
Compressibility and probabilistic proofs

Alexander Shen∗

April 3, 2017

Abstract

We consider several examples of probabilistic existence proofs using
compressibility arguments, including some results that involve Lovász
local lemma.

1 Probabilistic proofs: a toy example

There are many well known probabilistic proofs that objects with some prop-
erties exist. Such a proof estimates the probability for a random object to
violate the requirements and shows that it is small (or at least strictly less
than 1). Let us look at a toy example.

Consider a n × n Boolean matrix and its k × k minor (the intersection
of k rows and k columns chosen arbitrarily). We say that the minor is
monochromatic if all its elements are equal (either all zeros or all ones).

Proposition. For large enough n and for k = O(log n), there exists a (n×n)-
matrix that does not contain a monochromatic (k × k)-minor.

Proof. We repeat the same simple proof three times, in three different lan-
guages.

(Probabilistic language) Let us choose matrix elements using independent
tosses of a fair coin. For a given k colums and k rows, the probability of

∗LIRMM CNRS & University of Montpellier. On leave from IITP RAS, Moscow,
Russia. E-mail address: alexander.shen@lirmm.fr. Supported by ANR-15-CE40-0016-
01 RaCAF grant.

1



getting a monochromatic minor at their intersection is 2−k2+1. (Both zero-
minor and one-minor have probability 2−k2 .) There are at most nk choices for
columns and the same number for rows, so by the union bound the probability
of getting at least one monochromatic minor is bounded by

nk × nk × 2−k2+1 = 22k logn−k2+1 = 2k(2 logn−k)+1

and the last expression is less then 1 if, say, k = 3 log n and n is suffuciently
large.

(Combinatorial language) Let us count the number of bad matrices. For
a given choice of columns and rows we have 2 possibilities for the minor and
2n

2−k2 possibilities for the rest, and there is at most nk choices for raws and
columns, so the total number of matrices with monochromatic minor is

nk × nk × 2× 2n
2−k2 = 2n

2+2k logn−k2+1 = 2n
2+k(2 logn−k)+1,

and this is less than 2n
2
, the total number of Boolean (n× n)-matrices.

(Compression language) To specify the matrix that has a monochromatic
minor, it is enough to specify 2k numbers between 1 and n (rows and column
numbers), the color of the monochromatic minor (0 or 1) and the remaining
n2 − k2 bits in the matrix (their positions are already known). So we save
k2 bits (compared to the straightforward list of all n2 bits) using 2k log n+1
bits instead (each number in the range 1 . . . n requires log n bits; to be exact,
we may use ⌈log n⌉), so we can compress the matrix with a monochromatic
minor if 2k log n+ 1 ≪ k2, and not all matrices are compressible.

Of course, these three arguments are the same: in the second one we mul-
tiply probabilities by 2n

2
, and in the third one we take logarithms. However,

the compression language provides some new viewpoint that may help our
intuition.

2 A bit more interesting example

In this example we want to put bits (zeros and ones) around the circle in
a “essentially asymmetric” way: each rotation of the circle should change
at least a fixed percentage of bits. More precisely, we are interested in the
following statement:

2



Proposition. There exists ε > 0 such for every suffuciently large n there
exists a sequence x0x1 . . . xn−1 of bits such that for every k = 1, 2, . . . , n− 1
the cyclic shift by k positions produces a sequence

y0 = xk, y1 = xk+1, . . . , yn−1 = xk−1,

that differs from x in at least εn positions (the Hamming distance between x
and y is at least εn).

x0 x1 x2

xk

xk+1

xk+2

xn−1

Figure 1: A string x0 . . . xn−1 is bad if most of the dotted lines connect equal
bits

Proof. Assume that some rotation (cyclic shift by k positions) transforms x
into a string y that coincides almost everywhere with x. We may assume
that k ≤ n/2: the cyclic shift by k positions changes as many bits as the
cyclic shift by n− k (the inverse one). Imagine that we dictate the string x
from left to right. First k bits we dictate normally. But then the bits start
to repeat (mostly) the previous ones (k positions before), so we can just say
“the same” or “not the same”, and if ε is small, we know that most of the
time we say “the same”. Technically, we have εn different bits, and at least
n−k ≥ n/2 bits to dictate after the first k, so the fraction of “not the same”
signals is at most 2ε. It is well known that strings of symbols where some
symbols appear more often than others can be encoded efficiently. Shannon
tells us that a string with two symbols with frequencies p and q (so p+q = 1)
can be encoded using

