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Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Follows from the definition:

A subshift is shift-invariant

A subshift is topologically closed
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SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT:

Simple example. π( ) = , π( ) = , π( ) =

π : −→

a factor of an SFT is called sofic
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Example: Thue–Morse substitution rule


ρ : 7→

ρ : 7→

7→ 7→ 7→ 7→ 7→...

The limit of this sequence results in a sofic subshift!
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SFT simulates any effective subshift

Theorem [Hochman, D-R-Shen, Aubrun-Sablik]

For every effective subshift S1 there exists an SFT S2 that simulates S1.

simulation = [restriction to subspaces] + [a letter-by-letter projection]

Remark 1: dimension(S2) := dimension(S1)++

Remark 2:
The known proofs are artificial,
the simulating SFT is very complex (combinatorially/algorithmically).

Problem:
Extend this result on natural classes of subshifts,
with a simple (combinatorially/topologically/algorithmically) structure

Partial answer:
Yes, we can! We can transfer this result to minimal subshifts.
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minimal SFTs simulate any effective minimal subshift

Definition.

A subshift S is minimal if there is no nonempty subshifts S ′ ( S .

Here minimal means simple, irreducible, primary
(cf. prime numbers, prime groups, irreducible dynamical systems, etc.)

Main Theorem.

For every minimal effective subshift S1 there exists a minimal SFT S2

that simulates S1.

simulation = [restriction on a subspace] + [a letter-by-letter projection]

Remark: dimension(S2) := dimension(S1)++
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minimal SFTs simulate any effective minimal subshift

Main Theorem.

For every minimal effective subshift S1 there exists
a minimal SFT S2 such that S2 simulates S1.

One More Theorem (for experts).

For every quasiperiodic effective subshift S1 there exists
a quasiperiodic SFT S2 such that S2 simulates S1.

Corollary.

There exists a quasiperiodic 2-dim SFT where Kolmogorov complexity
of all n × n patterns is equal to Ω(n).
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under the hood: gear wheels in the proof

Algorithmic part:
recursive programming (a program handling its own text)

Combinatorial part:
combinatorics on quasiperiodic words
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Self-simulation: a block of symbols behaves like a single symbol

Universal
Turing
machine

program

... + enforced quasi-periodicity + combinatorial lemmas
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under the hood: gear wheels in the proof

Combinatorial part (folklore?): combinatorics on quasiperiodic words

Lemma 1.

If x = (xn) is recurrent (quasiperiodic) and y = (yn) is periodic, then the
product x⊗ y

. . .
x0 x1 x2 x3 x4
y0 y1 y2 y3 y4

. . .

is also recurrent.

Lemma 2.

If a subshift S is minimal and a sequence y is periodic, then the subshift

{
. . .

x0 x1 x2 x3 x4
y0 y1 y2 y3 y4

. . . where . . . x0x1x2x3x4 . . . belongs to S

}

is also minimal.

19 / 19



under the hood: gear wheels in the proof

Combinatorial part (folklore?): combinatorics on quasiperiodic words

Lemma 1.

If x = (xn) is recurrent (quasiperiodic) and y = (yn) is periodic, then the
product x⊗ y

. . .
x0 x1 x2 x3 x4
y0 y1 y2 y3 y4

. . .

is also recurrent.

Lemma 2.

If a subshift S is minimal and a sequence y is periodic, then the subshift

{
. . .

x0 x1 x2 x3 x4
y0 y1 y2 y3 y4

. . . where . . . x0x1x2x3x4 . . . belongs to S

}

is also minimal.
19 / 19


