Approximating Kolmogorov complexity function

Ruslan Ishkuvatov (joint work with Daniil Musatov, CiE 2019)

Kolmogorov complexity

• C(x) = the length of the shortest program p producing x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Kolmogorov complexity

• C(x) = the length of the shortest program p producing x.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

• Depends on programming language:

 $C_U(x) = \min\{|p|: U(p) = x\}$ where U is the interpreter (decompressor, description mode,...)

Kolmogorov complexity

C(x) = the length of the shortest program p producing x.
Depends on programming language:

 $C_U(x) = \min\{|p|: U(p) = x\}$ where U is the interpreter (decompressor, description mode,...)

• (Solomonoff – Kolmogorov theorem) There is an *optimal* U that makes C_U minimal up to O(1) additive term: for any other method U' there exists c such that

 $C_U(x) \leqslant C_{U'}(x) + c$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

for all x.

Kolmogorov complexity

C(x) = the length of the shortest program p producing x.
Depends on programming language:

 $C_U(x) = \min\{|p|: U(p) = x\}$ where U is the interpreter (decompressor, description mode,...)

• (Solomonoff – Kolmogorov theorem) There is an *optimal* U that makes C_U minimal up to O(1) additive term: for any other method U' there exists c such that

 $C_U(x) \leqslant C_{U'}(x) + c$

for all x.

Definition

Fix some optimal U and call $C_U(x)$ the Kolmogorov complexity of a string x. Notation: C(x).

Conditional complexity

• C(x|y) =conditional complexity of x given y

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conditional complexity

- C(x|y) =conditional complexity of x given y
- the minimal length of a program that produces x given y

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Conditional complexity

- C(x|y) =conditional complexity of x given y
- the minimal length of a program that produces x given y

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

• again there exists an optimal programming language that makes C(x|y) minimal up to an additive O(1)-term

Conditional complexity

- C(x|y) =conditional complexity of x given y
- the minimal length of a program that produces x given y

• again there exists an optimal programming language that makes C(x|y) minimal up to an additive O(1)-term

• C(x): amount of information in x

Conditional complexity

- C(x|y) =conditional complexity of x given y
- the minimal length of a program that produces x given y

• again there exists an optimal programming language that makes C(x|y) minimal up to an additive O(1)-term

- C(x): amount of information in x
- C(x|y): amount of information in x missing in y

Basic properties of Kolmogorov complexity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $C(x) \leq |x| + O(1)$: compare the optimal decompressor with a trivial one

- C(x) ≤ |x| + O(1): compare the optimal decompressor with a trivial one
- For every k ∈ N there are at most 2^k − 1 strings of Kolmogorov complexity less than k (not enough short programs).

- C(x) ≤ |x| + O(1): compare the optimal decompressor with a trivial one
- For every k ∈ N there are at most 2^k − 1 strings of Kolmogorov complexity less than k (not enough short programs).
- most strings of length n have complexity close to n (2^{-d}-fraction of strings can be compressed by d bits)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- C(x) ≤ |x| + O(1): compare the optimal decompressor with a trivial one
- For every k ∈ N there are at most 2^k − 1 strings of Kolmogorov complexity less than k (not enough short programs).
- most strings of length n have complexity close to n (2^{-d}-fraction of strings can be compressed by d bits)
- Algorithmic transformation does not increase complexity: C(A(x)) ≤ C(x) + O(1) for computable A

- C(x) ≤ |x| + O(1): compare the optimal decompressor with a trivial one
- For every k ∈ N there are at most 2^k − 1 strings of Kolmogorov complexity less than k (not enough short programs).
- most strings of length n have complexity close to n (2^{-d}-fraction of strings can be compressed by d bits)
- Algorithmic transformation does not increase complexity: C(A(x)) ≤ C(x) + O(1) for computable A
- Kolmogorov complexity is not computable and does not have nontrivial computable lower bounds

