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Abstract. It is well known that several classical geometry problems
(e.g., angle trisection) are unsolvable by compass and straightedge con-
structions. But what kind of object is proven to be non-existing by usual
arguments? These arguments refer to an intuitive idea of a geometric
construction as a special kind of an “algorithm” using restricted means
(straightedge and/or compass). However, the formalization is not obvi-
ous, and different descriptions existing in the literature are far from being
complete and clear. We discuss the history of this notion and a possible
definition in terms of a simple game.

1 Introduction

The notion of an algorithm as an intuitively clear notion that precedes any
formalization, has a rather short history. The first examples of what we now
call algorithms were given already by Euclid and al-Khwârizmı̂. But the general
idea of an algorithm seems to appear only in 1912 when Borel considered “les
calculus qui peuvent être réellement effectués”1 and emphasized: “Je laisse inten-
tionnellement de côté le plus ou moins grande longeur pratique des opérations;
l’essentiel est que chaqune de ces opérations soit exécutable en un temps fini,
par une méthode sûre et sans ambigüıte”2 [4, p. 162]. The formal definition of
a representative class of algorithms was given in 1930s (in the classical works
of Gödel, Church, Kleene, Turing, Post and others); the famous Church–Turing
thesis claims that the class of algorithms provided by these formal definitions is
representative.

In this paper we look at the history of another related notion: the notion of
a geometric construction. One may consider geometric constructions as a spe-
cial type of algorithms that deal with geometric objects. Euclid provided many
examples of geometric constructions by compass and straightedge (ruler); later
these constructions became a standard topic for high school geometry exercises.
Several classical problems (angle trisection, doubling the square, squaring the
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circle) were posed and remained unsolved since ancient times (though solutions
that involve more advanced instruments than compass and straightedge were
suggested). These problems were proved to be unsolvable in 19th century. One
would expect that the proof of unsolvability assumes as a prerequisite a rigor-
ously defined notion of a “solution” that does not exist. Recall that the first
undecidability proofs could appear only after an exact definition of an algorithm
was given.

However, historically this was not the case and the impossibility proofs
appeared without an exact definition of a “geometric construction”. These proofs
used the algebraic approach: For example, to show that the cube cannot be
doubled, one proves that 3

√
2 cannot be obtained from rationals by arithmetic

operations and square roots. The reduction from a geometric question to an alge-
braic one looks quite obvious and was omitted by Wantzel who first proved the
impossibility of angle trisection and cube doubling. As he wrote in [22], “pour
reconnaitre si la construction d’un problème de Géometrie peut s’effectuer avec
la règle et le compas, if faut chercher s’il est possible de faire dépendre les racines
de l’equation à laquelle il conduit de celles d’un système d’équations du second
degré”.3 This is said in the first paragraph of the paper and then he considers
only the algebraic question.

Several other interesting results were obtained in 19th century. It was shown
that all constructions by compass and straightedge can be performed using the
compass only (the Mohr–Mascheroni theorem) if we agree that a line is repre-
sented by a pair of points on this line. Another famous result from 19th century,
the Poncelet–Steiner theorem, says that if a circle with its center is given, then
the use of compass can be avoided, straightedge is enough. Other sets of tools
were also considered, see, e.g., [3,9,14].

Later geometric construction became a popular topic of recreational mathe-
matics (see, e.g., [6,10,13,15]). In most of the expositions the general notion of a
geometric construction is still taken as granted, without a formal definition, even
in the nonexistence proofs (e.g., when explaining Hilbert’s proof that the center
of a circle cannot be found using only a straightedge [6,10,15]; see below Sect. 6
about problems with this argument). Sometimes a definition for some restricted
class of geometric construction is given (see, e.g., [18]). In [13] an attempt to pro-
vide a formal definition is made, still it remains ambiguous with respect to the
use of “arbitrary points” (see Sect. 4). Baston and Bostock [2] observe that the
intuitive idea of a “geometric construction” has no adequate formal definition
and discuss several examples but do not attempt to give a formal definition that
is close to the intuitive notion. It seems that even today people still consider the
intuitive notion of a “geometric construction algorithm” as clear enough to be
used without a formal definition (cf. [1], especially the first arxiv version).

