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1 Algorithmic Statistics: a Reminder

We consider strings over the binary alphabet {0, 1}. We use |x| to denote the length
of a string x. All logarithms are binary. The conditional Kolmogorov complexity1 of
x given y is denoted by C(x|y).

Let x be some observation data encoded as a binary string. We look for a suitable
explanation for x. An explanation (= model) is a finite set containing x. More specif-
ically, we want to find a simple model A such that x is a typical element in A. First
of all we need to define what are simple models and typical elements. In classical
algorithmic statistics a set A is called simple if its Kolmogorov complexity C(A) is
small. 2 To define the notion of a typical element, we use the randomness deficiency
of x as an element of A:

d(x|A) := log |A| − C(x|A).

The randomness deficiency is always non-negative (with O(1) accuracy; note that
complexity is defined up to O(1) additive term). Indeed, we can find x given A and
the index of x in A. For each set A, most elements x of A have small randomness
deficiency d(x|A): the fraction of x in A with randomness deficiency greater than β

is less than 2−β .
There is another quantity measuring the quality of A as an explanation of x: the

optimality deficiency

δ(x,A) := C(A) + log |A| − C(x).

It is non-negative with logarithmic accuracy (for similar reasons). This quantity rep-
resents the following idea: a good explanation (a set) should be simple but also should
be small, so the “two-part” description of x (first we specify A, then the ordinal
number of x in A) is almost optimal in terms of length.

One could wonder why we consider only sets as explanations and not general
probability distributions (in other terms, why we restrict ourselves to uniform proba-
bility distributions). Indeed, one can define the notions of complexity and deficiency
for distributions on binary strings with finite support and rational values.3 Still this
extension is not essential: for every string x and for every distribution P there exists a
set A � x explaining x that is almost as good as P , as the following observation [19]
shows:

Proposition 1 For every string x and for every distribution P there exists a setA � x

such that C(A|P) ≤ O(log |x|) and 1
|A| ≥ 1

2P(x).

1The definition and basic properties of Kolmogorov complexity can be found in the textbooks [7, 16]; for
a short survey see [14].
2Kolmogorov complexity of a finite set A is defined as follows. We fix some computable bijection (encod-
ing) A �→ [A] from the family of all finite sets to the set of all binary strings. Then we define C(A) as the
complexity C([A]) of the code [A] of A.
3The randomness deficiency of a string x with respect to a distribution P is defined as d(x|P) :=
− logP(x)−C(x|P). The optimality deficiency is defined as δ(x, P ) := C(P )−logP(x)−C(x). See [18]
for details.
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Kolmogorov called a string x stochastic if there exists a set A � x such that
C(A) ≈ 0 and d(x|A) ≈ 0. The last equality means that log |A| ≈ C(x|A) and
therefore log |A| ≈ C(x) because C(A) ≈ 0 (the first condition). So, δ(x,A) is also
small for good explanations.

For example, an incompressible string of length n (i.e., a string whose complexity
is close to its length n) is stochastic—the corresponding set is {0, 1}n. Non-stochastic
objects also exist [15, 19].

2 Space-bounded Complexities

As mentioned by Kolmogorov in [6], the notion of Kolmogorov complexity C(x)

belongs to general computability theory: It ignores time and space needed to produce
x from its short description. To take the resources into account, we may introduce
space- or time-bounded Kolmogorov complexities (see, for example, [2] or [17]). In
this paper we consider space bounds and require that the space used by an algorithm
is bounded by a polynomial in the length of its input.

The Kolmogorov complexity of a string x is defined as the minimal length of a
program that produces x (on the empty input) and uses at most m bits of memory.4

We denote this value by Cm(x) (since we do not consider time bounds, the superscript
m always denotes the space bound). If for some x and m such a program p does not
exist, we let Cm(x) := ∞.

