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Algorithmic statistics: motivation

Let x be a binary string (experimental data).

Our goal is to find A 3 x as a suitable explanation for x .

Example

Let x =

n zeros︷ ︸︸ ︷
000 . . . 00. Then {x} is a suitable explanation for x but

{0, 1}n is not a good explanation.

Example

Let x =
︷ ︸︸ ︷
01001011 . . . 010 be a random string of length n i.e. its

Kolmogorov complexity C(x) is equal to n. Then {0, 1}n is an
reasonable explanation for x , however {x} is not adequate.
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Randomness deficiency

A set A 3 x is a good
explanation for x if

A is simple, i.e. C(A) ≈ 0;

x is typical element of A.

By Kolmogorov x is typical in A
if randomness deficiency
d(x |A) := log |A| − C(x |A) is
small. Note that

d(x |A) & 0 for every x in A.

The fraction of elements x
in A such that d(x |A) > k
is less than 2−k .
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Optimality deficiency

Can this theory be used in practice?

Kolmogorov complexity is uncountable function.

We can get an upper bound of C() but we can not prove a
lower bound of it.

So, we can argue that A 3 x is simple, but we can not prove
that d(x |A) = log |A| − C(x |A) is small.

Consider another parameter instead of d(x |A): just log |A|.
What can we say about C(A) + log |A| for A 3 x?

C(A) + log |A| & C(x).

The difference δ(x ,A) := C(A) + log |A| − C(x) is called
optimality deficiency.
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The connection between randomness and optimality
deficiencies

d(x |A) := log |A| −C(x |A), δ(x ,A) := C(A) + log |A| −C(x).

δ(x ,A) . d(x |A) because C(x) . C(A) + C(x |A).

The difference can be large.

Example

Let x be random string of length n (i.e. C(x) ≈ n). Let y another
independent of x random string of length n. Consider
A := {0, 1}n \ {y}. Then d(x |A) ≈ 0 however δ(x ,A) ≈ n.

However, the following is true.

Theorem (Vereshchagin, Vitányi)

For every string x and for every A 3 x there exists B 3 x such that
C(B) . C(A) and δ(x ,B) . d(x |A).
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For every string x and for every A 3 x there exists B 3 x such that
C(B) . C(A) and δ(x ,B) . d(x |A).

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms



The connection between randomness and optimality
deficiencies

d(x |A) := log |A| −C(x |A), δ(x ,A) := C(A) + log |A| −C(x).

δ(x ,A) . d(x |A) because C(x) . C(A) + C(x |A).

The difference can be large.

Example

Let x be random string of length n (i.e. C(x) ≈ n). Let y another
independent of x random string of length n. Consider
A := {0, 1}n \ {y}. Then d(x |A) ≈ 0 however δ(x ,A) ≈ n.

However, the following is true.

Theorem (Vereshchagin, Vitányi)
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Descriptions of Restricted Type

So far we considered arbitrary finite sets as models.

However, in practice we usually have some a priori information
about the data.

Assume that “right” model A belongs to some enumerable
family of sets A. (For example, A is the family of all
Hamming balls.)

It turns out that the previous result holds also for this case.

Theorem (Vereshchagin, Vitányi)

For every string x and for every A 3 x from any enumerable family
A there exists B ∈ A containing x such that
C(B) . C(A) and δ(x ,B) . d(x |A).
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For every string x and for every A 3 x from any enumerable family
A there exists B ∈ A containing x such that
C(B) . C(A) and δ(x ,B) . d(x |A).

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms



Space-bounded algorithmic statistics

The notion of Kolmogorov complexity has the following
problem.

It ignores time and space needed to produce x from its short
description.

We will consider algorithms whose space (not time) is
bounded by a polynomial of the length of a string.

Definition

The complexity CDm(A) of a set A with space bound m is defined
as the minimal length of a program p such that

p(y) = 1 if y ∈ A.

p(y) = 1 if y /∈ A.

p uses at most m space on every input.

CDm(x) is defined as CDm({x}).

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms



Space-bounded algorithmic statistics

The notion of Kolmogorov complexity has the following
problem.

It ignores time and space needed to produce x from its short
description.

We will consider algorithms whose space (not time) is
bounded by a polynomial of the length of a string.

Definition

The complexity CDm(A) of a set A with space bound m is defined
as the minimal length of a program p such that

p(y) = 1 if y ∈ A.

p(y) = 1 if y /∈ A.

p uses at most m space on every input.

CDm(x) is defined as CDm({x}).

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms



Space-bounded algorithmic statistics

The notion of Kolmogorov complexity has the following
problem.

It ignores time and space needed to produce x from its short
description.

We will consider algorithms whose space (not time) is
bounded by a polynomial of the length of a string.

Definition

The complexity CDm(A) of a set A with space bound m is defined
as the minimal length of a program p such that

p(y) = 1 if y ∈ A.

p(y) = 1 if y /∈ A.

p uses at most m space on every input.

CDm(x) is defined as CDm({x}).

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms



Space-bounded algorithmic statistics

The notion of Kolmogorov complexity has the following
problem.

It ignores time and space needed to produce x from its short
description.

We will consider algorithms whose space (not time) is
bounded by a polynomial of the length of a string.

Definition

The complexity CDm(A) of a set A with space bound m is defined
as the minimal length of a program p such that

p(y) = 1 if y ∈ A.

p(y) = 1 if y /∈ A.

p uses at most m space on every input.

CDm(x) is defined as CDm({x}).

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms



Space-bounded algorithmic statistics

The notion of Kolmogorov complexity has the following
problem.

It ignores time and space needed to produce x from its short
description.

We will consider algorithms whose space (not time) is
bounded by a polynomial of the length of a string.

Definition

The complexity CDm(A) of a set A with space bound m is defined
as the minimal length of a program p such that

p(y) = 1 if y ∈ A.

p(y) = 1 if y /∈ A.

p uses at most m space on every input.

CDm(x) is defined as CDm({x}).

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms



Space-bounded algorithmic statistics

The notion of Kolmogorov complexity has the following
problem.

It ignores time and space needed to produce x from its short
description.

We will consider algorithms whose space (not time) is
bounded by a polynomial of the length of a string.

Definition

The complexity CDm(A) of a set A with space bound m is defined
as the minimal length of a program p such that

p(y) = 1 if y ∈ A.

p(y) = 1 if y /∈ A.

p uses at most m space on every input.

CDm(x) is defined as CDm({x}).

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms



Main result

We proof an analogue of theorem of Vereshchagin and Vitány for
polynomial space bound.

Definition

A family of sets A is called polynomial-space enumerable if there is
an algorithm that enumerate all subset of {0, 1}n from A in space
poly(n).

Theorem (Informal)

Let x be a string of length n and let A be a polynomial-space
enumerable family of sets. Then for every set A 3 x from A there
exists a set B 3 x from A such that CDpoly(n)(B) . CDpoly(n)(A)
and δpoly(n)(x ,B) . dpoly(n)(x |A).
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Proof idea

Define probability distribution B as follows. Every set from A
of complexity CDpoly(n)(A) belongs to B with probability

2CDpoly(n)(A|x)−CDpoly(n)(A).

This family B contains B 3 x with high probability.

If CDpoly(n)(B) is small then B satisfies the theorem.

We can find B by brute force.

However this requires exponential space.

Nisan-Wigderson generator helps to reduce it.

The same idea was used by Daniil Musatov.
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The same idea was used by Daniil Musatov.
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Thank you!
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