H(p, q) = p log
1

p
+ q log

1

q

3



bits per symbol and that H(p, q) = 1 only when p = q = 1/2. In our case,
for small ε, one of the frequencies is close to 0 (at most 2ε), and the other
one is close to 1, so H(p, q) is significantly less than 1. So we get a significant
compression for every string that is bad for the theorem, therefore most string
are good (so good string do exist).

More precisely, every string x0 . . . xn−1 that does not satisfy the require-
ments, can be described by

• k [log n bits]

• x0, . . . , xk−1 [k bits]

• xk⊕x0, xk+1⊕x1, . . . , xn−1⊕xn−k−1 [n−k bits where the fraction
of 1s is at most 2ε, compressed to (n− k)H(2ε, 1− 2ε) bits]

For ε < 1/4 and for large enough n the economy in the third part (compared
to n− k) is more important than log n in the first part.

Of course, this is essentially a counting argument: the number of strings
of length (n − k) where the fraction of 1s is at most 2ε, is bounded by
2H(2ε,1−2ε)(n−k) and we show that the bound for the number of bad strings,

n/2∑
k=1

2k2H(2ε,1−2ε)(n−k)

is less than the total number of strings (2n). Still the compression metaphor
makes the proof more intuitive, at least for some readers.

3 Lovász local lemma and

Moser–Tardos algorithm

In our examples of probabilistic proofs we proved the existence of objects
that have some property by showing that most objects have this property
(in other words, that the probability of this property to be true is close to 1
under some natural distribibution). Not all probabilistic proofs go like that.
One of the exceptions is the famous Lovász local lemma (see, e.g., [1]). It
can be used in the situations where the union bound does not work: we have
too many bad events, and the sum of their probabilities exceeds 1 even if

4



probability of each one is very small. Still Lovász local lemma shows that
these bad events do not cover the probability space entirely, assuming that
the bad events are “mainly independent”. The probability of avoiding these
bad events is exponentially small, still Lovász local lemma provides a positive
lower bound for it.

This means, in particular, that we cannot hope to construct an object sat-
isfying the requirements by random trials, so the bound provided by Lovász
local lemma does not give us a randomized algorithm that constructs the ob-
ject with required properties with probability close to 1. Much later Moser
and Tardos [4, 5] suggested such an algorithm — in fact a very simple one. In
other terms, they suggested a different distribution under which good objects
form a majority.

We do not discuss the statement of Lovász local lemma and Moser–Tardos
algorithm in general. Instead, we provide two examples when they can be
used, and the compression-language proofs that can be considered as ad hoc
versions of Moser–Tardos argument. These two examples are (1) satisfiabil-
ity of formulas in conjunctive normal form (CNF) and (2) strings without
forbidden factors.

4 Satisfiable CNF

A CNF (conjunctive normal form) is a propositional formula that is a con-
juction of clauses. Each clause is a disjunction of literals ; a literal is a
propositional variable or its negation. For example, CNF

(¬p1 ∨ p2 ∨ p4) ∧ (¬p2 ∨ p3 ∨ ¬p4)

consists of two clauses. First one prohibits the case when p1 = true, p2 =
false, p4 = false; the second one prohibits the case when p2 = true,
p3 = false, p4 = true. A CNF is satisfiable if it has a satisfying assigment
(that makes all clauses true, avoiding the prohibited combinations). In our
example there are many satisfying assigments. For example, if p1 = false
and p3 = true, all values of other variables are OK.

We will consider CNF where all clauses include n literals with n different
variables (from some pool of variables that may contain much more than
n variables). For a random assignment (each variable is obtained by an
independent tossing of a fair coin) the probability to violate a clause of this
type is 2−n (one of 2n combinations of values for n variables is forbidden).