In Sect. 2 we consider a näıve approach that identifies constructible points
with the so-called “derivable” points. Then in Sects. 3 and 4 we explain why

3 To find out whether a geometric problem can be solved by straightedge and compass
construction, one should find whether it is possible to reduce the task of finding the
roots of the corresponding equation to a system of equations of second degree.
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this approach contradicts our intuition. In Sect. 5 we suggest a more suitable
definition, and finally in Sect. 6 we note that the absence of formal definitions
has led to incorrect proofs.

2 Derivable Points and Straight-Line Programs

At first it seems that the definition of a geometric construction is straightforward.
We have three classes of geometric objects: points, lines and circles. Then we
consider some operations that can be performed on these objects. We need to
obtain some object (the goal of our construction) applying the allowed operations
to given objects. As Tao [18] puts it,

Formally, one can set up the problem as follows. Define a configuration to
be a finite collection C of points, lines, and circles in the Euclidean plane.
Define a construction step to be one of the following operations to enlarge
the collection C:

– (Straightedge) Given two distinct points A, B in C, form the line AB that
connects A and B, and add it to C.

– (Compass) Given two distinct points A, B in C, and given a third point
O in C (which may or may not equal A or B), form the circle with centre
O and radius equal to the length |AB| of the line segment joining A and
B, and add it to C.

– (Intersection) Given two distinct curves γ, γ′ in C (thus γ is either a line
or a circle in C, and similarly for γ′), select a point P that is common to
both γ and γ′ (there are at most two such points), and add it to C.

We say that a point, line, or circle is constructible by straightedge and com-
pass from a configuration C if it can be obtained from C after applying a finite
number of construction steps.

We can even try to define the geometric construction algorithm as a straight-line
program, a sequence of assignments whose left-hand side is a fresh variable and
the right-hand side contains the name of the allowed operation and the names
of objects to which this operation is applied.

Baston and Bostock [2] use the name “derivable” for objects that can be
obtained in this way starting from given objects. In other words, starting with
some set of given objects, they consider its closure, i.e., the minimal set of
objects that contains the given ones and is closed under allowed operations.
The objects that belong to this closure are called derivable from the given ones.
In these terms, the impossibility of trisecting the angle with the compass and
the straightedge can be stated as follows: for some points A, B, C the trisectors
of the angle BAC are not derivable from {A, B, C}.

Baston and Bostock note that the intuitive notion of a “constructible” point
(that they intentionally leave without any definition) may differ from the formal
notion of a derivable point in both directions. We discuss the differences in the
following sections.
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3 Uniformity and Tests

There are some problems with this approach. First of all, this appoach is “non-
uniform”. Asking a high school student to construct, say, a center of an inscribed
circle of a triangle ABC, we expect the solution to be some specific construction
that works for all triangles, not just the proof that this center is always derivable
from A, B, and C. The näıve approach would be to ask for a straight-line program
that computes this center starting from A, B, and C. However, an obvious
problem arises: the operation of choosing an intersection point of two curves is
non-deterministic (we need to choose one of two intersection points). We may
guarantee only that some run of the program produces the required object,
or guarantee that the required object is among the objects computed by this
program. This is a common situation for classical constructions. For example,
the standard construction of the centre of the incircle of a triangle can also
produce centres of excircles (the circles outside the triangle that touch one of its
sides and the extensions of two other sides).

The non-deterministic nature of the operations was mentioned by different
authors. Bieberbach [3] says that the constructions should be performed in the
“oriented plane” (not giving any definitions). Tietze [19–21] notes that some
objects can be constructed but only in a non-deterministic way, again without
giving definition of these notions.

One could give up and consider the non-uniform setting only. As Manin [13,
p. 209] puts it, “we ignore how to choose the required point from the set of
points obtained by the construction”. Another approach is to replace straight-
line programs by decision trees where tests appear as internal nodes. Still none
of these two approaches (decision trees or non-deterministic choice) is enough to
save some classical constructions in a uniform setting as observed by Baston and
Bostock [2, p. 1020]. They noted that the construction from Mohr–Mascheroni
theorem allows us to construct the intersection point of two intersecting lines
AB and CD (given A,B,C,D) using only a compass. Each use of the compass
increases the diameter of the current configuration at most by an O(1)-factor,
and the intersection point can be arbitrarily far even if A,B,C,D are close to
each other, so there could be no a priori bound on the number of steps. The
necessity of an iterative process in the Mohr–Mascheroni theorem was earlier
mentioned in another form by Dono Kijne [11, ch. VIII, p. 99]; he noted that
this result depends on Archimedes’ axiom.