Of course, this definition depends on the programming language used. We need to
fix some “universal” language. More formally, a Turing machine V with two inputs
is called universal if for every machine U with two inputs and for every q there exists
p with |p| ≤ |q| + O(1) such that V (p, y) = U(q, y) for every y, and V uses space
at most O(m) if U uses space m on input (q, y). Here the constant in O(m) depends
on U but does not depend on q. Such a universal machine does exist. Indeed, we
may let p = Ûq where Û is a self-delimiting description of U ; the machine V first
decodes U and then simulates U on the rest of the input p (i.e., q) and the second
input. It is important that the simulation overhead in terms of space is only a constant
factor. (This is a standard construction used in the definition of the resource-bounded
complexity; see, for example [7].)

Now we fix some universal machine V and interpret the statement “program p

produces x on the empty input” as V (p, �) = x, where � denotes the empty string.
The resulting definition depend on the choice of V , but this dependence is limited.
Namely, the following proposition holds:

Proposition 2 ([7, Theorem 7.1.1]) Let V be a universal machine in the sense
explained above. Then for every machine U there exists some constants c1, c2 such
that

Cc1m
V (x) ≤ Cm

U(x) + c2

4We agree that only work tape cells (but not the cells on input or output tapes) are taken into account.
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for every m and x, where the subscripts U and V denote the machine used in the
definition.

In the sequel we do not mention the universal machine V explicitly and denote
V (p.x) as p(x) and call it the output of program p on input x. Similar convention is
used for oracle computations (see below).

We need to extend the notion of space-bounded complexity to arbitrary sets (in
fact, we will use only finite sets). The (decision) complexity of a set A with space
bound m is defined as the minimal length of a program p such that

• p(y) = 1 if y ∈ A;
• p(y) = 0 if y /∈ A;
• p uses at most m bits of memory on every input.

Denote this value as Cm(A). (As before, the universal machine is used in this
definition, and Proposition 2 can be easily extended to this case.)

We also need conditional complexities. Both strings and sets (oracles) will be used
as conditions. The definitions given above extend naturally to this case; we do not
count the cells on the oracle tape when speaking about used memory. For example,
the value Cm(x|A) is defined as the minimal length of a program that on empty input
and with oracle A, uses space at most m and produces x. The value Cm(B|A) for
arbitrary sets A, B is defined in a similar way. The value Cm(A|x) is defined as the
minimal length of a program p such that p(y, x) equals 1 for y ∈ A and 0 for y /∈ A,
and uses space at most m. (Here we need to consider universal machines with three
inputs instead of two, but it can be done in a straightforward way.)

For space-bounded complexity the complexity of a string is close to the complex-
ity of a singleton that consists of this string:

Proposition 3 There exists constants c1 and c2 such that

Cc1(m+|x|)(x) ≤ Cm({x}) + c2

and

Cc1(m+|x|)({x}) ≤ Cm(x) + c2

for all m and x.

Indeed, having the program that decides {x}, we may try all strings in the order
of increasing length until we find one that is accepted; having a program that pro-
duces x, we can compare input y with x and therefore decide {x}. In both cases
we need additional space of size O(|x|), so the space bound in the left-hand side is
c1(m+x). In general, considering inequalities for bounded-space complexity, we use
polynomially large space bounds in the left-hand side of the inequality.

Let us note, as a digression, that for time-bounded complexity such an argu-
ment does not work, and another notion of distinguishing complexity arises (for the
complexity of a singleton {x}).
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3 Space-bounded Algorithmic Statistics

Which elements of a finite setA should be considered as typical in the space-bounded
setting? Let us consider the following space-bounded versions of randomness and
optimality deficiencies:

da(x|A) := log |A| − Ca(x|A),

δb,d(x, A) := Cb(A) + log |A| − Cd(x).

Note that the optimality deficiency now uses two space bounds b and d (for A and x

respectively) and is decreasing in b and increasing in d. As before, it is easy to show
that both deficiencies values are non-negative (with logarithmic accuracy) provided
a ≥ p(|x|) and d ≥ p(|x| + b) for a large enough polynomial p. (The term |x| is
needed because we enumerate elements of A in the length-lexicographic order and
need to keep the last considered element.)

We may say that a set A is a good explanation for a string x (that belongs to A)
if Cr (A) ≈ 0 and log |A| ≈ Cm(x) (with O(log |x|) accuracy) for some reasonable
(not very large) values of r and m. In this case the values dm(x|A) and δr,m(x, A) are
small.