5



Therefore, if the number of clauses of this type is less than 2n, then the
formula is satisfiable. This is a tight bound: using 2n clauses with the same
variables, we can forbid all the combinations and get an unsatisfiable CNF.

The following result says that we can guarantee the satisfiability for for-
muli with much more clauses. In fact, the total number of clauses may be
arbitrary (but still we consider finite formulas, of course). The only thing
we need is the “limited dependence” of clauses. Let us say that two clauses
are neighbors if they have a common variable (or several common variables).
The clauses that are not neighbors correspond to independent events (for a
random assignment). The following statement says that if the number of
neighbors of each clause is bounded, then CNF is guaranteed to be satisfis-
able.

Proposition. Assume that each clause in some CNF contains n literals with
different variables and has at most 2n−3 neighbor clauses. Then the CNF is
satisfiable.

Note that 2n−3 is a rather tight bound: to forbid all the combinations for
some n variables, we need only 2n clauses.

Proof. It is convenient to present a proof using the compression language,
as suggested by Lance Fortnow. Consider the following procedure Fix(C)
whose argument is a clause (from our CNF).

{ C is false }
Fix(C):

Resample(C)
for all C ′ that are neighbors of C:

if C ′ is false then Fix(C ′)
{ C is true; other clauses that were true remain true }

Here Resample(C) is the procedure that assigns fresh random values to all
variables in C. The pre-condition (the first line) says that the procedure is
called only in the situation where C is false. The post-condition (the last
line) says that if the procedure terminates, then C is true after termination,
and, moreover, all other clauses of our CNF that were true before the call
remain true. (The ones that were false may be true or false.)

Note that up to now we do not say anything about the termination:
note that the procedure is randomized and it may happen that it does not

6



terminate (for example, if all Resample calls are unlucky to choose the same
old bad values).

Simple observation: if we have such a procedure, we may apply it to
all clauses one by one and after all calls (assuming they terminate and the
procedure works according to the specification) we get a satisfying assign-
ment.

Another simple observation: it is easy to prove the “conditional cor-
rectness” of the procedure Fix(C). In other words, it achieves its goal as-
suming that (1) it terminates; (2) all the recursive calls Fix(C ′) achieve their
goals. It is almost obvious: the Resample(C) call may destroy (=make
false) only clauses that are neighbors to C, and all these clauses are Fix-ed
after that. Note that C is its own neighbor, so the for-loop includes also a
recursive call Fix(C), so after all these calls (that terminate and satisfy the
post-condition by assumption) the clause C and all its neighbors are true
and no other clause is damaged.

Note that the last argument remains valid even if we delete the only line
that really changes something, i.e., the line Resample(C). In this case the
procedure never changes anything but still is conditionally correct; it just
does not terminate if one of the clauses is false.

It remains to prove that the call Fix(C) terminates with high probability.
In fact, it terminates with probability 1 if there are no time limits and with
probability exponentially close to 1 in polynomial time. To prove this, one
may use a compression argument: we show that if the procedure works for
a long time without terminating, then the sequence of random bits used for
resampling is compressible. We assume that each call of Resample() uses n
fresh bits from the sequence. Finally, we note that this compressibility may
happen only with exponentially small probability.

Imagine that Fix(C) is called and during its recursive execution performs
many calls

Resample(C1), . . . ,Resample(CN)

(in this order) but does not terminate (yet). We stop it at some moment and
examine the values of all the variables.

Lemma. Knowing the values of the variables after these calls and the se-
quence C1, . . . , CN , we can reconstruct all the Nn random bits used for re-
sampling.

Proof of the lemma. Let us go backwards. By assumption we know the val-

7



ues of all variables after the calls. The procedure Resample(CN) is called
only when CN is false, and there is only one n-tuple of values that makes CN

false. Therefore we know the values of all variables before the last call, and
also know the random bits used for the last resampling (since we know the
values of variables after resampling).

The same argument shows that we can reconstruct the values of variables
before the preceding call Resample(CN−1), and random bits used for the
resampling in this call, etc.