- C(x) ≤ |x| + O(1): compare the optimal decompressor with a trivial one
- For every k ∈ N there are at most 2^k − 1 strings of Kolmogorov complexity less than k (not enough short programs).
- most strings of length n have complexity close to n (2^{-d}-fraction of strings can be compressed by d bits)
- Algorithmic transformation does not increase complexity: C(A(x)) ≤ C(x) + O(1) for computable A
- Kolmogorov complexity is not computable and does not have nontrivial computable lower bounds
- "the minimal string of complexity greater than N" (Berry)

Approximating complexity for most inputs

Approximating complexity for most inputs

• (d, e)-approximation: $|\tilde{C}(x) - C(x)| < d$ for all x of length n except $\varepsilon = 2^{-e}$ fraction

Approximating complexity for most inputs

• (d, e)-approximation: $|\tilde{C}(x) - C(x)| < d$ for all x of length n except $\varepsilon = 2^{-e}$ fraction

• $\tilde{C}(x) = |x|$ is a (d, d)-approximation

Approximating complexity for most inputs

• (d, e)-approximation: $|\tilde{C}(x) - C(x)| < d$ for all x of length n except $\varepsilon = 2^{-e}$ fraction

- $\tilde{C}(x) = |x|$ is a (d, d)-approximation
- cheap trick: $\tilde{C}(x) = |x| d$ is a (d, 2d)-approximation

Approximating complexity for most inputs

• (d, e)-approximation: $|\tilde{C}(x) - C(x)| < d$ for all x of length n except $\varepsilon = 2^{-e}$ fraction

- $\tilde{C}(x) = |x|$ is a (d, d)-approximation
- cheap trick: $\tilde{C}(x) = |x| d$ is a (d, 2d)-approximation
- disclaimer: O(1) is omitted everywhere

Theorem

This is essentially optimal: no significantly better computable approximation exists.

Approximating Kolmogorov complexity function

Kolmogorov complexity approximations

Formal statement (uniform setting)

Formal statement (uniform setting)

• Let d(n) and e(n) be computable functions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Formal statement (uniform setting)

• Let d(n) and e(n) be computable functions

• Let $\tilde{C}(x)$ be a computable function on strings of all lengths that for every *n* is a (d(n), e(n))-approximation of C(x) for *n*-bit strings.

Theorem $e(n) \leq 2d(n) + O(1)$

Oracle setting

Mass problems: example

Approximating Kolmogorov complexity function

Mass problems: example

Theorem (A) Kolmogorov complexity is not computable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Mass problems: example

Theorem (A) Kolmogorov complexity is not computable.

Theorem (B)

Given an oracle ("external procedure") that computes Kolmogorov complexity function, one can solve the halting problem.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Mass problems: example

Theorem (A) Kolmogorov complexity is not computable.

Theorem (B)

Given an oracle ("external procedure") that computes Kolmogorov complexity function, one can solve the halting problem.

obviously B implies A, but in general B is a stronger statement

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Approximating Kolmogorov complexity function

Oracle setting

Mass problems: warning

Mass problems: warning

Theorem (A)

Nontrivial lower bounds for Kolmogorov complexity are not computable.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Mass problems: warning

Theorem (A)

Nontrivial lower bounds for Kolmogorov complexity are not computable.

Theorem (B)

(FALSE!) Given an oracle that computes a nontrivial lower bound for Kolmogorov complexity, one can solve the halting problem.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Mass problems: warning

Theorem (A)

Nontrivial lower bounds for Kolmogorov complexity are not computable.

Theorem (B)

(FALSE!) Given an oracle that computes a nontrivial lower bound for Kolmogorov complexity, one can solve the halting problem.

still some results about Kolmogorov complexity are true in (B)-version

Oracle setting

Approximating C is as difficult as computing it

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Theorem

There is a machine that, given an oracle that computes C up to factor 100, computes C exactly

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Theorem

There is a machine that, given an oracle that computes C up to factor 100, computes C exactly

Note: exact computation of C is equivalent to solving halting problem

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem

There is a machine that, given an oracle that computes C up to factor 100, computes C exactly

Note: exact computation of C is equivalent to solving halting problem

Theorem

Let d(n) and e(n) be two computable functions such that $e(n) - 2d(n) \rightarrow \infty$. Let $\tilde{C}(x)$ be a function on strings that (d(n), e(n))-approximates C(x) for every n. Then there is a machine that computes C using \tilde{C} as an oracle.