As before, we can try to use a more general notion of a model and replace sets with
distributions. For that we need to define the complexity of a probability distribution
P with space boundm that is denoted by Cm(P ). This value is defined as the minimal
length of a program p without input and with the following two properties:

• for every x the probability of the event “p outputs x” is equal to P(x);
• the memory used by p never exceeds m (however, p may use more than m

random bits in general).

If such a program does not exist, then Cm(P ) := ∞.5

This allows us to define the optimality deficiency as

δb,d(x, P ) := Cb(P ) − logP(x) − Cd(x).

However, for randomness deficiency things are more complicated since it is not clear
how to define conditional complexity Cm(x|P) if the condition P is a distribution.
Moreover, even for optimality deficiency it is not obvious that it is non-negative
with reasonable precision for reasonable space bounds. This can be derived from the
following result (Theorem 4, but at the same time this result shows that our general-
ization does not give us much, as it was the case for classical algorithmic statistics
(Proposition 1), though for much more subtle reasons).

5This is only one possible way to define the notion of bounded-space complexity for a distribution. Instead
of a randomized program that has P as output distribution, we may consider a program that computes
P(x) for a give input x. The relations between these two definitions are not well understood.
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Theorem 4 There exist a polynomial r and a constant c such that for every string
x, for every distribution P and for every m there exists a set A � x such that
Cr(m+n)(A) ≤ Cm(P ) + c log(n + m) and 1

|A| ≥ P(x)2−c log n. Here n is the length
of x.

This theorem will be proven in Section 6. The main tool is the following fact:
for every constructible function f (n) ≥ log n every f (n)-tape bounded probabilistic
Turing machine can be simulated on deterministic one within poly(f (n)) space. This
result due to Simon and Jung [5].

4 Descriptions of Restricted Type

There is a problem with our version of space-bounded algorithmic statistics. It turns
out that every string has a good explanation. Indeed, let x be a string such that
Cm(x) = k. Define a set A � x as {y | Cm(y) ≤ k}. The log-size of this set is equal
to k up to a constant: log |A| = Cm(x) + O(1). Note also that A can be decided by a
program of length O(log(k+m)) that uses poly(k+m) space. This program includes
information about m and k and tries all programs of size k using space m. (We need
space k to keep track of the last program tried.)

So, for space-bounded algorithms all strings have good explanations (in other
words, they are stochastic). This fact has a counterpart in classical algorithmic statis-
tics: if we replace the complexity of A in the definition of the deficiencies by the
enumeration complexity of A (i.e., the length of a shortest program that enumerates
A), then every string x has a model of small deficiency. This model includes all
strings that have complexity at most C(x).

So far we considered arbitrary finite sets (or more general distributions) as mod-
els (statistical hypotheses). We have seen that for such class of hypotheses the
theory becomes trivial. However, in practice we usually have some a priori infor-
mation about the data. We know that the data was obtained by sampling with
respect to an unknown probability distribution from a known family of distributions.
For simplicity we will consider only uniform distributions i.e. a family of finite
sets A.

For example, we can consider the family of all Hamming balls as A. (That
means we know a priory that our string was obtained by flipping certain num-
ber of bits in an unknown string.) Or we may consider the family that con-
sists of all ‘cylinders’: for every n and for every string u of length at most
n we consider the set of all n-bit strings that have prefix u. It turns out that
for the first family there exists a string that has no good explanations in this
family: the concatenation of the all zero string and an incompressible string
(i.e. a string whose Kolmogorov complexity is close to its length) of the same
length. See Proposition 13 in the appendix for a rigorous formulation and a
proof.

Restricting the class of allowed hypotheses was initiated in [20]. It turns out that
there exists a direct connection between randomness and optimality deficiencies in
the case when a family is enumerable.
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Theorem 5 ([20]) LetA be an enumerable family of sets. Assume that every set from
A consists of strings of the same length. Let x be a string of length n contained in
A ∈ A. Then:

(a) d(x|A) ≤ δ(x,A) + O(log(C(A) + n)).
(b) There exists B ∈ A containing x such that:

δ(x, B) ≤ d(x|A) + O(log(C(A) + n)).