Now we need to show that the sequence of clauses C1, . . . , CN used for
resampling can be described by less bits than nN (the number of random
bits used). Here we use the assumption saying each clause has at most 2n−3

neighbors and that the clauses C ′ for which Fix(C ′) is called from Fix(C),
are neighbors of C.

One could try to say that since Ci+1 is a neighbor of Ci, we need only
n− 3 bits to specify it (there are at most 2n−3 neighbors by assumption), so
we save 3 bits per clause (compared to n random bits used by resampling).
But this argument is wrong: Ci+1 is not always the neighbor of Ci, since we
may return from a recursive call that causes resampling of Ci and then make
a new recursive call that resamples Ci+1.

To get a correct argument, we should look more closely at the tree of
recursive calls generated by one call Fix(C) (Fig. 2). In this tree the sons of
each vertex correspond to neighbor clauses of the father-clause. The sequence
of calls is determined by a walk in this tree, but we go up and down, not
only up (as we assumed in the wrong argument). How many bits we need
to encode this walk (and therefore the sequence of calls)? We use one bit
to distinguish between steps up and down. If we are going down, no other
information is needed. If we are going up (and resample a new clause), we
need one bit to say that we are going up, and n − 3 bits for the number of
neighbor we are going to. For accounting purposes we combine these bits with
a bit needed to encode the step back (this may happen later or not happen
at all), and we see that in total we need at most (n − 3) + 1 + 1 = n − 1
bits per each resampling. This is still less than n, so we save one bit for each
resampling. If N is much bigger than the number of variables, we indeed
compress the sequence of random bits used for resampling, and this happens
with exponentially small probability.

This argument finishes the proof.

8



C1

C2

C3 C4

C5 C6

C7

C8 C9

Figure 2: The tree of recursive calls for Fix(C1) (up to some moment)

5 Tetris and forbidden factors

The next example is taken from word combinatorics. Assume that a list
of binary strings F1, . . . , Fk is given. These Fi are considered as “forbidden
factors”: this means that we want to construct a (long) string X that does
not have any of Fi as a factor (i.e., none of Fi is a substring of X). This
may be possible or not depending on the list. For example, if we consider
two strings 0, 11 as forbidden factors, every string of length 2 or more has a
forbidden factor (we cannot use zeros at all, and two ones are forbidden).

The more forbidden factors we have, the more chances that they block the
growth in the sense that every sufficiently long string has a forbidden factor.
Of course, not only the number of factors matters: e.g., if we consider 0, 00 as
forbidden factors, then we have long strings of ones without forbidden factors.
However, now we are interested in quantitative results of the following type:
if the number of forbidden factors of length j is aj, and the numbers aj are
“not too big”, then there exists an arbitrarily long string without forbidden
factors.

This question can be analyzed with many different tools, including Lovász
local lemma (see [8]) and Kolmogorov complexity. Using a complexity argu-
ment, Levin proved that if aj = 2αj for some constant α < 1, then there exists
a constant M and an infinite sequence that does not contain forbidden fac-

9



tors of length smaller than M . (See [9, Section 8.5] for Levin’s argument and
other related results.) A nice sufficient condition was suggested by Miller [3]:
we formulate the statement for the arbitrary alphabet size.

Proposition. Consider an alphabet with m letters. Assume that for each
j ≥ 2 we have aj “forbidden” strings of length j. Assume that there exist
some constant x > 0 such that∑

j≥2

ajx
j < mx− 1

Then there exist arbitrarily long strings that do not contain forbidden sub-
strings.

Remarks. 1. We do not consider j = 1, since this means that some
letters are deleted from the alphabet.

2. By compactness the statement implies that there exists an infinite
sequence with no forbidden factors.

3. The constant x should be at least 1/m, otherwise the right hand side
is negative. This means that aj/m

j should be small, and this corresponds
to our intution (aj should be significantly less than mj, the total number of
strings of length j).

