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Abstract. The notion of random sequence was introduced by Martin-
Löf in [4]. In the same article he defined the so-called randomness de-
ficiency function that shows how close are random sequences to non-
random (in some natural sense). Other deficiency functions can be ob-
tained from the Levin-Schnorr theorem, that describes randomness in
terms of Kolmogorov complexity. The difference between all of these de-
ficiencies is bounded by a logarithmic term (Proposition 1). In this paper
we show (Theorems 1 and 2) that the difference between some deficien-
cies can be as large as possible.

1 Introduction

Classical probability theory cannot deal with individual random objects, such as
binary sequences or points on the real line: each sequence or point has measure
zero (with respect to the uniform measure). However, our intuition says that the
sequence of zeros (and any other computable sequence) is not random, while the
result of tossing a coin is. Martin-Löf in [4] tried to formalize this statement. He
used an algorithmic approach to define random binary sequences.

Martin-Löf random sequences have many nice properties: adding, deleting or
changing finitely many bits doesn’t change randomness; random sequences sat-
isfy the law of large numbers; computable permutations preserve randomness.
So if the sequence ω is random, the sequence ω′ = 01000000000ω (billion of zeros
concatenated with ω) is also random. But intuitively ω′ is “less random”. We
can make this argument formal using a randomness deficiency function d: this
function is finite on random sequences and infinite on non-random sequences. If
d(ω′) ≥ d(ω) we say that ω′ is less random than ω. It turns out that there are
some natural types of deficiency functions that have similar properties to the
so-called finite deficiency (the difference between the length of the string and its
Kolmogorov complexity). For example, adding n zeros to the sequence increases
randomness deficiency by n+O(log n). Using this fact one can reformulate state-
ments about random sequences in terms of the deficiency functions to look for
the connections between algorithmic randomness and Kolmogorov complexity
theories.

In this paper we consider several deficiency functions: the first was introduced
by Martin-Löf (definition 3), the others appear from the Levin-Schnorr’s criterion
of randomness in terms of different types of Kolmogorov complexity: the prefix-
free complexity and the a priori complexity. The difference between all of the
deficiencies is not greater than (1 + ε) log d (up to a constant, for all ε > 0)



(Proposition 1), where d is one of the deficiency functions. We show that the
difference between some of the deficiencies can be greater than log d. For example,
some of the deficiency functions (given in exponential scale) are integrable, while
the others are not and that is the reason of the difference (Theorem 1). To differ
the non-integrable deficiencies we construct a special rarefied set of intervals in
the Cantor space (Theorem 2).

1.1 Notation

The set of all infinite binary sequences is called the Cantor space and is denoted
by Ω. An interval in the Cantor space is a set of extensions of some string x, it
is denoted by [x].

The set of all binary strings is denoted by B∗. The length of the string x is
denoted by |x|. We write y ≺ x if y is a prefix of x.

IS is the indicator function of the set S.
In this paper, log means binary logarithm.
Notation f <+ g (f <∗ g) means that there exists a constant c such that

for all x , f(x) < c+ g(x) (f(x) < cg(x)).

2 Preliminaries

One can find all of the notions and statements of this section in [1] and [2].

Definition 1. A measure µ over Ω is called computable, if there exists a Turing
machine that from each string x and rational ε > 0 returns an ε-approximation
of the value µ([x]).

The collection of intervals in the Cantor space forms a base for its standard
topology. We will talk about closed and open sets relative to this topology.

Definition 2. Let µ be a computable measure. A nested sequence of open sets
{Vn} is called a Martin-Löf test with respect to µ if:

1) {Vn} is uniformly effectively open, that is there exists a Turing machine
that for each input k enumerates the set Vk.

2) µ(Vn) ≤ 2−n for each n.

Definition 3. Let {Vn} be a Martin-Löf test with respect to a computable mea-
sure µ. Function dµ;{Vn}(ω) = max{k : ω ∈ Vk} is called a randomness deficiency
of ω with respect to the test {Vn}.

Lemma 1. For every computable measure µ there exists a Martin-Löf test {Un}
with respect to µ such that for any Martin-Löf test {Vn} with respect to µ there
exist a constant c such that for all sequences ω

dµ;{Un}(ω) ≥ dµ;{Vn}(ω)− c (1)
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The deficiency function dµ was defined by Martin-Löf in [4]. In the same article
he introduced the following notion of randomness:

Definition 4. Let µ be a computable measure. A sequence ω ∈ Ω is called
Martin-Löf random with respect to µ if dµ(ω) <∞.

