
Stopping time complexity and
monotone-conditional complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen

LIRMM CNRS & University of Montpellier

Dagstuhl, February 2017

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a long road one should take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits of information

you get a sequence of bits (one at a time) and decide when to
stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal complexity of a
TM that stops after reading input x without trying to read
the next bit

= the minimal complexity of an algorithm that enumerates a
prefix-free set of strings containing x

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a long road one should take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits of information

you get a sequence of bits (one at a time) and decide when to
stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal complexity of a
TM that stops after reading input x without trying to read
the next bit

= the minimal complexity of an algorithm that enumerates a
prefix-free set of strings containing x

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a long road one should take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits of information

you get a sequence of bits (one at a time) and decide when to
stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal complexity of a
TM that stops after reading input x without trying to read
the next bit

= the minimal complexity of an algorithm that enumerates a
prefix-free set of strings containing x

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a long road one should take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits of information

you get a sequence of bits (one at a time) and decide when to
stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal complexity of a
TM that stops after reading input x without trying to read
the next bit

= the minimal complexity of an algorithm that enumerates a
prefix-free set of strings containing x

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a long road one should take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits of information

you get a sequence of bits (one at a time) and decide when to
stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal complexity of a
TM that stops after reading input x without trying to read
the next bit

= the minimal complexity of an algorithm that enumerates a
prefix-free set of strings containing x

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a long road one should take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits of information

you get a sequence of bits (one at a time) and decide when to
stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal complexity of a
TM that stops after reading input x without trying to read
the next bit

= the minimal complexity of an algorithm that enumerates a
prefix-free set of strings containing x

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a long road one should take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits of information

you get a sequence of bits (one at a time) and decide when to
stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal complexity of a
TM that stops after reading input x without trying to read
the next bit

= the minimal complexity of an algorithm that enumerates a
prefix-free set of strings containing x

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a long road one should take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits of information

you get a sequence of bits (one at a time) and decide when to
stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal complexity of a
TM that stops after reading input x without trying to read
the next bit

= the minimal complexity of an algorithm that enumerates a
prefix-free set of strings containing x

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions → objects

different “topologies” on descriptions and objects

isolated descriptions descriptions as prefixes

isolated objects plain complexity prefix complexity

objects as prefixes decision complexity monotone complexity

decompressor: descriptions × conditions → objects

8 versions of conditional complexities
stopping time complexity of x = C (x |x∗)

objects: isolated;
descriptions: isolated;

conditions: prefixes

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions → objects

different “topologies” on descriptions and objects

isolated descriptions descriptions as prefixes

isolated objects plain complexity prefix complexity

objects as prefixes decision complexity monotone complexity

decompressor: descriptions × conditions → objects

8 versions of conditional complexities
stopping time complexity of x = C (x |x∗)

objects: isolated;
descriptions: isolated;

conditions: prefixes

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions → objects

different “topologies” on descriptions and objects

isolated descriptions descriptions as prefixes

isolated objects plain complexity prefix complexity

objects as prefixes decision complexity monotone complexity

decompressor: descriptions × conditions → objects

8 versions of conditional complexities
stopping time complexity of x = C (x |x∗)

objects: isolated;
descriptions: isolated;

conditions: prefixes

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions → objects

different “topologies” on descriptions and objects

isolated descriptions descriptions as prefixes

isolated objects plain complexity prefix complexity

objects as prefixes decision complexity monotone complexity

decompressor: descriptions × conditions → objects

8 versions of conditional complexities

stopping time complexity of x = C (x |x∗)
objects: isolated;

descriptions: isolated;
conditions: prefixes

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions → objects

different “topologies” on descriptions and objects

isolated descriptions descriptions as prefixes

isolated objects plain complexity prefix complexity

objects as prefixes decision complexity monotone complexity

decompressor: descriptions × conditions → objects

8 versions of conditional complexities
stopping time complexity of x = C (x |x∗)

objects: isolated;
descriptions: isolated;

conditions: prefixes

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions → objects

different “topologies” on descriptions and objects

isolated descriptions descriptions as prefixes

isolated objects plain complexity prefix complexity

objects as prefixes decision complexity monotone complexity

decompressor: descriptions × conditions → objects

8 versions of conditional complexities
stopping time complexity of x = C (x |x∗)

objects: isolated;
descriptions: isolated;

conditions: prefixes

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function (conditional
decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a condition)

but D is required to be monotone (‘prefix-stable’) with
respect to condition:

if D(p, x) = y , then D(p, x ′) = y for every extension x ′ of x

C (y |x∗) = the minimal plain complexity of a prefix-stable
program that maps x to y