The original proof from [3] uses some ingenious potential function defined
on strings: Miller shows that if its value is less than 1, then one can add
some letter preserving this property. It turned out (rather misteriously)
that exactly the same condition can be obtained by a completely different
argument (following [2, 6]) — so probably the inequality is more fundamental
than it may seem! This argument is based on compression.

Proof. Here is the idea. We start with an empty string and add randomly
chosen letters to its right end. If some forbidden string appears as a suffix,
it is immediately deleted. So forbidden strings may appear only as suffixes,
and only for a short time. After this “backtracking” we continue adding new
letters. (This resembles the famous “tetris game” when blocks fall down and
then disappear under some conditions.)

We want to show that if this process is unsuccessful in the sense that after
many steps we still have a short string, then the sequence of added random
letters is compressible, so this cannot happen always, and therefore a long
string without forbidden factors exists. Let us consider a “record” (log file)
for this process that is a sequence of symbols “+” and “+⟨deleted string⟩”

10



(for each forbidden string we have a symbol, plus one more symbol without
a string). If a letter was added and no forbidden string appears, we just add
‘+’ to the record. If we have to delete some forbidden string s after a letter
was added, we write this string in brackets after the + sign. Note that we
do not record the added letters, only the deleted substrings. (It may happen
that several forbidden suffixes appear; in this case we may choose any of
them.)

Lemma. At every stage of the process the current string and the record
uniquely determine the sequence of random letters used.

Proof of the lemma. Having this information, we can reconstruct the config-
uration going backwards. This reversed process has steps where a forbidden
string is added (and we know which one, since it is written in brackets in the
record), and also steps when a letter is deleted (and we know which letter is
deleted, i.e., which random letter was added when moving forwards).

If after many (say, T ) steps we still have a short current string, then
the sequence of random letters can be described by the record (due to the
Lemma; we ignore the current string part since it is short). As we will see,
the record can be encoded with less bits than it should have been (i.e., less
than T logm bits). Let us describe this encoding and show that it is efficient
(assuming the inequality

∑
ajx

j < mx− 1).
We use arithmetic encoding for the lengths. Arithmetic encoding for M

symbols starts by choosing positive reals q1, . . . , qM such that q1+. . .+qM = 1.
Then we split the interval [0, 1] into parts of length q1, . . . , qM that corre-
spond to these M symbols. Adding a new symbol corresponds to splitting
the current interval in the same proportion and choosing the right subin-
terval. For example, the sequence (a, b) corresponds to bth subinterval of
ath interval; this interval has length qaqb. The sequence (a, b, . . . , c) corre-
sponds to interval of length qaqb . . . qc and can be reconstructed given any
point of this interval (assuming q1, . . . , qM are fixed); to specify some binary
fraction in this interval we need at most − log(qaqb . . . qc) + O(1) bits, i.e.,
− log qa − log qb − . . .− log qc +O(1) bits.

Now let us apply this technique to our situation. For + without brackets
we use log(1/p0) bits, and for +⟨s⟩ where s is of length j, we use log(1/pj)+
log aj bits. Here pj are some positive reals to be chosen later; we need
p0+

∑
pj = 1. Indeed, we may split pj into aj equal parts (of size pj/aj) and

11



use these parts as qs in the description of arithmetical coding above; splitting
adds log aj to the code length for strings of length j.

To bound the total number of bits used for encoding the record, we per-
form amortised accounting and show that the average number of bits per
letter is less than logm. Note that the number of letters is equal to the num-
ber of + signs in the record. Each + without brackets increases the length
of the string by one letter, and we want to use less that logm − c bits for
its encoding, where c > 0 is some constant saying how much is saved as a
reserve for amortized analysis. And +⟨s⟩ for a string s of length j decreases
the length by j − 1, so we want to use less than logm+ c(j − 1) bits (using
the reserve).

So we need:

log(1/p0) < logm− c;

log(1/pj) + log aj < logm+ c(j − 1)

together with

p0 +
∑
j≥2

pj = 1.

Technically is it easier to use non-strict inequalities in the first two cases
and a strict one in the last case (and then increase pi a bit):

log(1/p0) ≤ logm− c; log(1/pj) + log aj ≤ logm+ c(j − 1); p0 +
∑
j≥2

pj < 1.