There are some other types of deficiency functions. To show the relations between
them, we need to reformulate the definition of dµ. First we define the so-called
lower semicomputable functions.

Definition 5. A function t : Ω → R is called lower semicomputable if there
exists a machine that that given a rational r enumerates the set of intervals
{ω : t(ω) > r} (so this set should be open).

Let’s note the following property of dµ: the function tµ = 2dµ is probability
bounded, that is

µ{tµ(ω) > c} ≤ 1

c
(2)

for rational numbers c. Moreover, tµ is the largest (up to a multiplicative con-
stant) among all lower semicomputable probability bounded functions (the sets
Vn = {t(ω) > 2n} form a Martin-Löf test). Therefore we can define the func-
tion dµ as logarithm of the largest lower semicomputable probability bounded

function and from now we denote this function as dPµ (and tµ as tPµ ).
To define other deficiency functions we need the following notion:

Definition 6. Function f : Ω → Q is called basic if its value on every sequence
ω is determined by some finite prefix of ω.

By compactness of Ω there exist finitely many intervals where basic function
is constant, and the union of these intervals is Ω. Therefore basic functions
are constructive objects and we can consider computable sequences of basic
functions.

The following lemma gives the equivalent definition of lower semicomputable
functions.

Lemma 2. Function t : Ω → R is lower semicomputable iff it is a limit of
increasing computable sequence of basic functions.

If the function is integrable and its integral is less than 1 it is probability bounded
(by Markov’s inequality). We call these functions expectation bounded. There
exists maximal (up to a multiplicative constant) lower semicomputable expecta-
tion bounded function tEµ : we can enumerate all probability bounded functions
(with respect to µ); the integral of such function is a limit of integrals of basic
functions, so if it is greater than 1 we always know it after finitely many steps
of computation. If the integral is greater than 1, we decrease the values of basic
functions to make it less than 1. The sum of these new functions with weights
2−n is the maximal lower semicomputable expectation bounded function.
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Definition 7. Let µ be a computable measure. The expectation bounded defi-
ciency is the function

dEµ (ω) = log tEµ (ω) (3)

The following proposition shows that the difference between dpµ and dEµ is not
large.

Proposition 1. Let µ be a computable measure and ε > 0. Then

dEµ ≤+ dPµ ≤+ dEµ + (1 + ε) log dEµ (4)

Proof. The first part follows from Markov’s inequality. To prove the second part,
let’s consider a function tPµ log−1−ε tPµ . Its integral does not exceed∑

n

∫
An

tPµ (ω) log−1−ε tPµ (ω)dµ(ω) ≤
∑
n

2n−1−ε (5)

where An = {2n ≤ tPµ < 2n+1}, so this integral is finite. Therefore

dPµ ≤+ dEµ + (1 + ε) log dPµ ≤+ dEµ + (1 + ε) log dEµ (6)

ut

The deficiency function dEµ can be described in terms of prefix-free Kolmogorov
complexity (see, for example, [2]). We will briefly describe this construction.
At first we define the discrete analogues of basic and lower semicomputable
functions.

Definition 8. Function f : B∗ → Q is called basic if its support is finite.

Definition 9. Function f : B∗ → R is called lower semicomputable if it is a
limit of a computable sequence of increasing basic functions.

Definition 10. A lower semicomputable function m : B∗ → [0,∞) such that∑
xm(x) ≤ 1 is called a discrete lower semicomputable semimeasure.

Let’s denote the prefix-free Kolmogorov complexity of a string x as K(x). The
function m(x) = 2−K(x) is called the discrete a priori probability. The famous
coding theorem (see, for example, [2]) states that this function is the largest (up
to a multiplicative constant) among all discrete lower semicomputable semimea-
sures.

It can be shown (see, for example, [1]) that

tEµ (ω) =∗
∑
n

m(ω1...n)

µ([ω1...n])
=∗ sup

n

m(ω1...n)

µ([ω1...n])
(7)

In logarithmic scale:

dEµ (ω) =+ sup
n
{− logµ([ω1...n])−K(ω1...n)} (8)
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This result is due to Gacs (see [5]). The value in the right part of 8 is finite iff
the sequence is random. It was first shown by Schnorr and Levin independently
in [6] and [7]. Informally, the sequence is random iff its initial segments are
incompressible. The equation 8 also shows that if one adds n zeros to the sequence
then the randomness deficiency (probability or expectation bounded) increases
by at most n+O(log n).

