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It is known (from Counting curves and their projections by Joachim von zur Gathen, Marek 
Karpinski, Igor Shparlinski [1, part 4]) that counting the number of points on a curve 
R(x, y) = 0 where R(x, y) is a sparse polynomial over Fq is #P-complete under randomized 
reductions.
We give a simple proof of a stronger result: counting roots of a sparse univariate
polynomial over Fq is #P-complete under deterministic reductions.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction and main result

We consider the field Fq where q = pn is a power of 
a prime number p. Elements of Fq can be represented as 
polynomials from Fp[x] modulo some irreducible polyno-
mial of degree n. This polynomial can be found in poly-
nomial (in p, n) time,1 as well as the matrix that relates 
two representations corresponding to different irreducible 
polynomials, see [4]. Therefore, for a fixed p, we do not 
need to specify the choice of an irreducible polynomial 
when speaking about algorithmic problems dealing with 
elements of Fpn .

Fix a prime number p. Consider the following counting 
problem: given an integer n in the unary representation 
and a polynomial R ∈ Fpn [x], find the number of R ’s roots 
in Fpn . The polynomial R is given in a sparse representa-
tion,2 as a list of monomials; each monomial akxk is pre-
sented as a pair (k in binary, ak as an element of Fpn ). This 

E-mail address: amilovanov@hse.ru.
1 Note that the time here is polynomial in p, not in log p; for us this is 

enough, since p is fixed in our statements.
2 The same problem for a polynomial presented as a list of all coef-

ficients, including zeros (each coefficient takes �(n) bits), is solvable in 
polynomial time for multivariate polynomials and a fixed p and the num-
ber of variables, see, e.g., [3].
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problem is called SparcePolynomialRoots-p. Our main re-
sult is the following statement:

Theorem 1. For every prime p the problem SparsePolynomial-

Roots-p is #P-complete under deterministic reductions.

Note that this implies the result from [1] mentioned in 
the Abstract.

2. Proof of the main result

We use #3SAT (counting the number of satisfying as-
signments for a 3-CNF) as a standard #P-complete prob-
lem. Consider some 3-CNF S . Each clause in S has the 
form L1 ∨ L2 ∨ L3 where Li are literals (i.e., variables or 
negations of variables). Then we construct a system S ′ of 
polynomial equations whose solutions correspond to the 
satisfying assignments for S . For each propositional vari-
able xi we have an equation x2

i = xi that guarantees that 
xi = 0 (False) or xi = 1 (True); the literal ¬xi is now 1 −xi , 
and each disjunction L1 ∨ L2 ∨ L3 is converted to a polyno-
mial equation (1 − L1) · (1 − L2) · (1 − L3) = 0. Note that the 
correspondence between the satisfying assignments for S
and solutions of S ′ works for every field; we use it for the 
field Fp .
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We want the number of equations in S ′ to be smaller 
than the number of the variables (we need this for some 
technical reasons). To achieve this, we add 2t dummy vari-
ables xm+1, . . . xm+2t (to the existing variables x1, . . . , xm) 
and t new equations that guarantee (using Fermat’s little 
theorem) that all dummy variable are zeros: (1 − xp−1

m+1) ·
(1 − xp−1

m+2) = 1, (1 − xp−1
m+3) · (1 − xp−1

m+4) = 1, etc. For large 
enough t we have more variables than equations. Note that 
this trick does not change the number of solutions. We 
keep the notation S ′ for the resulting system.

Let x1, . . . , xn be the variables that appear in S ′ . These 
variables are considered as elements of Fp . Now we reduce 
S ′ to one polynomial equation over Fpn . For that, we con-
sider a basis ω1, . . . , ωn of Fpn over Fp . Then every x ∈ Fpn

can be represented uniquely as

x = x1ω1 + . . . + xnωn,

where x1, . . . , xn ∈ Fp . First we transform the equations 
of S ′ into sparse polynomial equations with one variable 
x ∈ Fpn , and then show how the resulting system of poly-
nomial equations in x can be replaced by one equation.

Now we implement this plan. We need to find sparse 
polynomials f i ∈ Fpn [x] such that f i(x) = xi . This is enough 
for our first step, since a product of a constant number 
of polynomials (three for the disjuctions and O (p) for the 
additional equations; recall that p is a constant) in the 
sparse representation is again a polynomial in the sparse 
representation whose size is only polynomially bigger. The 
following lemma [5, Lemma 3.51] helps.