Then for a given c we take minimal possible pi:

p0 =
1

m2−c

pj =
aj(2

−c)j

m2−c

and it remains to show that the sum is less than 1 for a suitable choice of c.
Let x = 2−c, then the inequality can be rewritten as

1

mx
+
∑
j≥2

ajx
j

mx
< 1,

or ∑
j≥2

ajx
j < mx− 1,

12



and this is our assumption.
Now we see the role of this mystical x in the condition: it is just a

parameter that determines the constant used for the amortised analysis.

Acknowledgement. Author thanks his LIRMM colleagues, in particu-
lar Pascal Ochem and Daniel Gonçalves, as well as the participants of Kol-
mogorov seminar in Moscow.

References

[1] N. Alon, J.H. Spencer, The Probabilistic Method, Wiley, 2004.

[2] D. Gonçalves, M. Montassier, A. Pinlou, Entropy compression method
applied to graph colorings, https://arxiv.org/pdf/1406.4380.pdf.

[3] J. Miller, Two notes on subshifts, Proceedings of the AMS, 140, 1617-1622
(2012).

[4] R. Moser, A constructive proof of the Lovász local lemma, https://

arxiv.org/abs/0810.4812.

[5] R. Moser, G. Tardos, A constructive proof of the general Lovász local
lemma, Journal of the ACM, 57(2), 11.1–11.15 (2010).

[6] P. Ochem, A. Pinlou, Application of Entropy Compression in Pattern
Avoidance, The Electronic Journal of Combinatorics, 21:2, paper P2.7
(2014).

[7] A. Rumyantsev, A. Shen, Probabilistic Constructions of Computable Ob-
jects and a Computable Version of Lovsz Local Lemma, Fundamenta In-
formaticae, 132, 1–14 (2013), see also https://arxiv.org/abs/1305.

1535

[8] A. Rumyantsev, M. Ushakov, Forbidden substrings, Kolmogorov com-
plexity and almost periodic sequences, STACS 2006 Proceedings, Lecture
Notes in Computer Science, 3884, 396–407, see also https://arxiv.

org/abs/1009.4455.

[9] A. Shen, V.A. Uspensky, N. Vereshchagin, Kolmogorov complexity and
algorithmic randomness, to be published by the AMS, www.lirmm.

13



fr/~ashen/kolmbook-eng.pdf. (Russian version published by MCCME
(Moscow), 2013.)

Appendix

There is one more sufficient condition for the existence of arbitrarily long
sequences that avoid forbidden substrings. Here is it.1 If the power series for

1

1−mx+ a2x2 + a3x3 + . . .

(where ai is the number of forbidden strings of lengthm) has all positive coef-
ficients, then there exist arbitrarily long strings withour forbidden substrings.
Moreover, in this case the number of n-letter strings without forbidden sub-
strings is at least gn, where gn is the nth coefficient of this inverse series.

To prove this result, consider the number sk of allowed strings of length
k. It is easy to see that

sk+1 ≥ skm− sk−1a2 − sk−2a3 − . . .− s1ak − s0ak+1.

Indeed, we can add each of m letters to each of sk strings of length k, and
then we should exclude the cases where there is a forbidden string at the
end. This forbidden string may have length 2, then there are at most sk−1a2
possibilities, or length 3, there are at most sk−2a3 possibilities, etc. (Note
that s0 = 1 and s1 = m; note also that we can get a string with two forbidden
suffixes, but this is OK, since we have an inequality.) These inequalities can
be rephrased as follows: the product

(1 +mx+ s2x
2 + s3x

3 + . . .)(1−mx+ a2x
2 + a3x

3 + . . .)

has only non-negative coefficients. Denote the second term by A; if

1/A = 1 +mx+ g2x
2 + g3x

3 + . . .