In our paper we will consider families with the following properties:

• Every set fromA consists of strings of the same length. The family of all subsets
of {0, 1}n that belong to A is denoted by An.

• There exists a polynomial p such that |An| ≤ 2p(n) for every n.
• There exists an algorithm enumerating all sets from An in space poly(n).

The last requirement means the following. There exists an indexing of An and a
Turing machine M that for a pair of integers (n; i) and a string x in the input, outputs
1 if x belongs to i-th set of An and 0 otherwise. Moreover, on every such input, M
uses at most poly(n) space.

Any family of finite sets of strings that satisfies these three conditions is called
acceptable. For example, the family of all Hamming balls is acceptable. Our main
result is the following analogue of Theorem 5.

Theorem 6 (a) There exist a polynomial p and a constant c such that for every set
A � x and for every m the following inequality holds

dm(x|A) ≤ δm,p(x, A) + c log(Cm(A)).

Here p = p(m + n) and n is the length of x.
(b) For every acceptable family of sets A there exists a polynomial p such that the

following property holds. For every A ∈ A, for every x ∈ A and for every
integer m there exists a set B � x from A such that

• log |B| ≤ log |A| + 1;
• Cs(B) ≤ Cm(A) − Cs(A|x) + O(log(n + m)).

Here s = p(m + n) and n is the length of x.

A critical reader may say that an analogue of Theorem 5 (b) should have the
following form (and we completely agree).

Hypothesis 1 There exist a polynomial p and a constant c such that for every set
A � x from A and for every m there exists a set B ∈ A such that

δp,m(x, B) ≤ dp(x|A) + c log(n + m).

Here p = p(m + n), n is the length of x and A is an acceptable family of sets.

We argue in Section 5.1 why Theorem 6 (b) is close to Hypothesis 1.
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5 Proof of Theorem 6

Proof of Theorem 6(a) The inequality we have to prove is equivalent to the following

Cp(x) ≤ Cm(x|A) + Cm(A) + c log(Cm(A) + n)

(by the definitions of optimality and randomness deficiencies).
Consider a program p of length Cm(x|A) that distinguishes x and uses A as an

oracle. We need to construct a program that also distinguishes x but does not use any
oracle. For this add to p a procedure distinguishing A. There exists such a procedure
of length Cm(A). So, we get a program of the required length (with an additional
O(log(Cm(A))) bits used for pair coding) that uses poly(m) space.

For all x and A � x the randomness deficiency is not greater than the optimal
deficiency. The following example shows that the difference can be large.

Example 1 Consider an incompressible string x of length n, thus C(x) = n (this
equality as well as further ones holds with logarithmic precision). Let y be an n-bit
string that is also incompressible and independent of x, i.e. C(y|x) = n. By symmetry
of information (see [7, 16]) we have C(x|y) = n.

Define A := {0, 1}n \ {y}. The randomness deficiency of x in A (without resource
restrictions) is equal to 0. Hence, this is true for any resource restrictions (C(x|A)

is not greater than Cm(x|A) for every m). Hence, for any m we have dm(x|A) = 0.
On the other hand δp,m(x, A) = n for all p and large enough m. Indeed, take m =
poly(n) such that Cm(x) = n. Since C(A) = n we have Cq(A) = n for every q.

So, we can not just let A = B in Hypothesis 1. In some cases we have to ‘improve’
A (in the example above we can take {0, 1}n as an improved set).

5.1 Sketch of the Proof of Theorem 5(b)

The proof of Theorem 6 (b) is similar to the proof of Theorem 5 (b). We present a
sketch of the proof of Theorem 5 (b).

Theorem 5 (b) states that there exists a set B ∈ A containing x such that δ(x, B) ≤
d(x|A). (Here and later we omit terms of logarithmic order.) We derive this from the
following statement.

(1) There exists a set B ∈ A containing x such that

|B| ≤ 2 · |A| and C(B) ≤ C(A) − C(A|x).

