On Algorithmic Statistics for space-bounded algorithms

Alexey Milovanov

National Research University Higher School of Economics, almas239@gmail.com

10 June 2017, Kazan

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms

▶ < E ▶ < E</p>

• Let x be a binary string (experimental data).

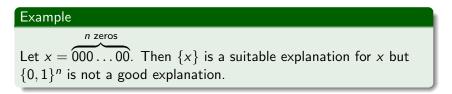
• • = • • = •

э

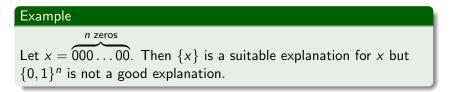
- Let x be a binary string (experimental data).
- Our goal is to find $A \ni x$ as a suitable explanation for x.

- (I) (I

- Let x be a binary string (experimental data).
- Our goal is to find $A \ni x$ as a suitable explanation for x.



- Let x be a binary string (experimental data).
- Our goal is to find $A \ni x$ as a suitable explanation for x.



Example

Let x = 01001011...010 be a random string of length *n* i.e. its *Kolmogorov complexity* C(x) is equal to *n*. Then $\{0,1\}^n$ is an reasonable explanation for *x*, however $\{x\}$ is not adequate.

A set $A \ni x$ is a good explanation for x if

A set $A \ni x$ is a good explanation for x if

• A is simple, i.e. $C(A) \approx 0$;

A set $A \ni x$ is a good explanation for x if

- A is simple, i.e. $C(A) \approx 0$;
- x is typical element of A.

A set $A \ni x$ is a good explanation for x if

- A is simple, i.e. $C(A) \approx 0$;
- x is *typical* element of A.

By Kolmogorov x is typical in A if randomness deficiency $d(x|A) := \log |A| - C(x|A)$ is small.

A set $A \ni x$ is a good explanation for x if

- A is simple, i.e. $C(A) \approx 0$;
- x is typical element of A.

By Kolmogorov x is typical in A if randomness deficiency $d(x|A) := \log |A| - C(x|A)$ is small. Note that

• $d(x|A) \gtrsim 0$ for every x in A.

A set $A \ni x$ is a good explanation for x if

- A is simple, i.e. $C(A) \approx 0$;
- x is typical element of A.

By Kolmogorov x is typical in A if randomness deficiency $d(x|A) := \log |A| - C(x|A)$ is small. Note that

- $d(x|A) \gtrsim 0$ for every x in A.
- The fraction of elements x in A such that d(x|A) > k is less than 2^{-k}.

• Can this theory be used in practice?

→ 3 → < 3</p>

- Can this theory be used in practice?
- Kolmogorov complexity is uncountable function.

3.1

- Can this theory be used in practice?
- Kolmogorov complexity is uncountable function.
- We can get an upper bound of C() but we can not prove a lower bound of it.

- Can this theory be used in practice?
- Kolmogorov complexity is uncountable function.
- We can get an upper bound of C() but we can not prove a lower bound of it.
- So, we can argue that A ∋ x is simple, but we can not prove that d(x|A) = log |A| - C(x|A) is small.

- Can this theory be used in practice?
- Kolmogorov complexity is uncountable function.
- We can get an upper bound of C() but we can not prove a lower bound of it.
- So, we can argue that A ∋ x is simple, but we can not prove that d(x|A) = log |A| - C(x|A) is small.
- Consider another parameter instead of d(x|A): just $\log |A|$.

- Can this theory be used in practice?
- Kolmogorov complexity is uncountable function.
- We can get an upper bound of C() but we can not prove a lower bound of it.
- So, we can argue that A ∋ x is simple, but we can not prove that d(x|A) = log |A| - C(x|A) is small.
- Consider another parameter instead of d(x|A): just $\log |A|$.
- What can we say about $C(A) + \log |A|$ for $A \ni x$?

くほし くほし くほし

- Can this theory be used in practice?
- Kolmogorov complexity is uncountable function.
- We can get an upper bound of C() but we can not prove a lower bound of it.
- So, we can argue that A ∋ x is simple, but we can not prove that d(x|A) = log |A| - C(x|A) is small.
- Consider another parameter instead of d(x|A): just $\log |A|$.
- What can we say about $C(A) + \log |A|$ for $A \ni x$?
- $C(A) + \log |A| \gtrsim C(x)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Can this theory be used in practice?
- Kolmogorov complexity is uncountable function.
- We can get an upper bound of C() but we can not prove a lower bound of it.
- So, we can argue that A ∋ x is simple, but we can not prove that d(x|A) = log |A| - C(x|A) is small.
- Consider another parameter instead of d(x|A): just $\log |A|$.
- What can we say about $C(A) + \log |A|$ for $A \ni x$?
- $C(A) + \log |A| \gtrsim C(x)$.
- The difference δ(x, A) := C(A) + log |A| − C(x) is called optimality deficiency.