Theorem

There is a machine that, given an oracle that computes C up to factor 100, computes C exactly

Note: exact computation of C is equivalent to solving halting problem

Theorem

Let d(n) and e(n) be two computable functions such that $e(n) - 2d(n) \rightarrow \infty$. Let $\tilde{C}(x)$ be a function on strings that (d(n), e(n))-approximates C(x) for every n. Then there is a machine that computes C using \tilde{C} as an oracle. Note: the machine does not depend on \tilde{C} , only on d and e. "Proofs"

Finite case

Theorem

If e - 2d is large, then every (finite) function that (d, e)-approximates C(x) for n-bit inputs has high complexity

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

"Proofs"

Finite case

Theorem

If e - 2d is large, then every (finite) function that (d, e)-approximates C(x) for n-bit inputs has high complexity

Why is this enough? If \tilde{C} is a computable approximation, then its restriction on *n*-bit strings cannot have high complexity.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

"Proofs"

Finite case

Theorem

If e - 2d is large, then every (finite) function that (d, e)-approximates C(x) for n-bit inputs has high complexity

Why is this enough? If \tilde{C} is a computable approximation, then its restriction on *n*-bit strings cannot have high complexity.

Proof idea: if \tilde{C} approximates C, then one can construct a complex object knowing \tilde{C} and few bits of advice

-"Proofs"

More details

Let x_1, \ldots, x_{2^n} be an enumeration of *n*-bit strings in \tilde{C} -descending order. Among the first 2^{n-e} of them there is a string \hat{x} such that $|\tilde{C}(\hat{x}) - C(\hat{x})| < d$

Let x_1, \ldots, x_{2^n} be an enumeration of *n*-bit strings in \tilde{C} -descending order. Among the first 2^{n-e} of them there is a string \hat{x} such that $|\tilde{C}(\hat{x}) - C(\hat{x})| < d$ In particular, $C(\hat{x}) > \tilde{C}(\hat{x}) - d$

Let x_1, \ldots, x_{2^n} be an enumeration of *n*-bit strings in \tilde{C} -descending order. Among the first 2^{n-e} of them there is a string \hat{x} such that $|\tilde{C}(\hat{x}) - C(\hat{x})| < d$

In particular, $C(\hat{x}) > \tilde{C}(\hat{x}) - d$

Assuming $e \ge 2$, for at least $\frac{3}{4}$ of all *n*-bit strings their \tilde{C} -values are close to their complexity, and at least a half of the strings have complexity at least n - 1. Thus for at least a quarter of the strings their \tilde{C} -value is at least n - d.

Let x_1, \ldots, x_{2^n} be an enumeration of *n*-bit strings in \tilde{C} -descending order. Among the first 2^{n-e} of them there is a string \hat{x} such that $|\tilde{C}(\hat{x}) - C(\hat{x})| < d$

In particular, $C(\hat{x}) > \tilde{C}(\hat{x}) - d$

Assuming $e \ge 2$, for at least $\frac{3}{4}$ of all *n*-bit strings their \tilde{C} -values are close to their complexity, and at least a half of the strings have complexity at least n - 1. Thus for at least a quarter of the strings their \tilde{C} -value is at least n - d.

Since \hat{x} is taken from 2^{n-e} strings with the biggest \tilde{C} -value, $\tilde{C}(\hat{x}) \ge n-d$ and $C(\hat{x}) > n-2d$.

Let x_1, \ldots, x_{2^n} be an enumeration of *n*-bit strings in \tilde{C} -descending order. Among the first 2^{n-e} of them there is a string \hat{x} such that $|\tilde{C}(\hat{x}) - C(\hat{x})| < d$

In particular, $C(\hat{x}) > \tilde{C}(\hat{x}) - d$

Assuming $e \ge 2$, for at least $\frac{3}{4}$ of all *n*-bit strings their \tilde{C} -values are close to their complexity, and at least a half of the strings have complexity at least n - 1. Thus for at least a quarter of the strings their \tilde{C} -value is at least n - d.