For such B the inequality δ(x, B) ≤ d(x|A) easily follows from the inequality
C(A) − C(A|x) − C(x) ≤ −C(x|A). The latter inequality holds by symmetry
of information.

To prove (1) note that
(2) there exist at least 2C(A|x) sets inA containing x whose complexity and size are

at most C(A) and 2 · |A|, respectively.
Indeed, knowing x we can enumerate all sets from A containing x whose

parameters (complexity and size) are not worse than the parameters of A. Since
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we can describe A by its ordinal number in this enumeration we conclude that
the length of this number is at least C(A|x) (with logarithmic precision).

Now (1) follows from the following statement.
(3) Assume that A contains at least 2k sets of complexity at most i and size at

most 2j containing x. Then one of them (i.e., some set in A of size at most 2j

containing x) has complexity at most i − k.

(We will apply it to i = C(A), j = 
log |A|� and k = C(A|x).)
So, Theorem 6 (b) is an analogue of (2). Despite there is an analogue of symme-

try of information for space-bounded algorithms (see [8] and Appendix) Hypothesis
1 does not follow from Theorem 6 (b) directly. The problem is the following. For
inequalities for space-bounded complexity we can not sum inequalities and derive
from them new inequalities as in the unbounded case. Consider the following exam-
ple. Let X, Y , Z, W and T be some numbers. Assume that X + Y ≤ Z and
Z + W ≤ Y + T . Then of course X + W ≤ T . Now let X, Y , Z, W and T be
not numbers but functions depending on some space bounds. In our case X = C(B),
Y = C(A|x), Z = C(A), W = C(x|A) and T = C(x). The inequality above holds in
the following form:

∀p∃q : Zq + Wq ≤ Yp + T p and ∀q∃r : Xr + Y r ≤ Zq.

Then we can derive that

∀p∃r : Xr + Y r + Wq ≤ Yp + T p.

This is not what we want because Y r can be smaller than Yp.
In the next subsection we derive Theorem 6 (b) from Lemma 7 (this is an ana-

logue of the third statement). In the proof of Lemma 7 we use the Nisan-Wigderson
generator.

5.2 Main Lemma

We will derive Theorem 6 (b) from the following

Lemma 7 Fix some acceptable familyA of sets. Then there exist a polynomial p and
a constant c such that the following statement holds for every j :

For every string x of length n that belongs to at least 2k sets from An that have
cardinality at most 2j and space-bounded complexity (with bound m) at most i, there
is a set A ∈ An that contains x, has cardinality at most 2j and space-bounded
complexity at most i − k + c log(n + m) with bound m + p(n).

Proof of Theorem 6 (b) assuming Lemma 7 Denote by A′ the family of all sets in
An containing x whose parameters are not worse than those of A.

A′ := {A′ ∈ An | x ∈ A′,Cm(A′) ≤ Cm(A), log |A′| ≤ �log |A|�}.
Let k = log |A′|.

We describe A with k+O(log(n+m)) bits when x is known. The sets inA′ (more
specifically, their programs) can be enumerated given n,m and �log |A|� are known.
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This enumeration can be done in space poly(m + n). We describe A by its ordinal
number in this enumeration, thus

Cs(A|x) ≤ k + O(log(n + m)).

Here s = poly(m + n).
Theorem 6 (b) follows from Lemma 7 for i = Cm(A) and j = �log |A|�.

5.3 Nisan-Wigderson Generator. Proof of the main Lemma

Define
Ai,j

n,m := {A′ ∈ An | Cm(A′) ≤ i, log |A′| ≤ j}
for an acceptable family of setsA. Define a random family of sets B as follows: every
set fromAi,j

n,m belongs to B with probability 2−k(n+2) ln 2 independently. We claim
that B satisfies the following two properties with high probability.

(1) The cardinality of B is at most 2i−k+2 · (n + k)2 ln 2.
(2) If a string of length n is contained in at least 2k sets fromAi,j

n,m then one of these
sets belongs to B.

Lemma 8 With probability at least 1
2 , family B satisfies both properties (1) and (2).