Lemma. Assume that α1, . . . , αk for some k � n are elements 
of Fpn that are linearly independent over Fp. Then the determi-
nant
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is a non-zero element of Fpn .

For reader’s convenience we reproduce the proof here.

Proof of the lemma. Consider this determinant as a func-
tion of α1 when other αi are fixed. In other words, con-
sider the polynomial P (x) that is obtained if we replace 
α1 by x everywhere in the first row. We get a polynomial 
of degree (at most) pk−1. The powers of x appearing in 
P are 1, p, p2, . . . , pk−1, so this polynomial is linear as a 
function Fpn → Fpn if we consider Fpn as a vector space 
over Fp (recall that (a + b)p = ap + bp in a field of char-
acteristic p, and αp = α in Fp ). The polynomial P (x) has 
roots α2, . . . , αk (two equal rows guarantee the zero deter-
minant); all pk−1 linear combinations of α2, . . . , αk with 
Fp-coefficients are also roots due to linearity. Reasoning 
by induction, we may assume that the leading coefficient 
of P , being the determinant of the same type for smaller 
k, is not zero. Then we know that P has no other roots, 
and P (α1) �= 0, since α is not a linear combination of 
α2, . . . , αk . �
Now we define the polynomial

f1(x) := c
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for suitable c �= 0. We know (see the proof of the lemma) 
that f1 equals 0 on the linear combinations of ω2, . . . , ωn , 
i.e., on all elements with x1 = 0. The lemma says that 
f1(ω1) �= 0, and linearity guarantees that f1 has the same 
values on all elements x with x1 = 1. Choose c to make 
f1(ω1) equal to 1. Linearity over Fp then guarantees that 
f1(x) = x1 for all x ∈ Fpn .

We have constructed the polynomial f1; in the same 
way we construct f i(x) ∈ Fpn [x] such that f i(x) = xi for x =∑

xiωi . In this way we reduce a polynomial equation over 
Fp with n variables to a univariate polynomial equation 
over Fpn .

What have we achieved? We know that the number 
of satisfying assignments for 3-CNF S (with Boolean vari-
ables) is equal to the number of solutions of the system 
of polynomial equations P1(x) = 0, P2(x) = 0, . . . where Pk

are some polynomials in Fpn [x] and x ∈ Fpn . Each Pk is 
obtained from some equation in S ′ by replacing all xi by 
f i(x). We can now replace the system by one equation

P1(x)ω1 + P2(x)ω2 + . . . = 0

in Fpn using the fact that polynomials Pi have values 0
and 1 (being a product of two or three polynomials with 
this property). Here we use the specific properties of the 
system S ′ , in particular, we use that the number of equa-
tions in S ′ is at most n (otherwise we cannot find enough 
linearly independent ωi ).

As we have discussed, each Pk has only polynomially 
many monomials in the sparse representation. Note also 
that the coefficients of all f i (and therefore the coefficients 
of all Pk) can be computed in poly(size of S) time. Indeed, 
we need only to calculate the determinants that define the 
coefficients of f i , and this is a polynomial task; note that 
the powers of ω1, . . . , ωn can be computed by repeated 
squaring.

So, for each fixed p, we have constructed a determin-
istic polynomial reduction of #3-SAT to the problem of 
counting the number of roots for a univariate polynomial 
in Fpn in a sparse representation. Theorem 1 is proven.

3. Related questions

Note that the reduction in the proof is parsimonious, i.e., 
every satisfying assignment of a 3-CNF S corresponds to a 
root of the sparse polynomial constructed starting from S . 
This is useful if we consider the following problems:

• SparsePolynomialRoot-p for fixed p: given n and a 
polynomial from Fpn in sparse representation, find out 
if the given polynomial has a root in Fpn or not.
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• SparsePolynomialRootsParity-p: given n and a poly-
nomial from Fpn in sparse representation, return the 
parity of the number of roots of the given polynomial 
in Fpn .

Since 3SAT is NP-complete and ⊕3SAT is ⊕-complete, 
and since our reduction is parsimonious, we get the fol-
lowing corollaries.

Corollary 1 ([2]). SparsePolynomialRoot-p is NP-complete for 
every prime p.

Corollary 2. SparsePolynomialParityRoots-p is ⊕P-complete 
for every prime p.

Remark. We may also consider the version of the problem 
where the input p is presented in binary. Of course, this 
problem is also #P-hard (because it is #P-hard for a fixed 
p). However, the membership in #P for this problem is an 
open question.
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