To save the Mohr–Mascheroni construction, one may consider programs that
allow loops. This was suggested, e.g., by Engeler [7]. Here we should specify
what kind of data structures are allowed (e.g., whether we allow dynamic arrays
of geometric objects or not). In this way we encounter another problem, at
least if we consider straightedge-only constructions on the rational plane Q

2

and allow using tests and do not bound the number of steps/objects. Baston
and Bostock [2] observed that having four different points A,B,C,D ∈ Q

2 in
a general position (no three points lie on a line, no two connecting lines are
parallel), we can enumerate all (rational) points and therefore all rational lines.
Then we can wait until a line parallel to AB appears (we assume that we may
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test whether two given lines intersect or are parallel) and then use this parallel
line to find the midpoint of AB. This construction does not look like a intuitively
valid geometric construction and contradicts the belief that one cannot construct
the midpoint using only a straightedge, see [2] for details.

4 Arbitrary Points

Let us now consider the other (and probably more serious) reason why the notion
of a derivable object differs from the intuitive notion of a constructible object.
Recall the statement about angle trisection as stated by Tao [18]: for some
triangle ABC the trisectors of angle BAC are not derivable from {A,B,C}.
(Tao uses the word “constructible”, but we keep this name for the intuitive
notion, following [2].) Tao interprets this statement as the impossibility of angle
trisection with a compass and straightedge, and for a good reason.

On the other hand, the center of a circle is not derivable from the circle
itself, for the obvious reason that no operation can be applied to enlarge the
collection that consists only of the circle. Should we then say that the center of
a given circle cannot be constructed by straightedge and compass? Probably not,
since such a construction is well known from the high school. A similar situation
happens with the construction of a bisector of a given angle (a configuration
consisting of two lines and their intersection point).

Looking at the corresponding standard constructions, we notice that they
involve another type of steps, “choosing an arbitrary point” (on the circle or
elsewhere). But we cannot just add the operation “add an arbitrary point” to the
list of allowed operations, since all points would become derivable. So what are
the “arbitrary points” that we are allowed to add? Bieberbach [3, p. 21] speaks
about “Punkte, über die keine Angaben affiner oder metrischer Art gemacht
sind”4 and calls them “willkürliche Punkte”—but this hardly can be considered
as a formal definition.

Tietze [21] notes only that “the role of arbitrary elements is not so simple as
it is sometimes thought”. Baston and Bostock [2] explain the role of arbitrary
elements, but say only that “the distinction between constructibility and deriv-
ability arising from the use of arbitrary points is not very complex” and “we
will not pursue a more detailed analysis in this direction”; they refer to [12] for
an “elementary approach”, but this book also does not give any clear definition.
Probably the most detailed explanation of the role of arbitrary points is pro-
vided by Manin [13], but he still defines the construction as a “finite sequence of
steps” (including the “arbitrary choices”) and says that a point is constructible if
there exists a construction that includes this point “for all possible intermediate
arbitrary choices”; this definition, if understood literally, makes no sense since
different choices leads to different constructions. Schreiber [16] tries to define the
use of arbitrary points in a logical framework, but his exposition is also far from
being clear.

4 Points for which we do not have affine or metric information.
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How can we modify the definitions to make them rigorous? One of the possi-
bilities is to consider the construction as a strategy in some game with explicitly
defined rules. We discuss this approach in the next section.

5 Game Definition

The natural interpretation of the “arbitrary choice” is that the choice is made
by an adversary. In other words, we consider a game with two players, Alice and
Bob. We start with the non-uniform version of this game.

Let E be some finite set of geometric objects (points, lines, and circles). To
define which objects x are constructible starting from E, consider the following
full information game. The position of the game is a finite set of geometric
objects. The initial position is E. During the game, Alice and Bob alternate. Alice
makes some requests, and Bob fulfills these requests by adding some elements
to the current position. Alice wins the game when x becomes an element of the
current position. The number of moves is unbounded, so it is possible that the
game is infinite (if x never appears in the current position); in this case Alice
does not win the game.