Proof We show that B satisfies each of these properties (separately) with probability
at least 3

4 .
For property (1), this follows from Markov’s inequality: the cardinality of B

exceeds the expectation by a factor of 4 with probability less than 1
4 . (We can get a

much smaller bound.)
For property (2), consider a string of length n that belongs to at least 2k sets from

Ai,j
n,m. The probability of the event that all of these 2k sets do not belong to B, is at

most
(1 − 2−k(n + 2) ln 2)2

k ≤ 2−n−2 (since 1 − x ≤ e−x).

The probability of the sum of such events for all strings of length n is at most
2n2−n−2 = 1

4 .

Using Lemma 8 we prove the existence of a set whose unbounded complexity is at
most i−k+O(log(n+m)). Indeed, by Lemma 8 there exists a subfamily that satisfies
properties (1) and (2). The lexicographically first such family has small complexity,
because it can be computed given i, k, n and m. Note, that k and i are bounded by
poly(n): since A is acceptable, log |An| = poly(n), and hence, k is at most poly(n).
We can enumerate all sets from An, thus the space-bounded complexity of every
element of An (and in particular, i) is bounded by a polynomial in n. Now we can
describe the required set by the ordinal number of an enumeration of this subfamily.

However, this method does not satisfy the polynomial space-bounded in the com-
plexity terms: the brute-force search to find a suitable subfamily requires exponential
space. To reduce this space, we use the Nisan-Wigderson generator. A similar idea
was used in [11].
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Theorem 9 ([12, 13]) For every constant d and every positive polynomial q(m) there
exists a sequence of functions Gm : {0, 1}f → {0, 1}m where f = O(log2d+6 m)

such that:

• Function Gm is computable in space poly(f );
• For every family of circuits Cm of size q(m) and depth d and for large enough m

it holds that:

| Pr
x
[Cm(Gm(x)) = 1] − Pr

y
[Cm(y) = 1]| <

1

m
,

where x is distributed uniformly in {0, 1}f , and y is distributed uniformly in
{0, 1}m.

We will use this theorem with m = 2i+n. Then f is a polynomial in i + n (for
constant d), hence f = poly(n). Every element whose complexity is at most i cor-
responds to a string of length i in the natural way. So, we can assign subfamilies of
Ai,j

n,m to strings of length m.
Assume that there exists a circuit of size 2O(n) and constant depth that inputs a

subfamily ofAi,j
n and outputs 1 if this subfamily satisfies properties (1) and (2) from

Lemma 8, and 0 otherwise. First we prove Lemma 7 using this assumption.
Compute Gm(y) for all strings y of length f until we find a suitable one, i.e.,

whose image satisfies the two properties. Such a string exists by Lemma 8, Theo-
rem 9 and our assumption. Note that we can find the lexicographically first suitable
string by using space m + poly(n), so bounded by space m + poly(n) the complexity
of this string is equal to O(log(n + m)).

If we construct a constant depth circuit of the required size that verifies
properties (1) and (2), we are finished. Unfortunately we do not know how
to construct such a circuit verifying the first property (we can not compute
threshold functions by constant-depth circuits—see [4]). However, we use the
following:

Theorem 10 ([1]) For every t there exists a circuit of constant depth and poly(t) size
that on input a binary string of length t outputs 1 if the input has at most log2 t ones
and outputs 0 otherwise.

To use this theorem we make a little change of the first property. Divide Ai,j
n into

2i−k parts of size 2k (according to an algorithm that enumerates Ai,j
n ). The corrected

property is the following.
(1)∗ The family of sets B contains at most (n + k)2 sets from each of these parts.

Lemma 11 The family of sets B satisfies both properties (1)∗ and (2) with probabil-
ity at least 1

3 .

The proof of this lemma is not difficult but uses some cumbersome formulas and
is given in the Appendix.
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Proof of Lemma 7 It is clear that property (1)∗ implies property (1). By using Lemma
7 and the discussion above, it is enough to show that properties (1)∗ and (2) can be
verified by constant depth circuits of size 2O(i+n).

Such a circuit exists for property (1)∗ by Theorem 10.
The second property can be verified by the following circuit of depth 2. For every

string of length n contained in 2k sets from Ai,j
n , construct a corresponding disjunct.