The Schnorr-Levin theorem can be formulated in terms of the so-called a pri-
ori complexity. To define it we need the notion of continuous a priori probability.

Definition 11. A lower semicomputable function a : B∗ → [0,∞) such that∑
x∈S a(x) ≤ 1 for every prefix-free set S is called a continuous lower semicom-

putable semimeasure.

We can enumerate all continuous lower semicomputable semimeasures and con-
sider a semimeasure a(x) =

∑
j aj(x)2−j . This semimeasure is also continuous

and lower semicomputable, and it is the largest (up to a multiplicative con-
stant) in this class of semimeasures. We will call a(x) the continuous a priori
probability.

Definition 12. The value KM(x) = − log a(x) is called the a priori complexity
of x.

The Schnorr-Levin theorem for the a priori complexity states that the sequence ω
is random iff supn{− logµ([ω1...n])−KM(ω1...n)} is finite. Moreover, supremum
can be replaced by lim sup or lim inf. Using this theorem we can define other
types of deficiency functions.

Definition 13. Let µ be a computable measure. We will consider functions

dMµ (ω) = sup
n
{− logµ([ω1...n])−KM(ω1...n)} (9)

dlim supM
µ (ω) = lim sup

n
{− logµ([ω1...n])−KM(ω1...n)} (10)

dlim infM
µ (ω) = lim inf

n
{− logµ([ω1...n])−KM(ω1...n)} (11)

and call them a priori randomness deficiencies.

Each continuous lower semicomputable semimeasure can be represented as a
probability distribution on the initial segments of outputs of some probabilistic
machine that prints bits one after another and does not have to stop (see, for
example, [2]). That is for each a(x) there exists a machine A such that

a(x) = P{the output of A begins on the string x} (12)

Informally, the Schnorr–Levin theorem states that the sequence ω is random
iff the probability of getting the initial segments ω1...n using a probabilistic
machine cannot be much greater than getting it from a random generator (with
the distribution µ). The deficiency functions from the definition 13 show the
difference between logarithms of these probabilities.

One can use supermartingales to define the deficiencies dMµ , dlim supM
µ (ω),

dlim infM
µ (ω).
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Definition 14. Let µ be a measure on Ω and let M be a function of binary
strings.

If µ([x])M(x) = µ([x0])M(x0) + µ([x1])M(x1) the function M is called a
martingale.

If µ([x])M(x) ≥ µ([x0])M(x0) + µ([x1])M(x1) the function M is called a
supermartingale.

If µ([x])M(x) ≤ µ([x0])M(x0) + µ([x1])M(x1) the function M is called a
submartingale.

If martingale (or sub/supermartingale) is not bounded on the initial segments
of the sequence ω we say that it wins on ω.

If µ is computable, the supermartingale M(x) = a(x)
µ([x]) is the largest (up to

a multiplicative constant) among all lower semicomputable supermartingales.
Supermartingale M(x) wins on all non-random sequences and does not win on
random sequences.

The deficiency dMµ (ω) is a supremum of M(ω1...n), the deficiencies dlim supM
µ (ω)

and dlim infM
µ (ω) are respectively limsup and liminf of M(ω1...n).

Now we are going to show the relations between the deficiencies.

Proposition 2.
dEµ ≤+ dlim infM

µ (13)

Proof. We need to construct some continuous lower semicomputable semimea-
sure a. Once the approximation to m(x) increases by ε we do the following:

1) Increase the value of a by ε on prefixes of x
2) Increase the value of a by εµ([y])/µ([x]) on the extensions y of x.