C (x |x∗) is not O(1) anymore

an equivalent definition of (plain) stopping time complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function (conditional
decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a condition)

but D is required to be monotone (‘prefix-stable’) with
respect to condition:

if D(p, x) = y , then D(p, x ′) = y for every extension x ′ of x

C (y |x∗) = the minimal plain complexity of a prefix-stable
program that maps x to y

C (x |x∗) is not O(1) anymore

an equivalent definition of (plain) stopping time complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function (conditional
decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a condition)

but D is required to be monotone (‘prefix-stable’) with
respect to condition:

if D(p, x) = y , then D(p, x ′) = y for every extension x ′ of x

C (y |x∗) = the minimal plain complexity of a prefix-stable
program that maps x to y

C (x |x∗) is not O(1) anymore

an equivalent definition of (plain) stopping time complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function (conditional
decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a condition)

but D is required to be monotone (‘prefix-stable’) with
respect to condition:

if D(p, x) = y , then D(p, x ′) = y for every extension x ′ of x

C (y |x∗) = the minimal plain complexity of a prefix-stable
program that maps x to y

C (x |x∗) is not O(1) anymore

an equivalent definition of (plain) stopping time complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function (conditional
decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a condition)

but D is required to be monotone (‘prefix-stable’) with
respect to condition:

if D(p, x) = y , then D(p, x ′) = y for every extension x ′ of x

C (y |x∗) = the minimal plain complexity of a prefix-stable
program that maps x to y

C (x |x∗) is not O(1) anymore

an equivalent definition of (plain) stopping time complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function (conditional
decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a condition)

but D is required to be monotone (‘prefix-stable’) with
respect to condition:

if D(p, x) = y , then D(p, x ′) = y for every extension x ′ of x

C (y |x∗) = the minimal plain complexity of a prefix-stable
program that maps x to y

C (x |x∗) is not O(1) anymore

an equivalent definition of (plain) stopping time complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function (conditional
decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a condition)

but D is required to be monotone (‘prefix-stable’) with
respect to condition:

if D(p, x) = y , then D(p, x ′) = y for every extension x ′ of x

C (y |x∗) = the minimal plain complexity of a prefix-stable
program that maps x to y

C (x |x∗) is not O(1) anymore

an equivalent definition of (plain) stopping time complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function (conditional
decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a condition)

but D is required to be monotone (‘prefix-stable’) with
respect to condition:

if D(p, x) = y , then D(p, x ′) = y for every extension x ′ of x

C (y |x∗) = the minimal plain complexity of a prefix-stable
program that maps x to y

C (x |x∗) is not O(1) anymore

an equivalent definition of (plain) stopping time complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

How to define C (x) not mentioning descriptions/programs?

C (x) is upper semicomputable;

#{x : C (x) < n} < 2n for all n;

C (·) is the minimal function with these properties

Stopping time complexity: also upper semicomputable

for every path α in the binary tree and for every n there are
less than 2n strings on this path with C (x |x∗) < n.

Stopping time complexity is the minimal function in this class.

less obvious (Gleb Posobin)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

How to define C (x) not mentioning descriptions/programs?

C (x) is upper semicomputable;

#{x : C (x) < n} < 2n for all n;

C (·) is the minimal function with these properties

Stopping time complexity: also upper semicomputable

for every path α in the binary tree and for every n there are
less than 2n strings on this path with C (x |x∗) < n.

Stopping time complexity is the minimal function in this class.

less obvious (Gleb Posobin)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

How to define C (x) not mentioning descriptions/programs?

C (x) is upper semicomputable;

#{x : C (x) < n} < 2n for all n;

C (·) is the minimal function with these properties

Stopping time complexity: also upper semicomputable

for every path α in the binary tree and for every n there are
less than 2n strings on this path with C (x |x∗) < n.