- * 同 * * ヨ * * ヨ * - ヨ

•
$$d(x|A) := \log |A| - C(x|A), \ \delta(x,A) := C(A) + \log |A| - C(x).$$

- $d(x|A) := \log |A| C(x|A), \ \delta(x,A) := C(A) + \log |A| C(x).$
- $\delta(x, A) \lesssim d(x|A)$ because $C(x) \lesssim C(A) + C(x|A)$.

- $d(x|A) := \log |A| C(x|A), \ \delta(x,A) := C(A) + \log |A| C(x).$
- $\delta(x, A) \lesssim d(x|A)$ because $C(x) \lesssim C(A) + C(x|A)$.
- The difference can be large.

Example

Let x be random string of length n (i.e. $C(x) \approx n$). Let y another independent of x random string of length n. Consider $A := \{0,1\}^n \setminus \{y\}$. Then $d(x|A) \approx 0$ however $\delta(x, A) \approx n$.

- $d(x|A) := \log |A| C(x|A), \ \delta(x,A) := C(A) + \log |A| C(x).$
- $\delta(x, A) \lesssim d(x|A)$ because $C(x) \lesssim C(A) + C(x|A)$.
- The difference can be large.

Example

Let x be random string of length n (i.e. $C(x) \approx n$). Let y another independent of x random string of length n. Consider $A := \{0,1\}^n \setminus \{y\}$. Then $d(x|A) \approx 0$ however $\delta(x, A) \approx n$.

However, the following is true.

- $d(x|A) := \log |A| C(x|A), \ \delta(x,A) := C(A) + \log |A| C(x).$
- $\delta(x, A) \lesssim d(x|A)$ because $C(x) \lesssim C(A) + C(x|A)$.
- The difference can be large.

Example

Let x be random string of length n (i.e. $C(x) \approx n$). Let y another independent of x random string of length n. Consider $A := \{0,1\}^n \setminus \{y\}$. Then $d(x|A) \approx 0$ however $\delta(x, A) \approx n$.

However, the following is true.

Theorem (Vereshchagin, Vitányi)

For every string x and for every $A \ni x$ there exists $B \ni x$ such that $C(B) \leq C(A)$ and $\delta(x, B) \leq d(x|A)$.

• □ > • □ > • □ > • □ > •

Descriptions of Restricted Type

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms

< ∃ →

• So far we considered arbitrary finite sets as models.

→ 3 → < 3</p>

- So far we considered arbitrary finite sets as models.
- However, in practice we usually have some a priori information about the data.

- So far we considered arbitrary finite sets as models.
- However, in practice we usually have some a priori information about the data.
- Assume that "right" model A belongs to some enumerable family of sets A. (For example, A is the family of all Hamming balls.)

- So far we considered arbitrary finite sets as models.
- However, in practice we usually have some a priori information about the data.
- Assume that "right" model A belongs to some enumerable family of sets A. (For example, A is the family of all Hamming balls.)
- It turns out that the previous result holds also for this case.

- So far we considered arbitrary finite sets as models.
- However, in practice we usually have some a priori information about the data.
- Assume that "right" model A belongs to some enumerable family of sets A. (For example, A is the family of all Hamming balls.)

It turns out that the previous result holds also for this case.

Theorem (Vereshchagin, Vitányi)

For every string x and for every $A \ni x$ from any enumerable family \mathcal{A} there exists $B \in \mathcal{A}$ containing x such that $C(B) \lesssim C(A)$ and $\delta(x, B) \lesssim d(x|A)$.

Space-bounded algorithmic statistics

< ∃ →

Space-bounded algorithmic statistics

• The notion of Kolmogorov complexity has the following problem.

Space-bounded algorithmic statistics

- The notion of Kolmogorov complexity has the following problem.
- It ignores time and space needed to produce x from its short description.

Space-bounded algorithmic statistics

- The notion of Kolmogorov complexity has the following problem.
- It ignores time and space needed to produce x from its short description.
- We will consider algorithms whose space (not time) is bounded by a polynomial of the length of a string.

Space-bounded algorithmic statistics

- The notion of Kolmogorov complexity has the following problem.
- It ignores time and space needed to produce x from its short description.
- We will consider algorithms whose space (not time) is bounded by a polynomial of the length of a string.

Definition

The complexity $CD^m(A)$ of a set A with space bound m is defined as the minimal length of a program p such that

•
$$p(y) = 1$$
 if $y \in A$.

•
$$p(y) = 1$$
 if $y \notin A$.

• p uses at most m space on every input.