Then construct a conjunction gate uniting all of these disjuncts.

6 Proof of Theorem 4

Theorem 4 has an easy proof under the assumption that the program corresponding to
distribution P uses poly(n) random bits. Indeed, in such case we can run a program
with all possible random bits and calculate P(x) in polynomial space. Hence, we can
describe A as the set of all strings for which 2−k ≥ P(x) > 2−k−1.

The proof of this theorem for the general case (when the number of random bits
is exponentially large) was sketched in [3] (answering the author’s question). We
provide a more accessible argument using the following theorem.

Theorem 12 ([5]) Let f be a probabilistic program that uses at most r(n) space on
inputs of length n for some polynomial r . Then there exists a deterministic program
̂f with the following properties:

(a) ̂f uses at most r2(n) space on inputs of length n;
(b) if Pr[f (x) = 1] > 2

3 then ̂f (x) = 1. If Pr[f (x) = 1] < 1
3 then ̂f (x) = 0;

(c) | ̂f | ≤ |f | + O(1). 6

Proof of Theorem 4 If the complexity of distribution P (bounded by space m) is
equal to infinity, then A = {x} satisfies the conditions of the theorem.

Otherwise, P can be specified by a program g. Consider the integer k such that:
2−k+1 ≥ P(x) ≥ 2−k . We can assume that k is not greater than n—the length of
x—, otherwise, A = {0, 1}n satisfies the conditions of the theorem.

Note, that we can find a good approximation for P(y) by running g exponentially
many times.

More accurately, we evaluate g, 2100k
2
times. For every string y, let ω(y) be

the frequency of the output of y. The following inequality holds by Hoeffding’s
inequality

Pr[|ω(y) − P(y)| > 2−k−10] <
1

3
.

Hence, using program g, we can construct a program f that uses poly(n) space (on
inputs of length n) such that

6We use a stronger variant than the theorem in [5], but the proof is the same: we added requirement (c),
but this is easily seen to be true, because the constructed program for f̂ is a simple transformation of f ,
and it suffices to add some fixed amount of instructions to f . Also, the theorem in [5] does not assume
that Pr[f (x)] belongs to [ 13 ; 2

3 ]. However, this assumption is not used in the proof of this theorem.
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(1) if P(y) > 2−k−1 and |y| = n then Pr[f (y) = 1] > 2
3 ;

(2) if P(y) < 2−k−2 then Pr[f (y) = 0] > 2
3 .

Using Theorem 12 for f we get a program ̂f such that | ̂f | ≤ |g| + O(log n). By
the first property of f we get ̂f (x) = 1. From the second property it follows that the
cardinality of the set {y | ̂f (y) = 1} is not greater than 2k+2. Thus, this set satisfies
the requirements of the theorem.

Open Question

Does Hypothesis 1 hold?
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Appendix

Proposition 13 Let x = y · z be a concatenation of strings y and z of length n where

y =
n zeros

︷ ︸︸ ︷

000 . . . 00 and C(z) > n − ε for some positive ε. Assume that x belongs to some
Hamming ball B. Then

2C(B) + log |B| − C(x) >
2

5
n − ε − O(log n).

If ε is small, then Hamming ball B can not satisfy C(B) ≈ 0 and log |B| ≈ C(x).

Proof Denote by r and b the radius and the center of B. Denote by b0 and b1 the first
and the second parts of b. (So, b = b0 · b1 and |b0| = |b1| = n.) Then z belongs to
the Hamming ball B1 with center b1 and radius r . Hence,

C(B1) + log |B1| ≥ C(z) − O(log n) = C(x) − O(log n).

Note that C(B1) ≤ C(B)+O(log n). The log-size ofB1 can be estimated as nH( r
n
)+

O(log n), where H(t) := −t log t − (1− t) log(1− t) is the binary Shannon entropy
(see, for example, [9]). So, the inequality above can be rewritten as

C(B) + nH
( r

n

)

≥ C(x) − O(log n). (1)

We need to show that 2C(B)+ log |B|−C(x) > 2
5n−ε−O(log n), where log |B| =

2nH( r
2n ) + O(log n). This inequality follows from (1) and the inequality below by

an easy calculation.

