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Vovk & Pavlovich idea

How to tell which exit on a long road one should take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits of information

you get a sequence of bits (one at a time) and decide when to
stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal complexity of a
TM that stops after reading input x without trying to read
the next bit

= the minimal complexity of an algorithm that enumerates a
prefix-free set of strings containing x
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The classification of complexities

decompressor: descriptions → objects

different “topologies” on descriptions and objects

isolated descriptions descriptions as prefixes

isolated objects plain complexity prefix complexity

objects as prefixes decision complexity monotone complexity

decompressor: descriptions × conditions → objects

8 versions of conditional complexities
stopping time complexity of x = C (x |x∗)

objects: isolated;
descriptions: isolated;

conditions: prefixes
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The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function (conditional
decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a condition)

but D is required to be monotone (‘prefix-stable’) with
respect to condition:

if D(p, x) = y , then D(p, x ′) = y for every extension x ′ of x

C (y |x∗) = the minimal plain complexity of a prefix-stable
program that maps x to y

C (x |x∗) is not O(1) anymore

an equivalent definition of (plain) stopping time complexity
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A quantitative characterization

How to define C (x) not mentioning descriptions/programs?

C (x) is upper semicomputable;

#{x : C (x) < n} < 2n for all n;

C (·) is the minimal function with these properties

Stopping time complexity: also upper semicomputable

for every path α in the binary tree and for every n there are
less than 2n strings on this path with C (x |x∗) < n.

Stopping time complexity is the minimal function in this class.

less obvious (Gleb Posobin)
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What is not true

C (x |y∗) is not the minimal complexity of a prefix-free
function that maps some prefix of y to x ;

C (x |y∗) does not have the natural quantitative
characterization as a monotone over y function
[C (x |y0∗) ≤ C (x |y∗), C (x |y1∗) ≤ C (x |y∗)] such that for
every y and n there are at most 2n objects x such that
C (x |y∗) < n. (Mikhail Andreev)
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Prefix stopping time complexity

K (x |y∗): the decompressor is monotone (prefix-stable) w.r.t.
both arguments.

conditions and programs are prefixes, objects are isolated

Why should we bother?

Vovk and Pavlovich tried to define this version

separates many things that coincide for prefix complexity
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Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program

minus logarithm of the a priori probability

minus logarithm of the maximal lower semicomputable
semimeasure

Now:

minimal prefix complexity of a prefix-free set containing x
[Vovk-Pavlovic]

> K (x |x∗)
> minus logarithm of the a priori probability (probability for
the universal probabilistic machine to stop at x) [Andreev]

= minus logarithm of the maximal lower semicomputable
function m(x) whose sum along every path does not exceed 1
[Andreev]
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= minus logarithm of the maximal lower semicomputable
function m(x) whose sum along every path does not exceed 1
[Andreev]
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Monotone-conditional prefix complexity

Even more splitting. . .

A priori probability: random program (for the universal
decompressor) maps y to x

maximal lower semicomputable function m(x |y∗) that is
monotone w.r.t. y and

∑
x m(x |y∗) ≤ 1 for every y

Now they differ [Andreev]

Open question: can one prove the equivalence of prefix complexity
definitions using prefix-free and prefix-stable decompressors, not
using a priori probability as an intermediate step?
Formal version: are the monotone-conditional complexities
obtained using prefix-free and prefix-stable (w.r.t. first argument)
decompressors the same or not?
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