If dEµ = R there exists a string x such that

− logµ([x])−K(x) =+ R (14)

and ω is the extension of x. If n > |x|, the logarithm of a is:

log a(ω1...n) ≥ −K(x) + log µ([ω1...n])− logµ([x]) (15)

Therefore

dlim infM
µ (ω) ≥+ lim inf

n
{− logµ([ω1...n]) + log a(ω1...n)} ≥

≥ lim inf
n
{− logµ([x])−K(x)} = − logµ([x])−K(x) =+ dEµ

(16)

The case dEµ =∞ can be considered in the same way. ut

Proposition 3.
dMµ ≤+ dPµ (17)

Proof. It is sufficient to show that µ{2d
M
µ (ω) > 2c} ≤ 2−c for all rational c. Let’s

fix c and consider a set of strings

S = {x :
a(x)

µ([x])
> 2c, ∀y ≺ x a(y)

µ([y])
≤ 2c} (18)
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It is evident that ω ∈ ∪x∈S [x] iff dMµ (ω) > c. The set S is prefix-free, so

µ{2d
M
µ (ω) > 2c} =

∑
x∈S

µ([x]) <
∑
x∈S

a(x)

2c
≤ 2−c (19)

ut
Combining the results of Propositions 1, 2 and 3 we can write down the following
chain of inequalities:

dEµ ≤+ dlim infM
µ ≤+ dlim supM

µ ≤+ dMµ ≤+ dPµ ≤+ dEµ + (1 + ε) log dEµ (20)

The natural question is about the difference between these deficiencies. To
show the difference between some of them we will need the following lemma from
calculus:

Lemma 3. If ck ≥ 0 and
∑∞
k=1 ck <∞ and Rk :=

∑∞
n=k+1 cn > 0, then

∞∑
k=1

ck

Rk log 1
RK

=∞ (21)

Proof. At first we will prove that the series
∑∞
k=1

ck
Rk

does not converge. Denote
zk = ck

Rk
. It is evident that

zk =
Rk−1 −Rk

Rk
=
Rk−1
Rk

− 1 =⇒ 1

Rk
=

1

R0

k∏
n=1

(1 + zn) (22)

If we take the logarithm from both parts, we get

log
1

Rk
= log

1

R0
+

k∑
n=1

log(1 + zn) ≤∗
k∑

n=1

zn (23)

The left part tends to infinity, so the sum
∑∞
n=1 zn is infinite. To prove the

lemma we need to show that
∑∞
k=1

zk
log 1

Rk

=∞. Using 23 we get:

∞∑
k=1

zk

log 1
Rk

≥∗
∞∑
k=1

zk∑k
n=1 zn

(24)

Denote Sk =
∑k
n=1 zn and bk = zk

Sk
. It is sufficient to show that if the series∑∞

n=1 zn does not converge then the series
∑∞
n=1 bn also does not converge. We

will do it in the same way as the first part of the proof of the lemma:

bk =
Sk+1 − Sk

Sk
=
Sk+1

Sk
− 1 =⇒ Sk+1 = S1

k∏
n=1

(1 + bn) (25)

If we take the logarithm from both parts we get

logSk = logS1 +

k∑
n=1

log(1 + bn) ≤∗
k∑

n=1

bn (26)

The left part tends to infinity, so the sum
∑∞
n=1 bn is infinite. ut
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3 New results

Now we are going to show the relations between deficiency functions. Proposition
4 is an effective version of Doob’s martingale convergence theorem (see, for
example, [8]) and can be easily obtained from it. Theorems 1 and 2 require
Lemma 3.

Definition 15. If the sequence ω is random relative to the oracle 0′ it is called
2-random.

Proposition 4. Let µ be a computable measure. If ω is 2-random (with respect
to µ), then dlim supM

µ (ω) = dlim infM
µ (ω)

Proof. Given rational numbers β > α > 0 we can construct a 0′-computable
supermartingale Mβ

α that wins on sequences ω such that the supermartingale M
infinitely many times becomes smaller than α and greater than β on the initial
segments of ω. Using the oracle we compute the values of M and if M(x) < α the
values Mβ

α (z) are equal to M(z) on extensions z of x such that M(z) ≤ β. When
we find extension y such that M(y) > β we just save the capital (Mβ

α (yw) =
Mβ
α (y)) until we find some new string x with small M(x). On the segments from

x to y the value of Mβ
α increases by β

α times. The sum of all Mβ
α with weights

m(α, β) is a 0′-lower semicomputable supermartingale, so it is finite on 2-random
sequences. ut

Corollary 1. Let µ be a computable measure. Then 2d
lim supM
µ is the integrable

function with respect to µ.