Stopping time complexity is the minimal function in this class.

less obvious (Gleb Posobin)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

How to define C (x) not mentioning descriptions/programs?

C (x) is upper semicomputable;

#{x : C (x) < n} < 2n for all n;

C (·) is the minimal function with these properties

Stopping time complexity: also upper semicomputable

for every path α in the binary tree and for every n there are
less than 2n strings on this path with C (x |x∗) < n.

Stopping time complexity is the minimal function in this class.

less obvious (Gleb Posobin)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

How to define C (x) not mentioning descriptions/programs?

C (x) is upper semicomputable;

#{x : C (x) < n} < 2n for all n;

C (·) is the minimal function with these properties

Stopping time complexity: also upper semicomputable

for every path α in the binary tree and for every n there are
less than 2n strings on this path with C (x |x∗) < n.

Stopping time complexity is the minimal function in this class.

less obvious (Gleb Posobin)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

How to define C (x) not mentioning descriptions/programs?

C (x) is upper semicomputable;

#{x : C (x) < n} < 2n for all n;

C (·) is the minimal function with these properties

Stopping time complexity: also upper semicomputable

for every path α in the binary tree and for every n there are
less than 2n strings on this path with C (x |x∗) < n.

Stopping time complexity is the minimal function in this class.

less obvious (Gleb Posobin)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

How to define C (x) not mentioning descriptions/programs?

C (x) is upper semicomputable;

#{x : C (x) < n} < 2n for all n;

C (·) is the minimal function with these properties

Stopping time complexity: also upper semicomputable

for every path α in the binary tree and for every n there are
less than 2n strings on this path with C (x |x∗) < n.

Stopping time complexity is the minimal function in this class.

less obvious (Gleb Posobin)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

How to define C (x) not mentioning descriptions/programs?

C (x) is upper semicomputable;

#{x : C (x) < n} < 2n for all n;

C (·) is the minimal function with these properties

Stopping time complexity: also upper semicomputable

for every path α in the binary tree and for every n there are
less than 2n strings on this path with C (x |x∗) < n.

Stopping time complexity is the minimal function in this class.

less obvious (Gleb Posobin)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

How to define C (x) not mentioning descriptions/programs?

C (x) is upper semicomputable;

#{x : C (x) < n} < 2n for all n;

C (·) is the minimal function with these properties

Stopping time complexity: also upper semicomputable

for every path α in the binary tree and for every n there are
less than 2n strings on this path with C (x |x∗) < n.

Stopping time complexity is the minimal function in this class.

less obvious (Gleb Posobin)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

What is not true

C (x |y∗) is not the minimal complexity of a prefix-free
function that maps some prefix of y to x ;

C (x |y∗) does not have the natural quantitative
characterization as a monotone over y function
[C (x |y0∗) ≤ C (x |y∗), C (x |y1∗) ≤ C (x |y∗)] such that for
every y and n there are at most 2n objects x such that
C (x |y∗) < n. (Mikhail Andreev)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

What is not true

C (x |y∗) is not the minimal complexity of a prefix-free
function that maps some prefix of y to x ;

C (x |y∗) does not have the natural quantitative
characterization as a monotone over y function
[C (x |y0∗) ≤ C (x |y∗), C (x |y1∗) ≤ C (x |y∗)] such that for
every y and n there are at most 2n objects x such that
C (x |y∗) < n. (Mikhail Andreev)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

What is not true

C (x |y∗) is not the minimal complexity of a prefix-free
function that maps some prefix of y to x ;

C (x |y∗) does not have the natural quantitative
characterization as a monotone over y function
[C (x |y0∗) ≤ C (x |y∗), C (x |y1∗) ≤ C (x |y∗)] such that for
every y and n there are at most 2n objects x such that
C (x |y∗) < n. (Mikhail Andreev)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

K (x |y∗): the decompressor is monotone (prefix-stable) w.r.t.
both arguments.

conditions and programs are prefixes, objects are isolated

Why should we bother?

Vovk and Pavlovich tried to define this version

separates many things that coincide for prefix complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

K (x |y∗): the decompressor is monotone (prefix-stable) w.r.t.
both arguments.

conditions and programs are prefixes, objects are isolated

Why should we bother?