Here are possible request types.

– Alice may ask Bob to add to the current position some straight line that goes
through two different points from the current position.

– Alice may ask Bob to add to the current position a circle with center A and
radius BC, if A,B,C are points from the current position.

– Alice may ask Bob to add to the current position one or two points that form
the intersection of two different objects (lines or circles) that already belong
to the current position.

If we stop here, we get exactly the notion of derivable points, though in a strange
form of a “game” where Bob has no choice. To take the “arbitrary” points into
account, we add one more operation:

– Alice specifies an open subset of the plane (say, an open circle), and Bob adds
some point of this subset to the current position.

The point x is constructible from E if Alice has a winning strategy in this game.
Let us comment on the last operation.

(1) Note that Alice cannot (directly) force Bob to choose some point on a line or
on a circle, and this is often needed in the standard geometric constructions.
But this is inessential since Alice can achieve this goal in several steps. First
she asks to add points on both sides of the line or circle (selecting two small
open sets on both sides in such a way that every interval with endpoints
in these open sets intersects the line or circle), then asks to connect these
points by a line, and then asks to add the intersection point of this new line
and the original one.
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(2) On the other hand, according to our rules, Alice can specify with arbitrarily
high precision where the new point should be (by choosing a small open set).
A weaker (for Alice) option would be to allow her to choose a connected
component of the complement of the union of all objects in the current
position. Then Bob should add some point of this component to the current
position.

Proposition 1. This restriction does not change the notion of a constructible
point.

Proof. Idea: Using the weaker option, Alice may force Bob to put enough points
to make the set of derivable points dense, and then use the first three options to
get a point in an arbitrary open set.

Let us explain the details. First, she asks for an arbitrary point A, then for
a point B that differs from A, then for line AB, then for a point C outside line
AB (thus having the triangle ABC), then for the sides of this triangle, and then
for a point D inside the triangle. (All this is allowed in the restricted version.)

A CY

X

B

D
P

Q

Now the points P and Q obtained as shown are derivable (after the projective
transformation that moves B and C to infinity, the points P and Q become the
midpoints of XD and AY ). Repeating this construction, we get a dense set of
derivable points on intervals XD and AY , then the dense set of derivable points
in the quadrangle AXDY and then in the entire plane.

Now, instead of asking Bob for a point in some open set U , Alice may force
him to include one of the derivable points (from the dense set discussed above)
that is in U .

This definition of constructibility turns out to be equivalent to the neg-
ative definition suggested by Akopyan and Fedorov [1]. They define non-
constructibility as follows: an object x is non-constructible from a finite set E of
objects if there exists a set E′ ⊃ E that is closed under the operations of adding
points, lines, and circles (contains all objects derivable from E′), contains an
everywhere dense set of points, but does not contain x.

Proposition 2 (Akopyan–Fedorov). This negative definition is equivalent to
the game-theoretic definition given above.



Algorithms and Geometric Constructions 417

Proof. The equivalence is essentially proven as [1, Proposition 15, p. 9], but
Akopyan and Fedorov avoided stating explicitly the game-theoretic definition
and spoke about “algorithms” instead (without an exact definition).

Assume that x is non-constructible from E according to the negative defini-
tion. Then Bob can prevent Alice from winning by always choosing points from
E′ when Alice asks for a point in an open set. Since E′ is dense, these points are
enough. If Bob follows this strategy, then the current position will always be a
subset of E′ and therefore will never contain x.

On the other hand, assume that x in not constructible from E in the sense of
the positive definition. Consider the following strategy for Alice. She takes some
triangle abc and point d inside it and ask Bob to add points A,B,C,D that
belong to some small neighborhoods of a, b, c, d respectively. The size of these
neighborhoods guarantees that ABC is a triangle and D is a point inside ABC.
There are two cases:

– for every choice of Bob Alice has a winning strategy in the remaining game;
– there are some points A,B,C,D such that Alice does not have a winning

strategy in the remaining game.