Since \hat{x} is taken from 2^{n-e} strings with the biggest \tilde{C} -value, $\tilde{C}(\hat{x}) \ge n-d$ and $C(\hat{x}) > n-2d$.

Given \hat{C} , the string \hat{x} can be encoded by its index in enumeration: $C(\hat{x}|\tilde{C}) < n - e + O(1)$.

Let x_1, \ldots, x_{2^n} be an enumeration of *n*-bit strings in \tilde{C} -descending order. Among the first 2^{n-e} of them there is a string \hat{x} such that $|\tilde{C}(\hat{x}) - C(\hat{x})| < d$

In particular, $C(\hat{x}) > \tilde{C}(\hat{x}) - d$

Assuming $e \ge 2$, for at least $\frac{3}{4}$ of all *n*-bit strings their \tilde{C} -values are close to their complexity, and at least a half of the strings have complexity at least n - 1. Thus for at least a quarter of the strings their \tilde{C} -value is at least n - d.

Since \hat{x} is taken from 2^{n-e} strings with the biggest \tilde{C} -value, $\tilde{C}(\hat{x}) \ge n-d$ and $C(\hat{x}) > n-2d$.

Given \hat{C} , the string \hat{x} can be encoded by its index in enumeration: $C(\hat{x}|\tilde{C}) < n - e + O(1)$.

these inequalities imply $C(\tilde{C}) > e - 2d + O(\log n)$.

-"Proofs"

How to prove oracle results

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目目 めんの

• Main tool: busy beaver numbers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Main tool: busy beaver numbers
- BB(n) = the maximal time needed by programs of size at most n

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Main tool: busy beaver numbers
- BB(n) = the maximal time needed by programs of size at most n

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• B(n) = the maximal number of complexity at most n

- Main tool: busy beaver numbers
- BB(n) = the maximal time needed by programs of size at most n

- B(n) = the maximal number of complexity at most n
- $B(n) \approx BB(n \pm O(1))$

- Main tool: busy beaver numbers
- BB(n) = the maximal time needed by programs of size at most n
 - B(n) = the maximal number of complexity at most n
 - $B(n) \approx BB(n \pm O(1))$

• if we know some approximation for \tilde{C} , we wait until C^{T} (Kolmogorov complexity with time bound T) becomes compatible with this approximation

- Main tool: busy beaver numbers
- BB(n) = the maximal time needed by programs of size at most n
 - B(n) = the maximal number of complexity at most n
 - $B(n) \approx BB(n \pm O(1))$

• if we know some approximation for \tilde{C} , we wait until C^{T} (Kolmogorov complexity with time bound T) becomes compatible with this approximation

• this T is larger than some busy beaver number since all numbers greater than T have large complexity (finite case), and $B \approx BB$

- Main tool: busy beaver numbers
- BB(n) = the maximal time needed by programs of size at most n
 - B(n) = the maximal number of complexity at most n
 - $B(n) \approx BB(n \pm O(1))$

• if we know some approximation for \tilde{C} , we wait until C^{T} (Kolmogorov complexity with time bound T) becomes compatible with this approximation

• this T is larger than some busy beaver number since all numbers greater than T have large complexity (finite case), and $B \approx BB$

 \bullet knowing busy beaver number, we know which programs halt / do not halt

- Main tool: busy beaver numbers
- BB(n) = the maximal time needed by programs of size at most n
 - B(n) = the maximal number of complexity at most n
 - $B(n) \approx BB(n \pm O(1))$

• if we know some approximation for \tilde{C} , we wait until C^{T} (Kolmogorov complexity with time bound T) becomes compatible with this approximation

• this T is larger than some busy beaver number since all numbers greater than T have large complexity (finite case), and $B \approx BB$

 \bullet knowing busy beaver number, we know which programs halt / do not halt

• ... and can compute C exactly