Vovk and Pavlovich tried to define this version

separates many things that coincide for prefix complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

K (x |y∗): the decompressor is monotone (prefix-stable) w.r.t.
both arguments.

conditions and programs are prefixes, objects are isolated

Why should we bother?

Vovk and Pavlovich tried to define this version

separates many things that coincide for prefix complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

K (x |y∗): the decompressor is monotone (prefix-stable) w.r.t.
both arguments.

conditions and programs are prefixes, objects are isolated

Why should we bother?

Vovk and Pavlovich tried to define this version

separates many things that coincide for prefix complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

K (x |y∗): the decompressor is monotone (prefix-stable) w.r.t.
both arguments.

conditions and programs are prefixes, objects are isolated

Why should we bother?

Vovk and Pavlovich tried to define this version

separates many things that coincide for prefix complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

K (x |y∗): the decompressor is monotone (prefix-stable) w.r.t.
both arguments.

conditions and programs are prefixes, objects are isolated

Why should we bother?

Vovk and Pavlovich tried to define this version

separates many things that coincide for prefix complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program

minus logarithm of the a priori probability

minus logarithm of the maximal lower semicomputable
semimeasure

Now:

minimal prefix complexity of a prefix-free set containing x
[Vovk-Pavlovic]

> K (x |x∗)
> minus logarithm of the a priori probability (probability for
the universal probabilistic machine to stop at x) [Andreev]

= minus logarithm of the maximal lower semicomputable
function m(x) whose sum along every path does not exceed 1
[Andreev]

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program

minus logarithm of the a priori probability

minus logarithm of the maximal lower semicomputable
semimeasure

Now:

minimal prefix complexity of a prefix-free set containing x
[Vovk-Pavlovic]

> K (x |x∗)
> minus logarithm of the a priori probability (probability for
the universal probabilistic machine to stop at x) [Andreev]

= minus logarithm of the maximal lower semicomputable
function m(x) whose sum along every path does not exceed 1
[Andreev]

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program

minus logarithm of the a priori probability

minus logarithm of the maximal lower semicomputable
semimeasure

Now:

minimal prefix complexity of a prefix-free set containing x
[Vovk-Pavlovic]

> K (x |x∗)
> minus logarithm of the a priori probability (probability for
the universal probabilistic machine to stop at x) [Andreev]

= minus logarithm of the maximal lower semicomputable
function m(x) whose sum along every path does not exceed 1
[Andreev]

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program

minus logarithm of the a priori probability

minus logarithm of the maximal lower semicomputable
semimeasure

Now:

minimal prefix complexity of a prefix-free set containing x
[Vovk-Pavlovic]

> K (x |x∗)
> minus logarithm of the a priori probability (probability for
the universal probabilistic machine to stop at x) [Andreev]

= minus logarithm of the maximal lower semicomputable
function m(x) whose sum along every path does not exceed 1
[Andreev]

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program

minus logarithm of the a priori probability

minus logarithm of the maximal lower semicomputable
semimeasure

Now:

minimal prefix complexity of a prefix-free set containing x
[Vovk-Pavlovic]

> K (x |x∗)
> minus logarithm of the a priori probability (probability for
the universal probabilistic machine to stop at x) [Andreev]

= minus logarithm of the maximal lower semicomputable
function m(x) whose sum along every path does not exceed 1
[Andreev]

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program

minus logarithm of the a priori probability

minus logarithm of the maximal lower semicomputable
semimeasure

Now:

minimal prefix complexity of a prefix-free set containing x
[Vovk-Pavlovic]

> K (x |x∗)
> minus logarithm of the a priori probability (probability for
the universal probabilistic machine to stop at x) [Andreev]

= minus logarithm of the maximal lower semicomputable
function m(x) whose sum along every path does not exceed 1
[Andreev]

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program

minus logarithm of the a priori probability

minus logarithm of the maximal lower semicomputable
semimeasure

Now:

minimal prefix complexity of a prefix-free set containing x
[Vovk-Pavlovic]

> K (x |x∗)

> minus logarithm of the a priori probability (probability for
the universal probabilistic machine to stop at x) [Andreev]

= minus logarithm of the maximal lower semicomputable
function m(x) whose sum along every path does not exceed 1
[Andreev]

