has a computable winning strategy in this game. This
implies the desired result. Indeed, we may let Alice use this strategy against the
“blind” strategy of Bob that approximates from below the a priori probability
function µ(i) = m(i). Then the behavior of Alice is computable, the sets Di are
enumerable and we construct a decompressor D that maps k-bit string p into pth
element in the enumeration ofDk (in the last sentence binary string p is identified
with an integer it represents in the binary notation). This decompressor has the
required property.

So why Alice has a computable strategy? She should guarantee the existence
of a suitable n for each d. This is done independently for each d; Alice chooses
for each d some interval [ld, rd] where n with the required properties exist. This
intervals are chosen in such a way that there are no collisions (for different d the
values of n−d cannot be the same, i.e., the intervals [ld−d, rd−d] are disjoint).
The intervals should be large enough: the sum of 2−an over n in [ld, rd] should
exceed 2d+1 (we will see that this is enough for our purposes). Since we assume
that an is a computable sequence and

∑
2−an = +∞, we can choose [ld, rd] in

a computable way.

How Alice constructs Dn−d for n ∈ [ld, rd]? It is done in a straightforward
way. Alice chooses some n (say, the minimal value n = ld) and tries to achieve
(∗) by adding large elements to Dn−d. More precisely, if (∗) is violated, Alice
takes some number k that is greater that all non-zero terms in µ (i.e., µ(k′) = 0
for all k′ ⩾ k) and adds k to Dn−d. Then Bob may increase µ-values; as soon
as (∗) is violated again, Alice repeats this procedure, and so on. At some point
(after 2n−d steps) a maximal cardinality of Dn−d is reached. But at that time
Bob has used at least 2n−d2−n−an = 2−d−an of his reserve (each time a tail of
size 2−n−an is cut). Then Alice switches to next value of n, and forces Bob to
lose or to use 2−d−an again for this new value of n. Ultimately Bob will lose
the game since the sum of 2−d−an = 2−d2−an over n in [ld, rd] exceeds 1. (A
technical correction: we required that the limit value of

∑
µ(i) is strictly less

that some threshold; it is not enough to know that all the approximations are
strictly less than this threshold (only a non-strict inequality is guaranteed). To
remedy this problem, we may use an additional factor of 2 — so we require the
sum of 2−an over n ∈ [ld, rd] to be greater than 2d+1, not 2d.) Claim (i) is proven.

3.2 Proof of the claim (ii)

We again consider a sequence of different pairs (xn, yn) such that xn ⩽ yn, the
sequence xn is lower semicomputable, the sequence yn is upper semicomputable
and

∑
2xn−yn = +∞. We want to prove (following Gács) that there exists n

such that BP ′(xn) > BP (yn)
We can use the same reasoning as in (i) with minor modifications to show

that we can assume without loss of generality that (xn, yn) = (n − an, n) for
some computable sequence of non-negative integers an with

∑
n 2

−an = +∞.
This time we need to group terms with the same yi, not xi. We need to prove
then that there exists n such that BP (n) < BP ′(n − an). In other words, we
need to prove that there exist n and u such that m(i) < 2−n for all i ⩾ u, but∑

i⩾u m(i) > 2−n+an (all terms in the u-tail are small but their sum is big).
To show that the sum of m-tail is big, we need to construct a lower semi-

computable semimeasure for which this sum is big, and then use the maximality
of m. Again a constant appears, so we need to prove a stronger statement: there
exists a lower semicomputable semimeasure α such that for every d there are n
and u with the following property:∑

i⩾u

α(i) > 2−n+an+d but m(i) < 2−n for all i ⩾ u.

Again we may use the game approach and imagine that Alice approximates from
below some semimeasure α while Bob approximates from below some semimea-
sure β, and the claim above (with β instead of m) is the winning condition for
Alice. We will construct a computable strategy for Alice in this game; applying
it against the blind strategy of Bob (who approximates m(·) from below), we
get the required statement.