1A more general algebraic fact about ideals in a free algebra with m generators is some-
times called Golod theorem; N. Rampersad in https://arxiv.org/pdf/0907.4667.pdf

gives a reference to Rowen’s book (L. Rowen, Ring Theory, vol. II, Pure and Applied
Mathematics, Academic Press, Boston, 1988, Lemma 6.2.7). This more general state-
ment concerns ideals generated not necessarily by strings (products of generators), but
by arbitrary uniform elements. The original paper is: �.�. �����, �.�. ���������, � ����� ����� ����-
���, �������� �� ����, ����� ��������������, 1964, 28:2, 261–272, http://www.mathnet.ru/links/

f17df1a72a73e5e73887c19b7d47e277/im2955.pdf.

14



has only positive coefficients gi, (as our assumption says), then the first term
is a product of two series with non-negative coefficients. The first factor
(1/A) starts with 1, so the nth coefficient of a product, i.e., sn, is not less
than nth coefficient of the second factor, i.e., gn.

Surprisingly, this condition is closely related to the one considered above,
as shown by Dmitry Piontkovsky (his name has a typo in the publica-
tion: �.�. �����������, � ����� �������������� ������ � ��������� ������ ������������ �����������, ���,
1993,48:3(291), 199–200, http://www.mathnet.ru/links/6034910939adb12fff0cd8fb9745dfc8/
rm1307.pdf):

Proposition. Series

1

1−mx+ a2x2 + a3x3 + . . .

has all positive coefficients if and only if the series in the denominator has a
root on a positive part of real line.

Proof. Assume that the series in the denominator does not have a root, but
the inverse series has all positive coefficients. In fact, non-negative coeffi-
cients are enough to get a contradiction. For a series with all non-negative
coefficients, or with finitely many negative coefficients, the radius of con-
vergence is determined by behavior of the sum on the real line: when the
argument approaches the convergence radius, the sum of the series goes to
infinity. Now we have the product of two series

(1−mx+ a2x
2 + a3x

3 + . . .)(1 +mx+ g2x
2 + g3x

3 + . . .) = 1

that is equal to 1. One of these series should have finite convergence radius,
otherwise both are everywhere defined and the product is everywhere 1, but
both are large for large x. Look at the minimal convergence radius (of two);
one of the series goes to infinity near the corresponding point on the real
line, so the other one converges to zero, so it has bigger convergence radius
and reaches zero at the real line. Finally, note that only the first factor
(the denominator) may have a zero, since the other one has all non-negative
coefficients.

Now assume that the denominator has a zero; we have to prove that the
inverse series has only positive coefficients. In general, the following result is
true (D. Piontkovsky): if the series

A = a0 + a1x+ a2x
2 + . . .

15



has a0 > 0, and a2, a3, . . . ≥ 0, and for some positive x this series converges to
0, then the inverse series has all positive coefficients. To prove this statement,
let α be the root, so A(α) = 0. Recall the long division process that computes
the inverse series. It produce the sequence of remainders: the first R0 is 1;
then we subtract from the kth remainder

R(k) = R
(k)
k xk +R

(k)
k+1x

k+1 + . . .

the product (R(k)/a0)Ax
k to cancel the first term, and get the next remainder

R(k+1). By induction we prove that for each remainder R(k):

• R(k)(α) = 1;

• all the coefficients R
(k)
k+1, R

(k)
k+2, . . ., except the first one, are negative or

zeros;

• the first coefficient R
(k)
k is positive.

The first claim is true, since it was true for R(k−1) by induction assumption
and we subtract a series that equals zero at α.

The second claim: by induction assumption the first coefficient in R(k−1)

was positive, so we subtract the series (R(k−1)/a0)Ax
k−1 with positive first

and non-negative third, fourth, etc. coefficients. The first term cancels the
first term in R(k−1), the second term does not matter now, but all the sub-
sequent coefficients are negative or zeros, since we subtract non-negative
coefficients from non-positive ones.

Finally, the third claim is the consequence of the first two: if the sum is
positive (equal to 1) and all the terms except one are non-positive, then the
remaining term is positive.

Therefore, all coefficients in the inverse series are positive.

Note that we have shown that if all coefficients of the series 1/A are non-
negative, then they are positive. Also note that we get a bit stronger result
compared to the entropy argument where we required the series to reach a
negative value (now the zero value is enough).

16