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program

minus logarithm of the a priori probability

minus logarithm of the maximal lower semicomputable
semimeasure

Now:

minimal prefix complexity of a prefix-free set containing x
[Vovk-Pavlovic]

> K (x |x∗)
> minus logarithm of the a priori probability (probability for
the universal probabilistic machine to stop at x) [Andreev]

= minus logarithm of the maximal lower semicomputable
function m(x) whose sum along every path does not exceed 1
[Andreev]

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program

minus logarithm of the a priori probability

minus logarithm of the maximal lower semicomputable
semimeasure

Now:

minimal prefix complexity of a prefix-free set containing x
[Vovk-Pavlovic]

> K (x |x∗)
> minus logarithm of the a priori probability (probability for
the universal probabilistic machine to stop at x) [Andreev]

= minus logarithm of the maximal lower semicomputable
function m(x) whose sum along every path does not exceed 1
[Andreev]

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

Even more splitting. . .

A priori probability: random program (for the universal
decompressor) maps y to x

maximal lower semicomputable function m(x |y∗) that is
monotone w.r.t. y and

∑
x m(x |y∗) ≤ 1 for every y

Now they differ [Andreev]

Open question: can one prove the equivalence of prefix complexity
definitions using prefix-free and prefix-stable decompressors, not
using a priori probability as an intermediate step?
Formal version: are the monotone-conditional complexities
obtained using prefix-free and prefix-stable (w.r.t. first argument)
decompressors the same or not?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

Even more splitting. . .

A priori probability: random program (for the universal
decompressor) maps y to x

maximal lower semicomputable function m(x |y∗) that is
monotone w.r.t. y and

∑
x m(x |y∗) ≤ 1 for every y

Now they differ [Andreev]

Open question: can one prove the equivalence of prefix complexity
definitions using prefix-free and prefix-stable decompressors, not
using a priori probability as an intermediate step?
Formal version: are the monotone-conditional complexities
obtained using prefix-free and prefix-stable (w.r.t. first argument)
decompressors the same or not?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

Even more splitting. . .

A priori probability: random program (for the universal
decompressor) maps y to x

maximal lower semicomputable function m(x |y∗) that is
monotone w.r.t. y and

∑
x m(x |y∗) ≤ 1 for every y

Now they differ [Andreev]

Open question: can one prove the equivalence of prefix complexity
definitions using prefix-free and prefix-stable decompressors, not
using a priori probability as an intermediate step?
Formal version: are the monotone-conditional complexities
obtained using prefix-free and prefix-stable (w.r.t. first argument)
decompressors the same or not?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

Even more splitting. . .

A priori probability: random program (for the universal
decompressor) maps y to x

maximal lower semicomputable function m(x |y∗) that is
monotone w.r.t. y and

∑
x m(x |y∗) ≤ 1 for every y

Now they differ [Andreev]

Open question: can one prove the equivalence of prefix complexity
definitions using prefix-free and prefix-stable decompressors, not
using a priori probability as an intermediate step?
Formal version: are the monotone-conditional complexities
obtained using prefix-free and prefix-stable (w.r.t. first argument)
decompressors the same or not?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

Even more splitting. . .

A priori probability: random program (for the universal
decompressor) maps y to x

maximal lower semicomputable function m(x |y∗) that is
monotone w.r.t. y and

∑
x m(x |y∗) ≤ 1 for every y

Now they differ [Andreev]

Open question: can one prove the equivalence of prefix complexity
definitions using prefix-free and prefix-stable decompressors, not
using a priori probability as an intermediate step?

Formal version: are the monotone-conditional complexities
obtained using prefix-free and prefix-stable (w.r.t. first argument)
decompressors the same or not?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

Even more splitting. . .

A priori probability: random program (for the universal
decompressor) maps y to x

maximal lower semicomputable function m(x |y∗) that is
monotone w.r.t. y and

∑
x m(x |y∗) ≤ 1 for every y

Now they differ [Andreev]

Open question: can one prove the equivalence of prefix complexity
definitions using prefix-free and prefix-stable decompressors, not
using a priori probability as an intermediate step?
Formal version: are the monotone-conditional complexities
obtained using prefix-free and prefix-stable (w.r.t. first argument)
decompressors the same or not?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