In the first case Alice has a winning strategy in the entire game and x is con-
structible. In the second case we consider the set E′ of all objects derivable
from E ∪{A,B,C,D}. As we have seen in the proof of the previous proposition,
this set is dense. Therefore, x is non-constructible in the sense of the negative
definition.

The advantage of the game definition is that it can be reasonably extended
to the uniform case. For the uniform case the game is no more a full-information
game. Alice sees only the names (and types) of geometric objects in E, and
assigns names to new objects produced by Bob. One should agree also how Alice
can get information about the configuration and how she can specify the con-
nected component when asking Bob for a point in this component. For example,
we may assume that Alice has access to the list of all connected components and
the full topological information about the structure they form, as well as the
places of objects from E in this structure. Then Alice may choose some com-
ponent and request a point from it. To win, Alice needs to specify the name of
the required object x. After we agree on the details of the game, we may define
construction algorithms as computable strategies for such a game. (Note that in
this version Alice deals only with finite objects).

6 Formal Definitions Are Important

In fact, the absence of formal definitions and exact statements is more dangerous
than one could think. It turned out that some classical and well known arguments
contain a serious gap that cannot be filled without changing the argument. This
happened with a proof (attributed to Hilbert in [5]) that one cannot find the
center of a given circle using only a straightedge. It is reproduced in many
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popular books (see, e.g., [6,10,15]) and all the arguments (at least in the four
sources mentioned above) have the same gap. They all go as follows [10, p. 18]:

Let the construction be performed in a plane P1 and imaging a transformation
or mapping T of the plane P1 into another plane P2 such that:

(a) straight lines in P1 transform into straight lines in P2 〈. . .〉
(b) The circumference C of our circle is transformed into a circumference T (C)

for some circle in P2.

As the steps called for in the construction are being performed in P1, they
are being faithfully copied in P2. Thus when the construction in P1 terminates
in the centre O of C, the “image” construction must terminate in the centre
T (O) of the circle T (C).

Therefore if one can exhibit a transformation T satisfying (a) and (b), but
such that T (O) is not the centre of T (C), then the impossibility of constructing
the centre of a circle by ruler alone will be demonstrated.

Such a transformation indeed exists, but the argument in the last paragraph
has a gap. If we understand the notion of construction in a non-uniform way and
require that the point was among the points constructed, the argument does not
work since the center of T (C) could be the image of some other constructed
point. If we use some kind of the uniform definition and allow tests, then these
tests can give different results in P1 and P2 (the projective transformation used
to map P1 into P2 does not preserve the ordering), so there is no reason to expect
that the construction is “faithfully copied”. And a uniform definition that does
not allow tests and still is reasonable, is hard to imagine (and not given in the
book). Note also that some lines that intersect in P1, can become parallel in P2.

It is easy to correct the argument and make it work for the definition of con-
structibility given above (using the fact that there are many projective mappings
that preserve the circle), but still one can say without much exaggeration that
the first correct proof of this impossibility result appeared only in [1]. One can
add also that the stronger result about two circles that was claimed by Cauer [5]
and reproduced with a similar proof in [15], turned out to be plainly false as
shown in [1], and the problems in the proof were noted already by Gram [8].
It is not clear why Gram did not question the validity of the classical proof for
one circle, since the argument is the same. Gram did not try to give a rigor-
ous definition of the notion of a geometric construction, speaking instead about
constructions in the “ordered plane” and referring to Bieberbach’s book [3] that
also has no formal definitions.

The weak version of Cauer’s result saying that for some pairs of circles one
cannot construct their centers, can be saved and proven for the definition of
constructibility discussed above (see [1] and the popular exposition in [17]).

It would be interesting to reconsider the other results claimed about geomet-
ric constructions (for example, in [9,19–21]) to see whether the proofs work for
some clearly defined notion of a geometric construction. Note that in some cases
(e.g., for Tietze’s results) some definition of the geometric construction for the
uniform case is needed (and the negative definition is not enough).
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19. Tietze, H.: Über dir Konstruierbarkeit mit Lineal und Zirkel, Sitzungsberichte
der Kaiserlichen Akademie der Wissenschaften, Abt. IIa, 735–757 (1909). https://
www.biodiversitylibrary.org/item/93371
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