Proof. By Fatou’s lemma:∫
Ω

lim inf
n

M(ω1...n)dµ(ω) ≤ lim inf
n

∫
Ω

M(ω1...n)dµ(ω) = lim inf
n

∑
|x|=n

a(x) ≤ 1

(27)

dlim supM
µ = dlim infM

µ almost everywhere, therefore 2d
lim supM
µ is integrable. ut

The greater deficiencies are not integrable (in exponential scale). To show that

2d
M
µ is not integrable we need Lemma 3.
Recall the definition of atomic measures.

Definition 16. If the measure µ on Ω is positive on some sequence, we will say
that µ is an atomic measure.

The following theorems show that the difference between dMµ and other defi-
ciencies may be greater then log dµ (here we write dµ without index because
difference between logarithms of all of the deficiencies is bounded by some con-
stant).

Theorem 1. Let µ be a computable non-atomic measure. For all c there exists
ω such that

dlim supM
µ (ω) < dMµ (ω)− log dMµ (ω)− c (28)
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Proof. It is sufficient to prove that the function q = 2d
M
µ −logdMµ is not integrable

with respect to µ. We will construct some deterministic (but formally probabilis-
tic) machine f . At each step, after f has printed the string of bits x of length k,
f computes measures of [x0] and [x1], and then prints a bit b if µ[xb] > 1

3µ[x] (if
the both bits are suitable, let f print 0). Denote the interval [xb] = Bk if at the
k-th step f prints a bit b, and Ck = Bk−1 \ Bk. The measure µ is non-atomic,
hence

µBk =

∞∑
n=k+1

µCn (29)

The intervals Ck are disjoint, so
∑
k Ck ≤ 1. By Lemma 3

∞∑
k=1

µCk

µBk log 1
µBk

=∞ (30)

Let’s denote

tf (ω) = sup
n

P{the output of f begins on the string ω1...n}
µ([ω1...n])

(31)

The function x
log x is monotone for large enough x, therefore by the universality

q ≥∗ tf
log tf

(32)

It is easy to see that

tf
log tf

(ω) =

∞∑
k=1

ICk+1
(ω)

µBk log 1
µBk

(33)

Recall that µBk ≥ µBk+1 >
1
3µBk∫

Ω

q(ω)dω ≥∗
∫
Ω

tf
log tf

(ω)dω ≥
∞∑
k=1

µCk+1

µBk log 1
µBk

>
1

3

∞∑
k=1

µCk+1

µBk+1 log 1
µBk+1

=∞

(34)
ut

The following theorem requires some technical constructions in general case, so
at first we will prove it in the case of the uniform measure to show the idea.

Theorem 2. Let µ be a computable non-atomic measure. For all c there exists
ω such that

dMµ (ω) < dPµ (ω)− log dPµ (ω)− c (35)

Proof (Uniform case). The main idea is that one cannot win 50$ after 5 tosses of
a coin if he starts with 1$. Let’s consider a function g =

∑
k 22k−1I[0k1k](ω). It is

a lower semicomputable probability bounded function. Let’s prove the theorem
by contradiction. Assume that there exists a constant c such that for all ω

tMµ (ω) ≥ 2−c
g

log g
(ω) (36)
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That means that there exists a prefix-free set of binary strings wkl such that
∪l[wkl ] ⊃ 0k1k and

a(wkl )2|w
k
l | ≥ 2−c

22k−1

2k − 1
(37)

For k large enough

|wkl | ≥ −c− log(2k − 1) + 2k − 1 +KM(wkl ) > k + 1 (38)

So [wkl ] ⊂ [0k1]. Hence the set {wkl }k,l is prefix-free. Consider the following chain
of inequalities:

1 ≥
∑
k

∑
l

a(wkl ) ≥
∑
k

∑
l

2−c−|w
k
l | 22k−1

2k − 1
≥∗

≥∗
∑
k

2−|0
k1k| 22k−1

2k − 1
=

∑
k

1

2(2k − 1)
=∞

(39)

This contradiction proves the theorem. ut

Proof (General case). Now we replace the intervals [0k1] and [0k1k] by Ck and
Dk (see below) respectively. We cannot make the measures of Dk very small,
because it decreases g, but they also cannot be large, because g should be prob-
ability bounded. We will find suitable sets {Ck} and {Dk} that satisfy all of the
conditions.