Space-bounded algorithmic statistics

- The notion of Kolmogorov complexity has the following problem.
- It ignores time and space needed to produce x from its short description.
- We will consider algorithms whose space (not time) is bounded by a polynomial of the length of a string.

Definition

The complexity $CD^m(A)$ of a set A with space bound m is defined as the minimal length of a program p such that

•
$$p(y) = 1$$
 if $y \in A$

•
$$p(y) = 1$$
 if $y \notin A$.

• p uses at most m space on every input.

 $CD^m(x)$ is defined as $CD^m(\{x\})$.

Main result

<ロ> <同> <同> < 同> < 同>

æ

We proof an analogue of theorem of Vereshchagin and Vitány for polynomial space bound.

< ∃ >

We proof an analogue of theorem of Vereshchagin and Vitány for polynomial space bound.

Definition

A family of sets \mathcal{A} is called *polynomial-space enumerable* if there is an algorithm that enumerate all subset of $\{0,1\}^n$ from \mathcal{A} in space poly(*n*).

We proof an analogue of theorem of Vereshchagin and Vitány for polynomial space bound.

Definition

A family of sets \mathcal{A} is called *polynomial-space enumerable* if there is an algorithm that enumerate all subset of $\{0,1\}^n$ from \mathcal{A} in space poly(*n*).

Theorem (Informal)

Let x be a string of length n and let A be a polynomial-space enumerable family of sets. Then for every set $A \ni x$ from A there exists a set $B \ni x$ from A such that $\mathrm{CD}^{\operatorname{poly}(n)}(B) \lesssim \mathrm{CD}^{\operatorname{poly}(n)}(A)$ and $\delta^{\operatorname{poly}(n)}(x, B) \lesssim d^{\operatorname{poly}(n)}(x|A)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proof idea

æ

Define probability distribution B as follows. Every set from A of complexity CD^{poly(n)}(A) belongs to B with probability 2<sup>CD^{poly(n)}(A|x)-CD^{poly(n)}(A).
</sup>

伺 ト イ ヨ ト イ ヨ ト

- Define probability distribution B as follows. Every set from A of complexity CD^{poly(n)}(A) belongs to B with probability 2<sup>CD^{poly(n)}(A|x)-CD^{poly(n)}(A).
 </sup>
- This family \mathcal{B} contains $B \ni x$ with high probability.

伺 ト イ ヨ ト イ ヨ ト

- Define probability distribution B as follows. Every set from A of complexity CD^{poly(n)}(A) belongs to B with probability 2<sup>CD^{poly(n)}(A|x)-CD^{poly(n)}(A).
 </sup>
- This family \mathcal{B} contains $B \ni x$ with high probability.
- If $CD^{poly(n)}(\mathcal{B})$ is small then B satisfies the theorem.

伺 ト イ ヨ ト イ ヨ ト

- Define probability distribution B as follows. Every set from A of complexity CD^{poly(n)}(A) belongs to B with probability 2<sup>CD^{poly(n)}(A|x)-CD^{poly(n)}(A).
 </sup>
- This family \mathcal{B} contains $B \ni x$ with high probability.
- If $CD^{poly(n)}(\mathcal{B})$ is small then B satisfies the theorem.
- We can find ${\mathcal B}$ by brute force.

- Define probability distribution B as follows. Every set from A of complexity CD^{poly(n)}(A) belongs to B with probability 2<sup>CD^{poly(n)}(A|x)-CD^{poly(n)}(A).
 </sup>
- This family \mathcal{B} contains $B \ni x$ with high probability.
- If $CD^{poly(n)}(\mathcal{B})$ is small then B satisfies the theorem.
- \bullet We can find ${\cal B}$ by brute force.
- However this requires exponential space.

- Define probability distribution B as follows. Every set from A of complexity CD^{poly(n)}(A) belongs to B with probability 2<sup>CD^{poly(n)}(A|x)-CD^{poly(n)}(A).
 </sup>
- This family \mathcal{B} contains $B \ni x$ with high probability.
- If $CD^{poly(n)}(\mathcal{B})$ is small then B satisfies the theorem.
- \bullet We can find ${\cal B}$ by brute force.
- However this requires exponential space.
- Nisan-Wigderson generator helps to reduce it.

- Define probability distribution B as follows. Every set from A of complexity CD^{poly(n)}(A) belongs to B with probability 2<sup>CD^{poly(n)}(A|x)-CD^{poly(n)}(A).
 </sup>
- This family \mathcal{B} contains $B \ni x$ with high probability.
- If $CD^{poly(n)}(\mathcal{B})$ is small then B satisfies the theorem.
- \bullet We can find ${\cal B}$ by brute force.
- However this requires exponential space.
- Nisan-Wigderson generator helps to reduce it.
- The same idea was used by Daniil Musatov.

Thank you!

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms