
Algorithmic Statistics and Prediction
for Polynomial Time-Bounded Algorithms

Alexey Milovanov(B)

National Research University Higher School of Economics,
Moscow Institute of Physics and Technology, Moscow, Russia

almas239@gmail.com

Abstract. Algorithmic statistics studies explanations of observed data
that are good in the algorithmic sense: an explanation should be sim-
ple i.e. should have small Kolmogorov complexity and capture all the
algorithmically discoverable regularities in the data. However this idea
can not be used in practice as is because Kolmogorov complexity is not
computable.

In recent years resource-bounded algorithmic statistics were created
[7,8]. In this paper we prove a polynomial-time version of the following
result of ‘classic’ algorithmic statistics.

Assume that some data were obtained as a result of some unknown
experiment. What kind of data should we expect in similar situation
(repeating the same experiment)? It turns out that the answer to this
question can be formulated in terms of algorithmic statistics [6]. We prove
a polynomial-time version of this result under a reasonable complexity
theoretic assumption. The same assumption was used by Antunes and
Fortnow [1].

1 Introduction

Here we give some basic notation and present results about algorithmic statistics
and prediction for general (without resource restrictions) algorithms.

1.1 Algorithmic Statistics

Let x be a binary string, and let A be a finite set of binary strings containing x.
Considering A as an “explanation” (statistical model) for x, we want A to be as
simple and small as possible. This approach can be made formal in the framework
of algorithmic information theory, where the notion of Kolmogorov complexity
of a finite object is defined. The definition and basic properties of Kolmogorov
complexity can be found in [5,9,11]. Informally Kolmogorov complexity C(x) of
a string x is defined as the minimal length of a program that produces x.

We also use another basic notion of the algorithmic information theory, the
discrete a priori probability. Consider a probabilistic machine V without input
that outputs some binary string and stops. It defines a probability distribution

c© Springer International Publishing AG, part of Springer Nature 2018
F. Manea et al. (Eds.): CiE 2018, LNCS 10936, pp. 287–296, 2018.
https://doi.org/10.1007/978-3-319-94418-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94418-0_29&domain=pdf

288 A. Milovanov

on binary strings: mV (x) is the probability to get x as the output of V . There
exists a universal machine U [5,11] such that mU is maximal up to O(1)-factor
among all mV . We fix some U with this property and call mU (x) the discrete
a priori probability of x, denoted as m(x). The function m is closely related to
Kolmogorov complexity: the value − log2 m(x) is equal to C(x) with O(log C(x))-
precision.

Now we can define two parameters that measure the quality of a finite set A
as a model for its element x: the complexity C(A) of A and the binary logarithm
log |A| of its size. The first parameter measures how simple is our explanation;
the second one measures how specific it is. We use binary logarithms to get both
parameters in the same scale: to specify an element of a set of size N we need
log N bits of information.

There is a trade-off between two parameters. The singleton A = {x} is a very
specific description, but its complexity may be high. On the other hand, for a
n-bit string x the set A = {0, 1}n of all n-bit strings is simple, but it is large.
To analyze this trade-off, following [3,4], let us note that every set A containing
x leads to a two-part description of x: first we specify A using C(A) bits, and
then we specify x by its ordinal number in A, using log |A| bits. In total we need
C(A)+ log |A| bits to specify x (plus logarithmic number of bits to separate two
parts of the description). This gives the inequality

C(x) ≤ C(A) + log |A| + O(log C(A)).

The difference δ(x,A) = C(A) + log |A| − C(x)

is called optimality deficiency of A (as a model for x). As usual in algorithmic
statistic, all our statements are made with logarithmic precision (with error
tolerance O(log n) for n-bit strings), so we ignore the logarithmic terms and say
that δ(x,A) is positive and measures the overhead caused by using two-part
description based on A instead of the optimal description for x.

One could wonder why we consider only sets as explanations and not general
probability distributions (in other terms, why we restrict ourselves to uniform
probability distributions). The reason is that this extension is not essential: for
every string x and for every distribution μ there exists a set A � x explaining x
that is almost as good as μ, as the following observation shows:

Proposition 1 ([14]). For every string x and for every distribution μ there
exists a set A � x such that C(A|μ) ≤ O(log |x|) and 1

|A| ≥ 1
2μ(x).

There exists another approaches to algorithmic statistics (see [10,13,15])
however they are essentially equivalent.

1.2 Prediction Hierarchy

Assume that we have some experimental data represented as a binary string x.
We look for a good statistical model for x and find some set A that has small
optimality deficiency δ(x,A). The problem, however, is that many different mod-
els with small optimality deficiency may exist for a given x. If we want to cover

Algorithmic Statistics and Prediction 289

all the possibilities, we need to consider the union of all these sets, so we get the
following definition.

Definition 1. Let x ∈ {0, 1}n be a binary string and let d be some integer. The
union of all finite sets of strings A ⊂ {0, 1}n such that x ∈ A and δ(x,A) ≤ d is
called algorithmic prediction d-neighborhood of x.

Obviously d-neighborhood increases as d increases.
There is another natural approach to prediction. Since we treat the exper-

iment as a black box (the only thing we know is its outcome x), we assume
that the possible models A ⊂ {0, 1}n are distributed according to their a priori
probabilities, and consider the following two-stage process. First, a finite set is
selected randomly: a non-empty set A is chosen with probability m(A). Second,
a random element x of A is chosen uniformly. In this process every string x is
chosen with probability ∑

A�x

m(A)/|A|.

For a given pair of strings x and y consider the conditional probability

Px(y) := Pr[y ∈ A | the output of the two-stage process is x].

Having some string x and some threshold d, we now can consider all strings y
such that Px(y) ≥ 2−d (we use the logarithmic scale to facilitate the comparison
with algorithmic prediction). These strings could be considered as plausible ones
to appear when repeating the experiment of unknown nature that once gave x.

Definition 2. Let x be a binary string and let d be an integer. The set of all
strings y such that px(y) ≥ 2−d is called probabilistic prediction d-neighborhood
of x.

It turns out that this approach is essentially equivalent to algorithmic prediction
neighborhood.

Theorem 1 ([6]). (a) For every n-bit string x and for every d the algorithmic
prediction d-neighborhood is contained in probabilistic prediction d + O(log n)-
neighborhood.

(b) For every n-bit string x and for every d the probabilistic predic-
tion d-neighborhood of x is contained in algorithmic prediction d + O(log n)-
neighborhood.

Our main result is a version of this theorem for time-bounded algorithms.

2 Algorithmic Statistics for Polynomial Time

Here we present our approach to polynomial time-bounded algorithmic statistics.
As explanations for strings we consider probability distributions over the set of
binary strings. We can not limit ourself by sets (uniform distributions) since an
analogue of Proposition 1 for polynomial time-bounded algorithms is unknown.

290 A. Milovanov

Let a probability distribution μ be an explanation for a string x. There is
a natural parameter measuring how good is μ as an explanation for x, namely
μ(x). Also we need to measure simplicity of μ. A probability distribution is
called simple, if it can be sampled by a short probabilistic program with no
input in polynomial time. A formal definition can be done by using the notion
of universal machines—see [8]. There are other ways to measure acceptability
of a distribution as explanation to stings [8]. However the way discussed above
is the most usable for our investigation.

To measure “simplicity” we will use the notion of time-bounded prefix-free
Kolmogorov complexity Kt(x). Informally it is defined as the minimal length of
a prefix-free program that produces x in at most t steps (see [5] for more details).
In fact the difference between prefix free and plain time-bounded complexities
is not essential (the plain complexity bounded by time t of a string x is denoted
by Ct(x)).

Proposition 2 ([5]). For every string x and for every t there exists c such that:

(a) Ct(x) ≤ Kt(x) + c.
(b) Kct log2 t(x) ≤ Ct(x) + c log |x|.

Models of Restricted Type

So far we considered arbitrary distributions as models (statistical hypotheses).
However, in practice we usually have some a priori information about the data.
We know that the data was obtained by sampling with respect to an unknown
probability distribution from a known family of distributions M.

For example, we can consider the family of uniform distribution on Hamming
balls as M. (That means we know a priori that our string was obtained by
flipping certain number of bits in an unknown string.) Restricting the class of
allowed hypotheses was initiated in [15].

In our paper we will consider families with the following properties:

– Every element from M is a distribution on the strings of the same length.
The family of distribution on {0, 1}n that belong to M is denoted by Mn.

– There exists a polynomial q such that |Mn| = 2q(n) for every n.
– There exists a polynomial t such that for every μi ∈ Mn there exists a

program pi that samples μi in time t(n). (This means that for every x of
length n the probability of the event “pi outputs x” equals μi(x) and the
running time of pi is at most t(n) for all outcomes of coin tossing.) Moreover
there exists a deterministic program pM that for i ∈ {0, 1}q(n) outputs the
program pi in time t(n).

– For every string x there exists μ ∈ M such that μ(x) = 1. Moreover the pro-
gram that samples this distribution can be obtained as pM(x0q(n)−n) where
n is the length of x.

Any family of distributions that satisfies these four conditions is called accept-
able. For example, the family of uniform distribution on Hamming balls is accept-
able.

Algorithmic Statistics and Prediction 291

If a probability distribution μ ∈ M is sampled by a program pi = p(i) then
it is natural to compare Kpoly(i)− log μ(x) with Kpoly(x) (the difference between
these values is an analogue of optimality deficiency in ‘classic’ algorithmic statis-
tics). If Kpoly(i) − log μ(x) − Kpoly(x) ≈ 0 then μ is called optimal distribution
for x. Here is a formal definition.

Definition 3. A distribution μ in an acceptable family M is called M, d, t1, t2-
optimal for a string x if the distribution μ can be sampled by a probabilistic
program pM(i) ∈ M in time t1 such that

Kt1(i) − log μ(x) − Kt2(x) ≤ d.

3 Prediction Hierarchy in Polynomial Time

Here for a given acceptable family M we introduce notions of algorithmic and
probabilistic prediction neighborhoods. For simplicity first we will consider only
families of uniform distributions.

Definition 4. Let x ∈ {0, 1}n, let d, t1, t2 be some integers and let M be an
acceptable family of uniform distributions. The set of all strings y such that
there exists μ ∈ M such that

– μ(y) > 0,
– μ is d, t1, t2-optimal for x

is called M-algorithmic prediction d, t1, t2-neighborhood of x.

Such d, t1, t2-neighborhood increases as d and t1 increases and t2 decreases.
To define probabilistic prediction neighborhood we need first to recall the

time-bounded version of discrete a priori probability. The t-bounded discrete a
priori probability of string x is defined as

mt(x) = 2−Kt(x).

Now we present results that show that this definition is consistent with the
unbounded definition.

Definition 5. A probability distribution σ over {0, 1}∗ is called P-samplable, if
there is randomized machine M so that Pr[M output x] = σ(x) and M runs a
polynomial time of the length of the output.

Theorem 2 ([2]). For every polynomial p, there are a P-samplable distribution
σ and a constant c such that for every string x

σ(x) ≥ 1
|x|c mp(x).

The inequality in the opposite direction holds under the following assumption.

292 A. Milovanov

Assumption 1. There is a set which is decidable by deterministic Turing
machines in time 2O(n) but is not decidable by deterministic Turing machines in
space 2o(n) for almost all n.

Theorem 3 (Lemma 3.2 in [1]). Under Assumption 1 for every P-samplable
probability distribution σ there is number d such that for all x of length n,

mnd

(x) ≥ σ(x)
nd

.

Now we are ready to define M-probabilistic prediction neighborhood. Recall
that by the 2nd and the 4th properties of acceptability of M there exists a
polynomial q such that every string in {0, 1}q(n) defines a distribution in M.

Consider the following two-stage process for given polynomial t. First a string
s ∈ {0, 1}q(n) is selected randomly with probability mt(n)(s). This string s defines
a distribution μs ∈ M. Then a string x ∈ {0, 1}n is randomly chosen according
the distribution μs. In this process every string x is chosen with probability

∑

s

mt(n)(s)μs(x).

Consider the following probability.

P t
x,M(y) = Pr[μs(y) > 0 | the output of the two-stage process is x]. (1)

Note that μs is a uniform distribution (now we consider only such families M).

Definition 6. Let x be a binary string, let d be an integer, t be a polynomial
and M be an acceptable family. The set of all strings y such that P t

x,M(y) ≥ 2−d

is called M-probabilistic prediction d, t-neighborhood of x.

Our main result is the following

Theorem 4. (a) Under Assumption 1 the following holds. For every polyno-
mial t there exists polynomial r such that for every n-bit string x and for every
d the M−algorithmic prediction d, t(n), r(n)-neighborhood of x is contained in
M−probabilistic prediction d + O(log n), t-neighborhood of x.

(b) Under Assumption 1 the following holds. For every polynomial t there
exists a polynomial r such that for every n-bit string x and for every d the
M-probabilistic prediction d, t-neighborhood of x is contained in M-algorithmic
prediction d + O(log n), r(n), t(n)-neighborhood.

Non-uniform Distribution

Here we extend the notions of algorithmic and probabilistic prediction neigh-
borhoods to arbitrary acceptable family of distribution M . Before we define
algorithmic neighborhood note that now the condition μ(y) > 0 is very weak (it
is possible that for every y the value μ(y) is very small but positive). By this
reason we have to add a new parameter.

Algorithmic Statistics and Prediction 293

Definition 7. Let x ∈ {0, 1}n, let d, k, t1, t2 be some integers and let M be an
acceptable family of distributions. The set of all strings y such that there exists
μ ∈ M such that

– μ(y) > 2−k,
– μ is d, t1, t2-optimal for x

is called M-algorithmic prediction d, k, t1, t2-neighborhood.

Such d, k, t1, t2-neighborhood increases as d, k and t1 increases and t2 decreases.
To define the probability neighborhood we consider the same 2-stage process.
However now we consider another the conditional probability for given x and y.

pr
x,h,M(y) = Pr[μs(y) > 2−h | the output of the two-stage process is x]. (2)

Definition 8. Let x be a binary string, let λ, h be integers, r be a polynomial and
M be an acceptable family. The set of all strings y such that pr

x,h,M(y) ≥ 2−λ

is called M-probabilistic prediction λ, h, r-neighborhood of x.

The generalization of Theorem 4 is the following.

Theorem 5. (a) Under Assumption 1 the following holds. For every polynomials
t there exists polynomial r such that for every n-bit string x and for every d and
k the M−algorithmic prediction d, k, t(n), r(n)-neighborhood of x is contained in
M−probabilistic prediction λ, h, t-neighborhood of x if λ ≥ d − min(0, h − k) +
O(log n).

(b) Under Assumption 1 the following holds. For every polynomial t there
exists a polynomial r such that for every n-bit string x and for every d the M-
probabilistic prediction λ, h, t-neighborhood of x is contained in M-algorithmic
prediction d, k, t(n), r(n)-neighborhood of x if λ ≥ d + min(0, h − k) + O(log n).

4 Proof of Theorem4

Proof (of Theorem 4(a)). This direction is simple. Assume that y belongs to
M−algorithmic prediction d, t(n), r(n)-neighborhood of x. Here r is a polyno-
mial that we will define later. By definition this means that there exists μ ∈ M
such that μ(y) > 0 and μ is d, t(n), r(n)-optimal. The later means that for some
i the following inequality holds:

Kt(n)(i) − log μi(x) − Kr(n)(x) ≤ d. (3)

We need to show that y belongs to M-probabilistic prediction d + O(log n), t-
neighborhood of x, i.e. P t

x,M(y) ≥ 2−d−O(log n) (see (1)). By definition (1) can
be rewritten as

P t
x,M(y) =

∑
s:ms(y)>0 mt(n)(s)μs(x)
∑

s mt(n)(s)μs(x)
. (4)

Now we choose polynomial r such that the denominator of (4) is not greater
than mr(n)(x)2O(log n). Under Assumption 1 such polynomial r exists. Indeed,

294 A. Milovanov

the denominator of (4) defines a P-sample distribution that can be dominated
by a polynomial-time bounded discrete a priori probability by Theorem3.

The sum at the numerator of (4) is not less than one term that obtained
by taking s = i. So, from (3) it follows that the numerator is not less
than mr(n)(x)2−d. Hence, P t

x,M(y) ≥ 2−d−O(log n). Therefore y belongs to M-
probabilistic prediction d + O(log n), t-neighborhood of x.

We will derive Theorem 4(b) from the following lemma.

Lemma 1. For every polynomial t under Assumption 1 there exists polynomial
r such the following hold. Let x and y be strings of length n and let M be an
acceptable family of distributions. Then there exists string i s. t. μi(y) > 0 and

∑

s:μs(y)>0

mt(n)(s)μs(x) ≤ mr(n)(i)μi(x)2O(log n).

Proof (of Theorem 4(b) from Lemma 1). Let string y belongs to M-probabilistic
prediction d, t-neighborhood of x, i.e. P t

x,M(y) ≥ 2−d. Let us estimate P t
x,M(y).

First note that the denominator of (4) is less than mt(n)(x). Indeed, by the
last property of acceptability there exists μs ∈ M such that μs(x) = 1
and mO(t(n))(s) = mt(n)(x) + O(1). The numerator of (4) can be estimated
by Lemma 1 as mr(n)(i)μi(x)2O(log n) for some string i and polynomial r. So,
log P t

x,M(y) is less than

Kr(n)(i) − log μi(x) − Kt(n)(x) + O(log n).

This value is not smaller than d. Hence, y belongs to M-algorithmic prediction
d + O(log n), r(n), t(n)-neighborhood of x.

Lemma 2. Let H be a set of functions from {0, 1}l to {0, 1}m with the following
properties.

– For every l at least 3
4 of all functions from {0, 1}l to {0, 1}n are in H.

– For some k there is a Σp
k machine with oracle access to a function H on input

1l will accept exactly when H is in H.

Then under Assumption 1 there is a polynomial-time computable function
H ′(x, r) with x ∈ {0, 1}l and |r| = O(log l) such that for at least 2

3 of the possible
r, Hr(x) = H ′(x, r) is in H.

Proof (of Lemma 1 from Lemma 2).

The sum
∑

s:ms(y)>0

mt(n)(s)μs(x) is equal to the sum over all k and j of sums

∑

s:μs(y)>0

mt(n)(s)=2−k

μs(x)=2−j

mt(n)(s)μs(x). (5)

Algorithmic Statistics and Prediction 295

In fact only poly(n) of such sums are positive. Indeed, from acceptability of M
it is follows that Kpoly(n)(μs) is bounded by poly(n). Also, if μs(x) < 2−poly(n)

then μs(x) = 0 since μs is sampled by a polynomial time-bounded program.
Hence it is enough to show that for every j and k there exists i and polynomial
r such that mr(n)(i)μi(x)2O(log n) is greater than (5) and μi(y) > 0.

Denote by U t(n) a function that works as a universal Turing machine U but if
U does not outputs anything in t(n) steps then it outputs empty string. Denote
by w the logarithm of the number of terms in the sum (5). Denote by H the set
of all functions h from {0, 1}k−w+8 log n to {0, 1}k with the following property:

If for a pair of strings (x′, y′) of length n there exist at least 2w strings s such
that μs(y′) > 0, mt(n)(s) = −k and μs(x′) = 2−j then one of this string is in
the image of U(h).

Lemma 3. At least 3
4 of all possible functions from {0, 1}k−w+8 log n to {0, 1}k

belongs to H.

Using Lemma 3 we prove the existence of i such that m(i)μi(x)2O(log n) is
greater than (5). (Note that here m is not polynomial-time bounded, so this is
not really what we want.) By Lemma 3 there exists a function that belongs to H.
The lexicographically first such function has small complexity, because it can be
computed given j, k, n and w. Since h ∈ H there exists i′ ∈ {0, 1}k−w+8 log n such
that μi(x) = 2−j and μi(y) > 0 where i = U(h(i′)). Since i′ ∈ {0, 1}k−w+8 log n

the complexity of i is not greater than K(i) ≤ k − w + O(log n). A simple
calculation shows that m(i)μi(x)2O log n is greater than (5).

To prove the existence of such string i which polynomial-time bounded com-
plexity is less than k − w + O(log n) we need a simple and polynomial-time
computable function in H. To find it we use Lemma 4 for l = k −w +8 log n and
m = k. We claim that family H satisfies properties of Lemma 4. For the first
property it is true by Lemma 3. For the second property note that the property
h ∈ H can written as

∀(x′
, y

′
)∃2ws : ((μs(x

′
) = 2

−j
) ∧ (μs(y

′
) > 0)) ⇒ ∃i : ((μU(h(i))(x

′
) = 2

−j
) ∧ (μU(h(i))(y

′
) > 0)).

This property belongs to PΣl
p for some l since the approximation of the number

of certificates belongs to Σ2
p [12]. So, there exists polynomial-time computable

H ′(x, r) such that for some fixed r function Hr(x) = H ′(x, r) is in H. Since |r| =
O(log n) we conclude that there exists simple and polynomial time computable
function in H that complete the proof.

Acknowledgments. This work is supported in parts by the RFBR grant 16-01-00362,
by the Young Russian Mathematics award, MK-5379.2018.1 and the RaCAF ANR-
15-CE40-0016-01 grant. The study has also been funded by the Russian Academic
Excellence Project ‘5-100’.

296 A. Milovanov

References

1. Antunes, L., Fortnow, L.: Worst-case running times for average-case algorithms.
In: Proceedings of the 24th IEEE Conference on Computational Complexity, pp.
298–303 (2009)

2. Antunes, L., Fortnow, L., Vinodchandran, N.V.: Using depth to capture average-
case complexity. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp.
303–310. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45077-
1 28

3. Koppel, M.: Complexity, depth and sophistication. Complex Syst. 1, 1087–1091
(1987)

4. Kolmogorov, A.N.: Talk at the Information Theory Symposium in Tallinn, Estonia
(then USSR) (1974)

5. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions. TCS, vol. 3. Springer, New York (2008). https://doi.org/10.1007/978-0-387-
49820-1

6. Milovanov, A.: Algorithmic statistic, prediction and machine learning. In: Pro-
ceedings of 33rd Symposium on Theoretical Aspects of Computer Science (STACS
2016). Leibnitz International Proceedings in Informatics (LIPIcs), vol. 47, pp. 54:1–
54:13 (2016)

7. Milovanov, A.: On algorithmic statistics for space-bounded algorithms. In: Weil, P.
(ed.) CSR 2017. LNCS, vol. 10304, pp. 232–244. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-58747-9 21

8. Milovanov A., Vereshchagin N.: Stochasticity in algorithmic statistics for polyno-
mial time. In: 32nd Computational Complexity Conference (CCC 2017). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 79, pp. 17:1–17:18 (2017)

9. Shen, A.: Around kolmogorov complexity: basic notions and results. In: Vovk, V.,
Papadopoulos, H., Gammerman, A. (eds.) Measures of Complexity: Festschrift
for Alexey Chervonenkis, pp. 75–115. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21852-6 7. ISBN: 978-3-319-21851-9

10. Shen, A.: The concept of (α, β)-stochasticity in the Kolmogorov sense, and its
properties. Sov. Math. Dokl. 271(1), 295–299 (1983)

11. Shen, A., Uspensky, V., Vereshchagin, N.: Kolmogorov Complexity and Algorith-
mic Randomness. ACM, New York (2017)

12. Stockmeyer, L.: On approximation algorithms for #P. SIAM J. Comput. 14(4),
849–861 (1985)

13. Vereshchagin, N., Shen, A.: Algorithmic statistics: forty years later. In: Day, A.,
Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds.)
Computability and Complexity. LNCS, vol. 10010, pp. 669–737. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-50062-1 41

14. Vereshchagin, N., Vitányi, P.M.B.: Kolmogorov’s structure functions with an appli-
cation to the foundations of model selection. IEEE Trans. Inf. Theory 50(12),
3265–3290 (2004). Preliminary Version: Proceedings of 47th IEEE Symposium on
the Foundations of Computer Science, pp. 751–760 (2002)

15. Vereshchagin, N., Vitányi, P.M.B.: Rate distortion and denoising of individual data
using Kolmogorov complexity. IEEE Trans. Inf. Theory 56(7), 3438–3454 (2010)

https://doi.org/10.1007/978-3-540-45077-1_28
https://doi.org/10.1007/978-3-540-45077-1_28
https://doi.org/10.1007/978-0-387-49820-1
https://doi.org/10.1007/978-0-387-49820-1
https://doi.org/10.1007/978-3-319-58747-9_21
https://doi.org/10.1007/978-3-319-58747-9_21
https://doi.org/10.1007/978-3-319-21852-6_7
https://doi.org/10.1007/978-3-319-21852-6_7
https://doi.org/10.1007/978-3-319-50062-1_41