Let’s consider the intervals Bk and Ck from Theorem 1. The series
∑
µ(Ck)

computably converges, hence for every computable sequence of positive rational
numbers εk that tends to 0, the one-to-one function τ : N → N such that
µ(Cτ(k)) ≥ (1 − εk)µ(Cm) for all m /∈ {τ(1), . . . , τ(k − 1)} is also computable.
We will choose suitable sequence εk later. Denote Cτ(k) = Ck and consider

zk = − 3
log µCk

. The sequence Sk = 1 +
∑
j≤k zj is computable. Let’s show that

Sk →∞:
Recall that ∑

k

µCk+1

µBk log 1
µBk

=∞ (40)

The function x
log x is monotone for large enough x, therefore

∑
k

zk =
∑
k

3

log 1
µCk

= 3
∑
k

µCk

µCk log 1
µCk

≥ 3
∑
k

µCk+1

µBk log 1
µBk

=∞ (41)

If µ(Ck) 6= 0, then k = τ(j) for some j, so
∑
k zk =

∑
k

3
log 1

µCk

.

For all Ck, we can construct an interval Dk ⊂ Ck with such property:

1

3
(µCk)Sk < µDk < (µCk)Sk (42)

Let xk be a string such that [xk] = Ck. We compute µ([xk0]) and µ([xk1])
and choose the next bit b if µ[xkb] >

1
3µ[xk] (if the both bits are suitable, let’s
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choose 0). After that we repeat this procedure with a string xkb and so on. We
stop when the condition 42 holds for the interval Dk (the set of the extensions
of the latest string). It always happens, because the measure is non-atomic (so
µ[xkb1 . . . bm] tends to 0), and µ[xkb1 . . . bm−1] < 3µ[xkb1 . . . bm].

Consider a function

g(ω) =
∑
k

IDk(ω)

2µDk
(43)

It is lower semicomputable. To prove that it is probability bounded it is sufficient
to show that

µDj ≥
∑

i:µDi<µDj

µDi (44)

Indeed, consider the set {g(ω) > C}:

µ{g(ω) > C} =
∑

i:µDi<
1

2C

µDi ≤ 2 max{µDi : µDi <
1

2C
} < 1

C
(45)

The sequence µC
Sj
j is exponentially decreasing:

µC
Sj
j

µC
Sj+1

j+1

≥(1− εj)SjµC
Sj−Sj+1

j+1 = (1− εj)1+
∑
zjµC

−zj+1

j+1 ≥

≥(1− εj)Mj2−zj+1 logCj+1 ≥ 3

4
8 = 6

(46)

Where M = − 3
log 2

3

≥ max zk. Here one can see how to choose the sequence εk:

(1− εj)Mj should be not less than 3
4 . This inequality shows that∑

i:µDi<µDj

µDi =
∑
i>j

µDi ≤
∑
k≥1

(
1

2
)−kµDj ≤ µDj (47)

Therefore the function g is probability bounded.
Assume that there exists a constant c such that for all ω

tMµ (ω) ≥ 2−c
g

log g
(ω) (48)

Where tMµ = 2d
M
µ (ω). If ω ∈ Dk, then for this k there exists a prefix-free set of

strings wkl such that ∪l[wkl ] ⊃ Dk and

a(wkl )

µ([wkl ])
≥ 2−c

1

2µDk log 1
µDk

(49)

Using the property 42 for large enough k we get:

µ([wkl ]) ≤ 2c+1a(wkl )µDk log
1

µDk
<

√
µDk < µCk (50)
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Therefore wkl ⊂ Ck and the set {wkl }k,l is prefix-free.
Consider the following chain of inequalities:

1 ≥
∑
k,l

a(wkl ) ≥
∑
k,l

µ([wkl ])2−c−1
1

µDk log 1
µDk

≥∗

≥∗
∑
k

µDk
1

µDk log 1
µDk

=
∑
k

1

log 1
µDk

=∗
∑
k

1

Sk log 1
µCk

(51)

In the proof of Lemma 3 we showed that if the series
∑
n zn does not converge,

then the series zn
Sn

where Sn =
∑
k≤n zk does not converge either, so the right

part of the chain of inequalities is ∞. ut

Now we can rewrite the chain of inequalities 20 as follows:

dEµ ≤+ dlim infM
µ

a.e.
== dlim supM

µ � dMµ � dPµ ≤+ dEµ + (1 + ε) log dEµ (52)

where the symbol � means that the difference may be greater than log dµ.
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