H
( r

n

)

− H
( r

2n

)

≤ 3

10
.
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To verify the last inequality one can show that the maximum of the function H(t) −
H( t

2 ) is equal to
ln( 34+ 1√

2
)

ln 4 < 3
10 .

Symmetry of Information

Define Cm(A, B) as the minimal length of a program that on input a pair of strings
(a, b) uses at most space m, and outputs the bits (a ∈ A, b ∈ B).

Lemma 14 (Symmetry of information) Assume A, B ⊆ {0, 1}n. Then
(a) ∀m Cp(A, B) ≤ Cm(A) + Cm(B|A) + O(log(Cm(A, B) + m + n))

for p = m + poly(n + Cm(A, B)).

(b) ∀m Cp(A) + Cp(B|A) ≤ Cm(A, B) + O(log(Cm(A, B) + m + n))

for p = 2m + poly(n + Cm(A, B)).

Proof of Lemma 14 (a) The proof is similar to the proof of Theorem 6 (a).

Proof of Lemma 14 (b) Let k := Cm(A, B). Denote by D the family of sets (U, V )

such that Cm(U, V ) ≤ k and U, V ⊆ {0, 1}n. It is clear that |D| < 2k+1. Denote
by DA the pairs of D for which the first element is equal to A. Let t satisfy the
inequalities 2t ≤ |DA| < 2t+1.

We prove that

• Cp(B|A) does not exceed t significantly;
• Cp(A) does not exceed k − t significantly.

Here p = 2m + O(n).
We start with the first statement. There exists a program that enumerates all sets

from DA using A as an oracle and that works in space 2m + O(n). Indeed, such
enumeration can be done in the following way: enumerate all programs of length k

and verify the following condition for every pair of n-bit strings. First, a program
uses at most m space on this input and does not loop. To verify it we need to check
that the program does not compute longer than 2O(m) steps. Second, if a second n-
bit string belongs to A then the program outputs 1, and 0 otherwise. Append to this
program the ordinal number of a program that distinguishes (A, B). This number is
not greater than t +1. Therefore we have Cp(B|A) ≤ t +O(log(Cm(A, B)+m+n)).

Now we prove the second statement. Note that there exist at most 2k−t+1 sets U

such that |DU | ≥ 2t (including A). Hence, if we construct a program that enumer-
ates all sets with such property (and does not use much space) then we are finished,
because the set A can be described by the ordinal number of this enumeration. Let us
construct such a program. It works as follows:

Enumerate all sets U that are the first elements from D, i.e. we enumerate pro-
grams that distinguish the corresponding sets (say, lexicographically). We go to the
next step if the following properties hold. First, |DU | ≥ 2t , and second: we did not
consider set U earlier (i.e. every program whose lexicographical number is smaller
does not distinguish U or is not the first element from a set from D).
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This program uses 2m+poly(n+Cm(A, B)) space and has lengthO(log(Cm(A)+
n + m)), and hence satisfies all requirements.

Proof of Lemma 11 It suffices to show that B satisfies property (1)∗ with probability
at most 2−n, because B satisfies property (2) with probability at most 1

4 .
For this let us show that every part is ‘bad’ (i.e. has at least (n + k)2 + 1 sets

from B) with probability at most 2−2n. The probability of such event is equal to the
probability that a binomial random variable with parameters (2k, 2−k(n + 2) ln 2)
exceeds (n+ k)2. To bound this, we use an easy but lengthy sequence of estimations.
For w := 2k , p := 2−k(n + 2) ln 2 and v := (n + k)2 we have

w
∑

i=v

(

w

i

)

pi(1 − p)w−i < w ·
(

w

v

)

pv(1 − p)w−v < w ·
(

w

v

)

pv < w
(wp)v

v! .

The leftmost inequality follows from wp = (n + 2) ln 2 ≤ (n + k)2 = v. Because
wp = (n + 2) ln 2 < 10n, we obtain

w
(wp)v

v! <
2k(10n)(n+k)2

((n + k)2)! � 2−2n.
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