Let us note first that it is enough to construct (for every d) a winning strategy
in the similar game where winning condition is required only for this d. Indeed,
we may use 2d-strategy to win the d-game with

∑
i α(i) ⩽ 2−d (using 2d-strategy

with factor 2−d). Then we can use all the strategies (for d-games for all d) in
parallel against Bob and sum up all the increases, since the winning condition
is monotone and the strategies can only help each other. In this way Alice keeps
the total sum less than

∑
d 2

−d ⩽ 1 and wins all games.
So how could Alice win the d-game? She should increase her weights gradually

by using small weights far away where Bob has only zeros. As soon as her total
weight exceeds 2−n+an+d for some n, Bob has to react and assign weight at
least 2−n for some i. Then Alice continues to increase the weights (on the right
of the place used by Bob), and again after 2−n+an+d new Alice’s weight Bob
should react by assigning weight at least 2−n at some other place. If Alice uses
this strategy with small weights (see the discussion below) until her total weight
reaches 1, and waits each time until Bob violates the winning condition for Alice,
we have the following property of Bob’s weights:3

3 Technically speaking, Bob is obliged to react only if the Alice’s tail is strictly greater
than 2−n+an+d. But this leads only to a constant factor that is not important, so
we ignore this problem.

for each n there are at least 2n−an−d Bob’s weights β(·) that exceed 2−n.

Note that Alice’s actions are the same for all n; it is Bob who should care about
all n and provide a large enough weight at the moments where Alice is in the
winning position (for some n).

What is the total weight Bob uses in this process? The property above guar-
antees that Bob uses at least 2−an−d to prevent Alice from winning for given n.
The sum of these quantities for all n is infinite according to our assumption (so
at some point Bob will be unable to increase the weights). However, the same
Bob’s move can be useful on different levels (for different values of n), so we need
the following technical lemma valid for every series

∑
i β(i) with non-negative

values: ∑
j

2−j ·#{i : β(i) ⩾ 2−j} ⩽ 2
∑
i

β(i).

Indeed, each β(i) from the right hand side appears in the left hand side as the
sum of 2−j for all j such that 2−j ⩽ β(i), and this sum does not exceed 2β(i).

To finish the description of Alice’s strategy, we need to say how small should
be the weight increases used by Alice. We know that the sum

∑
n 2

−an−d is
infinite, so there is a finite part of this sum that is large (greater than 4, to be
exact). Alice then may use weights 2−s where s is some integer greater that all
n+ an + d for n that appear in this finite part.

4 Acknowledgements

This work was supported by ANR-15-CE40-0016-01 RaCAF grant, and RFBR
grant number 16-01-00362.

References

1. Archimedes, The Sand Reckoner. In The Works of Archimedes, Dover, New York,
1953.

2. L. Bienvenu, A. Shen, Random Semicomputable Reals Revisited, In Computation,
Physics and Beyond - International Workshop on Theoretical Computer Science,
WTCS 2012, Dedicated to Cristian S. Calude on the Occasion of His 60th Birthday,
Springer, 7160 (2012). See also: http://arxiv.org/pdf/1110.5028v1.pdf

3. P. Gács, On the relation between descriptional complexity and algorithmic proba-
bility, Theoretical Computer Science, 22 (1983), 71–93.

4. Li M., Vitányi P., An Introduction to Kolmogorov complexity and its applications,
3rd ed., Springer, 2008 (1 ed., 1993; 2 ed., 1997), xxiii+790 pp. ISBN 978-0-387-
49820-1.

5. T. Radó, On non-computable functions. Bell System Technical Journal, 41(3), May
1962, 877–884.

6. A. Shen, Around Kolmogorov complexity: basic notions and results, in Measures
of Complexity: Festschrift for Alexey Chervonenkis, Springer, 2015, p. 75-116. See
also: http://arxiv.org/pdf/1504.04955

7. N. K. Vereshchagin, V. A. Uspensky, A. ShenKolmogorov complexity and algorithmic
randomness (In Russian), M.: MCCME, 2013. Draft english translation:
http://www.lirmm.fr/~ashen/kolmbook-eng.pdf

